分析力学教学课件 PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1894年 赫兹 首次将系统按约束类型分为完整约束和非完整约 束两大类。
• 20世纪至今 分析力学对非线性、不定常、变质量等力学系统 作了进一步研究,对于运动的稳定性问题作了广 泛的研究。
• 四 应用
• 分析力学的方法可以推广到量子力学系统和复杂动 力学系统中,在量子力学和非线性动力学中都有重 要应用。
4.方向总是与约束限制物体的位移方向相反。
• 例如,光滑接触面约束:约束力沿接触面 公法线方向指向物体。
• 在支座约束中,固定铰支座,约束反力过 销中心,方向不能确定,通常用正交的两 个分力表示。
• 解除约束原理
• 当受约束的物体在某些主动力的作用下处 于平衡,若将其部分或全部约束解除,代 之以相应的约束反力,则物体的平衡不受 影响。
• 1788年 拉格朗日 《分析力学》 世界上最早的一本分析力学的著作。虚功原理和 达朗贝尔原理两者结合,可得到动力学普遍方程, 从而导出分析力学各种系统的动力学方程。
• 1834年,哈密顿 正则方程 用广义坐标和广义动量联合表示的动力学方程。 哈密顿体系在多维空间中,可用代表一个系统的 点的路径积分的变分原理研究完整系统的力学问 题。
• 经典力学最初的表达形式由牛顿给出,大 量运用几何方法和矢量作为研究工具,因 此它又被称为矢量力学(有时也叫“牛顿 力学”)。
• 拉格朗日、哈密顿、雅可比等人使用广义 坐标和变分法建立了一套同矢量力学等效 的力学表述方法。
• 同矢量力学相比,分析力学的表述方法具 有更大的普遍性。很多在矢量力学中极为 复杂的问题,运用分析力学可以较为简便 的解决。
y
o
x
φl
A
ωr
l
o
B x
y
M
x2 y2 l2
xA2
ห้องสมุดไป่ตู้
y
2 A
r2
(xA xB )2 ( yA yB )2 l2
yB 0
运动约束:当质点系运动时受到的某些运动 条件 的限制称为运动约束(非完整约束)。
• 即:这种约束对质点或质点系不仅有位移方面的限制, 而且有速度或角速度方面的限制。
• 如:车轮在直线轨道上作纯滚动(轨道限制轮心作直线
1-2 约束方程
• 用数学方程来表示的限制条件称为约束方 程。
f (x, y, z, x, y, z,t) 0
1-3 约束的分类
⒈几何约束和运动约束 ⒉双面约束和单面约束 ⒊定常约束和非定常约束
⒈几何约束和运动约束
• 几何约束:只限制质点或质点系在空间的位置, 这种约束称为几何约束(完整约束)。
内容
第一章 虚位移原理 第二章 动力学普遍方程和拉格朗日方程 第三章 哈密顿正则方程 第四章 力学的变分原理 第五章 一个自由度系统的振动 第六章 两个自由度系统的振动 第七章 狭义相对论的拉格朗日方法和……
第一章 虚位移原理
1.约束及约束方程 2.自由度和广义坐标 3.虚位移 4.虚位移原理 5.虚位移原理的应用举例 6.用广义力表示的质点系平衡条件 7.在势力场中质点系的平衡条件及平衡的稳定性
• 主动力——作用于被约束物体上的除了约束以外的 力统称为主动力,如重力,结构承受的风力和水压 力、机械结构中的弹簧力以及电磁力等等。
• 约束反力是主动力引起的,故它是一种被动力。
• 约束反力的特点:
1.约束反力取决于约束本身的性质、主动力和物体 的运动状态。
2.大小常常是未知的,往往由平衡方程求得。 3.作用点在物体与约束相接触的那一点。
• 近20年来,又发展出用近代微分几何的观点来研 究分析力学的原理和方法。它广泛用于结构分析、 机器动力学与振动、航天力学、多刚体系统和机器 人动力学以及各种工程技术领域,也可推广应用于 连续介质力学和相对论力学。
• 五 研究意义
分析力学是经典物理学的基础之一, 也是整个力学的基础之一。
•六 分析力学与理论力学比较
理论力学
分析力学
相同点
对象
不 同
方法
点 基础
同属经典力学
力 几何法 牛顿定律
能量 分析法 变分原理
分析力学
分析静力学 分析动力学
• 分析静力学
• 以一般质点系为力学模型,应用达朗伯原理和虚位 移原理方法得出平衡的普遍规律。
• 分析动力学
• 在达朗伯原理和虚位移原理的基础上,运用动力 学普遍方程和拉格朗日方程,解决非自由质点系 的动力学问题。
运动,且滚过的弧长等于轮心走过的距离。)
y
r
C Mφ
M
o xC
ω
C
轮C在水平轨道上纯滚动的条件表达为
vC
yC = r
或 yC = r
P
x
vC-rω=0
xC r 0
瞬心
运动约束方程
⒉双面约束和单面约束
• 双面约束:如果约束不仅限制质点在某一方向的 运动,而且能限制其在相反方向的运动,称之为 双面约束。
• 二 研究对象
• 它的研究对象是质点系。质点系可视为宏 观物体组成的力学系统的理想模型,例如 刚体、弹性体、流体以及它们的综合体都 可看作质点系。
• 工程上的力学问题大多数是约束的质点系, 由于约束方程类型的不同,就形成了不同的 力学系统。例如,完整系统、非完整系统、 定常系统、非定常系统等。
• 三 发展历史
分析力学
致童鞋们
之学生虐我千百遍,我待学生如初恋
• 教书是一场盛大的暗恋,你费劲心思去爱 一群人,最后却只感动了自己。
• 曾经怕自己一个人考不好,现在怕一群人 考不好。
• 你若不离不弃 我必生死相依 你若自我放弃 我也无能无力
绪论
• 一 什么是分析力学?
分析力学是理论力学的一个分支,是对经 典力学的高度数学化的表达。
非自由质点系受到的预先给定的限制称为约束
• 注意:这里的约束是名词,而非动词的约束。
• 实现这些约束条件的物体称为约束体。 受到约束条件限制的物体叫做被约束体。习惯上, 把约束体简称为约束,将被约束体简称为物体。
• 主动力和约束力(或约束反力)
• 约束力(或约束反力)——把约束对物体的作用力 称为约束力。
1.约束及约束方程
1-1 约束的定义
• 质点系分为自由质点系和非自由质点系。 • 若质点的运动状态(轨迹、速度等)只取决 于作用力和运动的初始条件,则这种质点系 称为自由质点系;它的运动称为自由运动。 • 若质点系的运动状态受到某些预先给定的限 制(运动的初始条件也要满足这些限制条 件),则这种质点系称为非自由质点系;它 的运动称为非自由运动。