中国最早的一部数学著作《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话
浅谈勾股定理的发展史
浅谈勾股定理的发展史章正敏 43号(临沧师范高等专科学校05级数学教育四班)提纲:一、引言浅谈勾股定理的发展史,勾股定理是初中数学中重要定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算与证明问题,是解决直角三角形问题的主要依据之一,在生产生活实际中用途很大,因而它是初中数学中,应该重视而且必须解决好的一个问题,我们对此要有深刻的认识和理解.同时,勾股定理也是几何学中的明珠,它充满魅力,千百年来,人们对它的发展和证明趋之若鸾,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统对它的证明和发展有很深的探究。
二、正文(一)中国最早的一部数学著作——《周髀算经》就介绍了有关勾股定理的发展史。
(二)1876年,美国的伽菲尔德也证明了勾股定理的存在。
(三)1940年,西方的毕达鲁斯在他的《毕达拉斯命题》中证明了勾股定理的存在。
(四)欧儿里得在他的《几何原本》中给出了勾股定理的推广定理。
(五)从勾股定理推广到费尔马定理。
三、总结四、参考文献浅谈勾股定理的发展史09级数学与应用数学 0911********章正敏摘要:在中国最早的一部数学著作——《周髀算经》的开头,就介绍了有关勾股定理的发展背景。
接着1876年一个周末的傍晚,伽菲尔德更进一步的证明了勾股定理的存在及勾股定理的内容:直角三角形两直角a、b的平方和等于斜边c的平方。
紧接着,很多的数学家在前人的基础上更进一步的证明了勾股定理的存在以及勾股定理推广到其它定理。
还有,勾股定理在数学方面也得到了广泛的应用。
关键词:浅谈勾股定理发展史勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理:在一个直角三角形中,斜边边长的平方等于两直角边边长平方之和。
如果直角三角形两直边分别为a、b,斜边为c,那么a2+b2=c2。
据考证,人类对这条定理的认识,少说也超过四千年!一、中国最早的一部数学著作——《周髀算经》就介绍了勾股定理。
数学文化之赵爽弦图
赵爽弦图
中国最早的一部数学著作—《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”就必定是5.这个原理是大禹在治水的时候就总结出来的啊.”
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际.以至于古往今来,下至平明百姓,上至帝王总统都愿意探讨、研究它的证明,新的证法不断出现.下面介绍几种用来证明勾股定理的图形,你能根据这些图形及提示证明勾股定理吗?
传说中毕达哥拉斯的证法(图1)
提示:(1)中拼成的正方形与(2)中拼成的正方形面积相等.
2.弦图的另一种证法(图2)
提示:以斜边为边长的正方形的面积+4个三角形的面积=外正方形的面积.
3.美国第20任总统詹姆斯加菲尔德的证法(图3)
提示:3个三角形的面积之和=梯形的面积.。
中国最早的一部数学著作《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
勾股定理的史料及应用
勾股定理的历史勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。
那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。
所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。
”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。
但毕达哥拉斯对勾股定理的证明方法已经失传。
著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。
(右图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。
其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例。
所以现在数学界把它称为“勾股定理”是非常恰当的。
在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。
七级数学思维探究(九)绝对值与方程(含答案)
商高是公元前11世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为3和4时,直角三角形的斜边就是5,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪发现的. 9.绝对值与方程 解读课标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有: 1.最简绝对值方程形如()0ax b c c +=≥是最简单的绝对值方程,可化为两个一元一次方程ax b c +=与ax b c +=-. 2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解. 问题解决例1 方程525x x -+=-的解是________.试一试 原方程变形为552x x -=--,再把此方程化为一般方程求解.例2 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为( ).A . m n k >>B .n k m >>C .k m n >>D .m k n >> 试一试 从方程ax b c +=有解的条件入手. 例3 解下列方程: (1)314x x -+=; (2)311x x x +--=+; (3)134x x ++-=.试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例4 如图,数轴上有A 、B 两点,分别对应的数为a 、b ,已知()21a +与3b -互为相反数.点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由;(3)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问几分钟时点P 到点A 、点B 的距离相等? 试一试 由绝对值的几何意义建立关于x 的绝对值方程. 例5 讨论关于x 的方程25x x a -+-=的解的情况.分析与解 a 与方程中常数2、5有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具.数轴上表示数x 的点到数轴上表示数2和5的点的距离和的最小值为3,由此可得原方程的解的情况是:(1)当3a >时,原方程有两解;(2)当3a =时,原方程有无数解()25x ≤≤; (3)当3a <时,原方程无解. 数学冲浪 知识技能广场-2-131.若9x =是方程123x m -=的解,则m =_______;又若当1n =时,则方程123x n -=的解是_____. 2.方程3121x x -=+的解是_______;x =_______是方程()3115xx -=+的解;解方程399019951995x +=,得x =_______.3.如果()2230x x y -+-+=,那么()2x y +的值为________.4.已知关于x 的方程()22ax a x +=-的解满足1102x --=,则a 的值为( ). A .10或25 B .10或25- C .10-或25 D .10-或25-5.若20042004202004x +=⨯,则x 等于( ).A .20或21-B .20-或21C .19-或21D .19或21- 6.方程880m m +++=的解的个数为( )A .2个B .3个C .无数个D .不确定 7.解下列方程(1)142132x -+=; (2)221x x -=-;(3)3548x -+=; (4)213x x -+=. 8.求关于x 的方程()21001x a a ---=<<的所有解的和. 9.解方程32x k +-=.10.已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d +=_______. 11.若1x 、2x 都满足条件21234x x -++=,且12x x <,则12x x -的取值范围是_______. 12.满足方程2006182006x --+=的所有x 的和为________. 13.若关于x 的方程21x a --=有三个整数解,则a 的值为( ) A .0 B .2 C .1 D .314.方程27218a a ++-=的整数解的个数有( ) A .5 B .4 C .3 D .215.若a 是方程20042004a a -=+的解,则2005a -等于( ) A .2005a - B .2005a -- C .2005a + D .2005a -+ 16.解下列方程(1)200520052006x x -+-=; (2)154x x -+-=.17.当a 满足什么条件时,关于x 的方程25x x a ---=有一解?有无数多个解?无解? 应用探究乐园18.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足()2210a b ++-=.(l )求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程12122x x -=+的解,在数轴上是否存在点P ,使得PA PB PC +=?若存在,求出点P 对应的数;若不存在,说明理由; (3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分剐以每秒4个单位长度和9个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.ABO19.已知()()()12213136x x y y z z ++--++-++=,求23x y z ++的最大值和最小值. 微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出来,就是一个3阶幻方,也就是在33⨯的方阵中填入1~9,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在33⨯的方阵图中,每行、每列、每条对角线上3个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在33⨯的方格中填入9个不同的数,使得各行各列及两条对角线上3个数的和都相等,且为S ,若最中间数为m ,则3S m =.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方. (3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有9个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试 虽然问题要求的只是左上角的数,但是问题的条件还与其他的数相关.故为充分运用已知条件,需引入不同的字母表示数(如图②).例2 如图,在33⨯的方格表中填入九个不同的正整数:1,2,3,4,5,6,7,8和x .使得各行、各列所填的三个数的和都相等,请确定x 的值,并给出一种填数法.试一试 如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即123456781233x x ++++++++=+为正整数,又2121233x xa b c d x +=+=+-=-,从估计a b +和c d+的最小值入手.整体核算法图①1319?图②1913x 4x 3x 2x 1xdcbax整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,a 、b 、c 、d 、e 、f 、g 、h 、i 分别代表1,2,3,4,5,6,7,8,9中某一个数,不同字母代表不同的数,使每个小圆内3个数的和都相等,那么a d g ++的值是多少?分析与解 设这个相等的和是S ,现将这9个小圆中()3927⨯=个数求和,可得:()()()912923129345135S a b c d e f g h i =++++⨯++++++++=⨯+++=⨯=,故15S =.先从9所在的小圆看,h 至少是1,i 最多只能是5,再从1所在的小圆看,a 最多只能是9,由于115i a ++=,所以必须5i =,9a =,由此可以求得图②.对照图①与图②中各数的位置,可看到93618a d g ++=++=. 当然也可以有另一解法.将含1、含2、含4、含5、含7与含8的6个小圆内()3618⨯=个数求和,可得:()615124578a b c d e f g h i a d g ⨯=+++++++++++++++++,即9072a d g =+++,所以907218a d g ++=-=. 练一练1.将2到10这9个自然数填入图中的9个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的3个数的和是_______.2.请构造“幻角”,将1~10这10个整数填入图中的小三角形内(2和4已填好),使图中每个大三角123456789i h g f edc b a图①987654321987654321图②形内四数之和都等于25.3.请将4-,3-,2-,1-,0,1,2,3,4,这9个数分别填入图中方阵的9个空格,使3行、3列、2条对角线上的3个数的和都是0.4.如图,a 、b 、c 、d 、e 、f 均为有理数,图中各行各列及两条对角线上的和都相等,求a b c d e f +++++的值.5.如图是一个33⨯的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求k 的值.6.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中3行、3列以及2条对角线上的点数之和都等于15,是一种“3阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从3阶到10阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用42-134 fedc b a 1211k64x32了对称思想.例如,用1,2,3,…,16构造4阶幻方的方法是:先将1,2,3,…,16依次排成图③,然后以外四角对换,即1与16对换,4与13对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的4阶幻方.8.把数字1,2,3,…,9分别填入图中的9个圈内,要求三角形ABC 和三角形DEF 的每条边上三个圈内数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究 商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1)100%=⨯利润利润率进价; (2)利润=售价-进价;(3)售价=进价+利润=进价×(1+利润率).例1 一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润_______元.试一试 从求出成本价切入.例2 某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5% 试一试 利用获利不变建立方程.例3 某房地产开发商开发一套房子的成本随着物价上涨比原来增加了10%,为了赚钱,开发商把售价提高了0.5倍,利润率比原来增加了60%,求开发商原来的利润率. 试一试 因售价=成本×(1+利润率),故还需设出成本. 例4 某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予8折优惠.图①图②98765321416151413121110987654321图③图④FE DCBA小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解 第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当198元为购物不打折付的钱时,所购物品的原价为198元,又554450104=+,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,1040.8130÷=(元). 因此,554元所购物品的原价为130500630+=(元),于是购买小明花198630828+=(元)所购的全部物品,小亮一次性购买应付()5000.98285000.8712.4⨯+-⨯=(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为1980.9220÷=(元). 仿情形1的讨论,购220630850+=(元)物品一次性付款应为()5000.98505000.8730⨯+-⨯=(元). 练一练1.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为_______.2.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为 _______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共带省2800元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为________. 5.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原销售价的八折销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.6.甲用1000元购买了一些股票,随即他将这些股票转卖给乙,获利10%.而后乙又将这些股票反卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲( ).A .盈亏平衡B .盈利1元C .盈利9元D .亏损1.1元7.2008年爆发的世界金融危机,是自20世纪30年代以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下列所列方程正确的是( ). A .()22001%148a += B .()22001%148a -= C .()20012%148a -= D . ()22001% 148a -=8.某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5%9.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( ). A .6新 B .7折 C .8折 D .9折 10.某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元,按标价给予九折优惠;③如一次购物超过500元,则其中500元按第②条给予优惠,超过500元的部分则给予八折优惠. 某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款是( ). A .522.8元 B .510.4元 C .560.4元 D .472.8元B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A 型台灯按标价的九折出售,B 型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元? 12.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品C 的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物全额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元? 微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下: 1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离. 2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离. 例1 (1)在公路上,汽车A 、B 、C 分别以80km/h 、70km/h 、50km/h 的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站.A 在与B 相遇2小时后又与C 相遇,则甲、乙两站相距_____km . (2)小王沿街匀速行走,他发现每隔6min 从背后驶过一辆18路公交车;每隔3min 迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______min . 试一试 对于(2),“背后驶过与迎面驶来”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例2 (1)一艘轮船从A 港到B 港顺水航行,需6小时,从B 港到A 港逆水需8小时,若在静水条件下,从A 港到B 港需( )小时.A .7B .172C .667D .162(2)甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边( ). A . AB 上 B .BC 上 C .CD 上 D .DA 上试一试 对于(2),设正方形边长为a ,甲的速度为x ,相遇时甲行的路程为y ,利用“相遇时甲、乙两动点运动时间相等”建立方程,把y 用a 的代数式表示.例3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔113分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了多少分钟?试一试 当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比. 例4 甲、乙二人分别从A 、B 两地同时出发,在距离B 地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A 地后,又在距A 地4千米处相遇,求A 、B 两地相距多少千米? 解法一 第一次相遇时,甲、乙两人所走的路程之和,正是A 、B 两地相距的路程,即当甲、乙合走完A 、B 间的全部路程时,乙走了6千米,第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为6318⨯=(千米). 考虑到乙从B 地走到A 后又返回了4千米,所以A 、B 两地间的距离为18414-=(千米).甲解法二 甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例. 到第一次相遇,甲走了(全程6-)千米,乙走了6千米;到第二次相遇,甲走了(2⨯全程4-)千米,乙走了(全程4+)千米.设全程为s ,易得到下列方程62464s s s --=+, 解得114s =,20s =(舍去), 所以A 、B 两地相距14千米.解法三 设全程为s 千米,甲、乙两人速度分别为1v ,2v .则 121266244s v v s s v v -⎧=⎪⎪⎨-+⎪=⎪⎩①②,①÷②得66244s s s -=-+, 解得14s =或0s =(舍去). 乘车方案例5 老师带着两名学生到离学校33千米远的博物馆参观,老师乘一辆摩托车,速度为25千米/时,这辆摩托车后座可带乘一名学生,带人速度为20千米/时,学生步行的速度为5千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时. 分析 若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键. 解 要使师生三人都到达博物馆的时间尽可能短,可设计如下方案: 设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了x 千米,用了20x 小时,比乙多行了()3205204x x ⨯-=(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了()3255440xx ÷+=(小时).乙遇到老师时,已经步行了3520408xx x ⎛⎫+⨯= ⎪⎝⎭(千米),离博物馆还有3338x -(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有3338x x =-,解得24x =.即甲先乘摩托车24千米,用时1.2小时,再步行9千米,用时1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.另解:设乙先步行的时间为x 小时,步行的路程为2s ,则25s x =(千米),此时老师带甲走的路程为233335s x -=-(千米),老师返回接乙走的路程为23323310s x -=-.故有33533102025x xx --+=,解B (乙)(甲)A①②学校博物馆乙得 1.8x =,甲乘车的时间为335 1.220x-=(小时),故甲从学校到博物馆共用1.8 1.23+=(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为150m 和200m ,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为10秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______. 4.甲、乙分别自A 、B 两地同时相向步行,2小时后中途相遇,相遇后,甲、乙步行速度都提高了1千米/时,当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲、乙两人在第一次相遇后3小时36分又再次相遇,则A 、B 两地的距离是_______千米.5.甲、乙两人沿同一路线骑车(匀速)从A 到B ,甲需要30分钟,乙需要40分钟.如果乙比甲早出发6分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有5米,丙距终点还有10米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A 、B 两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;据浙江省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5y ax b =++,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/时,骑车人的速度为10.8千米/时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在A 、B 两地同时相向而行,于E 处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A 地行走.甲和乙到达B 和A 后立即折返,仍在E 处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A 和B 两地相距多少米?乙11.某单位有135人要到50千米外的某地参观,因为步行时速只有5千米,为了使他们上午到达,配备了一辆最多载人50名、时速25千米的大客车.于是早晨6时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.A 、B 、C 三辆车在同一条直路上同向行驶,某一时刻,A 在前,C 在后,B 在A 、C 正中间.10分钟后,C 追上B ;又过了5分钟,C 追上A .问再过多少分钟,B 追上A ?乙E BA9.绝对值与方程 问题解决例1 由552x x -=--,得552x x -=--或()552x x -=---,所以0x =或10x =-.经检验知0x =时,方程左右两边不等,故舍去.从而原方程的解为10x =-. 例2 A 23x m -=-,34x n -=-,45x k -=-,由题意得0m -<,0n -=,0k ->,从而0m >,0k <.例3 (1)54x =-或32x =.原方程化为314x x -+=或314x x -+=-,即314x x +=-或314x x +=+.(2)当3x <-时,原方程化为()()311x x x -++-=+,得5x =-. 当31x -<≤时,原方程化为311x x x ++-=+,得1x =-. 当1x ≥时,原方程化为()311x x x +--=+,得3x =. 综上知原方程的解为5x =-,1-,3.(3)由绝对值的几何意义得原方程的解为13x -≤≤.例4 (1)1x =;(2)存在,32x =-或72(3)223或415数学冲浪1.1;9或3 2.2或0;107±;0或1- 3.494.A 5.D 6.C7.(1)1x =-或3x =-;(2)1x =;(3)3x =或13x =;(4)43x =-或2x =.8.()2101x a a -=±<<,()21x a -=±±,()21x a =±±,得13x a =+,23x a =-,31x a =+,41x a =-,故12348x x x x +++=.9.当0k <,原方程无解;当0k =时,原方程有两解:1x =-或5x =-;当02k <<时,原方程化为32x k +=±,此时原方程有四解:()32x k =-±±;当2k =时,原方程化为322x +=±,此时原方程有三解:1x =或7x =-或3x =-;当2k >时,原方程有两解:()32x k =-±+.10.0或1 2d a +≤,又a 、d 都是整数,得2d a +=,1,0.当2d a +=,则a b c d =-==-,即0d a +=矛盾;若1d a +=,令1a =,0b c d ===满足题意;若0d a +=,令1b =,0a c d ===满足题意.11.1220x x --<≤ 12.4012 13.C14.B 由数轴知72a -≤≤1,且2a 为偶数 15.D 0a ≤ 16.(1)1002或3008 可以得到220052006x -=; (2)15x ≤≤.17.由绝对值几何意义知:当33a -<<时,方程有一解;当3a =±时,方程有无穷多个解,当3a >或3a <-时,方程无解. 18.(1)2a =-,1b =,3AB =;(2)存在点P ,点P 对应的数为1-或3-;(3)()()''''53512A B B C t t -=+-+=,为常数.19.()12123x x x x ++-=--+-≥,同理213y y -++≥,314z z -++≥,得()()()12213136x x y y z z ++--++-++≥.当且仅当12x -≤≤,12y -≤≤,13x -≤≤时,上面各式等号成立. 又()()()12213136x x y y z z ++--++-++=,由12123x y z -⎧⎪-⎨⎪⎩①②-1③≤≤≤≤≤≤ 得①+②2⨯+③3⨯,62315x y z -++≤≤,因此,23x y z ++的最大值为15,最小值为6-.从三阶幻方谈起(微探究)例l 由已知条件得:123413241319x x x x x x x x x x ++=++=++=++,这样前面两个式子之和等于后面的两个式子之和,即1234123421319x x x x x x x x x ++++=+++++,21319x =+∴,得16x =.例2 a b +与c d +的最小值是123452+++=,所以21253x -≥,即212x ≤.而2123xa b +=-为整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,故9x =. 练一练1.2,6,10;15,18,21设中间的圆圈中的数是x ,同一直线上的3个数的和是y ,则43231054y x -=+++=,4183x y =-.2.如图3.如图:4.由条件得:41 9a -+=,39b c ++=,9d e f ++=.上述三式相加有627a b c d e f ++++++=,故21a b c d e f +++++=.5.如图,由121a k b a c ++=++及11121c d b d ++=++,得121k b c +=+,110c b =+,从而110121231k =+=(注:这个幻方是可以完成的,如第1行为6,231,111;第2行为221,116,11;第3行为121,1,226).6.这9个数的积为31112481632646442⨯⨯⨯⨯⨯⨯⨯⨯=,所以每行、每列、每条对角线上三个数字积为64,得1ac =,1ef =,2ax =,a 、c 、e 、f 分别为14、12、2、4中的某个数,推得8x =.7.略 8.(1)略(2)显然有12945x y z ++=+++= ①图中六条边,每条边上三个圈中之数的和为18,得32618108z y x ++=⨯=. ② ②-①,得21084563x y +=-=. ③把AB 、BC 、CA 每一边上三圈中之数的和相加,得231854x y +=⨯=. ④ 联立③、④解得15x =,24y =,进而6z =.在1~9中三个数之和为24的仅有7,8,9,所以在D 、E 、F 三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中之数一旦确定,根据题目要求,其余六个圈内之数也隧之确56379181024-1-2340-4-321dc b k a 11121。
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
勾股定理的历史与证明
龙源期刊网 勾股定理的历史与证明作者:吴中武来源:《教育教学论坛》2012年第37期摘要:勾股定理是个伟大的定理。
这个定理有十分悠久的历史和极其重要的意义,人们一直对勾股定理颇感兴趣,因为这个定理在生活中很实用,所谓勾股定理——在直角三角形中,两条直角边的平方和等于斜边的平方。
世界上几乎所有文明古国都对此定理有所研究。
关键词:勾股定理;历史;证明中图分类号:G633.6 文献标志码:A 文章编号:1674-9324(2012)10-0106-02在我国最古老的数学著作——《周髀算经》的开头,记载着一段周公(西周著名的政治家,公元前1100年左右)向商高(周时的贤大夫)请教数学知识的对话,昔者周公问商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,……以为勾广三,股修四,径偶五。
既方之……”译文:从前周公问商高:“我私下听说你善于演算,请问远古者包牺氏(传说中的人物)对整个天空逐于量度之事是如何完成的,那天不能由台阶而上,地不能用尺寸来量,请问相关的数据是怎样产生的?”商高说:“……在对矩形(长方形)沿对角线对折时,会产生短边(勾)长为3,长边(股)长为4,斜长(弦)为5的直角三角形的比率。
”故有人称之为“商高定理”。
从以上的对话中可知商高不仅知道勾股定理,还会运用勾股定理,在《周髀算经》卷上之二《陈子模型》中就有这样的记载。
“侯勾六尺,即取竹,空径一寸,长八尺,捕影而视之。
空正掩日,而日应空之孔,由此观之,率八十寸而得径一寸,故以勾为首,以髀为股,从髀至日下六万里,则八万里。
若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得斜至日。
”陈子不仅知道和熟练运用勾股定理,陈子还能把勾股定理为模型运用在天体的测量之中。
勾股定理是联系数学和几何的桥梁,是数形结合的原始定理,人们用图形去研究数、用数去研究图形的开始,也是数形结合的真正体现。
勾股定理的历史
赵爽,又名婴,字君卿,中国数学家。东汉 末至三国时代吴国人。他是我国历史上著名 的数学家与天文学家。生平不详,约生活于
公元赵3世爽纪初。
他的主要贡献是约在222年深入研究了《周 髀算经》。该书简明扼要地总结出中国古代 勾股算术的深奥原理。赵爽详细解释了《周 髀算经》中勾股定理,将勾股定理表述为: “勾股各自乘,并之,为弦实。开方除之, 即弦。”
毕达哥拉斯曾旅居埃及,后来又到各地漫游, 他后来迁往位于南意大利的希腊港口克罗内 居住。在这里创办了一个研究哲学、数学和 自然科学的团体,后来便发展成为一个有秘 密仪式和严格戒律的宗教性学派组织。
毕达哥拉斯
毕达哥拉斯发现了著名的“勾股定理”,据 说,毕达哥拉斯为了庆贺自己的业绩,杀了 一百头牛。故勾股定理又称百牛定理。
第二组数学汇报
勾股定理的历史
中国勾股定理的发展 外国勾股定理的发展
中国勾股定理的发展
中国最早的一部数学著作——《周髀算 经》的开头,记载着一段周公向商高请 教数学知识的对话:“窃闻乎大夫善数 也,请问昔者包牺立周天历度——夫天 可不阶而升,地不可得尺寸而度,请问 数安从出?”
商 高 曰 :中故国折最矩早, 以的为勾句股广定三理, 股 修 四 ,
径隅五。
周公与商高的对话则可以确定在公元 前1100年左右的西周时期,比毕达哥 拉斯要早了五百多年。所以现在数学界 把它称为勾股定理是非常恰当的。
中国流传至今的一部最早 的数学著作,同时也是一 部天文学著作。
周髀从算所经包含的数学内容来看,
书中主要讲述了学习数学 的方法、用勾股定理来计 算高深远近和比较复杂的 分数计算等。
外国勾股定理的发展
在国外,相传勾股定理是公元前500多年时 古希腊数学家毕达哥拉斯首先发现的。因此 又称此定理为“毕达哥拉斯定理”
从赵爽弦图与风车模仿图欣赏中西文化魅力-戴
从“赵爽弦图”与“风车磨坊图”看两种思维方式乌鲁木齐市第23中学戴广德从“赵爽弦图”与“风车磨坊图”看两种思维方式中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说你对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段地丈量,那么怎样才能得到关于天地的数据呢”商高回答说:数的产生源于对方和圆这些形体的认识,其中有一条原理:当用直角三角形的“矩”测得一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么他的斜边“弦”必定是5,这个原理在大禹治水的时候就总结出来了。
无独有偶,托勒密国王也曾问欧几里得,有没有学习几何学的捷径。
欧几里得答道:“几何无王者之道。
”意思是说,在几何学里没有专门为国王铺设的大道。
另外据传康熙皇帝曾将徐光启和意大利传教士利玛窦合译的《几何原本》当成智力玩具,把玩了一生。
从以上的事例可以看出,古人对数学是十分感兴趣的,我国早在3000年以前就将数学应用于社会实践了。
勾股定理是古代数学的瑰宝。
它的证明方法有十几种之多,很多证法之巧妙令人拍案叫绝,本人试图以“赵爽弦图”和“风车磨坊图”为例,探讨两种不同的思维方式及其影响,对于今后的教学和科研会有一定的启迪。
先看赵爽弦图:直角三角形ABC的三边分别为cb,a,图一图二图三由图一可得: 22222214)(b a c b a c b a +=⇒⨯⨯⨯+=+ 由图二可得:22)(214b a b a c -+⨯⨯⨯=⇒c 2=a 2+b 2这两种证法都充分地体现出古人的聪明和智慧,将直角三角形的性质融于人们熟悉的正方形之中,亲切自然通俗易懂。
在第24届国际数学家大会上又将此图(二)设计成会标,体现了中国人敦厚方正的文化风格。
从边长a 、b 的大小变化上看,又体现了ab b a 222≥+的不等关系。
当且仅当b a =时,图二就演变成了图三从图一中还可以明显地得出不等关系:())(222222b a b a b a +⨯≤<++,当且仅当b a =时"="成立. 即2b a +≤222b a +,图一使这些不等式的几何意义得到充分体现。
中国最早的一部数学著作周髀算经的开头,记载着一段周公向商高请教数学知识的对话
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
中国最早的一部数学著作《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
1.1验证勾股定理(第2课时)(教学课件)-2024-2025学年八年级数学上册(北师大版)
段丈量,那么怎样才能得到关于天地的高度呢?"
商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形的一条
直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.
八年级北师大版数学上册
第一章
1.1 探索勾股定理
第二课时
验证勾股定理
勾股定理
学习目标
1.掌握用面积法验证勾股定理,并能应用勾股定理解决一
些实际问题.(重点)
2.学习勾股定理的验证过程,体会数形结合的思想和从特
殊到一般的思想.(重点,难点)
情景导入
中国最早的一部数学著作--《周髀算经》的开章,记载着一段周公向商高请教数学知识的对话:
P点,连BP.
则AP+BP=AP+PB′=AB′,
易知P点即为到点A,B距离之和最短的点.
过点A作AE⊥BB′于点E,
则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).
由勾股定理,得B′A2=AE2+B′E2=82+62,
∴AB′=10(km).即AP+BP=AB′=10km,
故出口P到A,B两村庄的最短距离和是10km.
A
130
?
C
120
B
C.100米
D.130米
2.如图,太阳能热水器的支架AB
A
长为90 cm,与AB垂直的BC长为
120 cm.太阳能真空管AC有多长?
解:在Rt△ABC中,由勾股定理,
得
AC2=AB2+BC2,
(完整版)勾股定理故事
勾股定理故事商高是公元前十一世纪的中国人。
当时中国的朝代是西周,处于奴隶社会时期。
在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。
周公问商高:“天不可阶而升,地不可将尽寸而度。
”天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五。
”即我们常说的勾三股四弦五。
什么是“勾、股”呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。
商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”。
由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。
关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也。
”“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
欧洲人则称这个定理为毕达哥拉斯定理。
毕达哥拉斯(PythAgorAs)是古希腊数学家,他是公元前五世纪的人。
希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为“毕达哥拉斯定理”。
并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。
因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。
所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。
尽管希腊人称勾股定理为毕达哥拉斯定理或“百牛定理”,法国、比利时人又称这个定理为“驴桥定理”,但据推算,他们发现勾股定理的时间都比我国晚。
我国是世界上最早发现勾股定理这一几何宝藏的国家!。
勾股定理证明题试题及参考答案
勾股定理证明题试题及参考答案勾股定理是数学常见的定理,这些定理该怎么证明呢?证明的方法是怎样的呢?下面就是店铺给大家整理的勾股定理证明题内容,希望大家喜欢。
勾股定理证明题一已知△ABC中,∠ACB=90°,以△ABC的各边为长边在△ABC外作矩形,使每个矩形的宽为长的一半,S1、S2、S3分别表示这三个矩形的面积,则S1、S2、S3之间有什么关系?并证明你的结论。
(要详细解题过程)因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2) 即 EF^2=AE^2+BF^2因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2) 即 EF^2=AE^2+BF^2勾股定理证明题二设MD,ME,MF分别交AC,BC,AB于P,Q,R,连接MA.MB,MC由勾股定理MB^2=MP^2+BP^2=MR^2+BR^2 (1)BD^2=MP^2+PD^2=BF^2=BR^2+FR^2 (2)CM^2=CP^2++MP^2=CQ^2+MQ^2 (3)CD^2=PD^2+PC^2=CF^2=CQ^2+QF^2 (4)MA^2=MQ^2+AQ^2=AR^2+MR^2 (5)由(1)(2)(3)(4)(5)可得AQ^2+MQ^2=AR^2+FR^2即AE^2=AF^2AE=AF中学勾股定理课堂实录师:我们知道,数学是一门基础学科,它用概念、公式、定理演绎着数学的神奇和魅力,今天我们在一起继续学习一个古老而著名的数学定理。
中国最早的一部数学著作(勾股定理的发现与证明)
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形…矩‟得到的一条直角边…勾‟等于3,另一条直角边…股‟等于4的时候,那么它的斜边…弦‟就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
略谈中国古代的数学成就
略谈中国古代的数学成就摘要:中华文化源远流长,博大精深。
中国古代数学亦在其领域取得了非凡的成就,一些成就为世界数学的发张提供了借鉴,有些还一度引领世界的数学发展,下面将会介绍中国古代数学的发展及成就。
关键词:中国数学发展及起源圆周率勾股定理九章算术1.中国数学起源及发展1.1 西汉以前的中国数学《史记·夏本纪》大禹治水(公元前21世纪)中提到“左规矩,右准绳”,表明使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”。
考古学的成就,充分说明了中国数学的起源与早期发展。
西安半坡村遗址、殷墟商代甲骨文、算筹、龙山里耶秦简。
公元3-4世纪成书的《孙子算经》记载说:“凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当。
”虽然中国传统数学的最大特点是建立在筹算基础之上,但是中国传统数学对人类文明的特殊贡献,这与西方及阿拉伯数学是明显不同的。
1.2古代印度的数学古代和中世纪,富庶的南亚次大陆几乎不断地处于外族的侵扰之下,所以古代印度文化不可避免地呈现出多元复杂的背景,最显著的特色是其宗教性。
吠陀时期(公元前10-前3世纪)。
《吠陀》成书于公元前15-前5世纪,印度婆罗门教的经典。
残留的《吠陀》中有《绳法经》(前8-前2世纪),这是印度最早的数学文献。
阿育王石柱记录了现在阿拉伯数字的最早形态。
公元前2-公元3世纪的印度数学,可参考的资料主要是“巴克沙利手稿”,出现了完整的十进制数码,其中有“•”(点)表示0,有公元876年的“瓜廖尔石碑”为证。
由上文可见,中国的数学很早就发展起来了,为后面交通方式的发达后的传播打下了深厚的基础,对中国古代数学交流发展与世界数学的发展发挥了重大的作用。
2.圆周率2.1起源古希腊作为古代几何王国对圆周率的贡献尤为突出。
古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。
阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
趣味数学—勾股定理的历史
勾股定理的历史勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。
那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。
所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。
”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。
但毕达哥拉斯对勾股定理的证明方法已经失传。
著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。
(右图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“ 数的产生来源于对方和圆这些形体的认识。
其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例。
所以现在数学界把它称为“勾股定理”是非常恰当的。
在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。
传承文明,聚集智慧的勾股定理
传承文明,聚集智慧的勾股定理六神中学翟升华搜集整理一、勾股定理简介勾股定理是“几何的基石”,是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。
所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。
”早在5000多年以前,人类就发现了这个定理,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究和应用这个定理的记载。
勾股定理又称毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家、天文学家毕达哥拉斯(Pythagoras ,公元前572~公元前492)于公元前550年首先发现的。
传说发现这个定理时,杀了100头牛表示庆祝,故有人称其为“百牛定理”。
但毕达哥拉斯对勾股定理的证明方法已经失传。
著名的希腊数学家欧几里得(Euclid ,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明(右图为欧几里得和他的证明图)。
中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“ 数的产生来源于对方和圆这些形体的认识。
其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”该书还记载有陈子(约公元前7—6世纪)对于荣方的回答:“若求邪(斜)至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
”(如右图)即 邪至日=22股勾 。
这里给出了任意直角三角形三边的关系。
浅谈勾股定理教学中常见问题解析
浅谈勾股定理教学中常见问题解析
廖慧
【期刊名称】《知识文库》
【年(卷),期】2015(000)021
【摘要】<正>在初中数学教学过程中要运用恰当、科学的教学策略,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。
在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。
一、历史典故在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的"数学对话":周公问:"听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我
【总页数】2页(P29-,46)
【作者】廖慧
【作者单位】江西省赣州市龙南县杨村初级中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.浅谈教学中“勾股定理”的证明
2.浅谈数学思想在勾股定理教学中的运用
3.勾股定理教学中的一点尝试——勾股定理教学中遇到的疑难问题解决案例
4.浅谈勾股定理教学中数学思想的体现
5.浅谈勾股定理教学中的真探究
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。
于是便可得如下的式子:4×(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)图2 勾股圆方图赵爽的这个证明可谓别具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
以后的数学家大多继承了这一风格并且代有发展。
例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。
尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。
正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。
”总统巧证勾股定理(2002-11-27 11:09:18)学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的;在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。
他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
他是这样分析的,如图所示:1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。
1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。
”证法。
趣话勾股定理1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。
这张邮票是纪念二千五百年前希腊的一个学派和宗教团体──毕达哥拉斯学派,它的成立以及在文化上的贡献。
邮票上的图案是对数学上一个非常重要定理的说明。
它是初等几何中最精彩的,也是最著名和最有用的定理。
在我国,人们称它为勾股定理或商高定理;在欧洲,人们称它为毕达哥拉斯定理。
勾股定理断言:直角三角形的斜边的平方等于其它二边的平方的和。
如果我们要找一个定理,它的出现称得上是数学发展史上的里程碑,那么勾股定理称得上是最佳选择。
但是,如果人们要考究这个定理的起源,则常常会感到迷惑。
因为在欧洲,人们都把这个定理的证明归功于毕达哥拉斯;但通过二十世纪对在美索不达米亚出土的楔形文字泥版书进行的研究,人们发现早在毕达哥拉斯以前一千多年,古代巴比伦人就已经知道这个定理。
在我国西汉或更早时期的天文历算著作《周髀算经》中,第一章记述了西周开国时期(约公元前1000年)商高和周公姬旦的问答。
周公问商高:“天不可阶而升,地不可将尽寸而度。
”天的高度和地面的一些测量的数字是怎么样得到的呢?商高回答:“故折矩以为勾广三,股修四,径隅五。
”即我们常说的勾三、股四、弦五。
《周髀算经》里还这样记载:周髀长八尺,夏至之日晷一尺六寸。
髀者,股也,正晷者,勾也。
正南千里,勾一尺五寸,正北千里,勾一尺七寸。
日益表南,晷日益长。
候勾六尺,即取竹,空经一寸,长八尺,捕影而观之,室正掩日,而日应空之孔。
由此观之,率八十寸而得径寸,故此勾为首,以髀为股,从髀至日下六万里而髀无影,从此以上至日,则八万里。
这段文字描述了中国古代人民如何利用勾股定理在科学上进行实践。
钱伟长教授对这段文字作了详细的说明:“……商高,陈子等利用立竿(即周髀)测定日影,再用勾股法推算日高的方法。
周髀高八尺,在镐京(今西安附近)一带,夏至日太阳影长一尺六寸,再正南千里,影长一尺五寸。
正北千里,影长一尺七寸。
祖先天才地用测量日影的办法,推算了夏至日太阳离地的斜高,用同理测定了冬至日的太阳斜高。
又取中空竹管,径一寸长八尺,用来观测太阳,我们的祖先发现太阳圆影恰好充满竹管的视线,於是用太阳的斜高和勾股的原则,推算太阳的直径。
这些测定的数据虽然非常粗略,和实际相差很远,但在三千年前那样早的年代,有这样天才的创造和实践的观测精神,是我们应该学习的。
”由此,中国人把这个定理称为勾股定理或商高定理是完全有道理的。
但是,欧洲人称这个定理为毕达哥拉斯定理,也有他们的说法。
因为是毕达哥拉斯本人,至少是毕达哥拉斯学派的某一成员首先给出了对这个定理符合逻辑的证明。
虽然,毕达哥拉斯有不少杰出的证明,如利用反证法证明√2不是有理数,但最著名的就是证明勾股定理了。
传说当他得到了这个定理时,非常的高兴,杀了一头牛作为牺牲献给天神。
也有些历史学家说是一百头牛,这个代价可太大了!勾股定理是数学上有证明方法最多的定理──有四百多种说明!希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。
汉朝的数学家赵君卿,在注释《周髀算经》时,附了一个图来证明勾股定理。
这个证明是四百多种勾股定理的说明中最简单和最巧妙的。
您能想出赵老先生是怎样证明这个定理的吗?(提示:考虑黑边框正方形的面积计算)商高定理"商高定理"即为勾股定理.商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".由于勾股定理的内容最早见于商高的话中,所以在我国人们就把这个定理叫作"商高定理".关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也"."此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.《周髀算经》中还有"陈子测日"的记载:根据勾股定理,周子可以测量太阳的高度、太阳的直径和天地的长阔等.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:"若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者."勾股定理的应用非常广泛.我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也."这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果.勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学.。