基本初等函数题型总结

合集下载

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序。

提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。

2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂。

例1-1.已知41<a ,则化简42)14(-a 的结果是( )。

A 、a 41-- B 、14--a C 、14-a D 、a 41- 【答案】D【解析】a a a 41)41()14(4242-=-=-,故选D 。

变式1-1.化简3a a ⋅-的结果是( )。

A 、65a - B 、65a -- C 、65a - D 、52a -【答案】B【解析】∵0≤a ,则656565312131213)()()()()(a a a a a a a a a --=--=--=-⋅--=⋅-=⋅-,故选B 。

变式1-2.已知31=+-x x ,求下列各式的值:(1)2121-+xx ;(2)22-+x x ;(3)2323-+xx 。

【解析】(1)∵52)(2)()(1221212122122121=++=+⋅+=+----x x xxx x xx ,∴52121±=+-x x ,又由31=+-x x 得0>x ,∴52121=+-xx ;(2)72)(2122=-+=+--x x x x ; (3)]1))[((])())[(()()(12121221212122121213213212323-++=+⋅-+=+=+-------x x xx xxx x xx xx xx52)13(5=-=。

(二)指数函数的图像和性质1、定义:一般地,函数x a x f =)((0>a 且1≠a )叫做指数函数,其中x 是自变量。

(整理)基本初等函数.

(整理)基本初等函数.

函数的概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。

记作:y =f (x ),x ∈A 。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。

注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。

2.构成函数的三要素:定义域、对应关系和值域 3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。

5.映射一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”。

映射和函数的区别:映射是两个集合之间的对应关系,集合A 所有元素在B 中有元素对应,集合B 中的元素在A 中不一定有对应的元素。

但是函数,自变量x 所有的值在因变量y 里面都有对应,而因变量y 的所有元素在自变量x 中也有对应; 6.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 7.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

精品基础教育教学资料,仅供参考,需要可下载使用!第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x , 所以g (x )=12(e x -e -x ).。

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

基本初等函数几个题型解答

基本初等函数几个题型解答

返回 已知函数y =(12)x 2-6x +17, (1)求函数的定义域及值域;(2)确定函数的单调区间.[提示] 求值域时,要先求x 2-6x +17的值域,再利用指数函数的图像进行求解.确定单调区间可先分解成y =(12)u ,u =x 2-6x +17,分别研究这两个函数的单调性,再按照复合函数的单调性写出函数的单调区间.返回[解] (1)设μ=x 2-6x +17,由于函数y =(12)μ及μ=x 2-6x +17的定义域为(-∞,+∞),故函数y =(12)x 2-6x +17的定义域为R.因为μ=x 2-6x +17=(x -3)2+8≥8,所以(12)μ≤(12)8,又(12)μ>0,故函数的值域为(0,1256]. 返回(2)函数μ=x 2-6x +17在[3,+∞)上是增函数,即对任意x 1、x 2∈[3,+∞)且x 1<x 2,有μ1<μ2,从而(12)μ1>(12)μ2,即y 1>y 2,所以函数y =(12)x 2-6x +17在[3,+∞)上是减函数,同理可知y =(12)x 2-6x +17在(-∞,3)上是增函数.返回在本例中,把“12”改为“a ”,a >0且a ≠1,讨论f (x )=a x 2-6x +17的单调性. 解:设u =x 2-6x +17=(x -3)2+8,则当x ≥3时,u 是增函数,当x <3时,u 是减函数.又因为当a >1时,y =a u 是增函数,当0<a <1时,y =a u 是减函数,所以当a >1时,原函数f (x )=a x 2-6x +17在(-∞,3)上是减函数,在(3,+∞)上是增函数.当0<a <1时,原函数f (x )=a x 2-6x +17在(-∞,3)上是增函数,在(3,+∞)上是减函数.例题:设a >0,且a ≠1,如果函数y =a 2x +2a x -1在[-1,1]上的最大值为14,求a 的值.[错解]∵y =(ax +1)2-2.又∵y 在[-1,1]上单调递增.∴x =1时,y 取得最大值.∴a 2+2a -1=14,即a 2+2a -15=0,∴a =3或a =-5(舍去).∴a =3. [错因] 错解的原因是将a x 当成了x ,从而错误地判断了y 在[-1,1]的增减性.[正解] 设t =a x ,若a >1,则t ∈⎣⎢⎡⎦⎥⎤1a ,a , 若0<a <1,则t ∈⎣⎢⎡⎦⎥⎤a ,1a , ∵y =(t +1)2-2,它关于t 在(-1,+∞)上单调递增. ∴当a >1时,y 在t =a 处取得最大值,∴a 2+2a -1=14,∴a =3.当0<a <1时,y 在t =1a 处取得最大值,∴⎝ ⎛⎭⎪⎫1a 2+2a -1=14,∴a =13. ∴a =3或a =13.1.已知函数f (x )=|2x -1|的图象与直线y=a 有两个公共点,求a 的取值范围 解:f (x )=|2x -1|的图象如下图所示:由图可知:当0<a <1时,函数f (x )=|2x -1|的图象与直线y=a 有两个公共点,故答案为:(0,1)2.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x 的图像依次交于A 、B 、C 、D 四点,求这四点从上到下的排列次序解:根据在第一象限内,底数越大指数函数的图象越靠近y 轴,在一个坐标系中画出函数y=(1/3)x ,y=(1/2)x ,y=2x ,y=10x 的图象如下图:由图象得,这四个点从上到下的排列次序是:D 、C 、B 、A .3.若直线y=3a 与函数y=|a x -1|(a >0,且a ≠1)的图像有两个公共点,求a 的取值范围○1如果a>1,则x<0时的图像在直线y=1的下方, 以y=1为渐近线向左伸展. 直线y=2a 在直线y=1的上方,与x<0时的图像无交点, 与x>0时的图像只有1个交点,与题意不符。

基本初等函数末专题整合

基本初等函数末专题整合

对数函数的应用举例
求解方程
对数函数可以用于求解一些方程,例如求解指数 方程。
金融计算
在金融学中,对数函数被广泛应用于计算复利、 折现等。
统计学
在统计学中,对数函数被用于对数据进行正态分 布或泊松分布的转换。
06
三角函数的性质与应 用
正弦函数的性质与应用
定义域:实数集 值域:[-1, 1]
周期性:最小正周期为2π
基本初等函数末专题整合
汇报人: 日期:
目录
• 函数与导数基础 • 一次函数的性质与图像 • 反比例函数的性质与图像 • 幂函数的性质与图像 • 对数函数的性质与图像 • 三角函数的性质与应用 • 极坐标系与极坐标方程
01
函数与导数基础
函数的概念与性质
01
02
03
函数的定义
函数是定义在非空数集之 间的一种对应关系,对于 每一个输入值,都有唯一 的输出值与之对应。
在一些情况下,我们可能需要计算幂函数的近似值。这时,我们可以使用泰勒级数来进行计算。例如,对于 $e^x$,其泰勒级数展开式为$\sum_{n=0}^{\infty} \frac{x^n}{n!}$。
05
对数函数的性质与图 像
对数函数的概念与性质
定义域与值域
对数函数的定义域为正实数, 值域为实数。
定义域:实数集 值域:[-1, 1]
周期性:最小正周期为2π
余弦函数的性质与应用
奇偶性:偶函数
导数:$f'(x) = -\sin x$,在区间(0, π/2)上单调递增,在区间(π/2, π)上 单调递减
有界性:在区间[0, π]上单调递减, 在区间[π, 2π]上单调递增
应用:在信号处理、电力、声学等领 域都有广泛的应用,如滤波器、调制 器、反射等

基本初等函数复习(题型最全、最细、最精)

基本初等函数复习(题型最全、最细、最精)

基本初等函数复习一、基础复习:1、a 的次方根: , x 叫a 的n 次方根根式的性质:(1)n n a )(= ,(),1+∈>N n n 且;(2)⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,2、分数指数幂与根式:=mna =-n a =1a =0a3、幂的运算性质:=⋅s r a a =÷s r a a =s r a )( =r ab )(4、指数式与对数式的互化:⇒=N a b5、对数的性质:(1)N (2)=1log a (3)=a a log6、对数恒等式:=Naa log=b a a log7、对数的运算法则:=⋅)(log N M a =)(log NMa =αM a log 8、换底公式:=b a log =b a log =n a b mlog 9、常用对数:=N 10log 自然对数:=N e log 10、幂、指、对函数函数的性质 二、典型例题: 1、指数、对数运算: 1、下列各式中,正确的是( )A .100=B .1)1(1=--C .74471aa=-D .53531aa=-2. 计算:210319)41()2(4)21(----+-⋅- = ;3.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a4.已知2x =72y =A ,且1x +1y=2,则A 的值是 A .7 B .7 2 C .±7 2 D .985.若a 、b 、c ∈R +,则3a =4b =6c ,则( )A .bac111+=B .b a c 122+=C .b a c 221+= D .ba c 212+=6. 若a<12,则化简4(2a -1)2的结果是A.2a -1 B .-2a -1 C.1-2a D .-1-2a7、计算下列各式的值(1(2);21lg5(lg8lg1000)(lg lg lg 0.066++++8、设1245100,2()a b a b==+求的值.9、已知4(),01,42xx f x a =<<+且(1)()(1)f a f a +-求的值;1231000(2)()()()...()1001100110011001f f f f ++++求的值.说明:如果函数()xf x =,则函数()f x 满足()(1)1f x f x +-=2、指数函数、对数、幂函数的图像: (1)定义考察:1、下列函数中指数函数的个数是 ( ). ①②③④A .0个 B.1个 C.2个 D.3个 2.下列函数是指数函数的是( )A. x y 5=B. x y +=25C. x y 52⋅=D. 15-=x y(2)定点问题1.函数0.(12>+=-a a y x 且)1≠a 的图像必经过点( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D2. 函数恒3()25x f x a -=+过定点 ( )A .(3 , 5)B .( 3, 7 )C .( 0, 1 )D .( 1, 0 ) 3.函数1log )()2(2+=-x x f 恒过定点___________ (3)图像问题1.当a >1时,函数y=log a x 和y=(1-a)x 的图像只可能是( )2如图中函数21-=xy 的图象大致是( )图3-73.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是( )4.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是( d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.5.图中所示曲线为幂函数n x y =在第一象限的图象,则1c 、2c 、3c 、4c 大小关系为 ( )A.4321c c c c >>>B.3412c c c c >>>C.3421c c c c >>>D.2341c c c c >>> 3、指数函数、对数函数的单调性、奇偶性 (1)单调性xyo 1Axyo1B xyo1Cxyo1Dxa =xby =xc y =xd y =yo1、比较下列每组中两个数的大小0.30.4 1.3 1.60.3 1.3111(1)2.1_____2.1; (2)()_____(); (3)2.1_____()555-550.70.543(4)log 1.9_____log 2; (5)log 0.2_____log 2; (6)log 2_____log 42、已知031log 31log >>b a ,则a 、b 的关系是 ( )A .1<b <aB .1<a <bC .0<a <b <1D .0<b <a <1 3.设10<<a ,使不等式531222+-+->x x x x a a 成立的x 的集合是4.下列函数中,在区间(0,1)上是增函数的是 ( ) A.y=-xB.y=log 21xC.y=31x D.y=-x 2+2x+15.(1)函数)26(log 21.0x x y -+=的单调增区间是________(2)已知log (2)a y ax =-在[0,1]是减函数,则a 的取值范围是_________6.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )(A )(0,1) (B )1(0,)3 (C )11[,)73(D )1[,1)77、 解下列不等式: (1)22332<-+x x ; (2)2332)21(2--+<x x x ; (3))1,0(5213222≠>>-++-a a a a x x x x8.如果函数2()(1)x f x a R a =-在上是减函数,求实数的取值范围 9、求下列函数的单调区间。

高考基本初等函数知识点总结

高考基本初等函数知识点总结

基本初等函数综合复习一、知识点总结 1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 . 2. 对数函数y =log a x (a >0,且a ≠1)的图象与性质定义 y =log a x (a >0,且a ≠1)底数a >10<a <1图象定义域 值域 R单调性 在(0,+∞)上是增函数在(0,+∞)上是减函数共点性 图象过定点 ,即x =1时,y =0函数值特点x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ 对称性函数y =log a x 与y =1log ax 的图象关于 对称【易错题1】 如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在 函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________。

【题模1】 函数图象(1)底数与图像位置关系:1、指数函数图象恒过(0,1)在第一象限是“底大图高”,2、对数函数图象恒过(1,0):在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”.3、幂函数图象恒过(1,1),在(1,1)右侧:是“指大图高”.2)函数图象变换①y =f (x )―――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――→关于y 轴对称y =f (-x ). ③y =f (x )―――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )――――――――――――――――――――→a >1,横坐标缩短为原来的倍,纵坐标不变0<a <1,横坐标伸长为原来的倍,纵坐标不变 y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去 y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象 y =f (|x |). 【讲透例题】1.设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)2、不论a 为何值时,函数图象恒过一定点,这个定点坐标是 .3. 函数()2e e x xf x x--=的图像大致为 ( ) A . B . C . D .5、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |)6.(多选)若函数y =a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则下列选项中正确的有( )A .a >1B .0<a <1C .b >0D .b <07、已知指数函数()x f x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .32B .23C .33D .3【相似题练习】1. 已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥ 2.函数f (x )=ln(x 2+1)的图象大致是( )3、 已知()g x 图像与x y e =关于y 轴对称,将函数()g x 的图像向左平移1个单位长度,得到()f x ,则()f x =( )A. 1x e +B.1x e -C.1x e -+D. 1x e -- 4、(多选题)为了得到函数ln()y ex =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 5、函数y =a x -a (a >0,且a ≠1)的图象恒过定点( , ) 6、函数(其中且的图象一定不经过第 象限。

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结作为全国高中生的普及性质考试,高考中必定会考到数学这个科目,而其中初等函数部分则是数学中的基础知识。

初等函数常常出现在多项式函数、指数函数、对数函数、三角函数、反三角函数等高中知识点当中。

因此,对于考生来说,掌握初等函数的知识点,对高考数学考试及日后的数学学习都非常重要。

本文就高考数学中的基本初等函数题型进行总结。

1. 最值问题求函数的最值是很常见的一种初等函数题型。

以一些典型的例子为参考,可更好地掌握这类题型。

例1:已知$f(x)=x^2-2x+2$,求$f(x)$的最小值。

解:首先,把$f(x)$变形为完全平方的形式。

即$$f(x)=(x-1)^2+1$$显然,当$x=1$时,$(x-1)^2$取最小值$0$。

故$f(x)$在$x=1$时取得最小值$1$。

例2:已知$f(x)=\dfrac{1}{2}x^2-3x+5$,求$f(x)$的最大值。

解:同样把$f(x)$变形为完全平方的形式。

即$$f(x)=\dfrac{1}{2}(x-3)^2+\dfrac{1}{2}$$显然,当$x=3$时,$(x-3)^2$取最小值$0$。

故$f(x)$在$x=3$时取得最大值$\dfrac{1}{2}$。

2. 解方程解初等函数的方程是另一种常见的题型。

以下为几个典型的例子,例3:已知$y=2^x-x$,求$y=0$时的$x$的值。

解:根据方程可得$$2^x-x=0$$$$x=2^x$$把函数$y=2^x-x$作图,可以看出在$x=1$时交于$y=0$。

因此,方程的解为$x=1$。

例4:已知$y=\dfrac{1}{2}\log_2(x-1)+2$,求$y=1$时$x$的值。

解:根据方程可得$$\dfrac{1}{2}\log_2(x-1)+2=1$$$$\log_2(x-1)=2$$$$x-1=2^2=4$$因此,方程的解为$x=5$。

3. 函数图像解题函数图像是初等函数题目中重要的一部分。

基本初等函数的题型归纳

基本初等函数的题型归纳

基本初等函数的题型归纳题型一:指对数的运算1.若210,5100==b a ,则b a +2=…………………………………………2.指数函数y=a x 的图像经过点(2,16)则a 的值是3.若329log =x ,则x 等于 4.5log 2139-的值是 5. 若y x y x lg lg )2lg(2+=-,则x 、y 的关系是题型二: 指对数的图像1.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是2.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是 题型三:求值1.已知(1),32121=+-a a求221,--++a a a a 的值 7 ,47 2.(2)若32121=+-xx ,求23222323-+-+--x x x x 的值. 18题型四 求范围 1.指数函数(2)x y a =-在定义域内是减函数,则a 的取值范围是2.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .3.函数)x 2x (log y 221-=的单调递减区间是_________________.4.在(2)log (5)a b a -=-中,实数a 的取值范围是 。

题型五 反函数1.设函数()[]()242,4f x x x =-∈,则()1f x -的定义域为 ( )2、函数y =1-1-x (x ≥1)的反函数是( ) A .y =(x -1)2+1,x ∈R B .y =(x -1)2-1,x ∈RC .y =(x -1)2+1,x ≤1D .y =(x -1)2-1,x ≤1 3.若f (x -1)= x 2-2x +3 (x ≤1),则f -1(4)等于( )A .2B .1-2C .-2D .2-函数与方程 零点题型一:零点的个数确定1、方程062=-+x x的实数解的个数有_______个. 2.已知定义在R 上的函数f(x)的图像是连续不断的,且有如下部分对应值表: x1 2 3 4 5 6 f(x) 136.135 15.552 -3.92 10.88 -52.488 -232.064可以看出函数至少有 个零点.题型二:零 点存在性定理的应用1. 函数2ln f x x x的零点所在的大致区间是 ( )A.1,2B.2,3C. 3,4D.,e 2.关于x 的方程27+=x x 的解所在的区间是( )A.0(,1)B.(1, 2)C.(2, 3)D.(3, 4)题型三:求参数的范围1.若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围 ( )A .()12,0-B .15,14⎛⎫-∞ ⎪⎝⎭C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭2.若关于x 的方程35+=a x 有根,则实数a 的取值范围是 .3. 若关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,则实数a 的取值范围是 4.已知函数2()(1)43f x a x ax =++-.当0a >时,若方程()0f x =有一根大于1,一根小于1,则a 的取值范围是。

基本初等函数基础题(答案解析)

基本初等函数基础题(答案解析)

基本初等函数基础题汇总一、单选题(共15小题)1.若a>b,则下列各式中恒正的是()A.lg(a﹣b)B.a3﹣b3C.0.5a﹣0.5b D.|a|﹣|b|【解答】解:选项A:令a=1,b=,则a﹣b=,而lg=﹣lg2<0,A错误,选项B:因为函数y=x3在R上单调递增,又a>b,所以有a3>b3,则a3﹣b3>0,B正确,选项C:因为函数y=0.5x在R上单调递减,又a>b,所以有0.5a<0.5b,即0.5a﹣0.5b<0,C错误,选项D:令a=1,b=﹣2,则|a|﹣|b|=1﹣2=﹣1<0,D错误,故选:B【知识点】指数函数的图象与性质、对数函数的图象与性质、幂函数的性质2.设a=40.4,b=log0.40.5,c=log50.4,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵a=40.4>1,0<b=log0.40.5<log0.40.4=1,c=log50.4<0,∴c<b<a.故选:D.【知识点】对数值大小的比较3.设lg2=a,lg3=b,则log512等于()A.B.C.D.【解答】C【知识点】对数的运算性质4.已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.2D.8【解答】解:设幂函数f(x)=xα(α为常数),∵幂函数f(x)的图象过点(2,),∴,∴,∴f(x)==,∴f()==,故选:A.【知识点】幂函数的概念、解析式、定义域、值域5.已知幂函数y=(k﹣1)xα的图象过点(2,4),则k+α等于()A.B.3 C.D.4【解答】解:∵幂函数y=(k﹣1)xα的图象过点(2,4),∴k﹣1=1,2α=4,∴k=2,α=2,∴k+α=4,故选:D.【知识点】幂函数的概念、解析式、定义域、值域6.已知x>0,y>0,a≥1,若a•()y+log2x=log8y3+2﹣x,则()A.ln|1+x﹣3y|<0 B.ln|1+x﹣3y|≤0C.ln(1+3y﹣x)>0 D.ln(1+3y﹣x)≥0【解答】解:由题意可知,a•()3y+log2x=log2y+,∴=<≤,令f(x)=,则f(x)<f(3y),易知f(x)在(0,+∞)上为增函数,由f(x)<f(3y)得:x<3y,∴3y﹣x>0,∴1+3y﹣x>1,∴ln(1+3y﹣x)>ln1=0,故选:C.【知识点】对数的运算性质7.若a,b,c满足,则()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:∵2a=3,∴a=log23,∵1=log22<log23<log25,∴b>a>1,∵3c=2,∴c=log32,∵0=log31<log32<log33=1,∴0<c<1,∴b>a>c,故选:D.【知识点】对数值大小的比较8.已知实数a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>b>a B.c>a>b C.b>c>a D.b>a>c【解答】解:易知,a,b,c>0.由﹣<0,则c>1,不妨令c=e.则<0,故0<2a<1,0<b<1.因为,故,所以,而函数f(x)=,,易知0<x<1时,f′(x)>0,f(x)在(0,1)上递增,故0<a<b<1.所以c>b>a.故选:A.【知识点】对数值大小的比较9.函数f(x)=a x﹣2﹣ax+2a+1恒过定点P,则点P的坐标为()A.(2,1)B.(2,2)C.(3,1)D.(2,2)或(3,1)【解答】解:①令x﹣2=0,得x=2,此时y=1﹣2a+2a+1=2,所以定点P(2,2),②令x﹣2=1,得x=3,此时y=a﹣3a+2a+1=1,所以定点P(3,1)综上所述,点P的坐标为(2,2)或(3,1),故选:D.【知识点】指数函数的单调性与特殊点10.若函数为对数函数,则a=()A.1 B.2 C.3 D.4【解答】解:∵函数为对数函数,∴a2﹣3a+2=0,则a=1(舍去)或a=2,故选:B.【知识点】对数函数的定义11.若实数a,b满足2a=2﹣a,log2(b﹣1)=3﹣b,则a+b=()A.3 B.C.D.4【解答】解:由2a=2﹣a可知,a为函数y=2x与y=2﹣x的交点A的横坐标,由log2(b﹣1)=3﹣b=2﹣(b﹣1)可知,b﹣1为函数y=log2x与y=2﹣x的交点B的横坐标,如图所示:,∵函数y=2x与函数y=log2x关于直线y=x对称,∴点A与点B关于点(1,1)对称,∴a+b﹣1=2,即a+b=3,故选:A.【知识点】指数式与对数式的互化、对数的运算性质12.函数f(x)=a x﹣2+3(a>0且a≠1)的图象恒过定点P,点P又在幂函数g(x)的图象上,则g(3)的值为()A.4 B.8 C.9 D.16【解答】解:∵f(x)=a x﹣2+3,令x﹣2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设幂函数g(x)=xα,把P(2,4)代入得2α=4,∴α=2,∴g(x)=x2,∴g(3)=32=9,故选:C.【知识点】幂函数的概念、解析式、定义域、值域13.已知幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则f(m)的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则m2﹣2m﹣2=1,且m2+m﹣2<0,求得m=﹣1,故f(x)=x﹣2=,故f(m)=f(﹣1)==1,故选:C.【知识点】幂函数的概念、解析式、定义域、值域、幂函数的性质14.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.【解答】解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=,故幂函数y=x a=,它的图象如图D所示,故选:D.【知识点】幂函数的图象15.从2,4,6,8,10这五个数中,每次取出两个不同的数分别为a,b,共可得到lga﹣lgb的不同值的个数是()A.20 B.18 C.10 D.9【解答】解:首先从2,4,6,8,10这五个数中任取两个不同的数排列,共A52=20有种排法,又,,∴从2,4,6,8,10这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb=的不同值的个数是:20﹣2=18.故选:B.【知识点】对数的运算性质二、填空题(共10小题)16.设函数f(x)=a x+1﹣2(a>1)的反函数为y=f﹣1(x),若f﹣1(2)=1,则f(2)=【解答】解:由题意得:函数f(x)=a x+1﹣2(a>1)过(1,2),将(1,2)代入f(x)得:a2﹣2=2,解得:a=2,故f(x)=2x+1﹣2,故f(2)=6,故答案为:6.【知识点】反函数17.若函数y=f(x)的反函数f﹣1(x)=log a x(a>0,a≠1)图象经过点(8,),则f(﹣)的值为.【解答】解:由已知可得log a8=,即a=8,解得a=4,所以f﹣1(x)=log4x,再令log4x=﹣,即4=x,解得x=,由反函数的定义可得f(﹣)=,故答案为:.【知识点】反函数、函数的值18.若函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),则实数m=.【解答】解:∵函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),∴函数y=log2(x﹣m)+1的图象过点(3,1),∴1=log2(3﹣m)+1∴log2(3﹣m)=0,∴3﹣m=1,∴m=2.故答案为:2.【知识点】反函数19.已知幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,则n=.【解答】解:∵幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,∴,解得n=2.故答案为:2.【知识点】幂函数的性质20.已知函数y=f(x)在定义域R上是单调函数,值域为(﹣∞,0),满足f(﹣1)=﹣,且对于任意x,y∈R,都有f(x+y)=﹣f(x)f(y).y=f(x)的反函数为y=f﹣1(x),若将y=kf(x)(其中常数k>0)的反函数的图象向上平移1个单位,将得到函数y=f﹣1(x)的图象,则实数k的值为()【解答】解:由题意,设f(x)=y=﹣a x,根据f(﹣1)=﹣,解得a=3,∴f(x)=y=﹣3x,那么x=log3(﹣y),(y<0),x与y互换,可得f﹣1(x)=log3(﹣x),(x<0),则y=kf(x)=﹣k•3x,那么x=,x与y互换,可得y=,向上平移1个单位,可得y=+1,即log3(﹣x)=,故得k=3,故答案为:3.【知识点】反函数21.若函数y=log a(x﹣7)+2恒过点A(m,n),则=()【解答】解:∵函数y=log a(x﹣7)+2恒过点A(m,n),令x﹣7=1,求得x=8,y=2,可得函数的图象经过定点(8,2).若函数y=log a(x﹣7)+2恒过点A(m,n),则m=8,n=2,则==2,故答案为:2.【知识点】对数函数的单调性与特殊点22.已知函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,在x∈(0,+∞)上是减函数,则实数m的值为.【解答】解:∵函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,∴m2﹣m﹣1=1,求得m=2,或m=﹣1.∵当x∈(0,+∞)时,f(x)=x1﹣m是上是减函数,∴1﹣m<0,故m=2,f(x)=x﹣1=,故答案为:2.【知识点】幂函数的性质23.已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],若函数y=f(x)在其定义域内有反函数,则实数t的取值范围是()【解答】解:函数f(x)=x2﹣3tx+1的对称轴为x=,若≤0,即 t≤0,则 y=f(x)在定义域上单调递增,所以具有反函数;若≥15,即 t≥10,则 y=f(x)在定义域上单调递减,所以具有反函数;当3≤≤12,即 2≤t≤8时,由于区间[0,3]关于对称轴的对称区间是[3t﹣3,3t],于是当或,即t∈[2,4)或t∈(6,8]时,函数在定义域上满足1﹣1对应关系,具有反函数.综上,t∈(﹣∞,0]∪[2,4)∪(6,8]∪[10,+∞).【知识点】反函数24.如图所示,正方形ABCD的四个顶点在函数y1=log a x,y2=2log a x,y3=log a x+3(a>1)的图象上,则a=()【解答】解:设B(x1,2log a x1),C(x1,log a x1+3),A(x2,log a x2),D(x2,2log a x2),则log a x2=2log a x1,∴,又2log a x2=log a x1+3,,即x1=a,,∵ABCD为正方形,∴|AB|=|BC|;可得a2﹣a=2,解得a=2.故答案为:2.【知识点】对数函数的图象与性质25.已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是.【解答】解:∵函数y=f(x)与y=g(x)的图象关于直线y=x对称,f(x)=x+log2(2x+2),设y=x+,则y﹣x=,∴2y﹣x=2x+2,∴2y=22x+2x+1,∴2x==﹣1,x=.互换x,y,得g(x)=,∵f(x)>log23>g(x),∴x+log2(2x+2)>log23>,解得0<x<log215.∴满足f(x)>log23>g(x)的x的取值范围是(0,log215).故答案为:(0,log215).【知识点】反函数三、解答题(共10小题)26.计算以下式子的值:(1)2lg2+lg25;(2);(3)(2)0+2﹣2•(2)﹣(0.01)0.5.【解答】解:(1)原式=lg4+lg25=lg(4×25)=lg100=2;(2)原式=====1;(3)原式=.【知识点】对数的运算性质、有理数指数幂及根式27.求值:(1);(2)log354﹣log32+log23•log34.【解答】解:(1)原式=+4+1+=7;(2)原式=log327+•=3+2=5.【知识点】有理数指数幂及根式、对数的运算性质28.计算下列各式的值:(1);(2)lg25+4.【解答】解:(1)原式===;(2)原式=2lg5+2lg2﹣2log23•log32=2(lg5+lg2)﹣2=2﹣2=0.【知识点】对数的运算性质、有理数指数幂及根式29.已知幂函数f(x)=(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.【解答】解:∵幂函数f(x)经过点(2,),∴=,即=∴m2+m=2.解得m=1或m=﹣2.又∵m∈N*,∴m=1.∴f(x)=,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2﹣a)>f(a﹣1)得解得1≤a<.∴a的取值范围为[1,).【知识点】幂函数的性质30.(1)化简:(a,b均为正数);(2)求值:lg4+2lg5+π0﹣4ln+.【解答】解:(1)===.(2)lg4+2lg5+π0﹣4ln+==2+1﹣4×=22.【知识点】对数的运算性质、有理数指数幂及根式31.已知函数f(x)为函数y=a x(a>0,a≠1)的反函数,f(5)>f(6),且f(x)在区间[a,3a]上的最大值与最小值之差为1.(1)求a的值;(2)解关于x的不等式.【解答】解:(1)∵f(x)为函数y=a x的反函数,∴f(x)=log a x,又∵log a5>log a6得:0<a<1,由f(x)在区间[a,3a]上的最大值与最小值之差为1,得:log a a﹣log a3a=1,解得:a=;(2)∵0<a<1,∴,∴1<x≤2.【知识点】反函数、指、对数不等式的解法32.计算:(1).(2)已知,,求实数B的值.【解答】解:(1)原式==.(2)由题意知:,,∴3B=9B﹣6=(3B)2﹣6,解得3B=3或﹣2(舍),∴B=1.【知识点】对数的运算性质33.已知函数f(x)=log a(kx2﹣2x+6)(a>0且a≠1).(1)若函数的定义域为R,求实数k的取值范围;(2)若函数f(x)在[1,2]上恒有意义,求k的取值范围;(3)是否存在实数k,使得函数f(x)在区间[2,3]上为增函数,且最大值为2?若存在,求出k的值;若不存在,请说明理由。

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

基本初等函数题型总结

基本初等函数题型总结

基本初等函数题型总结题型1 指数幂、指数、对数的相关计算【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+⎝⎛⎭⎫1252log .变式:1.计算下列各式的值:(1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27. (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06.题型2指数与对数函数的概念【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________.(2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________.(3)函数y =a x -5+1(a ≠0)的图象必经过点________.题型3 指数与对数函数的图象【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c【例2】函数y =2x+1的图象是( )【例3】函数y =|2x -2|的图象是( )【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________.变式:1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于c 1,c 2,c 3,c 4的a 值依次为( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,352.函数y =log a (x +2)+1的图象过定点( )A .(1,2)B .(2,1)C .(-2,1)D .(-1,1)3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1 D .b >a >14.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .0B .1C .2D .35.函数y =x 33x -1的图象大致是( )题型4指数与对数型函数的定义域、值域、单调性、奇偶性例 1函数f (x )=1-2x +1x +3的定义域为____________.2判断f (x )=x -x )(2231的单调性,并求其值域.3设0≤x ≤2,y =421-x -3·2x +5,试求该函数的最值.4求y =(log 21x )2-12log 21x +5在区间[2,4]上的最大值和最小值.变式:(1)函数f (x )=11-x+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .(-∞,+∞)(2)若f (x )=1log 21(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 3.求下列函数的定义域与单调性.(1)y =log 2(x 2-4x -5); (2)y =log 0.5(4x -3)4.讨论函数f (x )=log a (3x 2-2x -1)的单调性.5.函数f (x )=|log 21x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞)6.已知x ∈[2.8],求函数f (x )=⎝⎛⎭⎫log 2x 4·⎝⎛⎭⎫log 2x 2的最大值和最小值.7.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值以及y 取最大值时x 的值.题型5 指数与对数基本性质的应用【例1】求下列各式中x 的值:(1)log 2(log 4x )=0; (2)log 3(lg x )=1; (3)log (2-1)12+1=x .【例2】比较下列各组中两个值的大小:(1)ln 0.3,ln 2; (2)log a 3.1,log a 5.2(a >0,且a ≠1);(3)log 30.2,log 40.2; (4)log 3π,log π3.变式:(1)设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b(2)已知a =log 23.6,b =log 43.2,c =log 43.6,则( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b3.设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c4.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .z >y >x C .y >x >z D .z >x >y5.若函数f (x )=⎩⎪⎨⎪⎧a x ,x >1,(4-a 2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)题型6 指数与对数函数的综合应用【例1】已知函数f (x )=log a x +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.2已知函数f (x )=log a 1-mx x -1(a >0,a ≠1,m ≠1)是奇函数. (1)求实数m 的值;(2)探究函数f (x )在(1,+∞)上的单调性.题型7方程的根与函数的零点【例1】已知函数f (x )=x 2-2x -3,x ∈[-1,4].(1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点?【例2】在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.【例3】设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x ,x <0. (1)f (x )有零点吗?(2)设g (x )=f (x )+k ,为了使方程g (x )=0有且只有一个根,k 应该怎样限制?(3)当k =-1时,g (x )有零点吗?如果有,把它求出来,如果没有,请说明理由.变式(1)若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________.(2)函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________.(3)下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( )题型8 探究与创新【例1】(1)求2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1的值;(2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0,求x +y 的值.【例2】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1,设函数f (x )=(x 2-2)*(x -1),x ∈R ,若方程f (x )=c 恰有两个不同的解,则实数c 的取值范围是________.【巩固训练】1.化简(log 23)2-4log 23+4+log 213,得( ) A .2 B .2-2log 23 C .-2 D .2log 23-22.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C. f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数3.若函数f (x )= 2a -ax x 22+-1的定义域为R ,则实数a 的取值范围是________.4.lg 5+lg 20的值是________.5.已知2m =5n =10,则1m +1n =________.。

基本初等函数经典总结.doc

基本初等函数经典总结.doc

基本初等函数经典总结第十二讲基本初等函数一:教学目标1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质;2、理解基本初等函数的性质;3、掌握基本初等函数的应用,特别是指数函数与对数函数二:教学重难点教学重点:基本初等函数基本性质的理解及应用;教学难点:基本初等函数基本性质的应用三:知识呈现1.指数与指数函数1).指数运算法则:(1);(2);(3);(4);(5)(6)2).指数函数:形如指数函数0四:典型例题考点一:指数函数例1已知,则x的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵,∴函数在上是增函数,∴,解得.∴x的取值范围是.评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.例2函数在区间上有最大值14,则a的值是_______.分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围.解:令,则,函数可化为,其对称轴为.∴当时,∵,∴,即.∴当时,.解得或(舍去);当时,∵,∴,即,∴时,,解得或(舍去),∴a的值是3或.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.例3求函数的定义域和值域.解:由题意可得,即,∴,故.∴函数的定义域是.令,则,又∵,∴.∴,即.∴,即.∴函数的值域是.评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.例4求函数y=的单调区间.分析这是复合函数求单调区间的问题可设y=,u=x2-3x+2,其中y=为减函数∴u=x2-3x+2的减区间就是原函数的增区间(即减减→增)u=x2-3x+2的增区间就是原函数的减区间(即减、增→减)解:设y=,u=x2-3x+2,y关于u递减,当x∈(-∞,)时,u为减函数,∴y关于x 为增函数;当x∈[,+∞)时,u为增函数,y关于x为减函数.考点二:对数函数例5求下列函数的定义域(1)y=log2(x2-4x-5);(2)y=logx+1(16-4x)(3)y=.解:(1)令x2-4x-5>0,得(x-5)(x+1)>0,故定义域为{x|x<-1,或x>5}.(2)令得故所求定义域为{x|-1<x<0,或0<x<2}.(3)令,得故所求定义域为{x|x<-1-,或-1-<x<-3,或x≥2}.说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零.例6比较大小:(1)log0.71.3和log0.71.8.(2)(lgn)1.7和(lgn)2(n>1).(3)log23和log53.(4)log35和log64.解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以log0.71.3>log0.71.8.(2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论.若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2;若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53.(4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33=1=log66>log64,所以log35>log64.评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论.例7已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y取最大值时,x的值.分析要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域.解:∵f(x)=2+log3x,∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2=(2+log3x)2+2+2log3x=log23x+6log3x+6=(log3x+3)2-3.∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x2)有定义,就须,∴1≤x≤3.∴0≤log3x≤1∴6≤y=(log3x+3)2-3≤13∴当x=3时,函数y=[f(x)]2+f(x2)取最大值13.说明本例正确求解的关键是:函数y=[f(x)]2+f(x2)定义域的正确确定.如果我们误认为[1,9]是它的定义域.则将求得错误的最大值22.其实我们还能求出函数y=[f(x)]2+f(x2)的值域为[6,13].例8求函数y=log0.5(-x2+2x+8)的单调区间.分析由于对函数的底是一个小于1的正数,故原函数与函数u=-x2+2x+8(-2<x<4)的单调性相反.解.∵-x2+2x+8>0,∴-2<x<4,∴原函数的定义域为(-2,4).又∵函数u=-x2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数,∴函数y=log0.5(-x2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数.评析判断函数的单调性必须先求出函数的定义域,单调区间应是定义域的子集.考点三:幂函数例9.比较大小:(1)(2)(3)(4)解:(1)∵在上是增函数,,∴(2)∵在上是增函数,,∴(3)∵在上是减函数,,∴;∵是增函数,,∴;综上,(4)∵,,,∴例10.已知幂函数()的图象与轴、轴都无交点,且关于原点对称,求的值.解:∵幂函数()的图象与轴、轴都无交点,∴,∴;∵,∴,又函数图象关于原点对称,∴是奇数,∴或.例11、求函数y=+2x+4(x≥-32)值域.解析:设t =x,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.当t=-1时,ymin=3.∴函数y=+2x+4(x≥-32)的值域为[3,+).点评:这是复合函数求值域的问题,应用换元法.五:课后练习1、若a>1在同一坐标系中,函数y=a和y=log的图像可能是()ABCD2.求值+-()-=3.下列函数在上为减函数的是()A.B.C.D.答案:B4.已知x=,y=,求-的值5.若a<a,则a的取值范围是()A.a≥1B.a>0C.1>a>0D.1≥a≥0解析:运用指数函数的性质,选C.答案:C6.下列式子中正确的是()Alog=log-logB=log-logC=logDlog-log=log-8-。

基本初等函数综合复习

基本初等函数综合复习

基本初等函数综合复习题型一 幂函数的定义及应用例1.已知y =(m 2+2m -2)·211m x -+(2n -3)是幂函数,求m 、n 的值.探究提升 (1)判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:①指数为常数;②底数为自变量;③幂系数为1.(2)若一个函数为幂函数,则该函数解析式也必具有以上的三个特征.已知f (x )=(m 2+2m )21m m x +-,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.2.【江西省2014届高三新课程适合性考试文科数学】由幂函数n y x =的图像过点(8,2),则这个幂函数的定义域是( )A .[0,)+∞B .(,0)(0,)-∞+∞C .(0,)+∞D .R题型二 指数式与根式,对数式的化简,求值问题例2. 【2014届新余一中宜春中学高三年级联考数学(文)】已知函数)241(log )(22x x x f -+=,则4(tan )(tan )55f f ππ+=( ) A .1- B .0 C .1 D .2变式训练:1.【安徽省池州一中2014届高三第一次月考数学(文)】求值:()70log 23log lg 25lg 472013++++-= .2. 【江西师大附中高三年级2013-2014开学考试】已知函数,则 . 题型三 基本初等函数的单调性问题例3.【安徽省示范高中2014届高三上学期第一次联考数学(文)】已知函数3,0()2,0x x a x f x a x --<⎧=⎨-≥⎩,(0a >且1a ≠)是R 上的减函数,则a 的取值范围是( ) A .2(0,]3 B .1(0,]3C .(0,1)D .(0,2]变式训练 1.【宁夏银川一中2014届高三年级第一次月考文科】已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论准确的是( ) A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+ 2log ,0,()2,0x x x f x x >⎧=⎨<⎩1()(2)4f f +-=C .)()(1221x f x x f x >D .)()(1122x f x x f x >2.【广东省珠海市2014届高三9月摸底考试数学(文)】下列函数中,既是偶函数又在区间上单调递增的函数为( )A .B .C .D . 3. 【江西省2014届高三新课程适合性考试文科数学】函数()f x 的定义域为{|1}x R x ∈≠,对定义域中任意的x ,都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的递减区间是( ) A .5[,)4+∞ B .5(1,]4 C .7[,)4+∞ D .7(1,)4 题型四 基本初等函数的奇偶性与周期性问题例4【宁夏银川一中2014届高三年级第一次月考文科】已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则( )A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数变式训练1.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①②③④,其中是奇函数的是( ) A. ①② B. ①④ C. ②④ D. ③④2.【广东省广州市海珠区2014届高三入学摸底考试数学文】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A.1-B. 2-C. 2D.13.【吉林省白山市第一中学2014届高三8月摸底考试文】已知定义在R 上的偶函数f (x )满足:∀x ∈R 恒有f (x +2)=f (x )-f (1).且当x ∈[2,3]时,f (x )=-2(x -3)2.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A .(0,22)B .(0,33)C .(1,2)D .(1,3)题型五 函数的零点问题例5.【广东省汕头四中2014届高三第一次月考数学(文)】函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数为( ) 0,+∞()1y x -=2log y x =||y x =2y x =-cos y x x=2sin y x =2y x x =-x xy e e -=-A .0 B.1 C.2 D.3变式训练1.【安徽省池州一中2014届高三第一次月考数学(文)】定义在R 上的偶函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点的个数为( )A .2个B .4个C .6个D .至少4个2.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】在下列区间中函数()24x f x e x =+-的零点所在的区间为( ) A.1(0,)2 B.1(,1)2 C.(1,2) D.⎪⎭⎫ ⎝⎛23,1 3.【江西省2014届高三新课程适应性考试文科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .12 题型六 函数的图象问题例6【吉林省白山市第一中学2014届高三8月摸底考试文】象是 ( )变式训练1.【安徽省示范高中2014届高三上学期第一次联考数学(文)】函数()f x 的图像如图所示,若函数()y f x c =-与x 轴有两个不同交点,则c 的取值范围是( )A .(2,0.5)--B .[2,0.5)--C .(1.1,1.8)D .[2,0.5)(1.1,1.8)--2.【成都外国语学校2014级高三开学检测试卷】设()f x 是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则(2013)f +(2014)f =( )A 、3B 、2C 、1D 、03.【2014届新余一中宜春中学高三年级联考数学(文)】已知在函数()的图象上有一点,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题型七 基本初等函数的函数值大小比较问题例7.【宁夏银川一中2014届高三年级第一次月考文科】下列大小关系正确的是( )A. 3log 34.044.03<< B. 4.03434.03log << C. 4.04333log 4.0<< D. 34.044.033log <<变式训练1.【成都外国语学校2014级高三开学检测试卷】 设0.33log 3,2,log sin 6a b c ππ===,则( )A 、a b c >>B 、c a b >>C 、b a c >>D 、b c a >>2.【广东省广州市海珠区2014届高三入学摸底考试数学文】设||y x =[1,1]x ∈-(,||)P tt0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( )A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<题型八 基本初等函数的定义域,值域,取值范围问题例8 【吉林市普通中学2013—2014学年度高中毕业班摸底测试文】设函数的最小值为,则实数的取值范围是( )变式训练1.【江西省2014届高三新课程适应性考试文科数学】已知函数32,0()2,04x a x f x x x x ⎧≤<=⎨-+≤≤⎩的值域是[8,1]-,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,0)- C .[2,1]-- D .{2}-2.【江苏省苏州市2014届高三九月测试试卷】已知函数2, 0,()2, 0x x f x x x x -≤⎧⎪=⎨->⎪⎩,则满足()1f x <的x 的取值范围是______.【宁夏银川一中2014届高三年级第一次月考文科】已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______.3.【成都外国语学校2014级高三开学检测试卷】函数x x f 6log 21)(-=的定义域为____.4.【安徽省望江四中2014届高三上学期第一次月考数学(文)】函数的定义域为 。

高频考点之基本初等函数及性质题型归纳

高频考点之基本初等函数及性质题型归纳

基本初等函数及性质题型归纳一、零点存在性问题解题思想:①.<0;②f(x)在(a,b )上连续不断。

则f(x)在(a,b )上有零点。

例1.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为()A.11,32⎛⎫ ⎪⎝⎭B.12,23⎛⎫⎪⎝⎭C.23,34⎛⎫ ⎪⎝⎭D.3,14⎛⎫ ⎪⎝⎭练习:1.(2019·全国卷Ⅲ)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为()A.2 B.3 C.4 D.52.在下列区间中,函数f (x )=e x +3x -4的零点所在的区间为()A.10,4⎛⎫ ⎪⎝⎭ B.11,42⎛⎫ ⎪⎝⎭ C.1,12⎛⎫ ⎪⎝⎭D.312⎛⎫ ⎪⎝⎭,二、初等函数例2.(2021·四川省绵阳第一中学一模(文))函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;练习:(2021·广东·湛江二十一中高三阶段练习)若函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则a的取值范围为()A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫ ⎪⎝⎭C.21,52⎛⎫ ⎪⎝⎭D.()1,2三、函数性质例3.(2022·北京密云·高三期末)下列函数中,既是偶函数,又在()0,∞+上单调递增的是()A.cos y x =B.211y x =+C.22x x y -=-D.ln y x=练习:2.(2022·湖北·十堰市教育科学研究院高三期末)已知()y f x =是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则()2f -=()A.﹣2B.2C.﹣6D.62.(2022·河南南乐·高三阶段练习(文))已知函数()2f x +是R 上的偶函数,且()f x 在[)2,+∞上恒有()()()1212120f x f x x x x x -<≠-,则不等式()()ln 1f x f >的解集为()A.()()3,e e ,∞∞-⋃+B.1,e 2C.()3e,eD.()e,∞+3.(2022·海南·模拟预测)若函数22,,()4,x x m f x x x x m-⎧=⎨+>⎩ 是定义在R 上的增函数,则实数m 的取值范围是()A.(,2]-∞-B.[1,)-+∞C.(]{},21∞--⋃-D.{}[)21,∞-⋃-+四、函数零点问题解题思路:①分参法;②换元法;③分类讨论法;④初等函数图像交点法例4.(2021·安徽·淮南第一中学高三阶段练习(理))已知函数()()()24,532,3x x f x f x x ⎧+-≤<-⎪=⎨-≥-⎪⎩,若函数()()log a g x f x x =-有9个零点,则实数a 的取值范围为()A.()5,7B.(]5,7C.(]9,11D.()9,11练习:1.(2022·河南·温县第一高级中学高三开学考试(文))已知函数()22,0lg ,0x x x f x x x ⎧+≤⎪=⎨>⎪⎩,则函数()()11g x f x =--的零点个数为().A.1B.2C.3D.42.(2022·安徽淮北·一模(文))已知函数()2ln ,12,1x x f x x x >⎧=⎨+≤⎩,若m n <,且()()f m f n =,则n m -的取值范围是()A.3242ln2,e 1⎡⎫--⎪⎢⎣⎭B.3242ln2,e 1⎡⎤--⎢⎥⎣⎦C.323,e 1⎡⎤-⎢⎥⎣⎦D.323,e 1⎡⎫-⎪⎢⎣⎭五、函数图像问题解题思路:①看定义域;②奇偶性;③赋值法例5.(2022·山东菏泽·高三期末)已知函数()2e e 2x xf x x x --=+-的图象可能为()A.B.C.D.六、抽象函数的性质例6.(2022·安徽淮北·一模(理))已知函数()f x 的定义域为R ,()2f x +为奇函数,()21f x +为偶函数,则()A.()20f -=B.()10f -=C.()10f =D.()30f =练习:(2021·安徽·高三阶段练习(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]0,1x ∈时,()()41f x x x =-,则当[)2,1x ∈--时,()f x 的最小值是()A.181-B.127-C.19-D.13-七、比较大小解题思想:①指数、对数、幂函数的基本性质;②构造函数;③作出函数图像例8.(2022·辽宁丹东·高三期末)设345log 5,log 9,log 7a b c ===,则()A .c b a <<B .b a c <<C .a c b <<D .c a b<<练习:1.(2021·安徽·泾县中学高三阶段练习(文))已知11231111,,log 23ea b c π-⎛⎫⎛⎫==-= ⎪ ⎝⎭⎝⎭,则,,a b c 的大小关系为()A .c b a <<B .b a c <<C .a c b <<D .b c a<<2.(2022·广东茂名·一模)已知,,x y z 均为大于0的实数,且523log x yz ==,则,,x y z 大小关系正确的是()A .x y z >>B .x z y >>C .z x y >>D .z y x >>3.(2022·江西赣州·高三期末(理))实数a ,b ,c 满足22,ln e,33+=+=+=a c a b b c ,则()A .a b c <<B .a c b <<C .c a b <<D .c b a<<4.(2022·江西上饶·一模(理))设150a =,ln 7100b =,512ln 50c =,则,,a b c 的大小关系正确的是()A .a b c <<B .b c a <<C .c a b <<D .b a c <<八、函数综合问题解题思想:数形结合思想;分类讨论思想;函数思想等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数题型总结
题型1 指数幂、指数、对数的相关计算
【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23
lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+⎝⎛⎭⎫1252log .
变式:
1.计算下列各式的值:
(1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27
. (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06.
题型2指数与对数函数的概念
【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________.
(2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________.
(3)函数y =a x -5+1(a ≠0)的图象必经过点________.
题型3 指数与对数函数的图象
【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d
与1的大小关系是( )
A .a <b <1<c <d
B .b <a <1<d <c
C .1<a <b <c <d
D .a <b <1<d <c
【例2】函数y =2x
+1的图象是( )
【例3】函数y =|2x -2|的图象是( )
【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.
【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________.
变式:
1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于c 1,c 2,c 3,c 4的a 值依次为( )
A.3,43,35,110
B.3,43,110,35
C.43,3,35,110
D.43,3,110,35
2.函数y =log a (x +2)+1的图象过定点( )
A .(1,2)
B .(2,1)
C .(-2,1)
D .(-1,1)
3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )
A .0<a <b <1
B .0<b <a <1
C .a >b >1
D .b >a >1
4.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )
A .0
B .1
C .2
D .3
5.函数y =x 3
3x -1
的图象大致是( )
题型4指数与对数型函数的定义域、值域、单调性、奇偶性
例 1函数f (x )=1-2x +1x +3的定义域为____________. 2判断f (x )=
x -x )(2231的单调性,并求其值域.
3设0≤x ≤2,y =4
21-x -3·2x +5,试求该函数的最值.
4求y =(log 21x )2-12log 2
1x +5在区间[2,4]上的最大值和最小值.
变式:
(1)函数f (x )=11-x
+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .(-∞,+∞)
(2)若f (x )=1log 21
(2x +1)
,则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭
⎫-12,2 3.求下列函数的定义域与单调性.
(1)y =log 2(x 2-4x -5); (2)y =log 0.5(4x -3)
4.讨论函数f (x )=log a (3x 2-2x -1)的单调性.
5.函数f (x )=|log 2
1x |的单调递增区间是( )
A.⎝⎛⎦
⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞) 6.已知x ∈[2.8],求函数f (x )=⎝⎛⎭⎫log 2x 4·⎝⎛⎭
⎫log 2x 2的最大值和最小值.
7.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值以及y 取最大值时x 的值.
题型5 指数与对数基本性质的应用
【例1】求下列各式中x 的值:
(1)log 2(log 4x )=0; (2)log 3(lg x )=1; (3)log (
2-1)12+1
=x .
【例2】比较下列各组中两个值的大小:
(1)ln 0.3,ln 2; (2)log a 3.1,log a 5.2(a >0,且a ≠1);
(3)log 30.2,log 40.2; (4)log 3π,log π3.
变式:
(1)设a =log 32,b =log 52,c =log 23,则( )
A .a >c >b
B .b >c >a
C .c >b >a
D .c >a >b
(2)已知a =log 23.6,b =log 43.2,c =log 43.6,则( )
A .a >b >c
B .a >c >b
C .b >a >c
D .c >a >b
3.设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则( )
A .a <b <c
B .c <b <a
C .c <a <b
D .b <a <c
4.已知0<a <1,x =log a 2+log a 3,y =12
log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .z >y >x C .y >x >z D .z >x >y
5.若函数f (x )=⎩
⎪⎨⎪⎧ a x ,x >1,(4-a 2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)
题型6 指数与对数函数的综合应用
【例1】已知函数f (x )=log a x +1x -1
(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.
2已知函数f (x )=log a 1-mx x -1
(a >0,a ≠1,m ≠1)是奇函数. (1)求实数m 的值;(2)探究函数f (x )在(1,+∞)上的单调性.
题型7方程的根与函数的零点
【例1】已知函数f (x )=x 2-2x -3,x ∈[-1,4].
(1)画出函数y =f (x )的图象,并写出其值域;
(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点?
【例2】在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.
【例3】设函数f (x )=⎩
⎪⎨⎪⎧2x ,x ≥0,-x ,x <0. (1)f (x )有零点吗?
(2)设g (x )=f (x )+k ,为了使方程g (x )=0有且只有一个根,k 应该怎样限制?
(3)当k =-1时,g (x )有零点吗?如果有,把它求出来,如果没有,请说明理由.
变式(1)若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________.
(2)函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________.
(3)下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( )
题型8 探究与创新
【例1】(1)求2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1的值;
(2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0,求x +y 的值.
【例2】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧
a ,a -
b ≤1,b ,a -b >1,设函数f (x )=(x 2-2)*(x -1),x ∈R ,若方程f (x )=
c 恰有两个不同的解,则实数c 的取值范围是________.
【巩固训练】
1.化简(log 23)2-4log 23+4+log 213
,得( ) A .2 B .2-2log 23 C .-2 D .2log 23-2
2.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )
A .f (x )与g (x )均为偶函数
B .f (x )为偶函数,g (x )为奇函数
C. f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数
3.若函数f (x )= 2a -ax x 22+-1的定义域为R ,则实数a 的取值范围是________.
4.lg 5+lg 20的值是________.
5.已知2m =5n =10,则1m +1n
=________.。

相关文档
最新文档