数控车床主轴箱的优化设计和开发
数控车床主轴箱设计
第一章概述1.1设计目的 (2)1.2主轴箱的概述 (2)第2章主传动的设计 (2)2.1驱动源的选择 (2)2.2转速图的拟定 (2)2.3传动轴的估算 (4)2.4齿轮模数的估算 (3)2.5V带的选择 (4)第3章主轴箱展开图的设计 (7)3.1各零件结构尺寸的设计 (7)3.1.1 设计内容和步骤 (7)3.1.2有关零件结构和尺寸的设计 (7)3.1.3各轴结构的设计 (9)3.1.4主轴组件的刚度和刚度损失的计算 (10)3.1.5轴承的校核 (13)3.2装配图的设计的概述 (13)总结 (19)参考文献 (20)第一章概述1-1设计目的数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。
其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。
1-2 主轴箱的概述主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来手比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
第二章2主传动设计2-1驱动源的选择机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。
由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。
根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
数控车床主轴箱设计论文.txt1
the machine have been confirmed and optimized also.
Have discussed two kinds interpolation numerical control lathes with thematic
part, and design the interpolation forms for the numerical control lathe.
本文在叙述了数控技术的历史、现状和发展的基础上,通过对旧机床的分
析,结合机床改造的总体思想,提出了数控化改造的技术方案和新数控系统的
选型配置方案;针对旧机床的要求,进行了传动系统的重新设计,提高了传动的
精度,还进行了电气系统的设计和调试,主要包括硬件设计和电气控制软件设
计:简单介绍
设计机床的控制逻辑,通过对伺服系统的分析,完成了机床各主要参数的优化
和匹配。
专题部分讨论了数控车床两种插补方式的原理,并设计了数控车床的插补
程序。
本机床改造后将会展示出强大的功能、稳定的性能,将完全符合机床的技
术规格和精度标准,加工出合格的零件,大大提高了车床的性能,是一次有益
的尝试。
机床是机械制造行业中最基本的设备,随着制造业高效率、高精度、高柔性发展的需要,人们对机床提出了越来越高的要求,主轴箱又是机床很重要的一个部件,因此,很有必要对他的动态特性进行研究。主轴箱结构的动态特性主要包括震动固有频率、阻尼比和振型。
随着社会的进步,制造业的发展越来越迅速,数控技术和数控装备是制造工业现代化的重要基础。这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。数控机床发展很快,作为数控机床的重要部分,主轴箱的设计更新也越来越快。
数控机床主轴箱设计
数控机床主轴箱设计毕业设计(论文)任务书摘要主轴箱为数控机床的主要传动系统,它包括电动机、传动系统和主轴部件,它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
本设计采用北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
通过给定的技术参数来初步设定部分轴、齿轮等单元的结构尺寸,对传动系统进行理论力学分析,精确计算选定尺寸及材料,由电机转速传动至进给系统的参数反馈,校核所选定主轴和转动轴尺寸的合理性完成整体结构设计,最后对齿轮进行了验算以及V型带的、离合器的选择与计算。
通过本次设计,使数控机床结构更加紧凑,性能更加优越,生产加工更加精密,有利于改善数控机床的性能,使得产品的加工更加高效。
关键词:数控机床;主轴箱;交流调速电动机;BESK-8AbstractFor the spindle box of NC machine tool main transmission system which comprises a motor, the transmission system and the spindle, it with ordinary lathe spindle box is relatively simple, only two or three stage gear transmission system, it is mainly used to expand the range of stepless speed regulation of motor, to meet a certain constant power, and speed problems.This design uses the Beijing CNC equipment factory of type BESK-8 AC spindle motor, maximum speed is 4500r / min. Through the given technical parameter to set an initial portion of the shaft, gear unit size, the transmission system of theoretical mechanics analysis, accurate calculation of the selected size and material, the motor speed drive to the feed system parameters feedback, check the selected spindle and rotary shaft size is reasonable to complete the overall structure design, assembly drawing and parts graph.Through the design of the NC machine tool, compact structure, superior performance, production and processing of more sophisticated, is helpful for improving the performance of CNC machine tools, making the product processing more efficient.Key words: NC machine tool; spindle box; AC motor; BESK-8东北大学继续教育学院毕业设计(论文)用纸目录摘要 (Ⅰ)Abstract (Ⅱ)1.绪论 (1)1.1研究的目的和意义 (1)2.主轴驱动源的选择 (2)2.1直流主轴驱动系统的特点 (2)2.2 交流主轴驱动系统的特点 (3)2.3主轴驱动电机的确定 (4)3.主传动设计 (5)3.1转速图的拟定 (5)3.2主轴转速的确定 (6)3.3传动级数的确定 (7)3.3.1主传动系数的参数 (7)3.3.2主传动级数的确定 (8)3.3.3分级变速箱的设计计算 (11)4.传动系统零件的设计 (17)4.1齿轮的验算 (17)4.2 V型带的选择 (19)4.3离合器的选择与计算 (21)总结 (24)参考文献 (25)1.绪论1.1研究的目的和意义数控机床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担,剩去了复杂的齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机无级调速的范围。
(完整版)数控车床主轴设计
绪论随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。
数控机床由于众多的优点已成为现代机床发展的主流方向。
它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。
现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。
实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。
可以说,机械制造竞争的实质就是数控技术的竞争。
本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。
通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。
通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。
通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。
一、设计题目及参数1.1 题目本设计的题目是数控车床的主轴组件的设计。
它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。
我主要设计的是主轴部分。
主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。
主轴前后的受力不同,故要选用不同的轴承。
1.2参数床身回转空间400mm尾架顶尖与主轴端面距离1000mm主轴卡盘外径Φ200mm最大加工直径Φ600mm棒料作业能力50~63mm主轴前轴承内和110~130mm最大扭矩480N·m二、主轴的要求及结构2.1主轴的要求2.1.1旋转精度主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。
主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。
机械制造装备课程设计--数控车床主轴箱部件设计
机械制造装备课程设计--数控车床主轴箱
部件设计
1. 简介
本文档旨在介绍机械制造装备课程设计中的数控车床主轴箱部件设计的基本要点和步骤。
2. 设计目标
- 优化主轴箱结构,提高数控车床的工作效率和精度;
- 减少主轴箱部件的重量,提高车床的运动性能;
- 确保主轴箱部件的可靠性和耐久性。
3. 设计步骤
1. 确定设计需求和限制条件;
2. 进行主轴箱结构的初步设计,包括布局和尺寸的确定;
3. 选择合适的材料,并进行强度和刚度计算;
4. 进一步优化主轴箱的结构,包括减少重量和提高刚度;
5. 进行主轴箱部件的详细设计,包括加工工艺和装配要求;
6. 制定主轴箱部件的制造工艺和工艺路线;
7. 进行主轴箱部件的制造和装配;
8. 对主轴箱进行性能测试和调试;
9. 检查和维护主轴箱部件的可靠性和耐久性。
4. 设计要点
- 主轴箱的结构应合理布局,避免部件之间的干涉;
- 主轴箱的材料应选择高强度和刚度的合金材料;
- 在设计过程中要考虑加工和装配的可行性;
- 主轴箱部件的表面处理应满足使用和保护要求;
- 相关设计要素应符合机械制造装备的相关标准和规范。
5. 结论
通过本文档的介绍,我们了解到,在机械制造装备课程设计中,数控车床主轴箱部件设计的步骤和要点。
合理的主轴箱设计可以提
高车床的工作效率和精度,减少重量,优化运动性能,并确保可靠
性和耐久性。
设计过程中需考虑布局、材料选择、加工装配等因素,并符合相关标准和规范。
ca6140车床主轴箱的设计
毕业论文课题名称CA6140车床主轴箱的设计系/专业机械工程/机电一体化班级学号学生姓名指导教师:2010 年月日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊CA6140车床主轴箱设计摘要CA6140车床作为主要的车削加工机床,广泛的应用于机械加工行业中,适用于车削内外圆柱面,圆锥面及其它旋转面,车削各种公制、英制、模数和径节螺纹,并能进行钻孔,铰孔和拉油槽等工作。
床身宽于一般车床,具有较高的刚度,导轨面经中频淬火,经久耐用。
机床主轴孔径大,操作灵便集中,溜板设有快移机构。
机床结构刚度与传动刚度均比较高,功率利用率也比较高,适于强力高速切削。
其主轴箱是车床的动力源将动力和运动传递给机床主轴的基本环节。
本设计主要针对CA6140机床的主轴箱进行设计,设计的内容主要有车床运动参数的确定、传动方案和传动系统图的拟定、主要设计零件的验算。
关键词:CA6140机床主轴箱零件AbstractCA6140 lathe as a major turning processing machine, widely used in mechanical processing industry, suitable for cutting YuanZhuMian inside taper surface and other rotation, face, cutting various metric, imperial, module and thread, and diameter drilling, reaming and heaming work. In general, lathe bed width with high stiffness, guide surface by frequency quenching and durable. Spindle aperture, centralized operation spirit, has moved fast. Machine structure stiffness and stiffness are relatively high, transmission power utilization rate is high, suitable for high speed cutting power. It is the power source of the lathe spindle box will force and motion to the spindle of basic link. This design is mainly for the spindle box CA6140 machine design, design is the main content of lathe movement parameters, transmission scheme and transmission system graph and the main design parts.Keywords: CA6140 spindle box parts┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章绪论 (1)1.1引言 (1)1.2车床的规格和用途 (1)1.2.1车床的规格 (1)1.2.2车床的用途 (1)2.1确定极限转 (2)2.2确定公比 (2)2.3求出主轴转速级数Z (2)2.4确定结构式 (2)第三章传动方案和传动系统图的拟定 (2)3.1绘制传动系统图 (2)3.1.1选定电动机 (2)3.1.2分配总降速传动比 (2)3.1.3确定传动轴的轴数 (2)3.1.4绘制转速图 (2)3.2传动路线图 (5)3.2.1传动系统可用传动路线表达式 (5)3.2.2车削米制螺纹时传动链的传动路线 (5)3.2.3加工螺纹时的传动路线表达式归纳总结 (6)第四章主要设计零件的验算 (6)4.1主轴箱的箱体 (6)4.2传动系统的I轴及轴上零件设计 (8)4.2.1普通V带选择与计算 (8)4.2.2离合器的选择与计算 (10)4.2.3齿轮的验算 (12)4.2.4传动轴的验算 (14)4.2.5轴承疲劳强度校核 (15)4.3.传动系统的Ⅱ轴及轴上零件设计 (16)4.3.1齿轮的验算 (16)4.3.2传动轴的验算 (19)4.3.3轴组件的刚度验算 (20)4.4传动系统的Ⅲ轴及轴上零件设计 (22)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.4.1齿轮的验算 (22)4.4.2传动轴的验算 (25)4.4.3轴组件的刚度验算 (27)致谢 (30)参考文献 (31)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章绪论1.1 引言车削加工是由车床、车刀、车床夹具和工件共同构成的车削工艺系统中完成的。
机械专业毕业设计CJK1630型数控车床主轴箱结构设计
8=24x41
8=42x21
8=21 x 42
根据传动副前多后少原则和 传动顺序与扩大顺序相一致原则(前密后疏) 选择8=41x24
绘制转速图
确定齿数
变速组a:查《机械制造装备设计》表2-8,设最小齿 数为18,选齿数和为72,查得各齿轮副齿 数为18:54、30:42、37:35、43:29。 变速组b:19:75、54:40(方法与变速组a相同)。
1张 1张 1张 1份 1份 1份
基本要求
工件最大回传半径320mm
最高转速2000r/min
最低转速80r/min
电机功率7.5KW
公比1、功率
选择电机
设计 结构式
设计主轴箱 具体结构
设计变速传 动系统图
设计转速图
z 1000 R v min
d max
n
变速范围:Rn=nmax/nmin=2000/80=25
根据转速级数为8可求出公比 = ( Z 1) Rn =1. 58 取标准值1.6。 由以上结果查《机械制造装备设计》表2-5 可得8级转速分别为80、125、200、315、 500、800、1250、2000。
选取电机
查机《械加工工艺手册》可计算主切削力
Fz=2594N,切削功率Pc=Fzx
vc=5.2Kw
机床效率为0.85,Pz=5.2/0.85=6.1。 选取YVP160-4型交流变频电动机。
拟定结构式 因为转速级数为8,所以有4个方案: 8=21 x 42 ; 8=24x41 ; 8=41x24 ; 8=42x21 对应的结构网图如下
8=41x24
CJK1630型数控车床主轴 箱结构设计
研究内容
高速精密数控车床主轴箱多目标优化设计
2} } } j
段驯德等 : f 岛遮 柑 密 数 控 味 主轴 箱 多 同怀 优 化 设 计
( a ) 方案 1
( b ) 方案 2
( C ) 方案 3 图 4 主 轴 箱 结构 方 案 表 2 主 轴 前 端 跳 动 值
( d ) 方案 4
统综合 性 能 的影 响 程度 , 综合 利用 多种 方 法从 多个 非 劣解 中找 到优 化参 数 的最优 组合 , 达 到主轴 系统综
合 性 能更 优 。本文 以 A D G M1 5高 速精 密数 控 车床 主轴 系统 为 例 , 探 索 把 有 限元 法 和模 糊 综合 评 判法 相 结合 , 在非 劣解 的基 础上 进一 步对 多 目标 进行模 糊 排序 , 最 终得 到 主轴箱 最优 方 案 。实现 了 主轴箱 的多 目标优 化 , 提高 了其 综合 性能 。
1 / 3
的功率 为 1 2 . 5 k W, 并假 设 电机 损 失 的 功率 全 部 转 化 为 热 , 其 中 电机 定 子 占 2 / 3 , 电机 转 子 占 。该 主 轴单 元 前 端 支 承 均 为 角 接 触 球 轴 承 , 型号分别 为 X C 7 0 1 8和 X C 7 0 1 5 , 预 紧 力 分 别 为 2 4 5 0 N、 1 0 8 0 N。前 轴 承还 通 过环 绕 轴 承 座 外 表 面 的冷 却 水 冷 却 , 冷却 水 流 量 为 7 . 2×1 0 I 4 I l l / s ,
第 3 5卷 第 2期
2 0 1 4 年 4 川
河 南 科 技 大 学 学 报 :自 然 科 学 版
J o u r na l o f He na n Un i v e r s i t y o f S c i e nc e a n d Te c hn o l o g y: Na t u r a l S c i e n c e
车床主轴箱课程设计
传动方式
数控车床主轴箱采用伺服电机驱动,普通车床主轴箱采用机械传动。
辅助设备
数控车床主轴箱可配备液压卡盘、自动换刀装置等辅助设备,提高加工效率;普通车床主轴箱辅助设备较少,加工效率相对较低。
数控车床主轴箱优点
高精度、高刚性,可实现复杂零件的精密加工。
配备丰富的辅助设备,提高加工效率。
对操作人员技术要求较高。
车床主轴箱课程设计
目录
课程设计背景与目的主轴箱结构分析与设计主轴箱性能参数计算与校核典型案例分析与实践应用创新性改进方案探讨课程设计成果展示与评价
01
CHAPTER
课程设计背景与目的
传统车床主轴箱设计存在诸多局限性,无法满足现代加工要求。
课程设计旨在培养学生掌握先进设计方法和实践技能,以适应行业发展需求。
传动比初步分配
考虑传动效率、噪音、振动等因素,对初步分配的传动比进行优化。
优化传动比分配
根据优化后的传动比分配,详细计算各级传动的齿轮齿数、模数等参数。
传动比计算
主轴刚度校核
轴承寿命校核
传动效率校核
温升校核
采用有限元分析等方法,对主轴在最高转速下的刚度进行校核,确保其满足加工要求。
考虑传动过程中的摩擦、润滑等因素,对传动效率进行校核,确保满足设计要求。
机械制造行业对高精度、高效率的加工需求日益增长。
提高学生对车床主轴箱结构、工作原理及设计方法的理解。
培养学生运用现代设计手段进行主轴箱创新设计的能力。
通过实践环节,增强学生动手能力和团队协作精神。
适用于机械制造、机械设计、机电一体化等相关专业的学生。
可作为专业课程设计、毕业设计或课外科技活动的选题。
对从事车床主轴箱设计、制造、维修等工作的工程技术人员具有一定的参考价值。
车床主轴箱设计范文
车床主轴箱设计范文首先,车床主轴箱的结构刚性是设计的重点之一、结构刚性的好坏关系到车床的稳定性和加工精度。
为了提高刚性,设计中可以采用箱体结构,增加钢材厚度和数量,加大箱体壁厚等。
此外,还可以在主轴箱中增加支承轴承,加强对主轴的支撑和固定。
传动方式也是主轴箱设计的一个重要因素。
常见的传动方式有皮带传动、齿轮传动和直接联轴传动等。
皮带传动简单易实现,但传动效率相对较低。
齿轮传动传动效率高,但由于噪音和振动问题,需要进行合理设计和降噪处理。
直接联轴传动简单可靠,效率较高,但要求主轴和电机的轴心一致。
主轴精度是衡量车床主轴箱性能的重要指标之一、主轴精度包括径向偏差、轴向偏差和重心偏差等。
为了提高主轴精度,设计中可以采用双列角接触球轴承或双列圆柱滚子轴承等高精度轴承,同时增加支撑点和加大轴承尺寸。
冷却系统是车床主轴箱设计中不可忽视的一个方面。
加工过程中,主轴箱会产生大量热量,如果不及时散热,会影响主轴和轴承的使用寿命。
因此,在设计中需要考虑添加冷却液循环系统,通过冷却液对主轴和轴承进行冷却。
此外,还需考虑主轴箱的润滑方式。
常见的润滑方式有油润滑和脂润滑等。
油润滑一般应用于高速主轴箱,脂润滑则适用于低速主轴箱。
在设计中需要根据实际情况确定润滑方式,并设置相应的润滑装置。
综上所述,车床主轴箱设计需要考虑结构刚性、传动方式、主轴精度、冷却系统和润滑方式等方面。
通过合理的设计和选用合适的材料和零部件,可以提高车床主轴箱的性能和加工效率,满足不同加工需求。
基于灵敏度分析的大型数控镗铣中心主轴箱优化设计研究
第 Hale Waihona Puke 期 21 0 2年 6月
组 合 机 床 与 自 动 化 加 工 技 术
M o l r M ac n ol& A ut m a i a du a hi e To o tc M nuf c urng Te h que a t i c ni
N0. 6
J n 0 2 u .2 1
可 表 示 为 :
S: ( . F) :
a,
主要 用来 支 撑 主 轴 及 其 传 动 部 件 , 传 递 切 削 过 程 并
中零 件对 机床 的作 用 反 力 。主轴 箱 的 内部结 构 差 异 较大, 受力 环 境复 杂 , 其动 静 态性 能直 接 影 响机 床 的 加 工精度 , 机床设 计 中的重 点 … 。 是 本文 源 于某机 床 制造 企 业产 品升 级 项 目。针 对 某 型号落 地 数 控 镗 铣 床 主 轴 箱 的特 点 , 立 了主 轴 建 箱 参数化模 型 , 于设计 变量 对 目标 函数 的不 同影 响 基 度, 利用灵 敏度 分析 的思想 , 缩小 了设 计域 , 并对 主轴 箱进行 了多参数优 化 设计 。经 过计算 分 析 : 型 主轴 该
机床 箱体 的优化 设 计提供 了一种 方 法。
关键 词 : 铣加 工 中心 ; 镗 主轴 箱 ; 灵敏 度 分析 ; 优化 设计
车床主轴箱设计毕业设计
编号潍坊学院毕业设计技术报告课题名称:车床主轴箱设计学生姓名:学号:专业:机械设计制造及其自动化班级:机制本二指导教师:2015 年06月摘要CA6140作为主要的车削加工车床,被广泛的应用于机械加工行业。
随着经济的发展以及对国外先机技术的学习和引进,我国的车床行业在世界上起到了举足轻重的作用。
主轴箱是车床中重要的组成部分,整个车床的动力传动就是由它控制的。
主轴箱直接影响着车床的工作效率,由此可知主轴箱的重要程度。
本设计是主要针对CA6140车床主轴箱的设计,车床主轴箱是一个比较复杂的传动部件。
根据当前实际情况,考虑到经济性和效率性等相关因素,对车床主轴箱进行合理构思构想, 最终完成对车床主轴箱的设计。
设计的内容主要有参数的确定,拟定传动与变速的结构方案和传动系统图,传动设计,传动件的估算和校核,各部件结构设计和主轴组件的校核几个部分部分来进行设计的。
以齿轮、带轮、皮带轮、轴承、等的参数设计为重点,并利用制图软件进行了零件的设计和处理。
关键词:CA6140车床主轴箱传动零件AbstractCA6140 as the main turning lathe, CA6140 is widely used in mechanical processing industry. With the development of economy as well as to the learning and introducing foreign advantage technology, lathe industry in China has played a pivotal role in the world.Spindle box is the important part of the lathe and it controlled the power transmission of the whole lathe.Spindle box directly affects the work efficiency of machine tool, thus the importance of the spindle box is goes without saying.This design is mainly for CA6140 lathe spindle box design,and lathe spindle box is a more complicated driving part.According to the current actual situation,considering the factors related to economy and efficiency, to reasonable design idea of lathe spindle box, finally completed the design of lathe spindle box.The major design content including the determination of the parameters, formulate transmission and variable structure scheme and system diagram,transmission design,the estimate and check of transmission parts, the design of the components structure and the check the spindle component. Focus on the parameter design of gear, belt pulley, bearing and so on, and use the graphics software for designing and processing of the parts.Key words: CA6140lathe; spindle box; transmission; parts目录摘要 ........................................................................................................................................... I Abstract ...................................................................................................................................... II 第一章绪论 . (1)1.1车床的发展及主轴箱的作用 (1)1.1.1车床的发展历史 (1)1.1.2主轴箱的作用 (2)1.2主传动系统的设计要求 (3)第二章传动设计 (4)2.1主传动方案设计 (4)2.2选择传动结构式和结构网 (4)2.2.1确定传动组及传动副的数目 (4)2.2.2传动式的拟定 (4)2.2.3结构式的拟定 (4)2.3转速图的拟定 (5)2.4传动轴的设计 (5)2.5主轴箱的箱体 (6)第三章动力设计 (7)3.1确定各轴转速及检查 (7)3.2带传动设计 (8)3.3齿轮模数的确定以及模数的校核 (10)3.4齿轮强度校核 (12)3.5主轴挠度的计算和校核 (15)第四章离合器的选择及其计算 (17)第五章传动件验算 (19)5.1轴的强度校核 (19)5.2验算花键键挤压应力 (19)5.3滚动轴承校核 (20)5.4齿轮的强度计算 (21)5.5计算跨距 (22)第六章结论 (24)参考文献 (25)致谢 (26)第一章绪论1.1车床的发展及主轴箱的作用1.1.1车床的发展历史车床行业是装备制造业的基础,是制造业使用最广的一类机床,同样也是一个具有战略性意义的产业,始终在国民经济中占有非常重要的位置。
JCK6136数控车床主轴箱和床身部件设计
JCK6136数控车床主轴箱和床身部件设计数控车床是一种精密加工设备,主要用于加工各种复杂形状的零件。
数控车床主轴箱和床身部件的设计是数控车床整体性能和精度的重要组成部分。
在进行主轴箱和床身部件设计时,需考虑工作负荷、材料选择、结构布局等因素。
本文将对主轴箱和床身部件设计进行探讨,以达到提高数控车床加工精度和效率的目的。
首先,主轴箱的设计是数控车床关键部件之一、主轴箱的主要功能是提供主轴旋转和传动动力。
在进行主轴箱设计时,需要考虑的主要因素包括承载能力、刚性和传动精度。
主轴箱的承载能力直接影响到数控车床可加工的工件大小和重量。
通过合理布局和优化设计,可以提高主轴箱的刚性,降低振动和噪音,提高加工精度。
此外,传动装置的选择也是主轴箱设计的关键,可以选择齿轮传动、带传动或直接驱动等形式,根据具体需求选择合适的传动方式。
其次,床身部件的设计是数控车床整体结构的基础。
床身部件主要负责支撑和稳定主轴箱、刀架和工件,承载工作负荷和副轴的运动。
床身部件的设计需要考虑床身材料的选择、结构布局的合理性和刚性优化。
通常情况下,数控车床床身采用铸铁或整体钢板焊接结构。
铸铁具有良好的刚性和稳定性,能够有效降低振动和噪音;整体钢板焊接结构则具有较高的强度和刚性,适用于大型数控车床。
在床身部件设计中,还需要考虑导轨的选择和布局,以保证刀架和工件的平稳运动和高精度加工。
此外,数控车床主轴箱和床身部件设计中还需考虑工作环境和加工要求。
在特殊工作环境下,如高温、潮湿或腐蚀性气体环境,需要选用耐热、防腐性能良好的材料,并进行相应的密封和防护措施。
同时,根据不同的加工要求,还需考虑加工刚度、吸振性能和刀具更换方便性等方面的设计。
此外,还需要结合数控系统要求,进行安装和布线的设计,以保证数控车床的正常工作和数据传输。
综上所述,数控车床主轴箱和床身部件设计是数控车床整体性能和精度的关键因素。
在进行设计时,需考虑工作负荷、材料选择、结构布局等因素,并兼顾工作环境和加工要求。
ck6150数控车床主轴箱设计(含全套cad图纸) .
毕业设计(论文)任务书系部:专业:学生姓名:学号:设计(论文)题目:CK6150数控车床主轴箱设计起迄日期: 20**年3月9日~ 6月14日设计(论文)地点:指导教师:专业负责人:发任务书日期:20** 年2月26日毕业设计(论文)任务书1.本毕业设计(论文)课题应达到的目的:通过这次毕业设计使学生初步掌握机床设计和机械零件设计的一般方法,学会查阅技术文献。
掌握技术文件编写的格式。
2.本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1、课题任务的内容:进行CK6150数控车床主轴箱设计。
2、课题任务的要求:该主轴箱设计完成以后能够实现主轴12档转速,最低转速70 rpm、最高转速1400rpm,半自动换档变速。
机床主轴中心高为250mm。
5.本毕业设计(论文)课题工作进度计划:起迄日期工作内容20**年3月9日~ 3月15日3月16日~ 3月22日3月23日~ 4月5日4月6日~ 4月19日4月20日~ 4月30日5月1日~5月17日5月17日~ 5月30日6月1日~ 6月7日6月8日~ 6月14日熟悉课题,调研,确定设计方案,完成开题报告。
完成外文翻译。
总体设计,方案论证。
完成部件设计初稿。
部件设计定稿。
完成零件设计初稿。
零件设计定稿。
完成说明书初稿毕业设计定稿,论文答辩所在专业审查意见:负责人:20**年月日系部意见:系部主任:20**年月日毕业设计(论文)开题报告学生姓名:学号:专业:设计(论文)题目:CK6150数控车床主轴箱设计指导教师:毕业设计(论文)开题报告1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:文献综述摘要本文主要介绍了数控机床的特点、组成、分类、应用范围及其对ck6150数控车床主轴箱进行的研究分析,论述了我国数控机床发展的过去、现状,对数控机床的发展趋势进行了探讨, 提出了我国数控机床发展的对策。
数控车床主轴箱设计
数控车床主轴箱设计数控车床主轴箱设计数控车床是现代机械加工的重要工具之一,其主要工作原理是利用控制器控制各轴运动,实现零件的加工。
而数控车床主轴箱则是数控车床的关键部件之一,其设计的优劣直接影响着数控车床的精度和稳定性。
本文将详细介绍数控车床主轴箱的设计要点。
1.主轴箱结构设计数控车床主轴箱是由主轴、轴承、气动元件、传动系统、冷却系统等组成。
主轴箱的设计最重要的是结构设计,其结构应该具有高强度、低振动、高刚度和较好的密封性,以确保数控车床的高精度加工。
主轴的轴承应使用高精度的进口轴承,以保证数控车床的高速、高精度运行。
传动系统应采用齿轮蜗杆传动或齿轮传动,并配以足够的冷却系统,以保证传动系统的稳定性和寿命。
气动元件选择优质的气缸、气动阀等,以确保气动系统的可靠性和精度。
同时,主轴箱中的气路设计要合理,以实现气路的快速响应和准确控制。
2.润滑系统设计数控车床主轴箱中的润滑系统是关键的部件之一。
优秀的润滑系统应具有高效的冷却和润滑功能,以确保主轴和轴承的寿命和稳定性。
在润滑系统中,应选用高精度噴雾量的润滑泵,以确保油膜的均匀分布。
同时,润滑泵的位置和管路的设计要合理,以实现润滑油的流速和压力的稳定性。
对于数控车床主轴箱的高速加工,应使用高速润滑油,以防止润滑油的泡沫化和变质。
3.冷却系统设计数控车床主轴箱中的冷却系统同样是关键的部件之一。
冷却系统既可起到冷却主轴箱并维持其温度均衡的作用,也可以起到冷却砂轮并保持其工作性能的作用。
在冷却系统中,应选用高效的冷却器和过滤器,以保证冷却液的干净和清新。
管路设计应合理,管径大小要适当,以确保冷却液的畅通和流量的稳定性。
在使用过程中,应根据冷却液的性质和使用情况进行定期更换和清洗,以保证冷却液的质量和使用寿命。
4.加工精度设计对于数控车床主轴箱的加工精度设计,应考虑数控系统的实际需求和主轴箱结构的特点,以达到最优的精度、效率和稳定性。
在加工精度设计中,应严格控制主轴箱的几何尺寸和位置精度,以保证主轴箱与刀具的精确定位。
数控车床主轴箱设计终稿
数控车床主轴箱设计组员:XX数控车床主轴箱设计设计题目要求:Φ400 毫米数控车床主轴箱设计。
主轴最高转速4000r/min,最低转速30r/min,计算转速150r/min,最大切削功率5.5kw。
采用交流调频主轴电机,其额定转速1500r/min,最高转速4500r/min。
数控车床主轴箱设计二、主轴箱的结构及作用主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。
主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。
主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件。
数控车床主轴箱设计主传动系应满足下属基本要求:1)性能要求。
如机床的主轴有足够的转速范围和转速级数。
传动系设计合理,操纵方便灵活、迅速、安全可靠等。
2)满足机床传递动力要求。
主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。
3)满足机床工作性能要求。
主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。
4)满足产品设计经济性的要求。
传动链尽可能简短,零件数目要少,以节省材料,降低成本。
5)调整维修方便,结构简单、合理、便于加工和装配。
防护性能好,使用寿命长。
数控车床主轴箱设计电动机的选择按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。
根据设计要求采用交流调频主轴电机,其额定转速1500r/min,最高转速4500r/min。
选用FANUC-S系列8s型交流主轴电动机。
数控车床主轴箱设计1.由于驱动系统采用了微处理器和现代控制理论进行控制,系统运行平稳,2.与直流电机相比,由于交流主轴电机在结构上无换向器,主轴电机通常不需要进行维修。
主轴低年级转速的提高不受换向器的限制,最高转速通常比直流主轴低年级更高。
交流主轴驱动系统的特点:主轴型号连续输出功率30分钟额定输出功率基本速度变速范围8s型 5.5KW7.5KW1500r/min 45~6000r/min其选用的交流主轴电机的参数如下:数控车床主轴箱设计计算过程主轴要求的恒功率调速范围电动机的调速范围在设计数控机床主传动时,必须要考虑电动机与机床主轴功率特性匹配问题。
CA6140车床主轴箱三维建模及优化设计讲述PPT
建立模型
根据ca6140车床主轴箱的实际 结构和尺寸,建立三维模型。
优化方案制定
根据性能分析结果,制定优化 方案,包括参数调整、结构改 进等。
性能再评估
对优化后的主轴箱三维模型进 行再次的性能分析,验证优化 效果。
05 主轴箱优化结果分析
优化结果展示
结构简化
通过去除不必要的细节和 结构,使主轴箱更加简洁、 轻便。
尺寸调整
根据实际需求和性能要求, 对主轴箱的尺寸进行了优 化,以实现更好的工作效 果。
材料优化
根据主轴箱的工作环境和 性能要求,选择了更合适 的材料,以提高其耐久性 和稳定性。
优化前后对比分析
重量减轻
优化后的主轴箱重量明显减轻,这有助于减少能耗和振动,提高 加工精度和稳定性。
建模结果与展示
01
02
03
04
模型展示: 通过SolidWorks或 Autodesk Inventor等软件,
展示主轴箱的三维模型。
动画模拟: 利用软件的动画模 拟功能,展示主轴箱的工作过
程。
工程图纸: 生成详细的主轴箱 工程图纸,包括各个零部件的 尺寸、材料和工艺要求等。
以上内容仅供参考,如需更专 业、更详细的内容,建议查阅 相关文献或咨询专业工程师。
模型优化
根据验证结果,对模型 进行优化和改进,提高 模型的精度和可靠性。
02 主轴箱结构分析
主轴箱结构概述
01
主轴箱是车床的重要部件,用于支撑和传递主轴的 旋转动力。
02
它通常由箱体、主轴、轴承、传动系统等部分组成。
03
主轴箱的结构设计直接影响到车床的加工精度、稳 定性和使用寿命。
CJK6132数控车床主轴箱箱体的结构设计的开题报告
CJK6132数控车床主轴箱箱体的结构设计的开题报
告
一、研究问题和目标
数控车床是现代机械加工领域中非常重要、不可或缺的设备。
而数
控车床中的主轴箱则是车床工作时最重要的部分之一。
本文将以蕴湖CNC数控车床中的主轴箱为例,研究其箱体的结构设计,分析其优缺点,并在此基础上提出改进方案,以提高主轴箱的性能和精度。
二、研究方法和步骤
本文将采用文献资料法、实验法和数值模拟法相结合的方法进行研究,具体步骤如下:
1. 收集相关文献资料,包括国内外有关数控车床主轴箱的设计和应
用方面的研究成果。
对相关文献进行系统和全面的分析。
2. 对蕴湖CNC数控车床中的主轴箱进行实地观察,详细了解其结构和性能特点,并进行实际加工试验,以验证主轴箱的精度和可靠性。
3. 建立数学模型,利用软件模拟工具对主轴箱的力学性能和热力学
性能进行数值模拟,进一步验证实验结果,提出改进方案。
4. 综合实验和数值模拟的结果,分析主轴箱的结构与性能之间的关系,并提出改进方案。
三、预期成果和影响
通过本研究,预期能够:
1. 对数控车床主轴箱的结构设计做出系统性的评估,分析其优缺点,为今后的主轴箱设计提供参考。
2. 提出一系列改进方案,以改善主轴箱的结构和性能,提高主轴箱
的加工精度和可靠性。
3. 探索数学模型和数值模拟工具的应用,提高设计和试验效率。
4. 为车床制造企业提供一定的参考和借鉴,提高中国制造业的品质和竞争力。
车床主轴箱夹具改进探究
车床主轴箱夹具改进探究摘要:车床主轴箱是车床具有关键性的零件之一,针对该零件开展的加工操作,在加工精度方面有着非常严格的要求,并且所使用工艺具有较强复杂性。
在车床主轴箱夹具内部,对于工件定位面以及定位孔的选择是非常重要的,与此同时保证夹紧点设定的合理性,有利于从整体上提高主轴箱的加工精度。
做好以上各项要素的设计工作,便可以更为高效地展开箱体零件的输送以及夹紧等操作,提高零件加工尺寸精度的控制效果。
基于此,本文首先分析了传统车床主轴加剧的特征,明确了夹具的应用作用,在此基础上围绕车床主轴箱夹具的改进进行分析和探讨,以期为相关人员提供参考。
关键词:主轴箱;夹具;改进引言:针对车床主轴箱而言,其是车窗的一个重要零件,对其进行改进和优化具有必要性。
在实践工作中,对车床主轴箱各零件展开精准性设计,从而保证车床主轴箱零件加工精度,具有非常重要的现实意义。
一、传统车床主轴夹具特征分析针对传统车床主轴夹具而言,其在零件粗基准选择过程中,通常需要使用相应的专用夹具,将主轴孔作为粗基准,以此来在夹具上进行相应定位。
主轴箱在进行中批或者小批量生产过程中,会将箱体底面导轨的相应面作为基准定位,通过该方法的应用主要是遵循了基准重合原则,不会出现任何的基准不重合误差。
在进行加工过程中,车床主轴箱的箱体开口会朝上,主要目的是有利于提高安装调整的便利性,同时也可以更好地进行观察测量。
然而在针对箱体中间壁孔进行加工过程中,还需使用中间导向,将此作为支撑进行[1]。
因为在结构方面受到相应限制,所以此环节所使用的中间导向支撑仅能够加强挂架方式的使用,每次进行加工时都需要装卸以此,吊架和夹具两者使用的是定位销,从而发挥其定位功能,然而其刚度相对较差,与此同时由于经常性展开装卸操作,很有可能会出现相应的误差,同时也会导致辅助时间一定程度延长,降低了生产效率。
在实际开展主轴箱大批量生产工作过程中,遵循基准统一原则,在实际操作中将顶面和销孔应用为定位基面,采用夹紧力垂直夹紧方式。
CK6136数控车床主轴部分机械设计
CK6136数控车床主轴部分机械设计1.主轴箱设计:主轴箱是支撑主轴的机床基础部件,它需要具备足够的刚性和稳定性。
主轴箱通常采用铸铁材料,采用箱形结构设计,以确保足够的强度和刚性。
主轴箱内部需要进行润滑油的循环,以降低摩擦和热量,提高主轴的使用寿命和稳定性。
2.主轴轴承设计:主轴轴承是支撑和固定主轴的关键部件,它需要满足高速旋转的要求,并具备足够的刚性和稳定性。
根据车床的使用要求和主轴的转速范围,可以选择不同类型的主轴轴承,如滚动轴承、滑动轴承或德国Schneeberger线性导轨轴承。
为了提高主轴的刚性和稳定性,还可以在主轴轴承上采用预拉力调节装置,以减少轴承的磨损和提高主轴的精度。
3.主轴驱动系统设计:主轴驱动系统是将动力传递给主轴的部件,常见的主轴驱动方式有皮带传动和直接驱动。
皮带传动方式可以通过调整皮带紧张度来调节主轴转速,适用于一些变速主轴车床。
直接驱动方式更加简单可靠,能够提供更高的主轴转速和更精确的加工效果。
直接驱动方式常见的有电机和主轴同轴分装,以及电机和主轴同轴集成在一起的设计。
为了确保主轴驱动的稳定性和准确性,需要采用高精度的联轴器和齿轮传动装置,以减少传动误差和振动。
此外,为了保证主轴的使用寿命和精度,还需要对主轴进行冷却和清洁。
冷却包括内部冷却和外部冷却,可以采用冷却液进行内部冷却,通过风扇或冷却器对外部进行冷却。
清洁方面可以采用集尘装置和冷却液过滤器,以确保主轴的清洁和润滑。
总之,CK6136数控车床的主轴部分机械设计是一个综合性工作,需要考虑刚性、稳定性、精度、耐用性等多方面因素。
只有通过精心的设计和优化选择,才能实现主轴的高效工作和长期可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车床主轴箱的优化设计和开发,以尽量减少热变形森精机--Nagoya--日本数字技术实验室--Sacramento--美国关键词:热误差,设计方法,精度,主轴箱本文是以调查的方法来减少和弥补精度数控车床中较大的热位移误差。
为此,在这里我们提出了一个高效的设计和优化方法——主轴箱结构设计方法,来尽量减少主轴中心位置的热位移。
和现有的那些经验方法相比较,这种方法可以更好的节省开发时间和成本。
为了确定最佳的主轴箱结构,我们提出了Taguchi方法和有限元分析方法,这两种方法主要是用来验证和评估主轴中心过渡的主轴箱优化结果。
一:介绍精度数控车床的精度越高,在加工精度要求方面的需求也越高。
而热变形对于加工效果有非常显著的影响。
关于这一个问题已经进行了的许多的研究。
然而,并没有在实践中取得很多良好的效果。
热变形的主要研究归纳如下,Moriwaki和Shamoto建议使用温度传感器的热位移估计补偿方法,Brecher和Hirsche在延长这项工作的基础上控制部数据,刺激等等,这些主要是用于非金属材料(如碳纤维增强塑料),以抑页脚.制热位移。
应用轴承的有限元方法(FEM)来分析预紧问题和铸件的形状优化问题,可以尽量减少热位移,Jedrzejewski通过进行补偿,再加上热执行器控制的应变是基于热失真反馈,清水等的原理。
开发了一种新的算法,这种算法可以估计装修总机热变形的变形模式,并从涡流型位移传感器处获得所需要的数据。
一些机床制造商通过使用从传感器或部的NC控制器获得温度信息的方法,来估计热位移并进行补偿。
对于数控车床来说,热位移通常是受机器的结构,环境的温度,热源的状态(伺服电机或加工热),气流和冷却剂的使用情况等的影响,虽然说理论上是可以进行准确的补偿,但是估计位移要涉及以上这些复杂的相互作用、参数和需要大量的组合实验。
比如说,沿每个轴的线性热变形补偿问题,它的变形是伴随着精度显着下降,扭曲或翘曲的。
一种新数控车床的开发涉及到修改现有机器的结构和运行实验,而且,这通常要耗费大量的时间,而且费用也比较昂贵。
所以在这里,提出一种新的方法——设计一个主轴箱,数控车床自身随机引起的热变形温度偏差。
通过Taguchi方法,CAE分析等,确定数控车床主轴结构和热变形评估,以此证明上面说的方法是一个非常有效率的方法。
二:主轴结构和热位移测量图1显示了数控车床主轴的部结构、零件以及环境变量的参数。
热位移的目标是设计一个主轴箱,让热集中页脚.在Y轴,而不是X轴,把X轴和Y轴的误差控制在小于服务条款才是最希望得到的结果。
热源是前轴承住房,后轴承座和电机。
测量热位移的方法是把一个中空的圆柱形工件装到主轴卡盘,而四版DY电流位移传感器安装在铸铁夹具低的热膨胀处。
如图2,传感器的夹具连接到机身上,以此来衡量床身和主轴之间的相对位移。
用下式(1)和(2)可以分别计算出X轴和Y轴的热位移。
(1)图1.主轴箱结构和热分析模型的边界条件页脚.页脚. 图2.安装热位移传感器的观点(2)DX:在X轴方向的热位移DY:在Y轴方向的热位移DX1,DX2,DY1,DY2:传感器(X1,X2,Y1,Y2)和工件之间的距离。
三:热分析模型和边界条件建立一种CAE模型来进行热分析。
这种模型包括主轴箱,刀架,尾座车床床边界条件与初始温度分布,局部热源和外部气流等。
使用商业CFD(计算流体力学)软件包来进行初始温度的分布计算非常的方便。
通过使用CAE软件这个方法。
热应变计算的结果可以进一步应用于确定总体的热位移。
前轴承座,后轴承源,住房和电机的热值,可以通过以下方式来获得:主轴电机的输出功率先从负载到主轴放大器; 轴承前部和后部的热值可以使用轴承座进行分析和计算,然后汇总,最后主轴电机的热值等于计算轴承座的热值减去主轴电机的输出功率。
由于主轴的热传导会影响热位移,所以整机,机床,炮塔和尾座都包括在分析模型中,此外,把主轴机盖所造成的气流旋转添加到模型中会更加准确。
为了验证分析结果,对温度变化的几个点进行了测量和比较。
页脚.图3.选择模型分析的功能页脚.在固定的环境温度(22°C)与主轴转速(1000RPM)下进行温度比较实验。
分析结果表明有3-12.5%的误差。
四:主轴箱分析模型为了设计主轴箱结构的最小X轴热位移,对影响主轴箱热位移的关键特征进行了调查。
图3显示了调查的结果,也称为控制因素的特点:(1)肋骨的形状和铸孔(2)主轴箱缸的厚度(3)前墙的厚度(4)后墙的厚度(5)厚度的肋骨(6)右侧壁的厚度(7)左侧壁的厚度。
表1显示了在每个级别中控制因素的价值。
目前使用的主轴箱被称为基本主轴箱。
表1和2中的值是主轴箱结构所必备的基本条件。
对于控制因子A,通过结合与设定不同的肋骨形状,对例6和例3进行了比较和研究。
表1每个级别中控制因子的值页脚.表2L18直交和结果分析主轴电机,轴承空间各部分的主轴箱结构,有的有孔,有的没有。
从不同的肋骨形状可以分析预测热传导路线的变化,这有助于预测热变形壁厚的变化。
对厚度变化进行的调查,表明其变化的原因与主轴箱结构前部和后部之间热能力的平衡有关系,这也有助于预测不同的热位移页脚.结合每一个控制因素和层次来分析和确定一个可能的优化设计要花费大量的时间,例如,表1案例的研究共需要4374项分析,这远远超出了实际所能做到的。
然而,Taguchi方法可以在总分析数很少时应用。
对于上述案例7,只有控制因素和6个级别,但是应用Taguchi方法,在只有18个条件下就可以确定出最佳的方案,在下面的部分我们将会给出解释和原因。
五:主轴箱结构的优化表2显示在这18个条件下使用Taguchi方法优化设计主轴箱结构分析模型。
SN比值可以用灵敏度S来表示式。
2000RPM的速度是用于(3)和(4)中计算主轴热位移的CAE分析结果。
(3)(4)Xi:在CAE分析中,X轴的热位移在每个主轴方向的速度(mm)。
图4是从SN比派生出来的阶乘效果图,从表2的结果就可以看出,在X轴方向热位移产生的偏差比较小,但是却产生了比较大的SN比率。
这是因为,SN比和X轴方向热位移的偏差是倒数的关系,上面的式子(3)已经可以证明了。
如图4所示,每个控制因素都是由一个最大的SN比配对而来。
例如,第4级控制因子A和第2级的控制因素B可以配对为一个控制因素。
最后,在不同的主轴转速条件下,可以分析得到主轴箱结构的模型,结果显示第页脚.11号是产生热位移最小偏差的组合。
为了验证这个组合,在X轴方向对主轴分别在500,1000,1500和2000RPM 转速的情况下分别进行了分析。
图5显示了分析的结果:在X轴热位移为0.0005,0.0001和0.0005mm时所对应的速度分别为500,1000和1500RPM,这印证了在x轴方向上的热位移产生的偏差比较小。
(注:虽然最好的组合是(4,2,1,2,3,3,2),而且具有最大的SN比)但是11号选择的是(4,2,1,1,3,3,2)控制的因素。
这意味着在控制因子D中,后墙厚度为15mm而不是为25mm。
这里的原因有两个:SN比所示的D值1和2之间的差异非常小,如图4,前墙(C)和实墙(四)通过使用相同的厚度可以得到更好的导热性。
因此,图六是灵敏度因子的效果图。
如上面的式子(4)中所看到的一样,灵敏度计算的是平均的热位移。
热效果和每个控制因子的位移方向如图6所示。
其中可以很清晰的得到,在第二肋处,也就是3级和4级控制因素的地方产生了较大的热位移。
它直接影响热在负方向的位移,这是导致位移量降到最低一个重要因素。
页脚.页脚.控制因素图4 SN比的阶乘效果图页脚.主轴转速(RPM)图5 在X轴方向的位移分析结果控制因素图6 灵敏度的阶乘的效果图页脚. 图7 在X轴方向10H的热位移后,主轴开始旋转图8 在Y轴方向10H的热位移后,主轴开始旋转六:实验结果分析的结果表明,11号主轴箱结构将会产生最小的热位移,也就是最好的结果。
9号主轴箱结构将在X轴的负方向产生最大的位移。
为了验证这一结果,把两个主轴箱的制造过程分别相应的分配在两个真正的数控车床上进行加工,以此来比较所得到的真实结果。
实验主轴转速分别在500,1000,1500和2000RPM时所测得的结果和上诉论断非常符合。
热位移的测量持续了10个小时,这可以确保在位移达到稳定之后主轴才开始旋转。
图7显示的是在不同的主轴转速下,主轴箱结构的基本结构,11号结构和9号结构这三种情况下的X轴热位移。
虽然基本的主轴箱结构显示:热位移与主轴转速是正比的关系,但是即使在主轴转速小于11号结构时热位移仍然小于0.001毫米,这与上述分析的结果不符合。
9号结构在X轴的负方向上产生了比较大的热位移。
图8显示了这三个案列在Y轴热位移的比较结果。
这三个主轴箱结构在Y方向的热位移都有相同的扩大趋势,即随着主轴速度的增加而增加。
图9显示了前面三种情况的比较结果和耳墙的温度变化趋势。
对于基本的主轴箱结构,前墙的温度比后墙约高2.4°C。
这意味着主轴箱将向后倾斜。
页脚.图9 壁前方和后方温变化的比较在主轴箱前面的壁上,第11号结构的温度比基本结构低了0.4°C,当温度是0.6°C时,和基本主轴箱结构相比,主轴箱前壁和后壁之间造成了约1°C的温度差异。
这意味着主轴箱11号结构比基本主轴箱结构相对来说倾斜度要大一点。
这是因为在稳定状态下,把主轴箱安装到实际的机器上后热位移减少的结果。
9号主轴箱结构后壁温度比前壁温度高出约0.2°C,并且倾斜的趋势比11号主轴箱结构要大,这导致位移转变成为X轴的负方向。
七:结论页脚.在这里,我们提出了一个新颖的方法来设计数控车床的主轴箱结构,并且实现了在X轴方向上的热位移最小的结果。
随着CAE技术和Taguchi方法的使用,我们得到了一个到目前为止最佳的主轴箱结构设计方法。
在只有18种热位移的模式下可以进行分析计算,和传统的实验做法,甚至一些错误的做法相比,极减少了开发的时间和成本。
从所用模式的分析结果中,我们可以确定出一个最优的主轴箱结构加工制造方法。
当主轴转速分别为500,1000,1500和2000RPM时,主轴箱结构的热位移可以在X轴方向分别测定。
测定的结果比实际少0.001毫米,这说明分析结果和实际结果非常相近,所以说这种设计方法是可以运用于实际的。
参考文献[1]森胁T,Shamoto E(1998)精密空气主轴系统的超热变形分析。
纪事机械工程研究所47(1):315- 319。
[2] Brecher,Hirsche乙(2004)热弹性机床的补偿,基于变形控制的部数据。
纪事机械工程研究所53(1):299- 304[3]Spur G ,Benzinger K,G,霍夫曼发送,PaluncicžNymoen(1988)热机床的行为优化。