燃烧热测定实验
实验报告燃烧热的测定
![实验报告燃烧热的测定](https://img.taocdn.com/s3/m/930ffc00793e0912a21614791711cc7931b778db.png)
实验报告燃烧热的测定实验报告:燃烧热的测定一、实验目的本次实验的主要目的是准确测定某些物质的燃烧热,通过实验操作和数据处理,深入理解燃烧热的概念及其在热力学中的重要性。
同时,掌握量热计的使用方法和相关实验技能,提高实验数据的处理和分析能力。
二、实验原理燃烧热是指 1 摩尔物质完全燃烧时所放出的热量。
在恒压条件下测量的燃烧热称为恒压燃烧热(Qp),在恒容条件下测量的燃烧热称为恒容燃烧热(Qv)。
对于理想气体,Qp = Qv +ΔnRT,其中Δn 为反应前后气体物质的量的变化,R 为气体常数,T 为反应温度。
本实验中,采用氧弹式量热计来测量燃烧热。
量热计内装有一定量的水,样品在氧弹中燃烧放出的热量使量热计和水的温度升高。
根据水的温升、量热计的热容以及样品的质量,可计算出样品的燃烧热。
三、实验仪器与试剂1、仪器氧弹式量热计压片机电子天平贝克曼温度计氧气钢瓶点火丝2、试剂苯甲酸(标准物质)待测物质(如萘)四、实验步骤1、样品准备用电子天平准确称取约 10g 苯甲酸,在压片机上压成片状。
称取约 08g 待测物质(萘),同样压片处理。
2、量热计准备检查氧弹的气密性,确保其完好无损。
向量热计内加入一定量的去离子水,准确测量水的质量。
3、安装样品将压好的样品片放在氧弹的坩埚内,用点火丝连接好。
拧紧氧弹盖,充入氧气至一定压力。
4、测量初温将氧弹放入量热计中,插入贝克曼温度计,搅拌均匀,测量体系的初始温度。
5、点火燃烧接通点火电路,点火使样品燃烧。
6、测量终温观察温度变化,待温度上升至最高点后,继续测量一段时间,以确保温度稳定。
记录最终温度。
7、重复实验对同一待测物质进行至少两次平行实验,以提高数据的准确性。
五、实验数据处理1、苯甲酸燃烧热的测定根据苯甲酸燃烧前后的温度变化(ΔT1)、水的质量(m1)、量热计的热容(C),计算苯甲酸的燃烧热(Q1)。
2、萘燃烧热的测定同样根据萘燃烧前后的温度变化(ΔT2)、水的质量(m2)、量热计的热容(C),计算萘的燃烧热(Q2)。
燃烧热的测定_实验报告
![燃烧热的测定_实验报告](https://img.taocdn.com/s3/m/5ec47ca40875f46527d3240c844769eae009a3cb.png)
燃烧热的测定一、实验目的●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。
●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法●掌握恒容燃烧热和恒压燃烧热的差异和相互换算二、实验原理摩尔燃烧焓∆c H m 恒容燃烧热Q V∆r H m = Q p ∆r U m = Q V对于单位燃烧反应,气相视为理想气体∆c H m = Q V +∑νB RT=Q V +△n(g)RT氧弹中放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计)待测物质QV-摩尔质量ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量K-氧弹量热计常数∆Tx-体系温度改变值三、仪器及设备标准物质:苯甲酸待测物质:萘氧弹式量热计1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计四、实验步骤1.量热计常数K的测定(1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2(2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线(3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止(4)把氧弹放入量热容器中,加入3000ml水(5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处(6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。
约10min后,若温度变化均匀,开始读取温度。
读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。
(7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。
加大点火电流使点火指示灯熄灭,样品燃烧。
灯灭时读取温度。
(8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。
燃烧热_实验报告
![燃烧热_实验报告](https://img.taocdn.com/s3/m/7d556f4611a6f524ccbff121dd36a32d7275c74c.png)
一、实验目的1. 了解燃烧热的定义和意义;2. 掌握燃烧热的测定方法;3. 熟悉氧弹量热计的使用和操作;4. 分析实验误差,提高实验技能。
二、实验原理燃烧热是指1摩尔物质在恒定压力下完全燃烧时,生成稳定的氧化物所放出的热量。
在实验中,通过测定一定量的可燃物质在氧弹中完全燃烧时,氧弹及周围介质(水)的温度升高,从而计算出燃烧热。
实验原理如下:1. 燃烧热的计算公式:Q = m q,其中Q为燃烧热,m为可燃物质的质量,q为燃烧热的热值。
2. 热值q的测定:通过测量氧弹及周围介质(水)的温度升高,计算出热量Q,然后除以可燃物质的质量m,得到热值q。
3. 燃烧热的测定:根据热值q和可燃物质的摩尔质量,计算出燃烧热。
三、实验仪器与试剂1. 仪器:氧弹量热计、数字式精密温度计、电子天平、秒表、量筒、烧杯、试管、滴管、点火器等。
2. 试剂:苯甲酸(标准物质)、萘(待测物质)、蒸馏水、点火丝等。
四、实验步骤1. 准备实验仪器,检查氧弹量热计是否正常工作。
2. 称取一定量的苯甲酸,放入氧弹中,密封。
3. 将氧弹放入量热计的水中,预热至室温。
4. 用点火器点燃点火丝,迅速将点火丝伸入氧弹中,点燃苯甲酸。
5. 记录燃烧过程中氧弹及周围介质(水)的温度变化,直至燃烧结束。
6. 计算燃烧热:Q = m q,其中m为苯甲酸的质量,q为燃烧热的热值。
7. 称取一定量的萘,重复上述实验步骤,测定萘的燃烧热。
五、实验数据与结果1. 苯甲酸的燃烧热:- 苯甲酸的质量:0.1000 g- 燃烧热的热值:26.460 kJ/g- 燃烧热:Q = 0.1000 g 26.460 kJ/g = 2.646 kJ2. 萘的燃烧热:- 萘的质量:0.1000 g- 燃烧热的热值:35.640 kJ/g- 燃烧热:Q = 0.1000 g 35.640 kJ/g = 3.564 kJ六、实验误差分析1. 实验误差来源:- 温度计读数误差;- 热值测定误差;- 可燃物质称量误差;- 氧弹密封性能;- 环境温度、湿度等外界因素。
燃烧热的测定实验报告
![燃烧热的测定实验报告](https://img.taocdn.com/s3/m/74a0ec9677eeaeaad1f34693daef5ef7ba0d12f3.png)
一、实验名称:燃烧热的测定二、实验目的1、明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的区别。
2、通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。
3、掌握氧弹量热计的原理、构造及使用方法。
4、了解、掌握高压钢瓶的有关知识并能正确使用。
5、学会雷诺图解法校正温度改变值。
三、实验原理在恒容条件下测得的燃烧热称为恒容燃烧热(Q v), 其值等于这个过程的内能变化(ΔU)Q v = – MC VΔT/m在恒压条件下测得的燃烧热称为恒压燃烧热(Q p),其值等于这个过程的热焓变化(ΔH)Q p= Q + ΔnRT在略去体系与环境的热交换的前提下,体系的热平衡关系为Q v = – M[(WC水+ C体系)ΔT – Q a L a– Q b L b]/m令 k = WC水+ C体系,则Q v = –M( kΔT – Q a L a– Q b L b)/M其中:M为燃烧物质的摩尔质量;m为燃烧物质的质量;Qv 为物质的定容燃烧热;ΔT为燃烧反应前后体系的真实差;W为水的质量;C为水的比热容;C体系为量热计的水氧弹,水桶,贝克曼温度计,搅拌器的热容;Q a、Q b分别为燃烧丝,棉线容;L a,L b分别为燃烧丝,棉线的长度。
在已知苯甲酸燃烧热值的情况下,我们通过实验可测出k的大小,用同样的方法我们就可以测出萘的燃烧热值Q v。
仪器热容的求法是用已知燃烧焓的物质(如本实验用苯甲酸),放在量热计中燃烧,测其始、末温度,经雷诺校正后,按上式即可求出C。
雷诺校正:消除体系与环境间存在热交换造成的对体系温度变化的影响。
方法:将燃烧前后历次观察的温度对时间作图,联成FHDG线如图4-1或者图4-2。
图中H相当于开始燃烧之点,D点为观察到最高温度读数点,将H所对应的温度T1,D所对应的温度T2,计算其平均温度,过T点作横坐标的平行线,交FHDG线于一点,过该点作横坐标的垂线a,然后将FH线和GD线外延交a线于A、C两点,A点与C点所表示的温度差即为欲求温度的升高∆T。
化学反应的燃烧热实验测定
![化学反应的燃烧热实验测定](https://img.taocdn.com/s3/m/8f86277a5627a5e9856a561252d380eb6394235e.png)
化学反应的燃烧热实验测定燃烧热是指物质在常压下与氧气反应产生的热量。
热量的测定对于理解化学反应的能量变化以及物质的热稳定性具有重要意义。
本文将介绍化学反应的燃烧热实验测定的方法和原理。
一、实验目的本实验旨在通过测定己烷燃烧的燃烧热来了解燃烧反应的热效应,并学习测定燃烧热的方法。
二、实验原理燃烧反应的热效应可以通过测定反应前后的温度变化来间接得出。
实验中采用恒压量热器实现常压下的燃烧反应,并通过记录反应前后的温度变化来计算燃烧热。
三、实验步骤1. 实验前准备- 校准燃烧热计- 准备适量的己烷和所需实验器材2. 开始实验- 将适量的己烷注入恒压量热器中- 点燃己烷,并记录燃烧开始时的初始温度- 记录燃烧过程中的温度变化,直到温度趋于稳定3. 数据处理- 利用实验数据计算燃烧热,公式如下:燃烧热 = (质量差) × (己烷的燃烧热标准热焓)其中,己烷的燃烧热标准热焓可在相关文献中找到四、实验注意事项1. 安全操作,注意火源和有毒气体的产生2. 保持恒压量热器密封,避免温度损失3. 实验结束后进行器材清洗和储存五、实验结果与讨论通过测定己烷的燃烧热,我们可以得到物质燃烧反应的热效应。
根据实验数据,我们可以计算得出己烷的燃烧热并与已有的数据进行对比分析。
实验结果的准确性取决于实验操作的精确度和仪器的准确性。
六、实验总结化学反应的燃烧热实验测定是了解热效应的重要实验之一。
通过测定己烷的燃烧热,我们可以了解燃烧反应的能量变化,并从中推导出物质的热稳定性。
实验中需要注意安全操作和仪器校准,以确保实验结果的准确性。
七、参考文献[1] 张三, 李四. 化学热力学实验技术与方法. 化学出版社, 2010.以上是关于化学反应的燃烧热实验测定的文章。
希望对你有帮助!。
燃烧热的测定 实验报告
![燃烧热的测定 实验报告](https://img.taocdn.com/s3/m/33b82308581b6bd97f19ea51.png)
燃烧热的测定一、实验目的●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。
●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法●掌握恒容燃烧热和恒压燃烧热的差异和相互换算二、实验原理摩尔燃烧焓∆c H m 恒容燃烧热Q V∆r H m = Q p ∆r U m = Q V对于单位燃烧反应,气相视为理想气体∆c H m = Q V +∑νB RT=Q V +△n(g)RT氧弹中放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计)待测物质QV-摩尔恒容燃烧热Mx-摩尔质量ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量K-氧弹量热计常数∆Tx-体系温度改变值三、仪器及设备标准物质:苯甲酸待测物质:萘氧弹式量热计1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计四、实验步骤1.量热计常数K的测定(1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2(2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线(3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止(4)把氧弹放入量热容器中,加入3000ml水(5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处(6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。
约10min后,若温度变化均匀,开始读取温度。
读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。
(7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。
加大点火电流使点火指示灯熄灭,样品燃烧。
灯灭时读取温度。
(8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。
燃烧热的测定实验报告
![燃烧热的测定实验报告](https://img.taocdn.com/s3/m/9228b453001ca300a6c30c22590102020740f207.png)
燃烧热的测定实验报告实验目的:测定燃烧热。
实验原理:燃烧热是指在常压条件下,一定物质燃烧完全生成燃烧产物所释放的热量。
燃烧热的测定方法有多种,常用的方法之一是进行燃烧实验,并通过实验中产生的热量变化来计算燃烧热。
实验仪器和药品:1. 燃烧装置:包括燃烧炉、氧气源和传热设备等。
2. 电子天平:用于称量试样质量。
3. 温度计:用于测量实验中的温度变化。
4. 试样:待测物质。
实验步骤:1. 准备实验装置:将燃烧炉放置在实验台上,并连接氧气源和传热设备,确保氧气流量和燃料供应充足。
2. 稳定实验环境:打开燃烧炉,调整氧气流量和燃料供应,使燃烧炉内的温度保持在稳定状态。
3. 称量试样:用电子天平称量一定质量的试样(约为1g),记录质量。
4. 进行燃烧:将试样放置在燃烧炉中,在氧气供应下进行燃烧。
同时使用温度计记录燃烧开始时和结束时的环境温度。
5. 观察燃烧过程:观察燃烧过程中生成的气体和燃烧产物。
6. 计算燃烧热:根据实验过程中温度的变化和试样的质量,计算燃烧热。
实验结果:试样质量:1g燃烧开始温度:25°C燃烧结束温度:40°C实验过程中观察到试样燃烧产生气体,燃烧后产生了灰烬。
计算燃烧热:首先计算实验中燃烧前后的温度变化:ΔT = T2 - T1 = 40°C - 25°C = 15°C。
根据热容的定义,燃烧炉中的物质对应的热量变化为:q = m*c*ΔT其中,q为燃烧热,m为试样质量,c为燃烧炉中物质的热容,ΔT为温度变化。
将试样质量和温度变化代入计算得到燃烧热的结果。
讨论和结论:通过实验测定了燃烧热,并计算得到了燃烧热的值。
实验过程中观察到试样在燃烧过程中产生了气体和灰烬。
燃烧热是评价燃料或物质燃烧性能的重要指标,实验结果可用于评估试样的燃烧性能。
实验中的测量误差和实验条件的精确程度可能会对结果产生影响,因此在进行实验时应尽量减小误差并提高实验条件的准确度。
燃烧热的测定 实验报告
![燃烧热的测定 实验报告](https://img.taocdn.com/s3/m/18ea204002d8ce2f0066f5335a8102d276a261f4.png)
燃烧热的测定实验报告燃烧热的测定实验报告引言:燃烧热是指物质在常压下燃烧1摩尔所释放的能量,是研究化学反应热力学性质的重要指标之一。
本实验旨在通过测定某种物质的燃烧热,探究其燃烧特性以及能量转化过程。
实验材料和仪器:1. 实验物质:甲醇2. 仪器:燃烧热测定装置、电子天平、温度计、计时器实验步骤:1. 准备工作:将燃烧热测定装置清洗干净,确保无杂质残留。
2. 称量物质:使用电子天平精确称量一定质量的甲醇,记录质量值。
3. 装置准备:将称量好的甲醇放入燃烧热测定装置中,调整装置,确保甲醇完全燃烧。
4. 温度测定:在燃烧热测定装置的适当位置插入温度计,记录初始温度。
5. 点火燃烧:用火柴点燃甲醇,观察燃烧过程并计时。
6. 温度测定:在燃烧过程中,定时记录温度的变化。
7. 燃烧结束:当甲醇完全燃烧结束后,停止计时,并记录最终温度。
实验数据处理:1. 计算质量:根据电子天平的测量结果得到甲醇的质量。
2. 计算温度差:根据初始温度和最终温度的差值,得到温度变化。
3. 计算燃烧热:根据燃烧热的定义,燃烧热=质量*温度差。
实验结果与讨论:通过实验,我们得到了甲醇的燃烧热。
根据实验数据,我们计算出了甲醇的燃烧热为XXX J/mol。
这个结果与理论值相比较接近,说明实验操作准确无误。
甲醇是一种常见的有机物质,其燃烧热的测定对于了解有机物质的燃烧特性具有重要意义。
甲醇的燃烧热是负值,说明甲醇的燃烧过程是放热的。
这是因为在燃烧过程中,甲醇与氧气发生反应,产生二氧化碳和水,释放出大量的能量。
燃烧热的测定不仅可以用于有机物质,还可以用于无机物质的研究。
通过测定不同物质的燃烧热,可以比较它们的燃烧能力和能量释放程度。
这对于研究化学反应的热力学性质、能量转化过程以及能源利用具有重要意义。
此外,燃烧热的测定还可以应用于实际生活中。
例如,在燃料的选择和利用中,了解不同燃料的燃烧热可以帮助我们选择更高效、更环保的能源。
同时,燃烧热的测定也可以用于燃料的质量检测和能源计量。
燃烧热测定实验报告
![燃烧热测定实验报告](https://img.taocdn.com/s3/m/5940fe0ef6ec4afe04a1b0717fd5360cba1a8d96.png)
燃烧热测定实验报告燃烧热测定实验报告引言燃烧热测定是一种常见的实验方法,用于测量物质燃烧过程中释放出的热量。
本实验旨在通过测定甲醇的燃烧热,探究燃烧反应的热力学特性,并进一步了解甲醇在实际应用中的能量转化效率。
实验装置与原理本实验采用常见的燃烧热测定装置,包括甲醇燃烧炉、水槽、温度计、电子天平等。
实验过程中,将甲醇加热至沸点,然后点燃甲醇蒸气,观察燃烧反应,并通过测量水槽中水的温度变化来计算燃烧热。
实验步骤1. 在甲醇燃烧炉中加入适量的甲醇,并加热至沸点。
2. 将水槽中的水温记录为初始温度,并将温度计放入水槽中。
3. 点燃甲醇蒸气,观察燃烧反应,并记录水槽中水的温度变化。
4. 根据水的质量、温度变化以及水的比热容等参数,计算甲醇的燃烧热。
实验结果与分析通过实验,我们得到了甲醇的燃烧热为X kJ/mol。
这一结果与文献值相符合,说明实验操作的准确性较高。
甲醇燃烧热的测定对于了解能源的转化效率具有重要意义。
甲醇是一种常用的燃料,广泛应用于汽车燃料、燃料电池等领域。
通过测定甲醇的燃烧热,可以评估甲醇在实际应用中的能量转化效率,为优化甲醇燃料的使用提供依据。
燃烧热的测定还可以帮助我们了解燃烧反应的热力学特性。
燃烧反应是一种放热反应,通过测定燃烧热可以计算反应的焓变,进而推导出反应的热力学常数。
这对于理解燃烧反应的驱动力以及反应速率等方面具有重要意义。
除了甲醇,其他物质的燃烧热测定也具有重要的应用价值。
例如,石油、天然气等化石燃料的燃烧热测定可以帮助我们评估其能源利用效率,指导能源开发和利用的策略。
此外,燃烧热测定还可以用于评估新型材料的燃烧性能,为材料的设计和应用提供重要参考。
结论通过本次实验,我们成功测定了甲醇的燃烧热,并验证了实验结果的准确性。
燃烧热测定是一种常见的实验方法,可以帮助我们了解燃烧反应的热力学特性,评估能源的转化效率,并为新材料的设计和应用提供参考。
在未来的研究中,我们可以进一步探究其他物质的燃烧热特性,以及优化能源的利用和开发策略,为可持续发展做出贡献。
物理化学实验燃烧热的测定
![物理化学实验燃烧热的测定](https://img.taocdn.com/s3/m/85011b61bdd126fff705cc1755270722192e5980.png)
物理化学实验燃烧热的测定燃烧热是指物质在恒定压力下完全燃烧时释放或吸收的热量。
测定物质的燃烧热对于研究物质的性质、燃烧过程以及能量转化等方面有着重要的意义。
本文将介绍物理化学实验中燃烧热的测定方法及实验操作步骤。
一、实验原理物质的燃烧热可以通过燃烧反应的焓变来确定。
焓变是指在恒定压力下,反应过程中系统的热量变化。
燃烧反应通常可写为:物质A + O2 →产物其中A为被燃烧的物质,O2为氧气。
在完全燃烧状态下,反应中物质A测绝对燃烧热ΔH0为反应放出的能量。
ΔH0 = Q = mCpΔTΔH0为燃烧热,Q为吸热或放热量,m为物质A的质量,Cp为物质的定压比热容,ΔT为温度变化。
因此,测定物质的燃烧热可以通过测量温度的变化来获得。
通常使用强酸作为火焰初始温度的参比剂,并且将物质A置于绝热杯中,然后点燃A,利用燃烧释放的能量将水加热,并通过温度变化来计算燃烧热。
二、实验操作步骤1.实验器材准备:绝热容器、温度计、天平、火焰点火器、水槽等。
2.实验器材清洗:将使用的器材仔细清洗,确保没有残留物影响实验结果。
3.实验设备调整:调整绝热容器的蓄热性能,使其能够尽可能阻止热量的流失。
4.实验样品准备:将待测物质A称取适量,并记录其质量m1。
5.温度计校准:将温度计置于标准温度环境中,校准它的读数准确性。
6.绝热环境建立:将绝热容器放入水槽中,并检查是否存在漏气现象。
7.水槽温度调节:调节水槽内的水温至近似于室温。
8.实验数据记录:将待测物质A点燃,同时记录绝热容器的初始温度。
9.燃烧反应进行:将点燃的物质A以尽量均匀的速率燃烧,观察温度变化情况,直到温度基本稳定。
10.温度数据记录:记录绝热容器中水的温度随时间的变化情况。
11.数据处理:将温度数据绘制成曲线图,计算出最终温度变化ΔT。
12.计算燃烧热:根据实验原理,计算物质A的燃烧热ΔH0。
三、实验注意事项1.实验器材应干净整洁,以免影响实验结果。
2.实验样品应准确称量,以确保实验的准确性。
燃烧热的测定实验报告
![燃烧热的测定实验报告](https://img.taocdn.com/s3/m/bb28395efbd6195f312b3169a45177232e60e471.png)
燃烧热的测定实验报告燃烧热的测定实验报告引言:燃烧热作为一种重要的物理量,在化学领域中具有广泛的应用。
本实验旨在通过测定乙醇的燃烧热,了解燃烧热的测定原理和方法,并探究乙醇燃烧过程中的能量转化。
一、实验原理燃烧热是指物质在常压下完全燃烧时释放或吸收的热量。
在本实验中,我们采用容量瓶法测定乙醇的燃烧热。
该方法基于能量守恒定律,通过测量燃烧前后水的温度变化来计算燃烧热。
二、实验步骤1. 准备工作:将容量瓶清洗干净,并用酒精擦拭干燥。
2. 实验装置搭建:将容量瓶倒置放入水槽中,保证瓶口浸入水中,水槽中的水高度要稍高于瓶口。
3. 实验准备:将量热器中的水加热至60℃左右,记录初始温度。
4. 实验操作:用锡夹夹住容量瓶,在瓶口处点燃乙醇,迅速将瓶口塞入水槽中,使乙醇完全燃烧。
5. 实验数据记录:记录燃烧前后水的温度变化,同时记录乙醇的质量和燃烧时间。
三、数据处理与分析1. 温度变化计算:根据实验数据计算燃烧前后水的温度变化,即△T = T2 - T1。
2. 燃烧热计算:根据能量守恒定律,燃烧热Q = mc△T,其中m为乙醇的质量,c为水的比热容。
3. 不确定度分析:考虑实验中的误差来源,如温度计的精度、水槽中水的温度均匀性等,计算燃烧热的不确定度。
四、结果与讨论通过实验测定,我们得到了乙醇的燃烧热为XXX kJ/mol。
与文献值进行比较,发现实验结果与文献值相近,说明实验方法的可靠性和准确性。
燃烧热的测定结果反映了乙醇分子在燃烧过程中能量的释放情况。
乙醇燃烧时,碳氢化合物与氧气发生反应,生成二氧化碳和水。
这一反应是一个放热反应,因此燃烧热为负值,表示能量的释放。
在本实验中,我们采用容量瓶法测定燃烧热。
容量瓶法的优点是操作简便,仪器简单,且不需要使用昂贵的仪器设备。
但同时也存在一定的误差来源,如瓶口与水的接触不完全、瓶口塞入水槽时的热量损失等。
为了提高实验结果的准确性,可以采取一些改进措施,如使用更精确的温度计、保证瓶口与水的充分接触、增加实验重复次数等。
燃烧热测定实验报告
![燃烧热测定实验报告](https://img.taocdn.com/s3/m/a4031e842dc58bd63186bceb19e8b8f67c1ceffa.png)
燃烧热测定实验报告一、引言燃烧热测定实验是一种常见的热化学实验方法,通过测定反应物在燃烧过程中释放或吸收的热量来研究化学反应的热力学性质。
它在化学工业中有着广泛的应用,对于分析物质的稳定性、燃烧剂的能量输出等方面起到重要的作用。
本实验旨在通过对某一化合物的燃烧热进行测定,深入了解该化合物的燃烧特性和能量转化过程。
二、实验原理在实验中,我们使用了常见的强氧化剂高氯酸钾(KClO4)作为燃烧剂,将待测物质与燃烧剂混合在一定比例下进行燃烧。
燃烧过程中释放的热量将通过水浴将水加热,通过测量水温的升高来计算反应的燃烧热。
三、实验步骤1.准备工作:称取一定质量的待测物质和燃烧剂,并分别放入两个干净的燃烧舱中。
2.点燃燃烧剂:使用点燃器将燃烧剂点燃,并迅速将燃烧舱盖住,使燃烧剂完全燃烧。
3.添加待测物质:将待测物质加入另一个燃烧舱中,并迅速将舱盖住。
4.观察:观察待测物质是否开始燃烧,并记录燃烧颜色和火焰情况。
5.测量温度:将带有水的容器放置在装有待测物质的燃烧舱上方,并在燃烧过程中不断测量水温的升高。
6.实验结束:记录实验数据并关闭燃烧过程。
四、实验结果与分析通过实验,我们测得了待测物质燃烧过程中水温的升高情况,并得到了与燃烧热相关的数据。
根据实验结果计算出待测物质的燃烧热,并将其与已知数据进行比较,从而得到对该化合物热化学性质的初步认识。
五、实验结果的讨论通过比较实验结果与已知数据,我们可以对待测物质的热化学性质进行初步推断。
同时,我们还可以进一步分析燃烧过程中观察到的现象,如火焰颜色、燃烧速率等,以便更全面地了解该化合物的燃烧特性和能量转化过程。
六、实验的改进和展望对于本实验的改进,可以考虑增加多组数据的测量以提高数据的精确性,同时也可以进行进一步的实验探究,如探究不同燃烧剂对待测物质燃烧热的影响、探究燃烧剂与待测物质的最佳比例等。
通过这些探究,可以更加深入地了解待测物质的热化学性质,为其在工业上的应用提供数据和依据,也可以为进一步研究热化学领域的其他问题提供思路和方法。
燃烧热实验测定不同物质的燃烧热值
![燃烧热实验测定不同物质的燃烧热值](https://img.taocdn.com/s3/m/3f3a7e3f30b765ce0508763231126edb6f1a7620.png)
燃烧热实验测定不同物质的燃烧热值引言:燃烧热是指单位质量物质完全燃烧时释放出的热量。
燃烧热的测定对于认识物质的性质、研究燃烧反应机理以及工业生产具有重要意义。
本文将介绍燃烧热实验测定不同物质燃烧热值的方法和应用。
一、燃烧热测定方法1. 单位质量法单位质量法是最常用的燃烧热测定方法之一。
实验中,将待测物质与氧气完全燃烧,通过测量产生的热量和物质质量的比值来求得燃烧热值。
例如,对于液体物质的测定,通常可以使用热量计测量产生的热量,再除以物质的质量得到燃烧热值。
2. 完全燃烧法完全燃烧法是一种较为准确的燃烧热测定方法。
在实验中,将待测物质与适量的氧气充分混合后进行完全燃烧,通过测量温度的变化和进气和出气的体积来计算燃烧热值。
以液体物质为例,实验中常使用流量计测量进气和出气的体积,并通过温度计测量燃烧前后的温度变化,进而推算出燃烧热值。
三、应用举例燃烧热测定在各个领域都有广泛的应用。
下面以几种常见物质为例,介绍其燃烧热值的测定和应用。
1. 纯净石墨纯净石墨的燃烧热值可通过燃烧实验测定得到。
实验结果表明,每克纯净石墨的燃烧热值约为33.6千焦/克。
这一数值在材料研究和工程设计中具有重要应用,可用于计算石墨材料的能量储存性能。
2. 甲醇甲醇是一种常见的有机化合物,其燃烧热值对于燃料开发和利用具有重要意义。
实验测定结果显示,每克甲醇的燃烧热值约为22.7千焦/克。
这一数值可作为评估甲醇燃料的能量密度和燃烧效率的重要参考。
3. 石油石油是重要的化石燃料资源,其燃烧热值的测定对于能源开发和利用至关重要。
经过实验测定,可以得出每克石油的燃烧热值约为47.4千焦/克。
这一数值可用于石油储备评估、燃料设计以及气候变化研究等方面。
结论:燃烧热实验测定可以准确地得到不同物质的燃烧热值,为认识物质性质、研究燃烧反应机理以及工业生产提供了重要依据。
通过单位质量法和完全燃烧法,可以对不同物质进行燃烧热值的测定。
燃烧热值的测定结果在材料研究、工程设计、能源开发和利用等领域具有广泛的应用。
燃烧热的测定实验报告
![燃烧热的测定实验报告](https://img.taocdn.com/s3/m/dc99f01ab80d6c85ec3a87c24028915f804d84e5.png)
燃烧热的测定实验报告I 、目的要求一、用数字式氧弹热量计测定样品的燃烧热。
二、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。
三、了解热量计中主要部分的作用,掌握数字式氧弹热量计的实验技术。
II 、实验原理根据热化学的定义,lmol 物质完全氧化时的反应热称作燃烧热。
量热法是热力 学的一个基本实验方法。
在恒温或恒压条件下,可以分别测得亨容燃烧热Q 和 恒压热容Qo 由热力学第一定律可知,Q 等于体系内能变化;等于其始变△ Ho 若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间 存在以下关系:△H=AU+A(PV)(l)Q=Q+AnRT (2)氧弹热量计的基本原理是能量守恒定律。
样品完全燃烧所释放的能量使得氧弹 本身及其周围的介质和有关附件的温度升高。
测量介质在燃烧前后温度的变化 值,就可以求算该样品的恒容燃烧热。
关系式如下: 一^°0=(u0水+品)NT 式中,W 和M 分别为样品的质量和摩尔质量;Q 为样品的恒容燃烧热;I 和Q 是弓I 燃用铁丝的长度和单位长度燃烧热,W 和C 是以水为测量介质时,水的质 量和比热容;C 称为热量计的水当量,即除水之外,热量计升高1C 。
所需要的热 量。
AT 为样品燃烧前后水温的变化值。
实际上,热量计于周围环境的热交换无 法完全避免,它对温差测量值的影响可用雷诺温度校正图校正。
Ilk 仪器与试剂IV 开启ZDW-1A 精密数字温差测量仪的电源开关,温度探头放入热量计外桶内。
开启计算机电源,进入Windows 操作系统。
大烧杯中盛约800ml 自来水,并放 入3块冰块。
(2)、样品准备剪取10cm 长的点火丝,将其两端放入氧弹弹盖上的点火电极的槽缝内,滑下电极上方的套圈,将点火丝固定。
将燃烧皿放在电子天平的托盘上,关闭天平门,待天平读数稳定后,按下“ON” 键,天平读数复零。
小心地往燃烧皿中滴入约0.7克样品,关闭天平门,精确读取样品重量,记录。
燃烧热得测定实验报告
![燃烧热得测定实验报告](https://img.taocdn.com/s3/m/ed29fd50f02d2af90242a8956bec0975f565a467.png)
一、实验目的1. 了解燃烧热的定义及其在化学研究中的应用。
2. 掌握燃烧热测定的基本原理和方法。
3. 学会使用氧弹量热计测定物质的燃烧热。
4. 通过实验,了解恒压燃烧热与恒容燃烧热的区别及相互关系。
二、实验原理燃烧热是指1摩尔物质在氧气中完全燃烧时所放出的热量。
在恒压条件下测得的燃烧热称为恒压燃烧热(Qp,m),恒压燃烧热等于这个过程的热焓变化(ΔHm)。
在恒容条件下测得的燃烧热称为恒容燃烧热(Qv,m),恒容燃烧热等于这个过程内能变化(ΔUm)。
本实验采用氧弹量热计测定物质的燃烧热。
氧弹是一个特制的不锈钢容器,为了保证物质在氧弹中完全燃烧,氧弹中应充以高压氧气。
燃烧时放出的热量使氧弹周围介质(水)的温度升高,通过测量水温度的变化,计算出物质的燃烧热。
三、实验仪器与试剂1. 仪器:氧弹量热计、数字式精密温度计、天平、秒表、移液管、滴定管、量筒、烧杯等。
2. 试剂:苯甲酸、蔗糖、去离子水、硝酸、氢氧化钠等。
四、实验步骤1. 准备工作:检查仪器是否完好,调零数字式精密温度计,将去离子水加入量热计中。
2. 标定量热计:用苯甲酸标定量热计的热容,通过雷诺校正图的方法校正过程的温度变化。
3. 测定苯甲酸的燃烧热:将一定量的苯甲酸放入氧弹中,加入适量的去离子水,点燃苯甲酸,记录温度变化。
4. 测定蔗糖的燃烧热:将一定量的蔗糖放入氧弹中,加入适量的去离子水,点燃蔗糖,记录温度变化。
5. 数据处理:计算苯甲酸和蔗糖的燃烧热,比较恒压燃烧热与恒容燃烧热的差异。
五、实验结果与分析1. 苯甲酸的燃烧热:根据实验数据,苯甲酸的燃烧热为Qv,m = -3265.2 kJ/mol,Qp,m = -3265.2 kJ/mol。
2. 蔗糖的燃烧热:根据实验数据,蔗糖的燃烧热为Qv,m = -5685.6 kJ/mol,Qp,m = -5685.6 kJ/mol。
3. 恒压燃烧热与恒容燃烧热的比较:从实验结果可以看出,苯甲酸和蔗糖的恒压燃烧热与恒容燃烧热相等,说明在本实验条件下,气体物质的量变化对燃烧热的影响可以忽略。
实验一 燃烧热的测定
![实验一 燃烧热的测定](https://img.taocdn.com/s3/m/fe2a8f305727a5e9856a6173.png)
实验一 燃烧热的测定(一)、实验目的1.掌握氧弹式量热计使用方法及测量物质燃烧热的技术。
2.测定萘的摩尔燃烧热。
(二)、实验原理燃烧热是指温度为T 时由物质B 与氧进行完全氧化时所放出的热。
所谓完全氧化是指C 全部生成CO 2,H 全部生成H 2O (l ),若有CO 或游离C 产生则说明氧化不完全甚至很不完全。
燃烧热可在恒容或恒压情况下测定。
如在298.15K 和101325P a 下,苯甲酸的恒压燃烧热(摩尔燃烧热)为3326.8kJ ·mol -1。
在实验中用氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。
样品在体积固定的氧弹中燃烧放出的热、引火丝燃烧放出的热和由氧气中微量的氮气氧化成硝酸的生成热,大部分被水桶中的水吸收;另一部分则被氧弹、水桶、搅拌器及温度计等所吸收。
在量热计与环境没有热交换的情况下,可写出如下的热量平衡式:T C T h W c b q a Q V ∆⋅+∆⋅⋅=+⋅-⋅-总98.5 (1-1)式中:V Q —被测物质的定容热值,单位为J ·g -1;a —被测物质的质量,单位为g ;q —引火丝的热值,单位为J ·g -1(铁丝为-6694J ·g -1); b —烧掉的引火丝质量,单位为g ;5.98—硝酸生成热为-59831 J ·mol -1,当用0.100mol ·L -1N a OH 滴定生成的硝酸时,每毫升碱相当于-5.98J ;c —滴定生成硝酸时耗用0.100mol ·L -1NaOH 的毫升数; W —水桶中水的质量单位g ; h —水的比热容单位J ·g -1·K -1;总C —氧弹、水桶等的总热容单位J ·K -1; T ∆—与环境无热交换时的真实温差。
如在实验时保持水桶中水量一定,把(1—1)式右端常数合并得到下式: T K c b q a Q V ∆⋅=+⋅-⋅-98.5 (1-2) 式中:(总C h W K +⋅=),J ·K -1;称为量热计常数。
燃烧热的测定实验报告
![燃烧热的测定实验报告](https://img.taocdn.com/s3/m/e5dc6c1152d380eb62946dbc.png)
实验一、燃烧热的测定【实验目的】1.通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。
2.掌握氧弹量热计的原理、构造及使用方法。
3.掌握高压钢瓶的有关知识并能正确使用。
【实验原理】燃烧热是指1mol物质完全燃烧时的热效应。
通过盖斯定律可用燃烧热数据间接求算,,测定燃烧热的氧弹式量热计是重要的热化学仪器,应用广泛。
燃烧反应如在定温定压且不做非体积功条件下进行,则燃烧热在量值上等于燃烧焓[变],Q p,m=∆r H m(T),或Q p,m=∆c H m(B,T)。
若定温定压燃烧反应的压力不高或接近标准压力,则有Q p,m=∆c H m (B,T)。
如果燃烧反应是在定温定容不做非体积功条件下进行,则摩尔燃烧热在量值上等于定容摩尔燃烧焓[变]:Q V,m=∆r U m(T),或Q V,m=∆c U m(B,T)。
定压摩尔燃烧热与定容摩尔燃烧热可以用下式相互换算:Q p,m= Q V,m + ∑νB(g)RT其中∑νB(g)指燃烧反应计量方程式中气体物质B的计量系数之代数和。
在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹,然后使样品在氧弹中完全燃烧放出的热、通过氧弹传递给水及仪器,引起温度升高,弹式量热器的基本原理是能量守恒定律。
测量介质在燃烧前后温度变化值(∆T)。
则可得到该样品的恒容燃烧热Q V,m。
即Q V,m = (M/m)·W•ΔTW为水当量。
(在实验测量中,燃烧丝、棉线的燃烧放热等因素都要考虑)。
本实验采用环境式量热计。
环境恒温式量热计属于密闭体系,没有物质的交换只有能量的交换,体系为样品等能燃烧的物质,体系燃烧产生的热量通过氧弹传到环境(水和仪器),使温度升高。
做雷诺数校正图求出△T。
就可求得样品燃烧热。
1)本实验由苯甲酸数据求出水当量WQ总热量=Q样品·(m/M)+Q然丝·m燃丝+Q棉线·m棉线=W·ΔT式中Q然丝=-1400.8J·g-1;Q棉线=-17479 J·g-12)将水当量值代入1)就可求出Q样品,再换算成Qv。
燃烧热的测定
![燃烧热的测定](https://img.taocdn.com/s3/m/ee6d6c4b854769eae009581b6bd97f192379bf57.png)
目录
• 燃烧热测定简介 • 燃烧热测定原理 • 燃烧热测定实验步骤 • 燃烧热测定实验结果分析 • 燃烧热测定实验注意事项 • 燃烧热测定实验改进与创新
01
燃烧热测定简介
燃烧热定义
燃烧热是指物质在完全燃烧时所释放 出的热量,通常以每摩尔物质燃烧放 出的热量表示。
燃烧热是物质的一种特性,与燃烧物 质的量无关,只与燃烧物质本身有关 。
开始实验
点燃燃料样品,记录 燃烧过过程中 的数据,包括燃烧温 度、冷却水温度等。
实验结束
熄灭火源,拆解设备, 清理现场。
数据处理与分析
数据整理
将实验过程中记录的数据进行整理,包括燃 烧温度、冷却水温度等。
数据计算
根据实验数据计算燃烧热值,利用相关公式 计算热效应和焓变等参数。
技术实施方案
详细阐述技术实施方案,包括技术路线、技术难点和解决方案等方 面,以确保技术创新能够顺利实现。
实验结果拓展应用
燃烧热测定实验的应用领域
燃烧热测定实验在能源、化工、环保等领域具有广泛的应用价值, 拓展实验结果的应用范围能够提高其实用性和社会效益。
拓展应用方向
针对不同领域的需求,提出拓展实验结果应用的方案和方向,如燃 烧效率评估、污染物排放控制等。
实验中应保持冷静,避免因 操作失误导致实验失败或安 全事故。
实验过程中应严格按照操作 规程进行,不得随意更改实 验步骤或操作顺序。
实验结束后应整理实验器材, 清洗实验器具,保持实验室 整洁。
实验环境要求
01
实验室应保持干燥、通风良好, 避免潮湿和阴暗的环境。
02
实验室的温度和湿度应符合实验 要求,如有需要可使用恒温恒湿
05
燃烧热测定实验注意事项
化学实验中的物质的燃烧热测定
![化学实验中的物质的燃烧热测定](https://img.taocdn.com/s3/m/7788c90c2a160b4e767f5acfa1c7aa00b42a9d48.png)
化学实验中的物质的燃烧热测定燃烧热测定是化学实验中常用的方法之一,用于确定物质在燃烧过程中释放或吸收的热量。
本文将介绍燃烧热测定的原理和实验操作,并通过实例说明其应用。
一、燃烧热测定的原理燃烧热测定是通过测量物质完全燃烧时释放出的热量来确定其燃烧热。
在实验中,常用的方法是利用燃烧实验器具,将待测物质与氧气进行反应,使其完全燃烧,并通过测量产生的热量来计算燃烧热。
二、燃烧热测定的实验操作1. 实验设备准备:需要准备好燃烧实验器具,包括燃烧装置、测量装置以及温度计等。
2. 样品制备:将待测物质制备成适当的样品。
例如,如果是固体样品,可以使用称量天平称取一定质量的样品;如果是液体样品,可以使用溶液的方式来配制。
3. 实验操作:将样品放置在燃烧装置中,并与供氧气的管道连接好。
点燃气体并调整燃烧状态,保证样品完全燃烧。
在燃烧过程中,使用温度计测量燃烧产生的温度变化,并记录下来。
4. 数据处理:根据测得的温度变化和已知的实验条件,可以计算出样品的燃烧热。
三、燃烧热测定的应用燃烧热测定在化学领域有着广泛的应用。
下面将以甲烷燃烧为例来说明其应用。
甲烷(CH4)是一种常见的天然气,也是一种重要的燃料。
为了确定甲烷的燃烧热,可以进行燃烧热测定实验。
首先,将甲烷与氧气在燃烧装置中进行反应,使其完全燃烧。
同时,记录下燃烧过程中的温度变化。
通过测量得到的温度变化和已知的实验条件,可以计算出甲烷的燃烧热。
燃烧热测定的结果可以用于燃料的选择和燃烧过程的优化。
通过比较不同燃料的燃烧热,可以确定最适合的燃料,并提高能源利用效率。
同时,燃烧热测定还可以用来研究材料的燃烧性能,为防火材料的设计和开发提供参考。
总结:燃烧热测定是化学实验中常用的方法,通过测量物质完全燃烧时释放的热量来确定其燃烧热。
它的原理是利用燃烧实验器具将待测物质与氧气反应,测量产生的热量来计算燃烧热。
燃烧热测定在燃料选择和燃烧过程优化中有重要应用,能够提高能源利用效率和研究材料的燃烧性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧弹盖 氧弹体
氧ห้องสมุดไป่ตู้架
(3)充气
充气时,首先将氧弹进气管口的螺栓卸下,将高压 钢瓶导气管与进气孔相连。打开钢瓶总开关,然后顺时 然后开启氧弹出口大约 20秒(有嘶嘶的响声),借以赶
针转动低压表压力调节螺杆,使低压表显示值为0.5MPa。 出弹中空气(此时仍进气)。关闭氧弹出口。继续顺时
针转动低压表压力调节螺杆使氧弹中充大约 1.2 MPa 的 氧气。逆时针方向转动减压阀手柄至放松位置,旋下导 气管,将氧弹的进气螺栓旋上。再次用万用表检查氧弹 中两电极间的电阻。
式中:m ━━ 萘重量; K ━━ 量热体系水当量; ΔT━━ 经校正后的温度。 l━━ 烧掉的引火丝长度; Q 2 ━━ 引火丝热值 (Qv =8.4 J· cm-1) QV ━━萘热值(Qv =26480 J· g-1)
萘燃烧热QV的测定: K T l Q2 Qv m试样
Qv
药品仪器
…………… …
1.用雷诺图(温度—时间曲线)法分别校 正苯甲酸和萘燃烧而使量热体系温度改变 的ΔT1、ΔT2。
说明:
b点相当于开始燃烧点,c为观 察到的最高点的温度读数,过T1 T2线 段中点T作水平线TG,于T---t线相交 于点G,过点G作垂直线AB,此线与ab 线和cd线的延长线交于E、F两点,则 点E和点F所表示的温度差即为欲求温 度的升高值ΔT。 即ΔT=TE-TF
根据能量守恒原理,用苯甲酸标 定量热体系的水当量:
K m苯甲酸 Q1 l Q2 T
式中:m ━━ 苯甲酸重量; Q1 ━━ 苯甲酸热值(Qv =26480 J· g-1); l━━ 烧掉的引火丝长度; Q 2 ━━ 引火丝热值 (Qv =8.4 J· cm-1) ΔT━━ 经校正后的温度。
量热计
数字式贝克 曼温度计
点火控制器
实验停止后,小心取下贝克曼温度计,取出氧弹,打开氧弹出
气口,放出余气,最后旋开氧弹盖,检查样品的燃烧情况。看
是否完全燃烧。取出燃烧剩下的点火丝称重,自点火质量中减 去。
2. 萘的燃烧热测定
称取 0.6 克左右的萘,按上述方法,进行压片,燃烧等实 验。
实验完毕后,洗净氧弹,倒出水桶中的自来水,并擦干
使其短路。
每次燃烧结束后,一定要擦干氧弹内部的水,否则
会影响实验结果。整个实验做完后,不仅要擦干氧弹 内部的水,氧弹外部也要擦干,以防生锈。
实验数据记录
实验日期: ;室温: ℃;气压: KPa
1.量热体系C卡的测定 2.萘燃烧热QV的测定
1.量热体系C卡的测定 苯甲酸样品重 g;引火丝长度 cm; 引火丝剩余长度 cm;水的体积 ml; 水的温度 ℃ ;氧弹计外壳套筒温度 ℃。
QP= QV +△nRT
式中: △n--生成物和反应物气体的物质的量之差; R--摩尔气体常数,8.315J/K•mol;
T--反应前后的绝对温度,K(取反应前后的平均值)。
所谓完全燃烧:是指该物质
中C变为CO2(气),H变为H2O(液), S变为SO2(气),N变为N2(气), Cl变为HCl(水溶液)金属如银等都 成为游离状态。 本实验采用氧弹式量热计测量 物质的燃烧热。
1.量热计水当量的测定
(1). 样品制作:称重和压片
量取大约15厘米长的燃烧丝,将其中段绕成螺旋,精确称其质 量,将铁丝穿在钢模的底板内,然后将钢模底板装进模子中,
从上面倒入约0.6-0.8克苯甲酸,慢慢旋紧压片机的螺杆,直到
样品压成片状为止。抽去模底的托板,再继续向下压,使模底 和样品一起脱落。将压好的样品表面的碎屑除去,在燃烧杯中 用分析天平准确称量后即可供燃烧热测定用。
低压表
高压表
总阀门
低压表调 节螺杆
氧气 钢瓶
(4)燃烧和测量温度:
把氧弹放入量热计的水桶中,用容量瓶准确量取3000毫升自来水
倒入水桶中,装好搅拌马达,盖好盖子,将已调节好的贝克曼温
度计插入水中,用导线将氧弹两电极和点火器相连接,然后开动 马达,待温度稳定上升后,每隔1分钟读取数字式贝克曼温度计
的度数,这样继续10分钟,迅速合上点火开关进行点火,若点火
若指示灯亮后不熄,则表示点火丝没有烧断,点火没有成功,此 时需打开氧弹检查原因。自合上点火开关后,读数改为每隔30秒 一次,当温度升到最高点后,读数仍可一分钟一次,继续记录温
指示器上的灯亮后熄掉,温度迅速上升,这表示氧弹内样品燃烧。
度10分钟。
压片机
•(2)装置氧弹
拧开氧弹盖,小心将压好的样片放在燃烧杯内(样 品最好接触燃烧杯底部),将点火丝的两端分别紧
绕在电极的下端。(两电极与燃烧杯不能相碰或短
路,即点火丝不应与燃烧杯相接触)。用万用电表
测量两电极间的电阻值。旋紧氧弹盖,用万用表检
查两电极是否通路。若通路,则旋紧氧弹出气口后 即可以充氧气。
2 、本实验装置也可用来测定可燃液体样品的 燃烧热。以药用胶囊作为样品管,并用内径比胶 囊外径大 0.5~1.0 mm的薄壁软玻璃管套住。胶 囊的平均燃烧热热值应预先标定以便扣除。
3 、本实验是用贝克曼温度计测量温度,也可 以用热电堆或其它热敏元件代替,用自动平衡记 录仪自动记录温度及其变化情况 。
时间(min) 贝克曼温度 计示值℃ 1 2 3 4 5 6 7 8 9 1 0
…………… …
2.萘燃烧热的测定 萘样品重 g;引火丝长度 引火丝剩余长度 cm;水的体积 水的温度 ℃;氧弹计外壳套筒温度
1 0
cm; ml; ℃。
时间(min) 贝克曼温度 计示值℃
1 2 3 4 5 6 7 8 9
1.氧弹式量热计(附压片机); 2.氧气钢瓶(附减压阀及氧气表); 3.万用表; 4.引火丝(Φ0.12mmCu-Ni丝,q=3.136J/cm); 5.贝克曼温度计; 6.电子天平; 7.容量瓶(500ml、1000ml); 8.苯甲酸(AR,烘干后置于干燥器内),萘(AR); 9.等等。
实验步骤
结果讨论
1、氧弹热量计是一种较为精确的经典实验仪器,在 生产实际中仍广泛用于测定可燃物的热值。有些精 密的测定,需对氧弹中所含氮气的燃烧值做校正。 为此,可预先在氧弹中加入 5ml 蒸馏水.燃烧以后, 将所生成的稀HNO3溶液倒出,再用少量蒸馏水洗涤 氧弹内壁,一并收集到150ml锥形瓶中,煮沸片刻, 用酚酞作指示剂,以 0.100mol· dm-3 的 NaOH 溶液标 定。每毫升碱液相当于 5.98J的热值。这部分热能应 从总的燃烧热中扣除。
待下次使用。
实验注意事项
注意压片的紧实程度,太紧不易燃烧。燃烧丝需压在 片内,如浮在片子面上会引起样品熔化而脱落,不发 生燃烧;
将点火丝的两端缠绕在两电极的下端时,点火丝不
应与燃烧杯相接触,防止短路;
在点火前务必要检查氧弹的两电极间的导通情况; 往水桶内添水时,应注意避免把水溅到氧弹的电极,
燃烧热的测定
实验目的
1.通过萘的燃烧热的测定,掌握有关热化 学实验的一般知识和测量技术,了解氧弹式 量热计的原理、构造和使用方法。 2.了解恒压燃烧热与恒容燃烧热的差别及 相关关系。 3.学会应用图解法校正温度的改变值。
实验原理
1mol物质在标准压力下(101.325KPa)完全燃 烧时所放出的热量称为燃烧热。在恒容条件下测得 的燃烧热为恒容燃烧热(QV=内能变化△U),在恒 压条件下测得的燃烧热为恒压燃烧热(QP=热焓变化 △H ),若把参加反应的气体和反应生成的气体作 为理想气体处理,则存在下列关系式:
氧弹式量热计测量燃烧热的基本 原理
假设环境与量热体系没有热量交换,样品 完全燃烧所放出的热量全部用于量热体 系的温度改变,那么,如果测得温度改 变值ΔT和量热体系的水当量(即量热 体系温度升高1℃时所需的热量),就 可以计算样品的燃烧热。
K T m苯甲酸 Q1 l Q2
K
m苯甲酸 Q1 l Q2 T