高中数学新课标典型例题 正态分布
正态分布高中练习题及讲解
正态分布高中练习题及讲解1. 题目一:某工厂生产的零件长度服从正态分布N(50, 16),求长度在48到52之间的零件所占的比例。
2. 题目二:假设某大学新生的数学成绩服从正态分布N(70, 25),求数学成绩超过80分的学生所占的比例。
3. 题目三:某市居民的身高数据服从正态分布N(170, 10),如果随机选择一名居民,求其身高超过180cm的概率。
4. 题目四:某公司员工的工作时间服从正态分布N(8, 2),计算工作时间超过9小时的员工所占的比例。
5. 题目五:某品牌手机的电池寿命服从正态分布N(300, 50),求电池寿命超过350小时的概率。
讲解:正态分布是统计学中最常见的分布之一,其图形呈钟形,对称于均值。
正态分布的数学表达式为N(μ, σ²),其中μ是均值,σ²是方差。
正态分布的特点是:- 均值μ决定了分布的中心位置。
- 方差σ²决定了分布的宽度,方差越大,分布越宽,反之亦然。
- 68%的数据位于距均值一个标准差(σ)的范围内。
- 95%的数据位于距均值两个标准差的范围内。
- 99.7%的数据位于距均值三个标准差的范围内。
要解决上述题目,我们可以使用正态分布的性质和Z分数来计算概率。
解题步骤:1. 将数据转换为Z分数,Z = (X - μ) / σ。
2. 查找Z分数对应的概率,通常可以使用标准正态分布表或计算器。
例如,对于题目一,我们首先计算48和52对应的Z分数:- Z1 = (48 - 50) / 4 = -0.5- Z2 = (52 - 50) / 4 = 0.5然后,查找Z分数表或使用计算器得到Z1和Z2对应的概率,最后计算两者之差。
对于题目二至题目五,解题步骤类似,只需将题目中的数据代入相应的公式中计算即可。
通过这些练习,学生可以更好地理解正态分布的概念,掌握如何使用Z 分数来解决实际问题。
同时,这些练习也有助于提高学生的计算能力和逻辑思维能力。
正态分布(习题版)
正态分布(共62道题)1.在某次学科知识竞赛中(总分100分),若参赛学生成绩ξ服从N(80,σ2)(σ>0),若ξ在(70,90)内的概率为0.8,则落在[90,100]内的概率为()A.0.05B.0.1C.0.15D.0.22.设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.26%,P(μ﹣2σ<X<μ+2σ)=95.44%)A.7539B.6038C.7028D.65873.已知某次数学考试的成绩服从正态分布N(102,42),则114分以上的成绩所占的百分比为()(附P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974)A.0.3%B.0.23%C.1.3%D.0.13%4.2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩X~N(100,σ2)(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为()A.120B.160C.200D.2405.随机变量ξ服从标准正态分布N(0,1),已知P(ξ≤﹣1.96)=0.025,则P(|ξ|<1.96)等于()A.0.025B.0.050C.0.950D.0.9756.已知随机变量ξ服从正态分布N(μ,16),且P(ξ<﹣2)+P(ξ≤6)=1,则μ=()A.﹣4B.4C.﹣2D.27.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=,则下列命题中不正确的是()A.该市在这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩标准差为1027.设随机变量X~N(3,σ2),若P(X>a)=0.2,则P(X>6﹣a)=.28.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为.29.某超市经营的某种包装优质东北大米的质量X(单位:kg)服从正态分布N(25,0.04),任意选取一袋这种大米,质量在24.8~25.4kg的概率为.(附:若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+2σ)=0.6826,P(μ﹣σ<Z<μ+2σ)=0.9544)30.设随机变量ξ服从正态分布N(1,2),若p(ξ<2a﹣3)=p(ξ>3a+2),则a的值为.31.按照国家规定,某种大米每袋质量(单位:kg)必须服从正态分布ξ~N(10,σ2),根据检测结果可知P(9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1000名职工,则分到的大米质量在9.9kg以下的职工人数大约为.32.已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,则P(2≤ξ<4)等于.33.某个部件由四个电子元件按如图方式连接而成,元件1或元件2或元件3正常工作,且元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能正常相互独立工作,那么该部件的使用寿命超过1000小时的概率为.34.已知随机变量服从正态分布X~N(2,σ2),若P(X<a)=0.32,则P(a<X<4﹣a)=.35.某种袋装大米的质量X(单位:kg)服从正态分布N(50,0.01),任意选一袋这种大米,质量在49.8~50.1kg的概率为.36.已知随机变量ξ服从正态分布N(2,9),若P(ξ>3)=a,P(1<ξ≤3)=b,则+的最小值是.1.已知随机变量ξ服从正态分布N(0,1),若P(﹣1<ξ<0)=p,则P(ξ>1)=()A.﹣B.+C.+p D.﹣p2.经统计,某市高三学生期末数学成绩X﹣N(85,σ2),且P(80<X<90)=0.3,则从该市任选一名高三学生,其成绩不低于90分的概率是()A.0.35B.0.65C.0.7D.0.853.某市一次高三年级数学统测,经抽样分析,成绩X近似服从正态分布N(84,σ2),且P(78<X≤84)=0.3.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为()A.60B.80C.100D.1204.如果随机变量X~N(μ,σ2),且EX=3,DX=1,则P(0<X<1)等于()A.0.021 5B.0.723C.0.215D.0.645.在某次高三联考数学测试中,学生成绩服从正态分布(100,σ2)(σ>0),若ξ在(85,115)内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25B.0.1C.0.125D.0.56.随机变量X服从正态分布X~N(10,σ2),P(X>12)=m,P(8≤X≤10)=n,则的最小值为()A.B.C.D.7.在某项测量中,测得变量ξ﹣N(1,σ2)(σ>0).若ξ在(0,2)内取值的概率为0.8,则ξ在(1,2)内取值的概率为()A.0.2B.0.1C.0.8D.0.48.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A.150B.200C.300D.4009.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(﹣2,4)的密度曲线)的点的个数的估计值为()(附:X⁓N(μ,σ2),则P(μ﹣σ<X≤μ+σ)=0.6827,P(μ﹣2σ<X≤μ+2σ)=0.9545.)A.906B.2718C.339.75D.341310.设随机变量X服从正态分布X~N(3,1),且P(2≤X≤4)=0.6826,则函数f(t)=t2+4t+X不存在零点的概率是()A.0.5B.0.3174C.0.1587D.0.682611.若随机变量X~N(2,1),且P(X>1)=0.8413,则P(X>3)=()A.0.1587B.0.3174C.0.3413D.0.682612.若随机变量X~N(3,σ2),且P(X≥5)=0.2,则P(1<X<5)=()A.0.6B.0.5C.0.4D.0.313.设随机变量X~N(2,9),P(X>m)=P(X<m﹣4),则m的值为()A.1B.2C.3D.414.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为()A.B.C.D.不确定15.若随机变量X服从分布X~N(2,σ2),且2P(X≥3)=P(1≤X≤2),则P(X<3)=()A.B.C.D.16.若随机变量ξ~N(﹣2,4),则ξ在区间(﹣4,﹣2]上取值的概率等于ξ在下列哪个区间上取值的概率()A.(2,4]B.(0,2]C.[﹣2,0)D.(﹣4,4] 17.设随机变量ξ~N(2,4),若P(ξ>2a+1)=P(ξ<2a﹣1),则实数a的值为()A.1B.2C.3D.418.已知随机变量X~B(2,p),Y~N(2,σ2),若P(X≥1)=0.64,P(0<Y<2)=p,则P(Y>4)=()A.0.1B.0.2C.0.4D.0.819.已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.2,则P(2≤ξ<4)等于()A.0.3B.0.5C.0.4D.0.620.已知X~N(1,σ2),P(0<X≤3)=0.7,P(0<X≤2)=0.6,则P(X≤3)=()A.0.6B.0.7C.0.8D.0.921.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=P(ξ>a﹣2),则a=()A.﹣2B.2C.4D.622.已知随机变量X服从正态分布N(5,σ2),且P(X<7)=0.8,则P(3<X<5)=()A.0.6B.0.4C.0.3D.0.223.若随机变量X~N(3,1),且P(X<4)=0.8413,则P(X>2)=()A.0.1587B.0.3413C.0.6826D.0.841324.在某项测量中,测量结果ξ服从正态分布N(0,σ2),若ξ在(﹣∞,﹣1)内取值的概率为0.1,则ξ在(0,1)内取值的概率为()A.0.8B.0.4C.0.2D.0.125.设随机变量X服从正态分布N(4,σ2),若P(X>m)=0.4,则P(X>8﹣m)=()A.0.6B.0.5C.0.4D.与σ的值有关26.某工厂生产的零件外直径(单位:cm)服从正态分布N(10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm和9.35cm,则可认为()A.上午生产情况异常,下午生产情况正常B.上午生产情况正常,下午生产情况异常C.上、下午生产情况均正常D.上、下午生产情况均异常27.设两个正态分布N1(μ1,σ)和N2(μ2,)的密度函数曲线如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ228.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X(单位:辆)均服从正态分布N(600,σ2),若P(500<X<700)=0.6,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为()A.B.C.D.29.设随机变量ξ:N(2,2),则D(ξ)=()A.1B.2C.D.430.某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N)服从正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为()A.20B.10C.14D.2131.当σ取三个不同值σ1,σ2,σ3时,正态曲线N(0,σ2)的图象如图所示,则下列选项中正确的是()A.σ1<σ2<σ3B.σ1<σ3<σ2C.σ2<σ1<σ3D.σ3<σ2<σ1 32.已知随机变量X~N(2,σ2),若P(X≤1﹣a)+P(X≤1+2a)=1,则实数a=()A.0B.1C.2D.433.已知随机变量ξ服从正态分布N(1,2),则D(2ξ+3)=34.随机变量X~N(3,σ2),且P(0<X<3)=0.35,则P(X>6)=.35.设随机变量X~N(1,δ2),且P(X>2)=,则P(0<X<1)=.36.若随机变量Z~N(μ,σ2),则P(μ﹣σ<z≤μ+σ)=0.6826,P(μ﹣2σ<z≤μ+2σ)=0.9544.已知随机变量X~N(6,4),则P(2<X≤8).37.随机变量ξ服从正态分布ξ:N(μ,σ2),若p(μ﹣2<ξ≤μ)=0.241,则P(ξ>μ+2)=.37.某中学为了了解该校高中学生的体重情况,现随机抽取该校150名高中学生,并测量每个人的体重后得到如图5的频率分布直方图.(1)求这150名高中学生体重的样本平均数和样本方差s2;(同一组中的数据用该区间的中点值代替)(2)根据频率分布直方图,我们认为该校高中学生的体重Z服从正态分布N(u,δ2),其中u近似为样本平均数,δ2近似为样本方差s2;如果体重Z满足Z<33.4或Z>106.6,则该生的体重有严重问题.①利用该正态分布,求P(Z<33.4);②某机构从该校高中学生中任取1000名学生,记X表示这1000名学生中体重有严重问题的人数,求EX.附:≈12.2,若Z~N(u+δ2),则P(u﹣δ<Z<u+δ)=0.6826,P(u﹣2δ<Z<u+2δ)=0.9544,P(u﹣3δ<Z<u+3δ)=0.9974.38.为调查某校学生每周体育锻炼落实的情况,采用分层抽样的方法,收集100位学生每周平均锻炼时间的样本数据(单位:h).根据这100个样本数据,副制作出学生每周平均锻炼时间的频率分布直方图(如图所示).(Ⅰ)估计这100名学生每周平均锻炼时间的平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由频率分布直方图知,该校学生每周平均锻炼时间Z近似服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(Ⅰ)求P(0.8<Z<8.3);(Ⅱ)若该校共有5000名学生,记每周平均锻炼时间在区间(0.8,8.3)的人数为ɛ,试求E(ɛ).附:≈2.5,若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6827,P(μ﹣2σ<Z<μ+2σ)=0.954539.甲市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184].如图是按上述分组方法得到的频率分布直方图.(I)根据50名高三男生身高的频率分布直方图,求这50名高三男生身高的中位数的估计值;(II)求这50名男生身高在172cm以上(含172cm)的人数;(III)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为X,求X的数学期望.参考数据:若X~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.40.从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:(1)公司规定:当Z≥95时,产品为正品;当Z<95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;(2)由频率分布直方图可以认为,Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2(同一组中的数据用该区间的中点值作代表).①利用该正态分布,求P(87.8<Z<112.2);②某客户从该公司购买了500件这种产品,记X表示这500件产品中该项质量指标值位于区间(87.8,112.2)的产品件数,利用①的结果,求E(X).附:≈12.2.若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.38.党的十八大以来,党中央从全面建成小康社会全局出发,把扶贫工作摆在治国理政的突出位置,全面打响脱贫攻坚战,2018年6月《中共中央、国务院关于打赢脱贫攻坚战三年行动的指导意见》发布,对精准脱贫这一攻坚战做出了新的部署,2019年3月,十三届全国人大二次会议召开,3月7日,国务院扶贫办刘永富回答记者问时表示:“我国脱贫攻坚取得显著成就,贫困人口从2012年的9899万人减少到2018年的1660万人,连续6年平均每年减贫1300多万人.并表示:“今年再努力一年,攻坚克难,再减少贫困人口1000万人以上,再摘帽300个县左右.”根据某市所在地区的收入水平、消费水平等情况,拟将家庭年收入低于1.2万元的家庭确定为“贫困户”,该市扶贫办为了打好精准脱贫攻坚战,在所辖某县的100万户家庭中随机抽取200户家庭,对其2018年的全年收入进行调查,抽查结果如下频率分布直方图:(1)求这200户家庭的全年收人的样本平均值和方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这200户家庭收入Z近似服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(Z<1.2);(ii)若从该县100万户中随机抽取100户,记X为这100户家庭中“贫困户的数量,利用(i)的结果求E(X);附:若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.683,P(μ﹣2σ<Z<μ+2σ)=0.954.39.为了改善市民的生活环境,信阳市决定对信阳市的1万家中小型化工企业进行污染情况摸排,并出台相应的整治措施.通过对这些企业的排污口水质,周边空气质量等的检验,把污染情况综合折算成标准分100分,发现信阳市的这些化工企业污染情况标准分基本服从正态分布N(50,162),分值越低,说明污染越严重;如果分值在[50,60]内,可以认为该企业治污水平基本达标.(1)如图信阳市的某工业区所有被调查的化工企业的污染情况标准分的频率分布直方图,请计算这个工业区被调查的化工企业的污染情况标准分的平均值,并判断该工业区的化工企业的治污平均值水平是否基本达标;(2)大量调査表明,如果污染企业继续生产,那么标准分低于18分的化工企业每月对周边造成的直接损失约为10万元,标准分在[18,34)内的化工企业每月对周边造成的直接损失约为4万元.长沙市决定关停80%的标准分低于18分的化工企业和60%的标准分在[18,34)内的化工企业,每月可减少的直接损失约有多少?(附:若随机变量X∼N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.3%,P(μ﹣2σ<X <μ+2σ)=95.4%,P(μ﹣3σ<X<μ+3σ)=99.7%)40.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数和样本方差s2(同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间X服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若X~N(μ,σ2),令Y=,则Y~N(0,1),且P(X≤a)=P(Y≤).利用直方图得到的正态分布,求P(X≤10).(ii)从该高校的学生中随机抽取20名,记Z表示这20名学生中每周阅读时间超过10小时的人数,求P(Z≥2)(结果精确到0.0001)以及Z的数学期望.参考数据:.若Y~N(0,1),则P(Y≤0.75)=0.7734.。
正态分布习题与详解(非常有用-必考点)
2001.若 x 〜N (0,1),求(I) P (-2.32< X <1.2) ; (2) P (x >2).解: ⑴ P (-2.32< x <1.2)=(1.2)-(-2.32)=(1.2)-[1-(2.32)]=0.8849-(1-0.9898)=0.8747.(2) P (x >2)=1- P (x <2)=1-(2)=1-0.9772=0.0228.:2利用标准正态分布表,求标准正态总体 (1)在 N(1,4)下,求 F(3).2 ,(2)在 N(^,b )下,求F (卩一6,卩+6);3 1 解: (1) F (3) =( ) =0( 1)= 0.8413 2a( )0.975 ■ 200(2)F(y+b)= ( -------------- )=0( 1)= 0.8413F(y —b))=0 (— 1 )=1—0 ( 1 )= 1 - 0.8413 = 0.1587F(y — c,a+b)=F(a+b) — F(y — cr)0.8413 — 0.1587 = 0.68263某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 1=,求总体落入区间(一1.2 , 0.2 )之间的概率.[0 ( 0.2 ) =0.5793,0 ( 1.2 ) (x )22~=0.8848]解:正态分布的概率密度函数是f(x),x (),它是偶函数,1说明” 0,f(x)的最大值为f()=亍,所以"1,这个正态分布就是标准正态分P( 1.2 x 0.2)(0.2)( 1.2) (0.2) [1 (1.2)] (0.2) (1.2) 10.5793 0.8848 10.46424.某县农民年平均收入服从 =500元,在500 : 520元间人数的百分比;(2) 的概率不少于0.95,则a 至少有多大? =200元的正态分布 (1)求此县农民年平均收入 如果要使此县农民年平均收入在( [0 ( 0.1 ) =0.5398,0 ( 1.96 ) a, a )内=0.975]解:设 表示此县农民年平均收入,~ N(500,2002).P(500520 500(500 500.200 ')(0.1) (0) 0.5398 0.50.0398 ( 2 )a)(盘—)2 200(旦)10.95,200查表知:—1.961设随机变量X 〜 N (3,1), 若P(X4) p ,,则 J P(2<X<4)=—、11(A) p(B)l 一P C .l -2p D . - p22 【答 案】C因为P(X 4) P(X 2)p ,所以 P(2<X<4)1 P(X 4) P(X2) 1 2p ,选C .2. (2010新课标全国理)某种种子每粒发芽的概率都为 0.9,现播种了 1 000粒,对于没有发 芽的种子,每粒需再补种 2粒,补种的种子数记为X ,则X 的数学期望为()A . 100B . 200C . 300D . 400[答案]B[解析]记“不发芽的种子数为了,贝U 汁B(1 000,0.1),所以E(8= 1 000 X 0.1= 100,而 X = 2E,故 E(X)= E(2 3= 2E( 3 = 200,故选 B.3.设随机变量3的分布列如下:3—10 1 Pabc其中a , b , c 成等差数列,若 E( 3 = 3,贝U D(3 =( )[答案]A[解析]设白球x 个,则黑球7— x 个,取出的2个球中所含白球个数为C 7-x 2 7 — x 6 — xP( 3= 0)= C 72 =42,x - 7 — x x 7 — x P( 3=1)= C 72 =21 ,C x 2 x x — 1P( 3= 2)= C 72 = 42 ,.x = 3.4A.9 B .1 2 9 C.3[答案]D[解析]由条件a , b , c 成等差数列知,2b = a + c ,由分布列的性质知 a + b + c = 1,又1 111 1E( 3 = — a + c = 3 解得 a= 6’ b= 3 c = 2,二 D(3= 6X2+21-「=舟.4. (2010上海松江区模考)设口袋中有黑球、白球共 7个,从中任取 2个球,已知取到 白球个数的数学期望值为7,则口袋中白球的个数为()A . 3 B . 4C . 5D . 23贝U 3取值0,1,2,0X7— x 6— x 42x 7 — x 21 + 2X X X —1 42 55.小明每次射击的命中率都为 p ,他连续射击n 次,各次是否命中相互独立,已知命中次数E 的期望值为4,方差为2,则p( &1)=()A 255B 9C 247D 7 A 256 B.256 C.256 D .64 [答案]C[解析]由条件知 旷B(n , P),E E = 4, np = 4 D E = 2n p 1 — p = 2 '1解之得,p = , n = 8, ••• P( = 0)= C 8°x 218= 2 8,1 1 1P( E= 1) = C 81x 2 1x2 7= 2 5,• P(E 1) = 1 — P( = 0) — P(E= 1)A . 2< 俘=淨,01=d2> d3B .皿> 俘=淨,d=d < dC . (J1= (J2<P 3, d 1< d 2= d 3D .小< p2= 3, d 1 = d < d 3 [答案]D(^2(X)和g(X )的图象都是关于同一条直线对称,所以其平均数相同,故3= 3,又屉(X)的对称轴的横坐标值比也(X)的对称轴的横坐标值大,故有 3<比 =3.又d 越大,曲线越“矮胖”,d 越小,曲线越“瘦高”,由图象可知,正态分布密度函 数咖(X)和侯(X )的图象一样“瘦高”,松(X )明显“矮胖”,从而可知d= d < d .6①命题"X R,cosx 0 ”的否定是:“ X R,cosx 0 ”; ②若lg a lg b lg( a b),则a b 的最大值为4; ③定义在R 上的奇函数f(X)满足f (X 2)f(X),则f(6)的值为0;=1— 18— 1 5= 24Z2 2 256. 5已知三个正态分布密度函数 则()1XX )= 2 nd e —.2X —d^(x € R , 2 di = 1,2,3)的图象如图所示,[解析]正态分布密度函数<>④已知随机变量 服从正态分布 N(1, 2),P( 5) 0.81,则P( 3) 0.19 ;其中真命题的序号是 ________ (请把所有真命题的序号都填上 ).【答案】①③④ ①命题“ x R,cosx 0”的否定是:“ x R,cosx 0 ”;所以① 正确.②若 lg a lg b lg( a b),则 Ig ab lg( a b),即 ab a b,a 0,b 0 .所以a b 22ab a b(/,即(a b) 4(a b),解得a b 4,则a b 的最小值为4;所以②错误.③定义在R 上的奇函数f( x)满足f ( x 2) f ( x),则f (x 4) f(x),且 f (0) 0,即函数的周期是 4.所以 f (6) f(2) f (0)0;所以③正确④已知随机变量服从 正态分布2N(1, ),P(5) 0.81 ,则P( 5) 1 P(5) 1 0.81 0.19 ,所以 P(3) P( 5)0.19 ;所以④正确,所以真命题的序号是①③④.7、在区间[1,1]上任取两数 m 和n ,则关于x 的方程x 2 mx n 2 0有两不相等实根的概率为 ____________ .1【答案】—由题意知1 m 1, 1 n 1.要使方程x2 mx n 2 0有两不相等实4根,则 2=m 4n 2 0 , 即(m 2n )(m 2n) 0 . .作出对应的可行域,如图直线m 2n 0,m2n0 , 当 m1 时 1 1, n C—, n B—,所 以SO111 1所以方程22 2BC 一 1 [( )xmx n 0有两不相等实根的概率为2 2222S OBC2 1 2 12 24 4'⑶ 随机变量X 服从正态分布 N(1,2),则P(X 0) P(X 2);2 1⑷ 已知a,b R ,2a b 1,则一 一 &其中正确命题的序号为 ________________________ .a b【答案】⑵(3)(1)2G lnx 〔2 ln2 ,所以⑴错误.(2)不等式1x|x 1| |x 3|的最小值为4,所以要使不等式|x 1|2 1⑵正确.(3)正确.(4)--a b所以⑷错误,所以正确的为 ⑵(3).场中的得分如图所示,则该样本的方差为7 2 3频数为A . 26B . 25C . 23D . 18【答案】D 样本的 平 均数 为23,所以 样本方差为1 [(19 523)2 (20 23)2 (22 23)2 (23 23)2(31 2 23)] 18,选 D3有一个容量为200的样本,其频率分布直方图如图所示 ,据图估计,样本数据在8,10内的21dx 1 x3.,⑵不等式|x 1|| x 3| a 恒成立,则a 4;| x 3| a 成立,则a 4,所以2已知某篮球运动员 2012年度参加了 40场比赛,现从中抽取 5场,用茎叶图统计该运动员2 1(a 严 b) 4 19,【答案】C样本数据在 8,10之外的频率为(0.02 0.05 0.09 0.15) 2 0.62,0.38 200 76,选 C .1的概率为,选 B .45从集合1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为2【答案】25_3从集合1,2,3,4,5中随机选取3个不同的数有C 5 10种.则3个数能构成等差数列的42所以样本数据在8,10内的频率为1 0.62 0.38,所以样本数据在 8,10的频数为4. ( 2013年临沂市高三教学质量检测考试理科数学)的正方形OABC 中任取一点P,则点 1 A .3【答案】(x x 3)dxP 恰好取自阴影部分的概率为B .14【答案】B12141(c XX ) C.D.-5 6根据积分的应用可知所求阴影部分的面积为11,所以由几何概型公式可得点P 恰好取自阴影部分4如图所示,在边长为I 第孕期图4 2.有,1,2,3;2,3, 4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为10 5。
高中数学第二章2.4正态分布例题与探究
2.4 正态分布典题精讲【例1】下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)φμ,σ(x)=2221x e -π(-∞<x <+∞); (2)φμ,σ(x)=8)1(2221--x e π(-∞<x <+∞); (3)φμ,σ(x)=2)1(222+-x e π(-∞<x <+∞). 思路分析:掌握正态曲线的表达式的特征是学习本节的前提,本题只要对照φμ,σ(x)=222)(21σμσπ--x e ,就可以确定均值μ和标准差σ.解:(1)μ=0,σ=1.(2)μ=1,σ=2.(3)μ=-1,σ=21. 绿色通道:通过正态总体的函数表示式判断其均值μ和标准差σ是因为在总体密度曲线的表达式中参数μ,σ分别可用样本均值和样本标准差去估计.当μ=0,σ=1时,总体称为标准正态总体,相应的曲线称为标准正态曲线.黑色陷阱:在记忆正态曲线的表达式φμ,σ(x)=22)(21σμσπ--x e 时,应该注意指数的特征,切不可误记为2222)(2)(σμσμ---x x 或等形式. 变式训练 若某一正态分布的期望和方差分别为2和4,则这一正态曲线的表达式为___________.答案:φμ,σ(x)=8)2(2221--x e π(-∞<x <+∞)【例2】下图分别是甲、乙、丙三种品牌手表日走时误差分布的正态分布密度曲线,则下列说法不正确的是( )A.三种品牌的手表日走时误差的均值相等B.日走时误差的均值从大到小依次为甲、乙、丙C.日走时误差的方差从小到大依次为甲、乙、丙D.三种品牌手表中甲品牌的质量最好思路解析:只要理解正态曲线中两个参数μ,σ的意义,就不难判断四个命题的真假.从图象中可以看出甲、乙、丙三种曲线的对称轴相同,所以它们的日走时误差的均值相等,A 是正确的;再根据图象的“瘦高”与“矮胖”情况可以判断它们的标准差从小到大依次为甲、乙、丙,这也说明甲、乙、丙三种品牌的手表日走时误差的均值相当,但甲品牌偏离于均值的离散程度较小,所以甲品牌的质量最好,因此C 、D 是正确的,答案应选B.答案:B绿色通道:通过函数的图象研究函数的性质是学习数学的基本方法之一.黑色陷阱:对于正态分布密度曲线,易将两个参数μ,σ混淆,如本题常会误认为B 正确.变式训练 下图是正态分布N(0,σ2)的曲线,则阴影部分所表示的区域( )A.范围无界,面积为1B.范围有界,面积与σ有关C.范围有界,面积为1D.范围无界,面积与σ有关答案:A【例3】正态分布密度函数的表示式是 f(x)=2)1(222+-x e π(-∞<x <+∞). (1)求f (x )的最大值;(2)利用指数函数性质说明其单调区间及曲线的对称轴.解:(1)因为e>1,所以要使f(x)最大,则-2(x+1)2最大,即x=-1时,f(x)有最大值π22. (2)由于指数函数y=e x 是增函数,故当x∈(-∞,-1)时,函数为增函数;当x∈[-1,+∞)时,函数为减函数.其对称轴为直线x=-1.黑色陷阱:本题容易忽视e 的值对单调性和最值的影响.变式训练 由正态分布N(1,8)对应曲线可知,当x____________=时,函数f(x)有最大值__________.思路解析:画出N(1,8)的图象,由图象可直观得出答案.答案:1 π41问题探究问题:正态分布在实际生活中有什么重要意义(或有哪些应用)?你能举例说明吗?导思:理解正态分布在实际生活中的应用有助于更好地学习这一部分内容,同时可感受到数理统计在我们生活、生产、军事等领域的作用.探究:在实际生产与生活中,大量的随机现象都服从或近似服从正态分布.如生产上的产品的质量、使用寿命、农作物的亩产量等,测量上如测量的误差、群体的身高、群体的智商,军事上如射击命中点与靶心距离的偏差、炮弹的落点等等都可认为是服从正态分布的随机变量.正态分布在概率与统计中占有重要地位,这也是我们要学习正态分布的原因.。
2022高考数学专题15 正态分布(解析版)
【解析】解:(1) µ =35 × 0.02 + 45 × 0.12 + 55 × 0.20 + 65 × 0.25 + 75 × 0.24 + 85 × 0.13 + 95 × 0.04 =66.2 . 故 Z ~ N(66.2,198) ,易知
= σ 198 ≈ 14 .
∴ P(Z ≤ 80.2) = 1 − 1 − P(66.2 − 14 < Z ≤ 66.2 + 14) = 1 − 1 − 0.6826 = 0.8413 .
的期望和方差(结果四舍五入到整数),已知样本方差 S 2 ≈ 77.8(各组数据用中点值代替).根据往年经验,
该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设明年正式测试时 每人每分钟跳绳个数比初三上学期开始时个数增加 10 个,利用现所得正态分布模型: (ⅰ)预估全年级恰好有 1000 名学生,正式测试时每分钟跳 193 个以上的人数.(结果四舍五入到整数) (ⅱ)若在该地区 2020 年所有初三毕业生中任意选取 3 人,记正式测试时每分钟跳 202 个以上的人数为ξ , 求随机变量 ξ 的分布列和期望.
【解析】解:(Ⅰ)现从样本的 100 名学生中,任意选取 2 人,两人得分之和不大于 33 分,
即两人得分均为 16 分,或两人中 1 人 16 分,1 人 17 分, 由题意知:得 16 分的分数为 5 人,得 17 分的人数为 9 人,
∴两人得分之和不大于 33 分的概率为:
= P C= 52 + C51C91
组别
[30 , 40) [40 , 50) [50 , 60) [60 , 70) [70 , 80) [80 , 90) [90 ,100)
人教课标版高中数学选修2-3典型例题:正态分布
正态分布1.正态曲线及其性质对于正态分布函数:222)(21)(σμπσ--=x e x f ,x ∈(-∞,+∞)由于中学知识范围的限制,不必去深究它的来龙去脉,但对其函数图像即正态曲线可通过描点(或计算机中的绘图工具)画出课本图1-4中的图(1)、(2)、(3),由此,我们不难自己总结出正态曲线的性质。
2.标准正态曲线标准正态曲线N (0,1)是一种特殊的正态分布曲线,它是本小节的重点。
由于它具有非常重要的地位,已专门制作了“标准正态分布表”。
对于抽像函数)()(00x x p x <=-Φ,课本中没有给出具体的表达式,但其几何意义非常明显,即由正态曲线N (0,1)、x 轴、直线0x x =所围成的图形的面积。
再由N (0,1)的曲线关于y 轴对称,可以得出等式)(1)(00x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。
3.一般正态分布与标准正态分布的转化由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,所以,研究其在某个区间),(21x x 的概率时,无法利用标准正态分布表进行计算。
这时我们自然会思考:能否将一般的正态总体),(2σμN 转化成标准的正态总体N (0,1)进行研究。
人们经过探究发现:对于任一正态总体),(2σμN ,其取值小于x 的概率)()(σμ-Φ=x x F 。
对于这个公式,课本中不加证明地给出,只用了“事实上,可以证明”这几个字说明。
这表明,对等式)()(σμ-Φ=x x F 的来由不作要求,只要会用它求正态总体),(2σμN 在某个特定区间的概率即可。
4.“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,因为对于这类事件来说,在大量重复试验中,平均每试验20次,才能发生1次,所以认为在一次试验中该事件是几乎不可能发生的。
这种认识便是进行推断的出发点。
关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
高中数学正态分布知识点+练习
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中数学正态分布知识点+练习地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容正态分布高考要求例题精讲(一)知识内容1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量,则这条曲线称为的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是,而随机变量落在指定的两个数之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为,,其中,是参数,且,.式中的参数和分别为正态变量的数学期望和标准差.期望为、标准差为的正态分布通常记作.正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为,标准差为的正态分布叫做标准正态分布.⑶重要结论:①正态变量在区间,,内,取值的概率分别是,,.②正态变量在内的取值的概率为,在区间之外的取值的概率是,故正态变量的取值几乎都在距三倍标准差之内,这就是正态分布的原则.(二)典例分析:已知随机变量服从正态分布,则()A.B.C.D.在某项测量中,测量结果服从正态分布,若在内取值的概率为,则在内取值的概率为.对于标准正态分布的概率密度函数,下列说法不正确的是()A.为偶函数 B.最大值为C.在时是单调减函数,在时是单调增函数 D.关于对称已知随机变量服从正态分布,,则()A. B. C. D.某种零件的尺寸服从正态分布,则不属于区间这个尺寸范围的零件约占总数的.已知,若,则()A. B. C. D.无法计算设随机变量服从正态分布,若,则.设,且,则的值是(用表示).设随机变量服从正态分布,,则下列结论正确的个数是.⑴⑵⑶⑷如果随机变量,求的值.正态变量,为常数,,若,求的值.下列函数是正态分布密度函数的是()A. B. C. D.若正态分布密度函数,下列判断正确的是()A.有最大值,也有最小值 B.有最大值,但没最小值C.有最大值,但没最大值 D.无最大值和最小值设的概率密度函数为,则下列结论错误的是()A.B.C.的渐近线是 D.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为,则下列命题中不正确的是()A.该市这次考试的数学平均成绩为分B.分数在120分以上的人数与分数在分以下的人数相同C.分数在110分以上的人数与分数在分以下的人数相同D.该市这次考试的数学标准差为灯泡厂生产的白炽灯寿命(单位:),已知,要使灯泡的平均寿命为的概率为,则灯泡的最低使用寿命应控制在小时以上.一批电池(一节)用于手电筒的寿命服从均值为小时、标准差为小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于小时的概率是多少?某班有名同学,一次考试后的数学成绩服从正态分布,平均分为,标准差为,理论上说在分到分的人数是.已知连续型随机变量的概率密度函数,⑴求常数的值;⑵求.已知连续型随机变量的概率密度函数,求的值及.设随机变量具有概率密度,求的值及.美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的距离的密度函数为,若炸弹落在目标40米以内时,将导致该铁路枢纽破坏,已知投弹颗,求巴格达铁路控制枢纽被破坏的概率.设,且总体密度曲线的函数表达式为:,.⑴求;⑵求及的值.某校高中二年级期末考试的物理成绩服从正态分布.⑴若参加考试的学生有人,学生甲得分为分,求学生甲的物理成绩排名;⑵若及格(分及其以上)的学生有人,求第名的物理成绩.已知标准正态分布表.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在分以上(含分)的学生有名.⑴试问此次参赛学生总数约为多少人?⑵若该校计划奖励竞赛成绩排在前名的学生,试问设奖的分数线约为多少分?附:标准正态分布表.。
高中数学复习典型题专题训练114---正态分布
高中数学复习典型题专题训练114几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布.⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复知识内容正态分布试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k n n n n n n q p p q p q p q p q --+=++++L L各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.正态曲线(正态随机变量的概率密度曲线)【例1】 下列函数是正态分布密度函数的是( )A .2()2()2x r f x eσσ-π B .222π()x f x -=C .2(1)4()22x f x e -=πD .22()2x f x e =π【例2】 若正态分布密度函数2(1)2()()2x f x x --=∈R π,下列判断正确的是( )A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值【例3】 对于标准正态分布()01N ,的概率密度函数()222πx f x -=,下列说法不正确的是( )A .()f x 为偶函数B .()f x 2πC .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数D .()f x 关于1x =对称【例4】 设ξ的概率密度函数为2(1)2()2x f x --=π,则下列结论错误的是( )A .(1)(1)P P ξξ<=>B .(11)(11)P P ξξ-=-<<≤≤C .()f x 的渐近线是0x =D .1~(01)N ηξ=-,【例5】 设2~()X N μσ,,且总体密度曲线的函数表达式为:2214()2πx x f x -+-=,x ∈R .⑴求μσ,;⑵求(|1|2)P x -<及(12122)P x <<+的值.典例分析【例6】 某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为2(80)200()x f x --=,则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学标准差为10正态分布的性质及概率计算【例7】 设随机变量ξ服从正态分布(01)N ,,0a >,则下列结论正确的个数是____.⑴(||)(||)(||)P a P a P a ξξξ<=<+=⑵(||)2()1P a P a ξξ<=<- ⑶(||)12()P a P a ξξ<=-< ⑷(||)1(||)P a P a ξξ<=->【例8】 已知随机变量X 服从正态分布2(3)N a ,,则(3)P X <=( ) A .15B .14C .13D .12【例9】 在某项测量中,测量结果X 服从正态分布()()210N σσ>,,若X 在()01,内取值的概率为0.4,则X 在()02,内取值的概率为 .【例10】 已知随机变量X 服从正态分布2(2)N σ,,(4)0.84P X =≤,则(0)P X =≤( )A .0.16B .0.32C .0.68D .0.84【例11】 已知2(1)X N σ-,~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算【例12】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.【例13】 设~(01)N ξ,,且(||)(010)P b a a b ξ<=<<>,,则()P b ξ≥的值是_______(用a 表示).【例14】 正态变量2~(1)X N σ,,c 为常数,0c >,若(2)(23)0.4P c X c P c X c <<=<<=,求(0.5)P X ≤的值.【例15】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数的 .【例16】 某校高中二年级期末考试的物理成绩ξ服从正态分布2(7010)N ,. ⑴若参加考试的学生有100人,学生甲得分为80分,求学生甲的物理成绩排名; ⑵若及格(60分及其以上)的学生有101人,求第20名的物理成绩.已知标准正态分布表(0.97)0.833φ=.【例17】 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布(70100)N ,.已知成绩在90分以上(含90分)的学生有12名.⑴试问此次参赛学生总数约为多少人?⑵若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分? 附:标准正态分布表(1.30)0.9032(1.31)0.9049(1.32)0.9066φφφ===,,.正态分布的数学期望及方差【例18】 如果随机变量2~()1N E D ξμσξξ==,,,求(11)P ξ-<<的值.正态分布的3σ原则【例19】 灯泡厂生产的白炽灯寿命ξ(单位:h ),已知2~(100030)N ξ,,要使灯泡的平均寿命为1000h 的概率为99.7%,则灯泡的最低使用寿命应控制在_____小时以上.【例20】 一批电池(一节)用于手电筒的寿命服从均值为35.6小时、标准差为4.4小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于40小时的概率是多少?【例21】 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是______.杂题(拓展相关:概率密度,分布函数及其他)【例22】 已知连续型随机变量ξ的概率密度函数01()1202x f x x a x x ⎧⎪=-<⎨⎪⎩≤≤≥,⑴求常数a 的值;⑵求3(1)2P ξ<<.【例23】 已知连续型随机变量ξ的概率密度函数201()1202x f x ax x x ⎧⎪=<⎨⎪⎩≤≤≥,求a 的值及3(1)2P ξ<<.【例24】 设随机变量X 具有概率密度30()00x ke x f x x -⎧=⎨<⎩≥,求k 的值及(0.1)P X >.【例25】 美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的距离X 的密度函数为100||||100()100000||100x x f x x -⎧⎪=⎨⎪>⎩≤,若炸弹落在目标40米以内时,将导致该铁路枢纽破坏,已知投弹3颗,求巴格达铁路控制枢纽被破坏的概率.【例26】 以()F x 表示标准正态总体在区间(),x -∞内取值的概率,若随机变量ξ服从正态分布()2,N μσ,则概率()P ξμσ-<等于( )A .()()F F μσμσ+--B .()()11F F --C .1F μσ-⎛⎫⎪⎝⎭D .()2F μσ+【例27】某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路程较短,但交通拥挤,所需时间(单位为分)服从正态分布()2N;50,10第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布()2N60,4⑴若只有70分钟可用,问应走哪条路线?⑵若只有65分钟可用,又应走哪条路线?。
高中数学新课标典型例题正态分布
借助于标准正态散布表求值例设听从 N (0,1),求以下各式的值:(1)P( 2.35);( 2)P(1.24);( 3)P(1.54).剖析:因为用从标准正态散布,因此能够借助于标准正态散布表,查出其值.但因为表中只列出 x00, P(x)( x)的情况,故需要转变成小于非负值x0的概率,公式:00( x) 1(x); P(a b)(b)(a); 和 P(x0 ) 1 P(x0 ) 有其用武之地.解:( 1)P(2.35)1P( 2.35)1(2.35) 10.99060.0094;(2)P( 1.24)( 1.24)1(1.24)10.89250.1075;(3)P( 1.54)P( 1.54 1.54)(1.54)( 1.54)(1.54)[1(1.54)]2(1.54)10.8764.说明:要制表供给查阅是为了方便得出结果,但标准正态散布表这样精练的目的,并无给查阅造成不便.相反其简捷的成效更突出了中心内容.左侧的几个公式都应在理解的基础上记着它,并学会灵巧应用.求听从一般正态散布的概率例设听从 N (1.5,22 ) 试求:(1)P( 3.5);(2)P(4);(3)P(2);(4)P(3).剖析:第一,应将一般正态散布N (1.5,2) 转变成标准正态散布,利用结论:若~ N ( , 2 ),则由~ N (0,1) 知: P(x)x, 后来再转变为非负标准正态散布状况的表达式,经过查表获取结果.3.5 1.5(1) 0.8413;解:( 1)P(3.5)2(2)P(4)41.5(2.75)1(2.75)0.0030; 2(3)P(2)1P(2)12 1.51(0.25)0.4013;2(4)P(3)P(2)13 1.53 1.5 22( 0.75)( 2.25)0.7734[1( 2.25)]0.7734(10.9878)0.7612.说明:这里,一般正态散布~N( ,2 ) ,整体小于x的概率值 F ( x)与P(x) 和x是同样的表述,即:P(x) F ( x)x.听从正态散布的资料强度的概率例已知:从某批资猜中任取一件时,获得的这件资料强度听从 N (200,182 ).( 1)计算获得的这件资料的强度不低于180 的概率.(2)假如所用的资料要求以 99%的概率保证强度不低于 150,问这批资料能否切合这个要求.剖析:这是一个实问题,只需经过数学建模,就能够知道其本质就是一个“正态散布下求随机变量在某一范围内取值的概率”的问题;此题的第二问是一个逆向式问法,只需掌握本质反向求值即可.解:( 1)P(180) 1 P(180)11801201 18( 1.11)1[1(1.11)](1.11)0.8665;( 2)能够先求出:这批资猜中任取一件时强度都不低于150 的概率为多少,拿这个结果与 99%进行比较大小,进而得出结论.P( 150) 1P(150)1502001( 2.78) 1 [1 ( 2.78)]( 2.78) 0.9973; 118即从这批资猜中任取一件时,强度保证不低于150 的概率为%> 99%,因此这批资料符合所概要求.说明:“不低于”的含义即在表达式中为“大于或等于”.转变“小于”后,仍须再转变为非负值的标准正态散布表达式,进而才可查表.公共汽车门的高度例若公共汽车门的高度是依据保证成年男子与车门顶部碰头的概率在1%以下设计的,假如某地成年男子的身高~ N (175,36) (单位:㎝),则该地公共汽车门的高度应设计为多高?剖析:本质应用问题,剖析可知:求的是门的最低高度,可设其为x( cm) ,使其整体在不低于 x 的概率值小于1%,即:P(x)0.01 1% ,从中解出x 的范围.解:设该地公共汽车门的高度应设计高为x cm,则依据题意可知:P(x) 1% ,由于 ~ N (175,36),因此, P(x) 1x1750.01; P(x) 16也即:x1750.99;6x175经过查表可知: 2.33;解得: x 188.98;即该地公共汽车门起码应设计为189cm高.说明:逆向思想和逆向查表,表现解决问题的灵巧性.重点是理解题意和找出正确的数学表达式.学生成绩的正态散布例某班有 48 名同学,一次考试后数学成绩听从正态散布.均匀分为 80,标准差为10,问从理论上讲在 80 分至 90 分之间有多少人?剖析:要求 80 分至 90 分之间的人数,只需算出分数落在这个范围内的概率,而后乘以总人数即可,而计算这个概率,需要查标准正态散布表,因此应第一把这个正态整体化成标准正态整体.解:设 x 表示这个班的数学成绩,则x 听从N (80,102)x80N (0,1) .设 Z则 z 听从标准正态散布10查标准正态散布表,得:(1)0.8413, (0) 0.5000所以,p(80 x 90) p(80 80x 8090 80) p(0 z 1)(1)(0) 0.8413 0.5000 0.3413 101010∴48 0.3413 16.3824 16 .说明:这种问题最简单犯的错误是没有转变成标准正态散布就直接求解,一般地,我们在解决正态整体的相关问题时均要第一转变成标准正态整体.。
高中数学“正态分布”知识点讲解——以2024年全国1卷第9题为例
高中数学“正态分布”知识点讲解——以24年全国1卷第九题为例一言概之:正态分布X~N(μ,σ ),μ是期望,是图像的对称轴;σ 是方差,σ决定图像的胖瘦.详细解释:一、概念若随机变量X服从一个数学期望为μ、方差为σ 的正态分布,记为N(μ,σ ).其概率密度函数(f(x)=√ e( )(μ∈R,σ>0))为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度.当μ = 0,σ = 1时的正态分布是标准正态分布.二、性质1.对称性:关于x=μ对称,在x=μ处达到最大值√,越远离μ,密度函数越小.2.σ(σ>0)决定函数图像的胖、瘦.如下图所示.3.3σ原则(1)P(μ−σ≤X≤μ+σ)≈0.6827 ;(2)P(μ−2σ≤X≤μ+2σ)≈0.9545 ;(3)P(μ−3σ≤X≤μ+3σ)≈0.9973.4. 正态分布的均值与方差若X~N(μ,σ ),则E(X)=μ,D(X)=σ .以2024年全国1卷第9题为例2024年全国1卷T9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2,N x s ,则( )(若随机变量Z 服从正态分布 2,N u ,()0.8413P Z )A. (2)0.2P XB. (2)0.5P XC. (2)0.5P YD. (2)0.8P Y 解析: 2~ 1.8,0.1X N 的图像:1.80.1 1.9∴ 1.910.84130.1587P X ,显然 2 1.9P X P X ,所以A 错误.B 正确. 2~ 2.1,0.1Y N 的图像:与 2~ 1.8,0.1X N 的图像一致,仅对称轴改变.∵ 2.10.5P X (对称性,对称轴为 2.1x ,故左右各为0.5)2 2.1P Y P Y ,故C 正确;又∵ 2 2.10.10.8413P Y P Y (对称性: 0.8413P Y P Y ) 即:D 错误.解题建议:①画出图像;②标明对称轴;③标明 与 .。
高二数学正态分布试题答案及解析
高二数学正态分布试题答案及解析1.随机变量服从正态分布,已知,则=()A.0.1B.0.2C.0.4D.0.6【答案】D【解析】随机变量服从正态分布,图象关于对称,,所以.【考点】正态分布的应用.2.如果随机变量,且,则=.【答案】0.1【解析】所以,那么,故应填0.1.【考点】正态分布.3.设X~N(0,1).①P(-ε<X<0)=P(0<X<ε);②P(X<0)=0.5;③已知P(-1<X<1)=0.6826,则P(X<-1)=0.1587;④已知P(-2<X<2)=0.9544,则P(X<2)=0.9772;⑤已知P(-3<X<3)=0.9974,则P(X<3)=0.9987.其中正确的有________(只填序号).【答案】①②③④⑤【解析】正态曲线关于y轴对称,故①②正确.对于③,P(X<-1)=(1-P(|X|<1)),=(1-0.6826)=0.1587,故③正确;对于④,P(X<2)=(1-P(|X|<2))+P(|X|<2)=(1-0.9544)+0.9544=0.9772;故④正确,同理⑤正确.4.若一批白炽灯共有10000只,其光通量X服从正态分布,其正态分布密度函数是f(x)=,x∈(-∞,+∞),试求光通量在下列范围内的灯泡的个数.(1)(203,215);(2)(191,227).【答案】(1) 6826 (2) 9974【解析】解:由于X的正态分布密度函数为f(x)=,x∈(-∞,+∞),∴μ=209,σ=6.∴μ-σ=209-6=203,μ+σ=209+6=215.μ-3σ=209-6×3=209-18=191,μ+3σ=209+6×3=209+18=227.因此光通量X的取值在区间(203,215),(191,227)内的概率应分别是0.6826和0.9974.(1)于是光通量X在(203,215)范围内的灯泡个数大约是10000×0.6826=6826.(2)光通量在(191,227)范围内的灯泡个数大约是10000×0.9974=9974.5.已知随机变量服从正态分布,且,则= .【答案】0.3【解析】随机变量ξ服从正态分布,∴曲线关于x=2对称,∴P(ξ<0)=P(ξ>4)=1-0.8=0.2,∴=0.5-0.2=0.3,故答案为0.3.【考点】正态分布点评:简单题,随机变量ξ服从正态分布,得到曲线关于x=2对称,根据曲线的对称性得到小于0的和大于4的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.6.设随机变量服从正态分布,,则【答案】【解析】.7.设随机变量服从二项分布,且;【答案】3.2【解析】解:因为随机变量服从二项分布,则8.在某项测量中,测量结果服从正态分布,若在内取值的概率为0.4,则在内取值的概率为;【答案】0.8【解析】由题意知在内取值的概率为0.4,则在内取值的概率也为0.4,所以在内取值的概率为0.8.9.设随机变量服从正态分布,则。
高二数学正态分布试题答案及解析
高二数学正态分布试题答案及解析1.随机变量服从正态分布,已知,则=()A.0.1B.0.2C.0.4D.0.6【答案】D【解析】随机变量服从正态分布,图象关于对称,,所以.【考点】正态分布的应用.2.已知随机变量服从正态分布,若,则A.B.C.D.【答案】D【解析】正态分布的图象关于对称,.【考点】正态分布的应用.3.在某项测量中,测量结果服从正态分布,若在内取值的概率为,则在内取值的概率为A.B.C.D.【答案】A【解析】因为服从正态分布,所以正态分布曲线关于;又因为在内取值的概率为,所以在内取值的概率为,所以在内取值的概率为. 考点:正态分布曲线的特点及意义.4.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.9,则P(0<ξ<2)=()A.0.2B.0.3C.0.4D.0.6【答案】C.【解析】因为随机变量ξ服从正态分布N(2,σ2),所以正态曲线的对称轴是x=2,又因为P (ξ<4)=0.9,所以P(ξ≥4)=0.1因此P(0<ξ<2)=0.5-0.1=0.4.故选C.【考点】正态分布曲线的特点及曲线所表示的意义.5.,则()A.0.1B.0.2C.0.3D.0.4【答案】A【解析】因为是标准正态分布,所以.【考点】正态分布的特征及标准正态分布的概率计算.6.已知随机变量服从正态分布.则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由随机变量服从正态分布可知正态密度曲线关于y轴对称,所以是充分不必要条件.【考点】正态分布概率的求法.7.设随机变量X服从正态分布N(0,1),P(X>1)= p,则P(X>-1)=A.p B.1-p C.1-2p D.2p【答案】B【解析】∵随机变量X服从正态分布N(0,1),P(X>1)=p,∴P(X<-1)=p,P(X>-1)=1-P(X<-1)=1-p,故选B.【考点】正态分布.8.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=()A.0.1588B.0.1587C.0.1586D.0.1585【答案】B【解析】正态分布曲线关于对称,因为,故选B.【考点】正态分布9.已知随机变量X服从正态分布N(3,σ2),则P(X<3)=________.【答案】【解析】由正态分布图象知,μ=3为该图象的对称轴,P(X<3)=P(X>3)=.10.已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f(80)=.(1)求正态分布密度函数的解析式;(2)估计尺寸在72mm~88mm之间的零件大约占总数的百分之几.【答案】(1) (2) 68.26%【解析】解:(1)由于正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,所以正态曲线关于直线x=80对称,且在x=80处取得最大值.因此得μ=80,=,所以σ=8.故正态分布密度函数的解析式是(2)由μ=80,σ=8,得μ-σ=80-8=72,μ+σ=80+8=88,所以零件尺寸X在区间(72,88)内的概率是0.6826.因此尺寸在72mm~88mm间的零件大约占总数的68.26%.11.已知随机变量服从正态分布,【答案】0.16【解析】∵随机变量服从正态分布N(2,σ2),μ=2,得对称轴是x=2.P(ξ4)=0.84,∴P(ξ≥4)=P(ξ0)=0.16。
正态分布习题与详解(非常有用-必考点)
1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2). 解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体(1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848]解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x ex f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ-0.57930.884810.4642=+-=4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2N ξ 520500500500(500520)()()(0.1)(0)0.53980.50.0398200200P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200a a aP a a μξμ-<<+=Φ-Φ-=Φ-≥,()0.975200a ∴Φ≥ 查表知: 1.96392200aa ≥⇒≥1设随机变量(3,1),若,,则P(2<X<4)= ( A)( B)l —pC .l-2pD .【答案】 C 因为,所以P(2<X<4)=,选 C .2.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.3.设随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=( )A.49 B .-19 C.23 D.59 [答案] D[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×⎝⎛⎭⎫-1-132+13⎝⎛⎭⎫0-132+12⎝⎛⎭⎫1-132=59. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( )A .3 B .4 C .5 D .2[答案] A[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,P (ξ=1)=x ·(7-x )C 72=x (7-x )21,P (ξ=2)=C x 2C 72=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,∴x =3.5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )A.255256B.9256C.247256D.764 [答案] C[解析] 由条件知ξ~B (n ,P ),∵⎩⎪⎨⎪⎧ E (ξ)=4,D (ξ)=2,∴⎩⎪⎨⎪⎧np =4np (1-p )=2, 解之得,p =12,n =8,∴P (ξ=0)=C 80×⎝⎛⎭⎫120×⎝⎛⎭⎫128=⎝⎛⎭⎫128, P (ξ=1)=C 81×⎝⎛⎭⎫121×⎝⎛⎭⎫127=⎝⎛⎭⎫125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-⎝⎛⎭⎫128-⎝⎛⎭⎫125=247256.5已知三个正态分布密度函数φi (x )=12πσie -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.6①命题“”的否定是:“”;②若,则的最大值为4;③定义在R 上的奇函数满足,则的值为0;④已知随机变量服从正态分布,则;其中真命题的序号是________(请把所有真命题的序号都填上).【答案】①③④ ①命题“”的否定是:“”;所以①正确.②若,则,即.所以,即,解得,则的最小值为4;所以②错误.③定义在R上的奇函数满足,则,且,即函数的周期是4.所以;所以③正确.④已知随机变量服从正态分布,则,所以;所以④正确,所以真命题的序号是①③④.7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概率为___________.【答案】由题意知要使方程有两不相等实根,则,即.作出对应的可行域,如图直线,,当时,,所以,所以方程有两不相等实根的概率为.8、下列命题:` (1);(2)不等式恒成立,则;(3)随机变量X服从正态分布N(1,2),则(4)已知则.其中正确命题的序号为____________.【答案】(2)(3) (1),所以(1)错误.(2)不等式的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4),所以(4)错误,所以正确的为(2)(3).2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为()A.26 B.25 C.23 D.18【答案】D样本的平均数为23,所以样本方差为,选D.3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为( )A .B .C .D .【答案】C 样本数据在之外的频率为,所以样本数据在内的频率为,所以样本数据在的频数为,选 C .4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l 的正方形OABC 中任取一点P,则点P 恰好取自阴影部分的概率为 ( )A .B .C .D .【答案】 【答案】B 根据积分的应用可知所求阴影部分的面积为,所以由几何概型公式可得点P 恰好取自阴影部分的概率为,选B .5从集合{}1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.【答案】25从集合{}1,2,3,4,5中随机选取3个不同的数有3510C =种.则3个数能构成等差数列的有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为42105=.。
标准正态分布的例题
标准正态分布的例题标准正态分布是统计学中非常重要的一个概念,它在自然科学、社会科学以及工程技术等领域都有着广泛的应用。
在实际问题中,我们经常会遇到与标准正态分布相关的例题,通过对这些例题的分析与求解,可以更好地理解标准正态分布的性质和应用。
接下来,我们将通过一些例题来深入探讨标准正态分布。
例题1,某班级的学生身高符合标准正态分布,平均身高为165cm,标准差为5cm。
求身高在160cm以上的学生所占的比例。
解析,根据标准正态分布的性质,我们知道在平均值附近的数据出现的概率较大,而远离平均值的数据出现的概率较小。
因此,我们可以利用标准正态分布的性质来求解这个问题。
首先,我们需要将原始数据转化为标准正态分布的Z分数,即将160cm转化为Z分数。
利用Z分数的计算公式,Z = (X μ) / σ,其中X为原始数据,μ为平均值,σ为标准差,代入数据计算得到Z = (160 165) / 5 = -1。
然后,我们可以查找标准正态分布表或利用统计软件计算Z为-1时对应的累积概率,即P(Z > -1)。
在标准正态分布表中查找得到P(Z > -1)约为0.8413。
因此,身高在160cm以上的学生所占的比例约为84.13%。
例题2,某工厂生产的零件长度符合标准正态分布,平均长度为12cm,标准差为2cm。
求零件长度在10cm到14cm之间的概率。
解析,同样地,我们可以利用标准正态分布的性质来求解这个问题。
首先,将原始数据转化为标准正态分布的Z分数。
计算10cm和14cm分别对应的Z分数,得到Z1 = (10 12) / 2 = -1 和 Z2 = (14 12) / 2 = 1。
然后,我们可以利用标准正态分布表或统计软件计算P(-1 < Z < 1),即零件长度在10cm到14cm之间的累积概率。
在标准正态分布表中查找得到P(-1 < Z < 1)约为0.6826。
因此,零件长度在10cm到14cm之间的概率约为68.26%。
2023年高考数学复习-----正态分布规律方法与典型例题讲解
2023年高考数学复习-----正态分布规律方法与典型例题讲解【规律方法】解决正态分布问题有三个关键点:(1)对称轴;(2)x μ=标准差;(3)σ分布区间.利用对称性可求指定范围内的概率值;由,μσ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意在标准正态分布下对称轴为0x =.【典型例题】例1.(2022春·福建泉州·高三福建省南安国光中学校考阶段练习)某中学在一次考试后,对本年级学生物理成绩进行分析,随机抽取了300名同学的物理成绩(均在50~100分之间),将抽取的成绩分组为[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,得到如图所示的频率分布直方图.(1)求这300名同学物理平均成绩x 与第三四分位数的估计值;(结果精确到1)(2)已知全年级同学的物理成绩服从正态分布()2N μσ,,其中μ取(1)中的x ,经计算,σ=11,现从全年级随机选取一名同学的物理成绩,求该成绩在区间()6295,的概率(结果精确到0.1);(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n 名同学的物理成绩,若他们的成绩都在()6295,的概率不低于1%,求n 的最大值(n 为整数).附:lg20.301≈,若()2~N ξμσ,,则()0.68P μσξμσ−<<+≈,()220.96P μσξμσ−<<+≈.【解析】(1)550.1650.3750.4850.1950.173x =⨯+⨯+⨯+⨯+⨯=. 35701078.7540+⨯=, 则这300名同学物理平均成绩x 与第三四分位数的估计值分别为73,79 (2)()()11629520.680.960.820.822P P ξμσξμσ<<=−<<+≈⨯+⨯=≈,(3)()0.80.01n≥,即0.8lg0.012log 0.0120.62lg0.83lg21n −≤==≈−, 故n 的最大值为20.例2.(2022·全国·高三专题练习)已知某高校共有10000名学生,其图书馆阅览室共有994个座位,假设学生是否去自习是相互独立的,且每个学生在每天的晚自习时间去阅览室自习的概率均为0.1.(1)将每天的晚自习时间去阅览室自习的学生人数记为X ,求X 的期望和方差; (2)18世纪30年代,数学家棣莫弗发现,当n 比较大时,二项分布可视为正态分布.此外,如果随机变量()2~,Y N μσ,令Y Z μσ−=,则~(0,1)Z N .当~(0,1)Z N 时,对于任意实数a ,记()()Φ=<a P Z a .已知下表为标准正态分布表(节选),该表用于查询标准正态分布(0,1)N 对应的概率值.例如当0.16a =时,由于0.160.10.06=+,则先在表的最左列找到数字0.1(位于第三行),然后在表的最上行找到数字0.06(位于第八列),则表中位于第三行第八列的数字0.5636便是(0.16)Φ的值.①求在晚自习时间阅览室座位不够用的概率;②若要使在晚自习时间阅览室座位够用的概率高于0.7,则至少需要添加多少个座位? 【解析】(1)由题意可得,随机变量X 服从二项分布, 则()100000.11000E X np ==⨯=,()()1100000.10.9900D X np p =−=⨯⨯=,(2)①由于(1)中二项分布的n 值增大, 故可以认为随机变量X 服从二项分布, 由(1)可得,1000,30μσ==, 可得()1000,900X N ~,则()10000,130X N −,则()()10009940.20.230X P X P −⎛⎫<=<−=Φ−⎪⎝⎭, 由标准正态分布性质可得,()()0.210.2Φ−=−Φ, 故()()99410.2P X <=−Φ,故()()()99419940.20.5793P X P X =−<=Φ=…,在晚自习时间阅览室座位不够用的概率为0.5793; ②查表可得,()0.530.7019Φ=,则10000.530.701930X P −⎛⎫<= ⎪⎝⎭, 即()1015.90.7019P X <=, 又()()100010150.50.50.69150.730X P X P −⎛⎫<=<=Φ=<⎪⎝⎭, 故座位数至少要1016个,101699422−=,故阅览室座位至少需要添加22个.例3.(2022·全国·高三专题练习)某收费APP (手机应用程序)自上架以来,凭借简洁的界面设计、方便的操作方式和实用的强大功能深得用户喜爱.为回馈市场并扩大用户量,该APP 在2022年以竞价形式做出优惠活动,活动规则如下:①每月1到15日,大家可通过官网提交自己的报价(报价低于原价),但在报价时间截止之前无法得知其他人的报价和当月参与活动的总人数;②当月竞价时间截止后的第二天,系统将根据当期优惠名额,按出价从高到低的顺序给相应人员分配优惠名额,获得优惠名额的人的最低出价即为该APP 在当月的下载优惠价,出价不低于优惠价的人将获得数额为原价减去优惠价的优惠券,并可在当月下载该APP 时使用.小明拟参加2022年7月份的优惠活动,为了预测最低成交价,他根据网站的公告统计了今年2到6月参与活动的人数,如下表所示:(1)若可用线性回归模型拟合参与活动的人数y (单位:万人)与时间t (单位:月)之间的关系,请用最小二乘法求y 关于t 的回归方程ˆˆˆybt a =+,并预测今年7月参与活动的人数;(2)某自媒体对200位拟参加今年7月份活动的人进行了一个抽样调查,得到如表所示的频数表:①求这200人的报价X (单位:元)的平均值X 和方差2s (同一区间的报价用该价格区间的中点值代替);②假设所有参与活动的人的报价X (单位:元)可视为服从正态分布()2,N μσ,且μ与2σ可分别由①中所求的样本平均数X 及2s 估计,若2022年7月计划发放优惠名额数量为3173,请你合理预测该APP 在当月的下载优惠价,并说明理由.参考公式及数据:①回归方程ˆˆˆybt a =+,1221ˆni ii nii t yntyb tnt ==−=−∑∑,ˆay bt =−;②52190i i t ==∑,5124i ii t y==∑ 1.3≈;③若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ−<<+≈,()220.9545P X μσμσ−<<+≈,()330.9973P X μσμσ−<<+≈.【解析】(1)由题意可得2345645t ++++==,0.50.61 1.4 1.71.045y ++++==,又因为52190ii t ==∑,5124i i i t y ==∑,所以122212454 1.04ˆ0.329054ni ii nii t ynt ybtnt ==−−⨯⨯===−⨯−∑∑,ˆˆ 1.040.3240.24ay bt =−=−⨯=−, 所以回归直线方程为:0.320.24y t =−, 当7t =时,可得0.3270.242y =⨯−=(万人), 故预计今年7月参与活动的人数为2万人;(2)①依题意可得这200人的报价X (单位:元)的平均值()120 1.560 2.560 3.530 4.520 5.510 6.5 3.5200X =⨯+⨯+⨯+⨯+⨯+⨯=,方差()()()22221[20 1.5 3.560 2.5 3.560 3.5 3.5200s =⨯−+⨯−+⨯− ()()()22230 4.5 3.520 5.5 3.510 6.5 3.5] 1.7+⨯−+⨯−+⨯−=; ②由①可知()3.5,1.7XN ,依题意发放的优惠名额为3173张,预测参加的人数为20000人,所以能够得到优惠名额的概率31730.1586520000P ==,设下载优惠价为x ,则()0.15865P X x ≥=又()3.5,1.7XN 1.3≈,因为()2.2 4.80.6827P X <<≈,所以()()1 2.2 4.810.68274.80.1586522P X P X −<<−≥=≈=,则 4.8x =,所以预测该APP 在当月的下载优惠价为4.8元.。
新课程新教材高中数学选择性必修3:正态分布
f (x) 1 x3 2x2 2x 有极值点的概率为( ).
3
A.0.2 B.0.3 C.0.4 D.0.5
1.(2020·全国高三模拟)已知随机变量 X 服从正态分布
,且N (a, 4) P,(X 1) 0.5 P(X, 2) 0.3 等于(B )
上述结果可用下图表示
a a
68.26%
95.44%
99.74%
μ
μ
μ
2σ
4σ
6σ
我们从上图看到,正态总体在(μ-2σ,μ+2σ)以 外取值的概率只有4.6%,在(μ-3σ,μ+3σ)以外取 值的概率只有0.3 %。
由于这些概率值很小(一般不超过5 % ), 通常称这些情况发生为小概率事件。
当 a 3 时正态总体的取值几乎总取值于区间
频率 组距
产品 尺寸 (mm)
样本容量增大时 频率分布直方图
频率 组距
总体密度 曲线
产品 尺寸 (mm)
若数据无限增多且组距无限缩小,那么
频率 组距
频率分布直方图的顶边缩小乃至形成一 条光滑的曲线,我们称此曲线为总体密
度曲线.
总体密
度曲线 产品
尺寸
(mm)
高尔顿板
11
概率密
y
度曲线
总体密 度曲线
关于直线x=μ对称,从而在关于x=μ对称的区
间上概率相等.
②P(X<a)=1-P(X≥a),P(X<μ-a)=P(X≥μ+a), 若 b<μ,则 P(X<b)=1-Pμ-b<X<μ+b.
2
数形结合法
跟踪练习1.已知随机变量X服从正态分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
借助于标准正态分布表求值
例 设ξ服从)1,0(N ,求下列各式的值:
(1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP
分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地.
解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P
(2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP
(3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P
.8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ=
说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用.
求服从一般正态分布的概率
例 设η服从)2,5.1(2N 试求:
(1));5.3(<ηP (2));4(-<ηP
(3));2(≥ηP (4)).3(<ηP
分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(⎪⎭
⎫ ⎝⎛-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=⎪⎭⎫
⎝⎛-Φ=<ηP
(2);0030.0)75.2(1)75.2(25.14)4(=Φ-=-Φ=⎪⎭
⎫ ⎝⎛--Φ=-<ηP (3);4013.0)25.0(125.121)2(1)2(=Φ-=⎪⎭⎫
⎝⎛-Φ-=<-=≥ηηP P (4)⎪⎭⎫ ⎝
⎛--Φ-⎪⎭⎫ ⎝⎛-Φ-=<=<25.1325.131)2()3(ηηP P )]25.2(1[7734.0)25.2()75.0(Φ--=-Φ-Φ=
.7612.0)9878.01(7734.0=--=
说明:这里,一般正态分布),(~2
σμξN ,总体小于x 的概率值)(x F 与)(x P <ξ和⎪⎭⎫ ⎝⎛-Φσμx 是一样的表述,即:.)()(⎪⎭
⎫ ⎝⎛-Φ==<σμξx x F x P 服从正态分布的材料强度的概率
例 已知:从某批材料中任取一件时,取得的这件材料强度ξ服从).18,200(2N
(1)计算取得的这件材料的强度不低于180的概率.
(2)如果所用的材料要求以99%的概率保证强度不低于150,问这批材料是否符合这个要求.
分析:这是一个实问题,只要通过数学建模,就可以知道其本质就是一个“正态分布下求随机变量在某一范围内取值的概率”的问题;本题的第二问是一个逆向式问法,只要把握实质反向求值即可.
解:(1)-=⎪⎭
⎫ ⎝⎛-Φ-=<-=≥1181201801)180(1)180(ξξP P ;8665.0)11.1()]11.1(1[1)11.1(=Φ=Φ--=-Φ
(2)可以先求出:这批材料中任取一件时强度都不低于150的概率为多少,拿这个结果与99%进行比较大小,从而得出结论.
;9973.0)78.2()]78.2(1[1)78.2(1182001501)150(1)150(=Φ=Φ--=-Φ-=⎪⎭
⎫ ⎝⎛-Φ-=<-=≥ξξP P 即从这批材料中任取一件时,强度保证不低于150的概率为99.73%>99%,所以这批材料符合所提要求.
说明:“不低于”的含义即在表达式中为“大于或等于”.转化“小于”后,仍须再转化为非负值的标准正态分布表达式,从而才可查表.
公共汽车门的高度
例 若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计的,如果某地成年男子的身高)36,175(~N ξ(单位:㎝),则该地公共汽车门的高度应设计为多高?
分析:实际应用问题,分析可知:求的是门的最低高度,可设其为)cm (x ,使其总体在不低于x 的概率值小于1%,即:%101.0)(=<≥x P ξ,从中解出x 的范围.
解:设该地公共汽车门的高度应设计高为x cm ,则根据题意可知:%1)(<≥x P ξ,由于)36,175(~N ξ, 所以,;01.061751)(1)(<⎪⎭
⎫ ⎝⎛-Φ-=<-=≥x x P x P ξξ 也即:;99.06175>⎪⎭
⎫ ⎝⎛-Φx 通过查表可知:;33.26
175>-x 解得:;98.188>x
即该地公共汽车门至少应设计为189cm 高.
说明:逆向思维和逆向查表,体现解决问题的灵活性.关键是理解题意和找出正确的数学表达式.
学生成绩的正态分布
例 某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?
分析:要求80分至90分之间的人数,只要算出分数落在这个范围内的概率,然后乘以总人数即可,而计算这个概率,需要查标准正态分布表,所以应首先把这个正态总体化成标准正态总体.
解:设x 表示这个班的数学成绩,则x 服从)10,80(2N 设10
80-=x Z 则z 服从标准正态分布)1,0(N . 查标准正态分布表,得:
5000.0)0(,8413.0)1(==ΦΦ
所
以,3413.05000.08413.0)0()1()10()10
80901080108080()9080(=-=∅-∅=<<=-<-<-=<<z p x p x p
∴163824.163413.048≈=⨯.
说明:这类问题最容易犯的错误是没有转化成标准正态分布就直接求解,一般地,我们在解决正态总体的有关问题时均要首先转化成标准正态总体.。