2018年浙江省台州市中考数学试卷含答案
2018浙江台州市中考数学试题
2018年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣32.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A B C D3.计算,结果正确的是()A.1 B.x C.D.4.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形7.正十边形的每一个内角的度数为()A.120 B.135 C.140 D.1448.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.9.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.210.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.如果分式有意义,那么实数x的取值范围是.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.13.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.14.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=度.15.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为.16.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:|﹣2|+(﹣1)×(﹣3)18.解不等式组:19.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.21.(10.00分)某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表(1)填空:m=,n=.(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.23.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.24.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?参考答案1.D.2.D.3.A.4.B.5.D 6.C.7.D.8.B.9.B.10.D.11.x≠2.12..13..14.26.15.(﹣2,5)16.+3.17.3.18.解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.19.解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.20.解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.21.解:(1)由题意可得,本次抽查的学生有:30÷25%=120(人),m=120﹣32﹣30﹣24﹣11﹣15=8,n%=24÷120×100%=20%,故答案为:8,20;(2)=33°,即扇形统计图中D组的扇形圆心角是33°;(3)3600×=960(人),答:“引体向上”得零分的有960人.22.解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,=CE•FH=×1×=,∴S△CEF由(2)知,AE⊥CF,∴S=CF•ME=×ME=ME,△CEF∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,=CF•GM=××=.∴S△CFG23.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.24.解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=AE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=A B•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM==k,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴当x=,即OM=时,AB•AC最大,最大值为,∴DC2=,∴AC=DC=,∴AB=,此时=.。
2018年浙江省台州市中考数学试卷含解析(完美打印版)
2018年浙江省台州市中考数学试卷(含解析)一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)比﹣1小2的数是()A.3B.1C.﹣2D.﹣32.(4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.3.(4分)计算,结果正确的是()A.1B.x C.D.4.(4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.(4分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.(4分)下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形7.(4分)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°8.(4分)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA 的延长线于点E,则AE的长是()A.B.1C.D.9.(4分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5B.4C.3D.210.(4分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGE B.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.(5分)如果分式有意义,那么实数x的取值范围是.12.(5分)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.13.(5分)一个不透明的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.14.(5分)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=度.15.(5分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x 轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为.16.(5分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣2|+(﹣1)×(﹣3)18.(8分)解不等式组:19.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.(8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.21.(10分)某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表(1)填空:m=,n=.(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.(12分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.23.(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.24.(14分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?2018年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分。
2018年浙江省台州市中考数学
2018年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4.00分)比﹣1小2的数是( )A .3B .1C .﹣2D .﹣32.(4.00分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )A .B .C .D .3.(4.00分)计算x+1x −1x,结果正确的是( ) A .1 B .x C .1x D .x+2x4.(4.00分)估计√7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(4.00分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分6.(4.00分)下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形7.(4.00分)正十边形的每一个内角的度数为( )A .120°B .135°C .140°D .144°8.(4.00分)如图,在▱ABCD 中,AB=2,BC=3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12B .1C .65D .329.(4.00分)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .210.(4.00分)如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B′DE ,若B′D ,B′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )A .△ADF ≌△CGEB .△B′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)如果分式1x−2有意义,那么实数x 的取值范围是 . 12.(5.00分)已知关于x 的一元二次方程x 2+3x +m=0有两个相等的实数根,则m= .13.(5.00分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是 .14.(5.00分)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D= 度.15.(5.00分)如图,把平面内一条数轴x 绕原点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N 与点M 关于y 轴对称,则点N 的斜坐标为 .16.(5.00分)如图,在正方形ABCD 中,AB=3,点E ,F 分别在CD ,AD 上,CE=DF ,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则△BCG 的周长为 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8.00分)计算:|﹣2|−√4+(﹣1)×(﹣3)18.(8.00分)解不等式组:{x −1<33(x −2)−x >019.(8.00分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.(8.00分)如图,函数y=x的图象与函数y=kx(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=kx(x>0)的图象相交于点B,求线段AB长.21.(10.00分)某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表成绩人数0分321分302分243分114分155分及以上m(1)填空:m=,n=.(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.(12.00分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2√2,CE=1,求△CGF的面积.23.(12.00分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=120t+4(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q={2t+8,0<t≤12−t+44,12<t≤24(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.24.(14.00分)如图,△ABC是⊙O的内接三角形,点D在BĈ上,点E在弦AB 上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?2018年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分。
2018年浙江省中考数学试题及答案6套
2018年浙江省中考数学试题及答案6套(含宁波市,衢州市,义乌市,台州市,温州市,舟山市中考数学试题)2018年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4.00分)(2018•宁波)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a54.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.96.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E 是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.39.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C 为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣411.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4.00分)(2018•宁波)计算:|﹣2018|=.14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足.15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为.16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB 为米(结果保留根号).17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB 边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC 长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.2018年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.【点评】本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:550000=5.5×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4.00分)(2018•宁波)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C 为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,△ABC∴k1﹣k2=8.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(每小题4分,共24分)13.(4.00分)(2018•宁波)计算:|﹣2018|=2018.【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足x≠1.【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为﹣8.【分析】根据平方差公式即可求出答案.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH 的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(本大题有8小题,共78分)19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.【点评】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB 边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD ≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC 长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.【分析】(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.2018年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选C.【点评】本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当。
浙江省台州市 中考数学试卷
浙江省台州市2018年中考数学试卷一、选择题(本题有10小题,每小题4分,满分40分)1、(2018•台州)在、0、1、﹣2这四个数中,最小的数是()A、B、0 C、1 D、﹣2考点:有理数大小比较。
分析:本题是对有理数的大小比较考查,根据任何负数都小于非负数,直接得出答案.解答:解:在有理数、0、1、﹣2中,最大的是1,只有﹣2是负数,∴最小的是﹣2.故选D.点评:此题主要考查了有理数的比较大小,解决此类问题的关键是根据负数的性质得出答案.2、(2018•台州)下列四个几何体中,主视图是三角形的是()A、B、C、D、考点:简单几何体的三视图。
分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.解答:解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.点评:此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.3、(2018•台州)要反映台州市某一周每天的最高气温的变化趋势,宜采用()A、条形统计图B、扇形统计图C、折线统计图D、频数分布统计图考点:统计图的选择。
专题:分类讨论。
分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,得要求直观反映台州市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.4、(2018•台州)计算(a3)2的结果是()A、3a2B、2a3C、a5D、a6考点:幂的乘方与积的乘方。
分析:根据幂的乘方:底数不变,指数相乘,计算后直接选取答案.解答:解:(a3)2=a3×2=a6.故选D.点评:此题主要考查的是幂的乘方,不要与同底数幂的乘法互相混淆;幂的乘方:底数不变,指数相乘;同底数幂的乘法:底数不变,指数相加.5、(2018•台州)若两个相似三角形的面积之比为1:4,则它们的周长之比为()A、1:2B、1:4C、1:5D、1:16考点:相似三角形的性质。
精品解析:浙江省台州市2018年中考数学试题(解析版)
2018年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 比﹣1小2的数是()A. 3B. 1C. ﹣2D. ﹣3【答案】D【解析】分析:根据题意可得算式,再计算即可.详解:-1-2=-3,故选:D.学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...2. 在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.【答案】D【解析】分析:根据中心对称图形的概念求解.详解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.点睛:本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. ,结果正确的是()A. 1B. xC.【答案】A【解析】分析:根据分式的运算法则即可求出答案.详解:原式=1故选:A.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.4. 的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】分析:直接利用23,进而得出答案.详解:∵23,∴3<4,故选:B.5. 某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A. 18分,17分B. 20分,17分C. 20分,19分D. 20分,20分【答案】D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6. 下列命题正确的是()A. 对角线相等的四边形是平行四边形B. 对角线相等的四边形是矩形C. 对角线互相垂直的平行四边形是菱形D. 对角线互相垂直且相等的四边形是正方形【答案】C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7. 正十边形的每一个内角的度数为()A. 120°B. 135°C. 140°D. 144°【答案】D【解析】∵一个正十边形的每个外角都相等,∴正十边形的一个外角为360÷10=36°.∴每个内角的度数为180°–36°=144°;故选D.8. 如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()B. 1【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.9. 甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5B. 4C. 3D. 2【答案】B【解析】分析:可设两人相遇的次数为x100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.10. 如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A. △ADF≌△CGEB. △B′FG的周长是一个定值C. 四边形FOEC的面积是一个定值D. 四边形OGB'F的面积是一个定值【答案】D【解析】分析:A、根据等边三角形ABC的外心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠∠FAD+∠ADF),由折叠得:∠BDE=∠∠DAF+∠AFD),∴∠OFD+∠∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC△ABC(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC-S△OFG,过O作OH⊥AC于H,∴S△OFG,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,二、填空题(本题有6小题,每小题5分,共30分)11. x的取值范围是_____.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.12. 已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=_____.【解析】分析:利用判别式的意义得到△=32-4m=0,然后解关于m的方程即可,详解:根据题意得△=32-4m=0,解得故答案为点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.【解析】分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.详解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,点睛:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.【答案】26【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案为:26.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.15. 如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.【答案】(﹣2,5)【解析】分析:如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.利用全等三角形的性质,平行四边形的性质求出OC、OD即可;详解:如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,∴△NDK≌△MBK,∴DN=BM=OC=2,DK=BK,在Rt△KBM中,BM=2,∠MBK=60°,∴∠BMK=30°,∴,∴OD=5,∴N(-2,5),故答案为(-2,5)点睛:本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16. 如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____..【解析】分析:根据面积之比得出△BGC进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.详解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,9=6,∴空白部分的面积为9-6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF设BG=a,CG=b又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴∴△BCG的周长,.点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17. 计算:|﹣(﹣1)×(﹣3)【答案】3【解析】分析:首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.详解:原式=2-2+3=3.点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.19. 图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【答案】操作平台C离地面的高度为7.6m.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.20. 如图,函数y=x的图象与函数x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数x>0)的图象相交于点B,求线段AB长.【答案】(1)m=2,k=4;(2)AB=3.【解析】分析:(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入k的值;(2)分别求出A、B两点的坐标,即可得到线段AB的长.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入x=1,∴点B(1,4).∴AB=4-1=3.点睛:本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.21. 某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:(1)填空:m= ,n= .(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.【答案】(1)8,20;(2)扇形统计图中D组的扇形圆心角是33°;(3)“引体向上”得零分的有960人.【解析】分析:(1)根据题意和表格、统计图中的数据可以计算出m、n的值;(2)根据(1)中的结论和统计图中的数据可以求得扇形统计图中D组的扇形圆心角的度数;(3)根据统计图中的数据可以估计其中“引体向上”得零分的人数.详解:(1)由题意可得,本次抽查的学生有:30÷25%=120(人),m=120-32-30-24-11-15=8,n%=24÷120×100%=20%;(2360°=33°,即扇形统计图中D组的扇形圆心角是33°;(3)3600×(人),答:“引体向上”得零分的有960人.点睛:本题考查扇形统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答,注意n和n%的区别.22. 如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,∵∴∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,,∵点F是BD中点,∴同理:连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴∴S△CEF=CE•FH=1×由(2)知,AE⊥CF,∴S△×,,∴ME=,∴GM=EG-ME=∴S△CFG CF•GM=××点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.23. 某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【答案】(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【解析】分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.详解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:解得:∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.24. 如图,△ABC是⊙O的内接三角形,点D E在弦AB上(E不与A重合),且四边形BDCE 为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.BC的长;为何值时,AB•AC的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)①【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=求得,可知,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,,∴∴OM=OD﹣DM=3,在Rt△COM中,由OM2+MC2=OC2得(3)2+)2=32,解得:k=0(舍),∴k=4②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4∴当,即OM=AB•AC∴DC2∴AC=DC=∴,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.。
2018年浙江省台州初中毕业升学考试数学试题卷
2018年浙江省台州初中毕业升学考试数学试题卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.比-1小2的数是( )A .3B .1C .-2D .-32.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )A .B .C .D .3.计算11x x x+-,结果正确的是( ) A .1 B .x C .1x D .2x x +4.1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分 B .20分,17分 C .20分,19分 D .20分,20分6.下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形7.正十边形的每一个内角的度数为( )A .120B .135C .140D .1448.如图,在ABCD 中,2AB =,3BC =.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12 B .1 C .65D .329.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5/m s ,乙跑步的速度为4/m s ,则起跑后100s 内,两人相遇的次数为( )A .5 B .4 C .3 D .210.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E ,将BDE ∆沿直线DE 折叠,得到'B DE ∆,若'B D ,'B E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )A .ADF CGE ∆≅∆B .'B FG ∆的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形'OGB F 的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.若分式12x -有意义,则实数x 的取值范围是. 12.已知关于x 的一元二次方程230x x m ++=有两个相等的实数根,则m =.13.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.14.如图,AB 是O 的直径,C 是O 上的点,过点C 作O 的切线交AB 的延长线于点D .若132∠=,则D ∠=度.第14题 第15题 第16题15.如图,把平面内一条数轴x 绕原点O 逆时针旋转角0(090)θθ<<得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 在x 轴的平行线,交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(,)a b 为点P 的斜坐标.在某平面斜坐标系中,已知060θ=,点M 的斜坐标为(3,2),点N 与点M 关于y 轴对称,则点N 的斜坐标为.16.如图,在正方形ABCD 中,3AB =,点E ,F 分别在CD ,AD 上,CE DF =,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则BCG ∆的周长为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:2(1)(3)--⨯-.18.解不等式组:133(2)0x x x -<⎧⎨-->⎩. 19.图1是一辆吊车的实物图,图2是其工作示意图,AC 是可以伸缩的起重臂,其转动点A 离地面BD 的高度AH 为3.4m .当起重臂AC 长度为9m ,张角HAC ∠为118时,求操作平台C 离地面的高度(结果保留小数点后一位;参考数据:sin 280.47≈,cos 280.88≈,tan 280.53≈).20.如图,函数y x =的图象与函数(0)k y x x=>的图象相交于点(2,)P m .(1)求m ,k 的值;(2)直线4y =与函数y x =的图象相交于点A ,与函数(0)k y x x=>的图象相交于点B ,求线段AB 长. 21.某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部分为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):抽取的男生“引体向上”成绩统计表请你根据统计图表中的信息,解答下列问题:(1)填空:m =_________,n =_________;(2)求扇形统计图中D 组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.如图,在Rt ABC ∆中,AC BC =,90ACB ∠=,点D ,E 分别在AC ,BC 上,且CD CE =.(1)如图1,求证:CAE CBD ∠=∠;(2)如图2,F 是BD 的中点.求证:AE CF ⊥;(3)如图3,F ,G 分别是BD ,AE 的中点.若AC =1CE =,求CGF ∆的面积.23.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t 个月该原料药的月销售量为P (单位:吨),P 与t 之间存在如图所示的函数关系,其图象是函数120(08)4P t t =<≤+的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28,01244,1224t t Q t t +<≤⎧=⎨-+<≤⎩(1)当824t <≤时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元).①求w 关于t 的函数解析式;②该药厂销售部门分析认为,336513w ≤≤是最有利于该原料药可持续生产和销售的月毛利润范围,求。
2018年浙江台州初中毕业升学考试数学试题卷
2018年浙江省台州初中毕业升学考试数学试题卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.比-1小2的数是( )A .3B .1C .-2D .-3 2.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )A .B .C .D . 3.计算11x x x+-,结果正确的是( ) A .1 B .x C .1x D .2x x+4.1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分 6.下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形 7.正十边形的每一个内角的度数为( )A .120B .135C .140D .1448.如图,在ABCD 中,2AB =,3BC =.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12 B .1 C .65 D .329.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5/m s ,乙跑步的速度为4/m s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .210.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E ,将BDE ∆沿直线DE 折叠,得到'B DE ∆,若'B D ,'B E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误..的是( )A .ADF CGE ∆≅∆B .'B FG ∆的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形'OGB F 的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.若分式12x -有意义,则实数x 的取值范围是 . 12.已知关于x 的一元二次方程230x x m ++=有两个相等的实数根,则m = .13.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是 .14.如图,AB 是O 的直径,C 是O 上的点,过点C 作O 的切线交AB 的延长线于点D .若132∠=,则D ∠= 度.第14题 第15题 第16题15.如图,把平面内一条数轴x 绕原点O 逆时针旋转角0(090)θθ<< 得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 在x 轴的平行线,交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(,)a b 为点P 的斜坐标.在某平面斜坐标系中,已知060θ=,点M 的斜坐标为(3,2),点N 与点M 关于y 轴对称,则点N 的斜坐标为 .16.如图,在正方形ABCD 中,3AB =,点E ,F 分别在CD ,AD 上,CE DF =,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则BCG ∆的周长为 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:2(1)(3)--⨯-.18.解不等式组:133(2)0x x x -<⎧⎨-->⎩.19.图1是一辆吊车的实物图,图2是其工作示意图,AC 是可以伸缩的起重臂,其转动点A 离地面BD 的高度AH 为3.4m .当起重臂AC 长度为9m ,张角HAC ∠为118时,求操作平台C 离地面的高度(结果保留小数点后一位;参考数据:sin 280.47≈,cos 280.88≈,tan 280.53≈).20.如图,函数y x =的图象与函数(0)ky x x=>的图象相交于点(2,)P m .(1)求m ,k 的值;(2)直线4y =与函数y x =的图象相交于点A ,与函数(0)ky x x=>的图象相交于点B ,求线段AB 长. 21.某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部分为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):抽取的男生“引体向上”成绩统计表请你根据统计图表中的信息,解答下列问题: (1)填空:m =_________,n =_________;(2)求扇形统计图中D 组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.如图,在Rt ABC ∆中,AC BC =,90ACB ∠=,点D ,E 分别在AC ,BC 上,且CD CE =.(1)如图1,求证:CAE CBD ∠=∠;(2)如图2,F 是BD 的中点.求证:AE CF ⊥;(3)如图3,F ,G 分别是BD ,AE 的中点.若AC =1CE =,求CGF ∆的面积.23.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t 个月该原料药的月销售量为P (单位:吨),P 与t 之间存在如图所示的函数关系,其图象是函数120(08)4P t t =<≤+的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28,01244,1224t t Q t t +<≤⎧=⎨-+<≤⎩(1)当824t <≤时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元). ①求w 关于t 的函数解析式;②该药厂销售部门分析认为,336513w ≤≤是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P 的最小值和最大值.24.如图,ABC ∆是O 的内接三角形,点D 在 BC 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE为菱形.(1)求证:AC CE =;(2)求证:22BC AC AB AC -=⋅; (3)已知O 的半径为3.①若53AB AC =,求BC 的长; ②当AB AC为何值时,AB AC ⋅的值最大?。
2018年浙江台州中考数学试卷及答案解析版
2018年台州市中考数学卷
一.选择题
1. (2018浙江台州,1,4分)-2的倒数为( ) A.21- B.2
1 C.
2 D.1 【答案】A
2. (2018浙江台州,2,4分)有一篮球如图放置,其主视图为( )
【答案】B
3. (2018浙江台州,3,4分)三门湾核电站的1号机组将于2018年10月建成,其功率将达到1250000
千瓦,其中1250000可用科学记数法表示为( )
A. 125×104
B. 12.5×105
C. 1.25×106
D. 0.125×107
【答案】C
4. (2018浙江台州,4,4分)下列四个艺术字中,不是轴对称的是( )
A.金
B.木
C.水
D.火
【答案】C
5. (2018浙江台州,5,4分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容
器的体积时,气体的密度也会随之改变,密度ρ(单位:kg / m 3)与体积v (单位:m 3)满足函数关系式ρ=v
k (k 为常数,k ≠0)其图象如图所示,则k 的值为( ) A.9 B.-9 C.4 D.-4
【答案】A
6. (2018浙江台州,6,4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都约
为8.8环,方差分别为42.0,48.051.063.02222====丁丙乙甲,,S S S S ,
则四人中成绩最稳定的。
2018年初中数学中考台州试题解析
浙江省台州市2018年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不得分)..2.(4分)(2018•台州)有一篮球如图放置,其主视图为()..3.(4分)(2018•台州)三门湾核电站的1号机组将于2018年的10月建成,其功率将达到. .5.(4分)(2018•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)满足函数关系式ρ=(k为常数,k ≠0),其图象如图所示,则k 的值为( ),1.5=,6.(4分)(2018•台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩=0.63S=0.51S=0.48S最小,7.(4分)(2018•台州)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()8.(4分)(2018•台州)如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()9.(4分)(2018•台州)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()B=﹣10.(4分)(2018•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2018•台州)计算:x5÷x3=x2.12.(5分)(2018•台州)设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).13.(5分)(2018•台州)如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=36度.14.(5分)(2018•台州)如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D.若AC=7,AB=4,则sinC的值为.C==.故答案为:.15.(5分)(2018•台州)在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是..故答案为:16.(5分)(2018•台州)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行3此操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.[][][[[][][[][][三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)(2018•台州)计算:3×(﹣2)+|﹣4|﹣()0.18.(8分)(2018•台州)化简:(x+1)(x﹣1)﹣x2.19.(8分)(2018•台州)已知关于x,y的方程组的解为,求m,n的值.解:将代入方程组中得:解得:20.(8分)(2018•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?21.(10分)(2018•台州)有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在的扇形的圆心角为36°被抽取的体育测试成绩频数分布表(1)计算频数分布表中a与b的值;(2)根据C组28<x≤32的组中值30,估计C组中所有数据的和为150;(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数).÷=50)22.(12分)(2018•台州)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.23.(12分)(2018•台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l上的理由;(2)设交点C的横坐标为m.①交点C的纵坐标可以表示为:(m﹣1)2+1或(m﹣h)2﹣h,由此进一步探究m关于h的函数关系式;②如图2,若∠ACD=90°,求m的值.==±>+124.(14分)(2018•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)BC=情况讨论,就可以求出时,的值,的值;求出的两个的值就可以求出<tanA=BC=CD=BD==2xMPQN=APQ====<<。
2018年浙江省台州市中考数学
2018年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4.00分)比﹣1小2的数是( )A .3B .1C .﹣2D .﹣32.(4.00分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )A .B .C .D .3.(4.00分)计算x+1x −1x,结果正确的是( ) A .1 B .x C .1x D .x+2x4.(4.00分)估计√7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(4.00分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分6.(4.00分)下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形7.(4.00分)正十边形的每一个内角的度数为( )A .120°B .135°C .140°D .144°8.(4.00分)如图,在▱ABCD 中,AB=2,BC=3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12B .1C .65D .329.(4.00分)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .210.(4.00分)如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B′DE ,若B′D ,B′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )A .△ADF ≌△CGEB .△B′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)如果分式1x−2有意义,那么实数x 的取值范围是 . 12.(5.00分)已知关于x 的一元二次方程x 2+3x +m=0有两个相等的实数根,则m= .13.(5.00分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是 .14.(5.00分)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D= 度.15.(5.00分)如图,把平面内一条数轴x 绕原点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N 与点M 关于y 轴对称,则点N 的斜坐标为 .16.(5.00分)如图,在正方形ABCD 中,AB=3,点E ,F 分别在CD ,AD 上,CE=DF ,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则△BCG 的周长为 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8.00分)计算:|﹣2|−√4+(﹣1)×(﹣3)18.(8.00分)解不等式组:{x −1<33(x −2)−x >019.(8.00分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.(8.00分)如图,函数y=x的图象与函数y=kx(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=kx(x>0)的图象相交于点B,求线段AB长.21.(10.00分)某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表成绩人数0分321分302分243分114分155分及以上m(1)填空:m=,n=.(2)求扇形统计图中D组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.22.(12.00分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2√2,CE=1,求△CGF的面积.23.(12.00分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=120t+4(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q={2t+8,0<t≤12−t+44,12<t≤24(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.24.(14.00分)如图,△ABC是⊙O的内接三角形,点D在BĈ上,点E在弦AB 上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?2018年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分。
2018年浙江省台州市中考数学试卷-答案
浙江省台州市2018年初中毕业升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】123--=-,【考点】有理数的减法2.【答案】D【解析】A 、不是中心对称图形,本选项错误;B 、不是中心对称图形,本选项错误;C 、不是中心对称图形,本选项错误;D 、是中心对称图形,本选项正确.【考点】中心对称图形3.【答案】A 【解析】原式11x x+-=1= 故选:A .【考点】分式的加减法4.【答案】B【解析】23<<Q ,314∴<<,故选:B .【考点】估算无理数的大小5.【答案】D【解析】将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D .【考点】中位数,众数6.【答案】C【解析】对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形,D错误;故选:C.【考点】命题与定理7.【答案】D【解析】Q一个十边形的每个外角都相等,∴十边形的一个外角为3601036÷=︒.∴每个内角的度数为18036144︒-︒=︒;故选:D.【考点】多边形内角与外角8.【答案】B【解析】Q由题意可知CE是BCD∠的平分线, BCE DCE∴∠=∠.Q四边形ABCD是平行四边形,//AB CD∴,DCE E∴∠=∠,BCE AEC∠=∠,3BE BC∴==,2AB=Q,1AE BE AB∴=-=,故选:B.【考点】平行四边形的性质;作图——基本作图9.【答案】B【解析】解:设两人相遇的次数为x,依题意有1002100 54x⨯=+,解得 4.5x=,xQ为整数, x∴取4.故选:B.【考点】一元一次方程的应用10.【答案】D【解析】A 、连接OA 、OC ,Q 点O 是等边三角形ABC 的外心,AO ∴平分BAC ∠,∴点O 到AB 、AC 的距离相等,由折叠得:DO 平分BDB '∠,∴点O 到AB 、DB '的距离相等,∴点O 到DB '、AC 的距离相等,FO ∴平分DFG ∠,1()2DFO OFG FAD ADF ∠=∠=∠+∠, 由折叠得:1()2BDE ODF DAF AFD ∠=∠=∠+∠, 1()1202OFD ODF FAD ADF DAF AFD ∴∠+∠=∠+∠+∠+∠=︒, 60DOF ∴∠=︒,同理可得60EOG ∠=︒,60FOG DOF EOG ∴∠=︒=∠=∠,DOF GOF GOE ∴△≌△≌△,OD OG ∴=,OE OF =,OGF ODF ODB ∠=∠=∠,OFG OEG OEB ∠=∠=∠,OAD OCG ∴△≌△,OAF OCE △≌△,AD CG ∴=,AF CE =,ADF CGE ∴△≌△,故选项A 正确;B 、DOF GOF GOE Q △≌△≌△,DF GF GE ∴==,ADF ∴△≌B GF CGE '△≌△,B G AD '∴=,∴B FG '△的周长FG B F B G FG AF CG AC ''=++=++=(定值),故选项B 正确;C 、13OCF OCE OCF OAF AOC ABC FOEC S S S S S S S =+=+==△△△△△△四边形(定值),故选项C 正确;D 、OFG B GF OFD OGB F S S S S ''=+=+△△△四边形ADF △,过O 作OH AC ⊥于H , 12OFG S FG OH ∴=g g △, 由于OH 是定值,FG 变化,故OFG △的面积变化,从而四边形OGB F '的面积也变化, 故选项D 不一定正确;故选:D .【考点】全等三角形的判定与性质,等边三角形的性质,三角形的外接圆与外心,翻折变换(折叠问题)第Ⅱ卷二、填空题11.【答案】2x ≠.【解析】由题意得:20x -≠,解得:2x ≠,【考点】分式有意义的条件12.【答案】94【解析】根据题意得2340m ∆=-=, 解得94m =. 故答案为94. 【考点】根的判别式13.【答案】13【解析】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果, 所以两次摸出的小球标号相同的概率是3193=, 故答案为:13.【考点】列表法与树状图法14.【答案】26【解析】连接OC ,由圆周角定理得,264COD A ∠=∠=︒, CD Q 为O e 的切线,OC CD ∴⊥,9026D COD ∴∠=︒-∠=︒,故答案为:26.【考点】圆周角定理,切线的性质15.【答案】(3,5)-【解析】解:如图作ND x ∥轴交y 轴于D ,作NC y ∥轴交x 轴于C .MN 交y 轴于K .NK MK =Q ,DNK BMK ∠=∠,NKD MKB ∠=∠,NDK MBK ∴△≌△,3DN BM OC ∴===,DK BK =,在Rt KBM △中,3BM =,60MBK ∠=︒,30BMK ∴∠=︒,1322DK BK BM ∴===, 5OD ∴=,(3,5)N ∴-,故答案为(3,5)-【考点】实数与数轴,关于x 轴、y 轴对称的点的坐标,坐标与图形变化——旋转16.3【解析】解:Q 阴影部分的面积与正方形ABCD 的面积之比为2:3,∴阴影部分的面积为2963⨯=, ∴空白部分的面积为963-=,由CE DF =,BC CD =,90BCE CDF ∠=∠=︒,可得BCE CDF △≌△,BCG ∴△的面积与四边形DEGF 的面积相等,均为13322⨯=, CBE DCF ∠=∠,90DCF BCG ∠+∠=︒Q ,90CBG BCG ∴∠+∠=︒,即90BGC ∠=︒,设BG a =,CG b =,则1322ab =, 又2223a b +=Q , 2229615a ab b ∴++=+=,即2()15a b +=,a b ∴+=即BG CG +,BCG ∴∆的周长3=,3.【考点】全等三角形的判定与性质,勾股定理,正方形的性质三、解析题17.【答案】3【解析】原式2233=-+=.【考点】实数的运算18.【答案】34x <<【解析】()13320x x x -<⎧⎪⎨-->⎪⎩①② 解不等式①,得4x <,解不等式②,得3x >,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为34x <<.【考点】解一元一次不等式组19.【答案】【解析】解:作CE BD ⊥于E ,AF CE ⊥于F ,如图2, 易得四边形AHEF 为矩形,3.4EF AH m ∴==,90HAF ∠=︒,1189028CAF CAH HAF ∴∠=∠-∠=︒-︒=︒,在Rt ACF △中,sin CF CAF AC∠=Q , 9sin2890.47 4.23CF ∴=︒=⨯=,4.23 3.47.6()CE CF EF m ∴=+=+≈,答:操作平台C 离地面的高度为7.6m.【考点】解直角三角形的应用20.【答案】(1)4(2)3【解析】(1)Q 函数y x =的图象过点(2,)P m ,2m ∴=,(2,2)P ∴,Q 函数(0)k y x x=>的图象过点P , 224k ∴=⨯=;(2)将4y =代入y x =,得4x =,∴点(4,4)A .将4y =代入4y x=,得1x =, ∴点(1,4)B .413AB ∴=-=.【考点】反比例函数与一次函数的交点问题21.【答案】(1)820(2)33︒(3)960【解析】解:(1)由题意可得,本次抽查的学生有:3025%120÷=(人),12032302411158m =-----=,%24120100%20%n =÷⨯=,故答案为:8,20;(2)1136033120⨯︒=︒, 即扇形统计图中D 组的扇形圆心角是33︒; (3)323600960120⨯=(人), 答:“引体向上”得零分的有960人.【考点】用样本估计总体,统计表,扇形统计图22.【答案】(1)证明:在ACE △和BCD △中,90AC BC ACB ACB CE CD =⎧⎪∠=∠=︒⎨⎪=⎩,ACE BCD ∴△≌△,CAE CBD ∴∠=∠;(2)如图2,在Rt BCD △中,点F 是BD 的中点, CF BF ∴=,BCF CBF ∴∠=∠,由(1)知,CAE CBD ∠=∠,BCF CAE ∴∠=∠,90CAE ACF BCF ACF ACB ∴∠+∠=∠+∠=∠=︒, 90AMC ∴∠=︒,AE CF ∴⊥;(3)如图3,AC =QBC AC ∴==1CE =Q ,1CD CE ∴==,在Rt BCD △中,根据勾股定理得,3BD =, Q 点F 是BD 中点,1322CF DF BD ∴===, 同理:1322EG AE ==, 连接EF ,过点F 作FH BC ⊥,90ACB ∠=︒Q ,点F 是BD 的中点,1122FH CD ∴==, 111112224CEF S CE FH ∴==⨯⨯=g △, 由(2)知,AE CF ⊥,11332224CEF S CF ME ME ME ∴==⨯=g △, ∴3144ME =, 13ME ∴=, 317236GM EG ME ∴=-=-=, 1137722268CFG S CF GM ∴==⨯⨯=g △.【考点】三角形综合题23.【答案】(1)设824t <≤时,P kt b =+, 将(8,10)A 、(24,26)B 代入,得:8102426k b k b +=⎧⎨+=⎩, 解得:12k b =⎧⎨=⎩, 2P t ∴=+;(2)①当08t <≤时,120(28)2404w t t =+⨯=+; 当812t <≤时,2(28)(2)21216w t t t t =++=++; 当1224t <≤时,2(44)(2)4288w t t t t =-++=-++;②当812t <≤时,22212162(3)2w t t t =++=+-,812t ∴<≤时,w 随t 的增大而增大,当22(3)2336t +-=时,解题10t =或16t =-(舍),当12t =时,w 取得最大值,最大值为448,此时月销量2P t =+在10t =时取得最小值12,在12t =时取得最大值14;当1224t <≤时,224288(21)529w t t t =-++=--+,当12t =时,w 取得最小值448,由2(21)529513t --+=得17t =或25t =,∴当127t <≤时,448513w <≤,此时2P t =+的最小值为14,最大值为19;综上,此范围所对应的月销售量P 的最小值为12吨,最大值为19吨.【考点】二次函数的应用24.【答案】(1)证明:Q 四边形EBDC 为菱形,D BEC ∴∠=∠,Q 四边形ABDC 是圆的内接四边形,180A D ∴∠+∠=︒,又180BEC AEC ∠+∠=︒,A AEC ∴∠=∠,AC AE ∴=;(2)以点C 为圆心,CE 长为半径作C e ,与BC 交于点F ,于BC 延长线交于点G ,则CF CG =,由(1)知AC CE CD ==,CF CG AC ∴==,Q 四边形AEFG 是C e 的内接四边形,180G AEF ∴∠+∠=︒,又180AEF BEF ∠+∠=︒Q ,G BEF ∴∠=∠,EBF GBA ∠=∠Q ,BEF BGA ∴△∽△, ∴BE BG BF BA=,即BF BG BE AB =g g , BF BC CF BC AC =-=-Q 、BG BC CG BC AC =+=+,BE CE AC ==, ()()BC AC BC AC AB AC ∴-+=g ,即22BC AC AB AC -=g ;(3)设5AB k =、3AC k =,22BC AC AB AC -=Q g ,BC ∴=,连接ED 交BC 于点M ,Q 四边形BDCE 是菱形,DE ∴垂直平分BC ,则点E 、O 、M 、D 共线,在Rt DMC △中,3DC AC k ==,12MC BC =,DM ∴,3OM OD DM ∴=-=,在Rt COM △中,由222OM MC OC +=,得222(3))3+=,解得:3k =或0k =(舍),BC ∴==②设OM d =,则3MD d =-,22229MC OC OM d =-=-, 222(2)364BC MC d ∴==-,222222(3)9AC DC DM CM d d ==+=-+-,由(2)得22AB AC BC AC =-g24618d d =-++23814()44d =--+, ∴当34d =,即34OM =时,AB AC g 最大,最大值为814, 2272DC ∴=,AC DC ∴==AB ∴=此时32AB AC =.【考点】圆的综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省台州市中考数学试卷、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合 题意的正确选项,不选、多选、错选,均不给分 ) 1. (4分)比-1小2的数是( )A. 3B. 1C. - 2 D .— 32和3之间B. 3和4之间 C. 4和5之间 D . 5和6之间 (4分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为 20, 18,23, 17, 20, 20, 18,则这组数据的众数与中位数分别是( ) A. 18 分,17 分 B. 20 分,17 分 C. 20 分,19 分 D. 20 分,20 分6. (4分)下列命题正确的是()A. 对角线相等的四边形是平行四边形B. 对角线相等的四边形是矩形C •对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形 7. (4分)正十边形的每一个内角的度数为( )A . 120°B. 135°C. 140° D. 144°8. (4分)如图,在?ABCD 中,AB=2, BC=3以点C 为圆心,适当长为半径画弧, 交BC 于点P ,交CD 于点Q ,再分别以点P , Q 为圆心,大于亍PQ 的长为半径画 弧,两弧相交于点N ,射线CN 交BA 的延长线于点E,则AE 的长是()2.(4分)在下列四个新能源汽车车标的设计图中, 属于中心对称图形的是()A .B. C.3. x+1 LA . 4. D .丄 (4分)估计厂+1的值在(1 B. x A . 5.D.(4分)计算,结果正确的是(C.—9. (4分)甲、乙两运动员在长为100m的直道AB (A, B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点••若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5B. 4C. 3D. 210. (4分)如图,等边三角形ABC边长是定值,点0是它的外心,过点0任意作一条直线分别交AB, BC于点D,〔.将厶BDE沿直线DE折叠,得到△ B' DE 若B'D B'分别交AC于点F,G,连接OF, 0G,贝U下列判断错误的是()A* ADF^A CGEB. A B' F的周长是一个定值C. 四边形FOEC勺面积是一个定值D. 四边形OGB'F的面积是一个定值二、填空题(本题有6小题,每小题5分,共30分)11. ______________________________________________________ (5分)如果分式丄有意义,那么实数x的取值范围是________________________ .12. (5分)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m= ______ .13.(5分)一个不透明的口袋中有三个完全相同的小球,它们的标号分别为1, 7 B1 C2, 3.随机摸出一个小球然后放回,再随机摸出一个小球,贝U两次摸出的小球标号相同的概率是_______ .14. (5分)如图,AB是。
O的直径,C是。
O上的点,过点C作。
O的切线交AB的延长线于点D.若/ A=32°,则/ D _________ 度.15. (5分)如图,把平面内一条数轴x绕原点0逆时针旋转角9 (0°V 9<90° 得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知9 =60;点M的斜坐标为(3, 2),点N与点M关于y轴对称,则点N的斜坐标为_________ .[Q工16. (5分)如图,在正方形ABCD中,AB=3,点E, F分别在CD, AD上, CE=DF BE, CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2: 3, 则厶BCG的周长为________ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22, 23 题每题12分,第24题14分,共80分)17. (8 分)计算:| - 2| - . 1+ ( - 1)X( - 3)18. (8分)解不等式组:19. (8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m .当起重臂AC长度为9m,张角/HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28^ 0.47,cos28°~ 0.88, tan28 ° 0.53)20. (8分)如图,函数y=x的图象与函数y丄(x>0)的图象相交于点P (2, m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y* (x>0)的图象相交于点B,求线段AB长.21. (10分)某市明年的初中毕业升学考试,拟将引体向上”作为男生体育考试的一个必考项目,满分为10分•有关部门为提前了解明年参加初中毕业升学考试的男生的引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生引体向上”成绩统计表成绩人数32(单位:万元),Q 与t 之间满足如下关系:J2t+g r 0<t<12 =-t+44, 12<t<241分 30 2分 24 3分 11 4分 15 5分及以上m 1)填空:m=,n=(2)求扇形统计图中D 组的扇形圆心角的度数;(3) 目前该市八年级有男生3600名,请估计其中 引体向上”得零分的人数.22. ( 12 分)如图,在 Rt A ABC 中,AC=BC / ACB=90,点 D , E 分别在 AC, BC 上,且CD=CE(1) 如图 1,求证:/ CAE N CBD(2) 如图2,F 是BD 的中点,求证:AE±CF;23. (12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药 未来两年的销售进行预测,井建立如下模型: 设第t 个月该原料药的月销售量为 P (单位:吨),P 与t 之间存在如图所示的函数关系,其图象是函数 P# (0 v t < 8)的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为 Q(3) 如图3,F ,G 分别是BD ,AE 的中点,若AC=^,CE=1,求厶CGF 的面积.(1) 当8v t <24时,求P关于t的函数解析式;(2) 设第t个月销售该原料药的月毛利润为w (单位:万元) ①求w关于t的函数解析式;②该药厂销售部门分析认为,336W w< 513是最有利于该原料药可持续生产和销24. (14分)如图,△ ABC是。
O的内接三角形,点D在;「上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE(2)求证:B G-A G=AB?AC(3)已知。
O的半径为3.①若一丄,求BC的长;jfluU JiP的最小值和最大值.2018年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. (4分)比-1小2的数是()A. 3B. 1C. - 2D.- 3【分析】根据题意可得算式,再计算即可.【解答】解:-1-2=-3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.2. (4 分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()3A.【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. (4分)计算里丄,结果正确的是()I xA. 1B. xC. —D.—X M【分析】根据分式的运算法则即可求出答案.【解答】解:原式=—^=1故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.4. (4分)估计「+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【分析】直接利用2v “V3,进而得出答案.【解答】解::2V . V3,二3< _;' I +1V 4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出T的取值范围是解题关键.5. (4分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18, 23,17,20,20,18,则这组数据的众数与中位数分别是()A. 18 分,17 分B. 20 分,17 分C. 20 分,19 分D. 20 分,20 分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力. 一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(4 分)下列命题正确的是()A. 对角线相等的四边形是平行四边形B. 对角线相等的四边形是矩形C•对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(4 分)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:•一个十边形的每个外角都相等,• ••十边形的一个外角为360 - 10=36°.•••每个内角的度数为180°- 36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.8. (4分)如图,在?ABCD 中,AB=2, BC=3以点C 为圆心,适当长为半径画弧, 交BC 于点P ,交CD 于点Q ,再分别以点P , Q 为圆心,大于寺PQ 的长为半径画 E,则AE 的长是()【解答】解:•••由题意可知CF 是/ BCD 的平分线,•••/ BCE W DCE•••四边形ABCD 是平行四边形, ••• AB// CD,•••/ DCE W E ,Z BCE W AEC ,••• BE=BC=3 ••• AB=2 ••• AE=B E AB=1, 故选:B.【点评】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.9. (4分)甲、乙两运动员在长为100m 的直道AB (A , B 为直道两端点)上进 行匀速往返跑训练,两人同时从 A 点起跑,到达B 点后,立即转身跑向A 点, 到达A 点后,又立即转身跑向B 点••若甲跑步的速度为5m/s ,乙跑步的速度为 4m/s ,则起跑后100s 内,两人相遇的次数为( )A . 5 B. 4C. 3 D . 2【分析】可设两人相遇的次数为 x ,根据每次相遇的时间 ',总共时间为 5+4100s ,列出方程求解即可.【解答】解:设两人相遇的次数为X ,依题意有【分析】只要证明BE=BC 即可解决问题;100X2解得x=4.5.••• x为整数,••• x取4.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.10. (4分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB, BC于点D,〔.将厶BDE沿直线DE折叠,得到△ B' DE 若B'D B'分别交AC于点F,G,连接OF, OG,贝U下列判断错误的是()萍 E 〜A. A ADF^A CGEB. A B' F的周长是一个定值C. 四边形FOEC勺面积是一个定值D. 四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的外心的性质可知:AO平分/ BAC,根据角平分线的定理和逆定理得:FO平分/ DFQ由外角的性质可证明/ DOF=60,同理可得/ EOG=6°,Z FOG=60=Z DOF=Z EOG 可证明△ DOF^A GOF^A GOE △OAD^A OCG △ OAF^A OCE 可得AD=CG AF=CE 从而得△ ADF^A CGEB、根据△ DOF^A GOF^A GOE 得DF=GF=GE 所以△ ADF^A B'GF^A CGE 可得结论;C、根据S四边形FOEC=SOCF+S\OCE,依次换成面积相等的三角形,可得结论为:S AAO—」..-(定值),可作判断;D、方法同C,将S四边形OGB'F=&OAC- S\ OFG,根据S A OF時?FG?OH FG 变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,•••点O是等边三角形ABC的外心,••• AO平分/ BAC,•••点O到AB、AC的距离相等,由折叠得:DO平分/ BDB;•••点O到AB、DB'的距离相等,•••点O到DB'、AC的距离相等,•FO平分/ DFG,/ DFO=/ OFG丄(/ FAD F Z ADF),由折叠得:/ BDE=/ ODF丄(/ DAF+/ AFD),•/ OFD F/ODF亍(/ FAD F/ADF+/DAF+/AFD) =120°,•/ DOF=60,同理可得/ EOG=6O,•/ FOG=60=/ DOF=/ EOG•△ DOF^A GOF^A GOE•OD=OG OE=OF/ OGF=/ ODF=Z ODB, / OFG2 OEG=Z OEB•••△OAD^A OCG △OAF^A OCE•AD=CG AF=CE•••△ADF^A CGE故选项A正确;B>VA DOF^A GOF^A GOE•DF=GF=GE•△ADF^A B'GF^A CGE••• B'G=AD•••△ B'FG的周长=FGB'F+B'G=FGAF+CG=AC(定值),故选项B正确;故选项C正确;D、S 四边形OGB'F=S\OFGF S B‘GF=S OFC+A ADF=S 四边形OFA[=S OAD+S A OAF=S OCG+S\OAF=S\OAC-S X OFG,过O作OH丄AC于H,二5OF』?FG?OH由于OH是定值,FG变化,故△ OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.【点评】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分/ DFG是本题的关键,二、填空题(本题有6小题,每小题5分,共30分)11. (5分)如果分式厶有意义,那么实数x的取值范围是X M 2 .【分析】根据分式有意义的条件可得X-2工0,再解即可.C、S 四边形FOE(=S\OCF+S\OCE=S\OCF+S^OAF=S\AOC=-\:、、--(定值),【解答】解:由题意得:X - 2工0, 解得:X M 2, 故答案为:X M 2.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分 母不等于零.12. (5分)已知关于X 的一元二次方程x 2+3x+m=0有两个相等的实数根,则 m= . 【分析】利用判别式的意义得到厶=32 - 4m=0,然后解关于m 的方程即可, 【解答】解:根据题意得厶=32 - 4m=0, 解得m 丄.酉故答案为十【点评】本题考查了根的判别式:一元二次方程ax 2+bx+c=0 (a M 0)的根与△ =b 2 -4ac 有如下关系:当厶> 0时,方程有两个不相等的实数根;当厶=0时,方程 有两个相等的实数根;当△< 0时,方程无实数根.13. (5分)一个不透明的口袋中有三个完全相同的小球,它们的标号分别为 1,2, 3•随机摸出一个小球然后放回,再随机摸出一个小球,贝U 两次摸出的小球标 号相同的概率是丄.~1亘—【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次 摸出的小球标号相同的情况,再利用概率公式即可求得答案. 【解答】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有 3种结果, 所以两次摸出的小球标号相同的概率是第一次故答案为:丄.【点评】此题考查了树状图法与列表法求概率•用到的知识点为:概率=所求情况数与总情况数之比.14. (5分)如图,AB是。