计量经济学第五章
潘省初计量经济学——第五章
潘省初计量经济学——第五章引言计量经济学是经济学的一个重要分支,它应用数学和统计学的方法来分析经济现象。
潘省初是中国计量经济学的奠基人之一,他对计量经济学的研究做出了重大贡献。
本文将介绍潘省初计量经济学的第五章内容。
第五章:线性回归模型5.1 线性回归模型的基本概念线性回归模型是计量经济学中最常用的模型之一,其基本形式为:$$y_i = \\beta_0 + \\beta_1 x_{1i} + \\beta_2x_{2i} + \\ldots + \\beta_k x_{ki} + u_i$$其中,y i表示因变量,$x_{1i}, x_{2i}, \\ldots,x_{ki}$表示自变量,$\\beta_0, \\beta_1, \\beta_2, \\ldots, \\beta_k$表示回归系数,u i表示误差项。
5.2 最小二乘法估计最小二乘法是估计线性回归模型参数的一种常用方法。
它的基本原理是通过最小化观测值与模型预测值之间的差异来选择最优的回归系数。
5.3 假设检验在线性回归模型中,我们通常需要对回归系数进行假设检验。
常见的假设检验有:回归系数是否显著不为零、回归模型是否拟合良好等。
5.4 多重共线性多重共线性是指自变量之间存在高度相关性的情况,它会导致系数估计的不准确性。
在线性回归模型中探讨多重共线性的方法包括方差膨胀因子和条件数等。
5.5 异方差性异方差性是指误差项的方差不是常数的情况。
当未解决异方差性问题时,最小二乘法估计的结果会失效。
常见的处理异方差性的方法有加权最小二乘法和异方差稳健标准误等。
5.6 自相关性自相关性是指误差项之间存在相关性的情况。
在面对自相关性时,最小二乘法估计的结果会失效并产生无效的统计推断。
解决自相关性的方法包括残差自相关图和建模等。
结论第五章主要介绍了潘省初计量经济学中的线性回归模型。
通过最小二乘法估计,我们可以得到回归系数的估计值,并对其进行假设检验。
计量经济学第五章
∴ β 2的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β 2 − t α se( β 2 ),β 2 + t α se( β 2 )]
2 2
同理,β1的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β1 − t α se( β1 ),β1 + t α se( β1 )]
2 2
9
置信区间的宽度与估计量的标准差成 正比,因此,估计量的标准差常被喻 为估计量的精度(precision)
4
置信区间的图形表示
ˆ ˆ Pr( β 2 -δ ≤ β 2 ≤ β 2 + δ ) = 1 - α
置信区间
β2
样本估计值
ˆ β 2 -δ
ˆ β2
真实值存在、未知
置信下限
ˆ β2 + δ
置信上限
区间估计的理解: (1)随机区间包含 β 2 的概率为 1 − α (2)置信区间是一个随机的区间,它随样本的不 同而改变 5 (3)它的概率描述是在平均意义上而言的
步骤 2:给定显著性水平 α 和自由度 n − 2, 查表得到临界值 t α
0.3落在区间外, 所以拒绝H0假设
0.4268
0.5914
17
2、单侧检验 、
有些时候我们可能对要检验的结果具有某些先 验的信息, 例如, 知道 β > 0.3而不会β < 0.3。在 这种情况下,应该做单侧检验: H1 : β > 0.3 H0 : β ≤ 0.3
显著性检验法
显著性检验时利用样本结果,来证实一个零假设 的真伪的一种检验程序。 显著性检验的基本思想:在虚拟假设下,根据 基本思想: 基本思想 样本构造检验统计量(作为估计量)的抽样分布 (置信区间),以此决定是否接受零假设。
计量经济学第五章
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒
计量经济学第5章动态计量经济模型
单位:亿元
GDP 184937.4 216314.4 265810.3 314045.4 340902.8 401512.8 473104.0 519470.1 568845.2 636138.7
年 份
全社会固定资产 投资 88773.6 109998.2 137323.9 172828.4 224598.8 251683.8 311485.1 374694.7 446294.1 512020.7
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
256327.0 183801.3 21.54516 21.69429 21.57040 1.995547
不难看出,(5.13)式
Yt=α δ +β δ Xt+(1-δ )Yt-1+δ ut 与变换后的考
伊克模型的形式相似,我们也不难通过对(5.13)式 中Yt-1进行一系列的置换化为几何分布滞后的形式。
例1
表5.1
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
将式(5.10)代入(5.12),得到
Yt=α δ +β δ Xt+(1-δ )Yt-1+δ ut
用此模型可估计出α 、β 和δ 的值。
(5.13)
与考伊克模型类似,这里也存在解释变量为随机变 量的问题(Yt-1)。区别是考伊克模型中,Yt-1与扰动项 (ut-λ ut-1)同期相关,而部局部调整模型不存在同 期相关。在这种情况下,用OLS法估计,得到的参数估 计量是一个一致的估计量。
《计量经济学》第五章习题及参考答案.doc
第五章经典单方程计量经济学模型:专门问题一、内容提要本章主要讨论了经典单方程回归模型的几个专门题。
第一个专题是虚拟解释变量问题。
虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。
本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。
在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。
第二个专题是滞后变量问题。
滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。
本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。
如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。
而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS 法进行估计。
由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。
第三个专题是模型设定偏误问题。
主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。
模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。
在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。
在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。
计量经济学第五章异方差性
计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
计量经济学第五章 异方差
X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
《计量经济学》第五章最新完整知识
《计量经济学》第五章最新完整知识第五章多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=?=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定:假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量β,它要求β的估计β?满足下面的条件 22min ?)?(ββββX y X y S -=-? (2)其中()()∑∑==-'-=-?-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学第五章 异方差性
●异方差性的概念 ●异方差产生的后果 ●异方差的检测方法 ●异方差的补救
1
第一节 异方差性的概念
一、异方差性的实质 二、异方差产生的原因
2
一、异方差性的实质
设模型为
Yi 1 2 X 2i 3 X3i ... k X ki ui
如果对于模型中随机误差项,有:
8
第二节 异方差性的后果
一、对参数估计统计特性的影响 二、对参数显著性检验的影响 三、对预测的影响
9
一、对参数估计式统计特性的影响
1、仍然具有线性性 2、仍然具有无偏性
参数估计的无偏性仅依赖于基本假定中的零 均值 假定(即 E(ui ) 0 )。所以异方差的存在对 无偏性的成立没有影响。
3、仍然具有一致性 4、不再具有最小方差性
24
4、检验的特点
(1)适用于大样本; (2)检验递增型或递减型异方差; (3)只能判断异方差是否存在,在多个解释变 量的情下,对哪一个变量引起异方差的判断存在局 限; (4)该检验的功效取决于C,C值越大,检验功 效越好; Continued
25
Continued (5)两个子样回归所用的观测值个数如果不 相等时,也可以用该检验,需要通过改变自由度 和统计量的计算公式来调整; (6)当模型中包含多个解释变量时,应对每 个可能引起异方差的解释变量都进行检验。
26
三、White检验
1、基本思想:
构造残差平方序列与解释变量之间的辅助函 数,通过判断辅助函数的显著性来判断原方程是 否存在异方差。 一般而言,辅助回归的解释变量包括常数项、 原模型中的解释变量、解释变量平方、其交叉乘 积。
27
2、检验的基本步骤:
原模型为
计量经济学课件第5章
回归分析是通过样本所估计的参数来代替总体的 真实参数,或者说是用样本回归线代替总体回归线。
尽管从统计性质上已知,如果有足够多的重复抽 样,参数的估计值的期望(均值)就等于其总体的 参数真值,但在一次抽样中,估计值不一定就等于 该真值。
那么,在一次抽样中,参数的估计值与真值的差 异有多大,是否显著,这就需要进一步进行统计检 验。
单侧检验与双侧检验:P67。
5
只有将非预期结果作为原假设,才能控制拒绝原 假设事实上为真但偶然被拒绝的概率,即控制拒绝 原假设犯错误的概率。但反之不真,即在原假设为 假时,无法确切地知道将其错误地接受为真的概率。
即拒绝原假设,我们知道犯错误的概率,但接受 原假设,不知道犯错误的概率,所以最好说不拒绝 而不是接受。
由样本推断总体,可能会犯错误, 第一类错误:原假设H0符合实际情况,检验结果 将它否定了,称为弃真错误。 第二类错误:原假设H0不符合实际情况,检验结果 无法否定它。称为取伪错误。 例:P68,图5-1,图5-2。
8
5.1.3 假设检验的判定规则
判定规则:在检验一个假设时,首先计算样本统计量, 将样本统计值与预先选定的临界值比较,根据比较 结果决定是否拒绝原假设.即临界值将估计值的取 值范围分为两个区域,接受域和拒绝域,来决定是否 拒绝还是接受.
产生不正确推断时所面对的两类错误。
4
5.1.1 古典原假设和备选假设
原假设或者零假设(null hypothesis),待检验的 假设,用符号H0表示, 代表研究者的非预期取值. 例如,你预期参数是正值,则建立虚拟假设为:
H0: <=0 备选假设,对研究者预期取值的表述,用符号HA表示,
接上例,备选假设为: HA : >0
计量经济学第五章(新)
利用Eviews得回归方程为:
ˆ ln y 1.6524 0.3397 ln x1 0.9460 ln x2
t = (-2.73) p= (0.0144*) R2=0.995 (1.83) (0.085) (9.06) (0.000**)
对回归方程解释如下:斜率系数0.3397表示 产出对劳动投入的弹性,即表明在资本投入保持 不变的条件下,劳动投入每增加一个百分点,平 均产出将增加0.3397个百分点。同样地,在劳动 投入保持不变的条件下,资本投入每增加一个百 分点,产出将平均增加0.8640个百分点。两个弹 性系数相加为规模报酬参数,其数值等于1.1857 ,表明墨西哥经济的特征是规模报酬递增的(如 果数值等于1,属于规模报酬不变;小于1,则属 于规模报酬递减)。
20.5879 z 1 20.5879 x (4.6794 ) (4.3996 ** )
3、半对数模型和双对数模型
形式为:
ln y 0 1 x u y 0 1 ln x u
的模型称为半对数模型。 把形式为:
ln y 0 1 ln x u
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线:抛物线 t = a + b r + c r2 c<0
t:税收;
r:税率
设 z1 = r, z 2 = r2, 则原方程变换为 s = a + b z1 + c z 2 c<0
例 某生产企业在1981-1995年间每年的产量和总成本如下 表,试用回归分析法确定其成本函数。
表5-1 墨西哥的实际GDP、就业人数和实际固定资本
年份 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 GDP 114043 120410 129187 134705 139960 150511 157897 165286 178491 199457 212323 226977 241194 260881 277498 296530 306712 329030 354057 374977 就业人数 8310 8529 8738 8952 9171 9569 9527 9662 10334 10981 11746 11521 11540 12066 12297 12955 13338 13738 15924 14154 固定资产 182113 193749 205192 215130 225021 237026 248897 260661 275466 295378 315715 337642 363599 391847 422382 455049 484677 520533 561531 609825
潘省初计量经济学——第五章
16
令RSSj表示第j个模型(有kj个解释变量)的残差 平方和,并定义
ˆ
2 j
RSS j nkj
为第j个模型的的
2估计值。我们
ˆ
2 m
用表示包含全
部k个解释变量的模型的 2估计值。
17
表5-1 选择回归模型的准则
是Y的未来值,而 Yˆf是预测值。
20
上述三个准则都是基于预测的均方误差最小,但在 估计预测的均方误差时采用的假设有所不同,因而形 成各自的计算公式,孰优孰劣,并无定论,在实践中 可根据所用软件提供的输出结果选用其中一个作为模 型选择的准则。具体做法是比较备选的几个模型的
Cp、 Sp 或PC值,选其中最小的即可。
第五章 模型的建立与估计中的 问题及对策
1
本章内容
第一节 误设定 第二节 多重共线性 第三节 异方差性 第四节 自相关
2
OLS估计量令人满意的性质,是根据一组假设条件而 得到的。在实践中,如果某些假设条件不能满足,则 OLS就不再适用于模型的估计。下面列出实践中可能碰 到的一些常见问题:
l 误设定(Misspecification 或specification error) l 多重共线性(Multicollinearity) l 异方差性(Heteroscedasticity或Heteroskedasticity) l 自相关(Autocorrelation) l 随机解释变量(Stochastic explanatory variables)
(2) 由上一步得到的值 后用OLS法估计:
Yˆi(i=1,2,…,n),计算 Yˆi 2 , Yˆi3和 Yˆi 4 ,然
计量经济学课件-第五章
假定系数服从以下多项式分布
bj a0 a1 j ar jr j 1, 2, p
• 则:
b0 a0 b1 a0 a1
ar
b p
a0 a1 p
ar p r
• 如果 r 2
b0 a0 b1 a0 a1 a2
b0 b1 b2
b0
b0
b0
2
对原模型做Koyck变换
Yt b0 X t b0 X t 1 b0 2 X t 2
Ut
1
Yt 1 b0 X t 1 b0 X t 2 b0 2 X t 3
U t 1 2
Yt 1 b0 X t 1 b0 2 X t 2 b0 3 X t 3 U t 1
p
i 1
bt
i
称为长期(long-run)或均衡乘数(total
distributed-lag multiplier),表示X变动一个单位,由于
滞后效应而形成的对Y均值总影响的大小。
• (2)自回归分布滞后模型(autoregressive distributed-lag model)
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Yt a b0 X t b1Yt1 b2Yt2 bqYtq Ut
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
[经济学]计量经济学第五章
增长曲线模型
增长曲线模型
描述经济变量随时间变化的规律
第五章 扩展的单方程模型
第一节 变参数单方程模型 第二节 非线性单方程模型 第三节 非因果关系的单方程模型
1
第一节 变参数单方程模型
确定性变参数模型 随机变参数模型
2
基本概念
yi xi i i 1,2,, n
常参数模型
认为参数α,β在样本期内是常数 即认为产生样本观测值的经济结构保持不变,
原理
作为Gauss-Newton迭代法的改进
当给出参数估计值 ˆ 的初值 ˆ0 ,将残差平方 和式在 ˆ0 处展开泰勒级数,取二阶近似值
S ˆ
S
ˆ0
dS ˆ dˆ
ˆ 0
ˆ ˆ0
1 2
d 2S ˆ dˆ 2
则:yi xi i
其中:i i i i xi Ei 0
E xii E i xi i xi i xi2 0
vari Ei i i xi 2
E i2
16
非线性最小二乘原理(续)
非线性最小二乘法
使得残差平方和达到最小的ˆ 为β的非线性最
小二乘估计
求解ˆ 通常是令残差平方和对β的偏导等于零
单参数非线性模型
n i 1
yi f
xi , ˆ
df
xi ,
dˆ
ˆ
0
多参数非线性模型
其他几种通过变换可化为线性的非线性模型
13
模型概述(续)
不可化为线性的包含参数非线性的模型
完整的计量经济学 计量经济学第五章 线性回归的PPT课件
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
计量经济学第5章
q p q p
1 0 0
0
公式分子减分母的差额,反映了由于所分析的数 量指标的变动,使价值量指标增加或减少的数额。
2、质量指标综合指数分析
相对数分析:
q q
1
p1 p0
1
公式分子与分母的比值反映了所研究的质 量指标报告期比基期相对综合变动程度。 绝对数分析:
q p q p
价格总指数为
Kp
pq p q
20200 102.85% 19640
二、平 均 指 数
(一)平均指数的编制
平均指数的编制方法是“先对比,后平均” 从个体指数出发,并以价值量指标为权数, 通过加权平均计算来测定复杂现象的变动程度。
平均指数的计算形式
1、算术平均数指数: 公式中:
kq q1 q0
22 10 4 —
24 8 5
9900 4000 1200
14400 4000 1800
133 125 120 —
109 80 125 —
— 15100 20200
Iq
销售量总指数 价格总指数
i pq pq
q
Ip
i pq pq
p
第二节
综合指数和平均指数 一、综 合 指 数
(一)综合指数的编制
相对数分析:
商品销售额指数 = 销售量指数 × 销售价格指数
q p q p
1 0
1 0
=
q q
1 0
p0 p0
×
q p q p
1 1
1
0
绝对数分析:
q p q p ( q p q p ) ( q p q p )
1 1 0 0 1 0 0 0 1 1 1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 用有约束模型(R)求出残差(resid); 2. 以残差(resid)为因变量,所有的说明自变量做 自变量进行回归分析; 3. 原假设: 新加说明变量的系数为零,计算统计 量LM=nR² ~X² (J, a) • n 为表示样本数, R² 表示以残差为因变量进 行回归分析得到的R² 值。
12
用Eviews的多重共线性检验1
相关系数法 首先同时选择所有的自变量; 然后双击-出现选择栏时点击 Open Group/View/Correlations; 观察各自变量之间的大小。
13
用Eviews的多重共线性检验2
VIF(Variance Inflation Factor)法 方差扩大因子法—VIF>10时严重。 如果完全共线性时,出现“Near Singular Matix) • 计算自变量的VIF。(存方程时不妨命名为eqxx)。它 是xx为因变量,其余变量为自变量的方程。 • 主窗口命令行输入scalar vifxx=1/(1-eqxx.@R² )发 现新标量vifxx /同时主窗口的左下角出现“vifxx successfully created”/双击vifxx时,主窗口的左下角 出现VIF值。
第五章
回归分析中常见的 问题及对策
本章学习的主要内容
•误设定(misspecification or specification) •多重共线性(multicollinearity) •异方差性(heteroskedasticity) •自相关(autocorrelation)
2
一、误设定模型的检验
14
用Eviews的多重共线性对策
Quick/Estimate Equation的对话框中 对数法: 直接输入log(Y) c log(X1) log(X2)… 或 差分法: 输入Y-Y(-1) C X1-X1(-1) X2-X2(-1)… 但差分常常会丢失一些信息,运用时应慎重。
多重共线性多出现在横截面资料上。
5
3.信息基准值检验 (information rierion)
•无约束模型(U)与有约束模型(R) 中各得出信息值AIC, SC ** 以信息值AIC, SC小的为准采用。
6
4.模型的非线性检验
Yi 0 1 X 1i 2 X 2 i k X ki i
23
2.Durbin-Watson检验法
∑(et-e)2 DW= ∑et2
et =øet-1+ut
DW=2(1-ǿ) Durbin-Watson stat值 DW接近0时(ǿ= +1),有正相关; DW大约2时(ǿ= 0),无自相关; DW接近4时(ǿ= -1),有负相关。
24
ǿ=
∑etet-1
∑et-12
i=1,2…,n
1. 求出残差(resid); 2. 以残差(resid)为因变量, X2i , X3i, X2i ^2,X3i ^2, X2iX3i,做自变量进行回归分析; 估计后的方程可以写成 ˆ ˆ X ˆ X ˆ X e Y
i 0 1 1i 2 2i ki ki i
19
用Eviews的异方差性对策1
如建立模型为Yi=0+1Xi+2X2i+ℇi时,
点击Equation-Estimate/选择Option
出现对话框时,选择 Heteroskedasticity Consistent Covariance--OK
20
用Eviews的异方差性对策2
如建立模型为Yi=0+1Xi+2X2i+ℇi时, 在命令窗口上 genr resid11=resid² 以resid11或log(resid11)作为因变量, Xi ,X2i,Xi2,X2i2, XiX2i,作为自变量进行回归分析 重现在在命令窗口上 genr resid12=resid 点击Equation-Estimate/选择Option出现对 话框时,选择“Weighted LS/TSLS” Weight框中写入“1/resid12”—OK Equation-Estimate中写入Yi Xi X2i—OK
22
诊断方法
1. 用残差的散点图分析(residual plotting) 时间变量or因变量作为横坐标,resid作为 纵坐标画出散点图—观察趋势。 时间变量的生成法: 主命令窗口上写入genr T=@trend(1)+1 选择T与resid以后Open group/Quick/Graph/Scater Diagram-Show Option选择后右下角中点击connect points--OK
i=1,2…,n
原假设: b4 = b5 = b6 =0 计算统计量LM=nR²~X² (J, a) 。
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒 绝原假设即应加新变量。
8
用Eviews的误设定检验2
• 首先估计出一般方程 • View/Coefficient Tests/Redundant Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息 值小的结论是应采纳的。
9
用Eviews的误设定检验3
15
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。横截面资料上。
16
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时, 以随机项(resid)的估计值作为纵坐标, 因变量(Yi )作为横坐标作出散点图。 观察残差的绝对值分布比较随机,无明显的规 律,可判断为不存在异方差性。
17
2.怀特(White)检验法
如果模型为Yi=0+1Xi+2X2i+ℇi时, 求出残差(resid) 计算出残差(resid²) 以resid² 作为因变量, Xi ,X2i,Xi2,X2i2, XiX2i, 计算nR2~X2(J, a)分布, 在这里
n为样本数 R2为第二次回归分析时的决定系数 J为第二次回归分析时的自变量数。
3.用Eviews的LM检验
如建立模型为Yt=0+1Xt+2X2t+ℇt时, Equation-Estimate中View/Residual Test/Serial Correlation LM Test—OK
View/Residual Test/ARCH LM Test—OK
25
21
四、自相关的检验及对策
Cov (εj ,εj)=0 (i不等于j)不成立,则扰动项自相关 (Serial correlation)。 原因: (1)扰动项的刺激影响往往不止持续一个时期。 (2)误设定(遗漏)or不正确的函数形式会导致。 后果: -用OLS估计不具有最小方差,(不是BLUE) -无法信赖参数的置信区间或假设检验结果。
10
二、多重共线性的检验及对策
诊断方法 • 系数估计值的符号不对; • 参数估计值不稳定; • R2很大,但重要的自变量 t 值很低; • 自变量之间呈高度相关(正负0.8~0.9) 则表明多重共线性存在。
11
对策:
• 去掉关系不大的变量,但应注意遗漏变量问题; • 重新建立模型(差分或对数处理); • 利用事先掌握的信息变换模型; (如:Cobb-Douglas函数中K与L之间存在多重 共线性,且它们的系数之和等于1) • 增加样本数.
LM检验法
如建立模型为Yt=0+1Xt+2X2t+ℇt时,
1.求出残差resid(et) 2.resid作为因变量, Xt,X2t,et-1作为自变量进行 回归分析 3.得出的方程为
et = b10+b1Xt+b2X2t+øet-1
4.检验H0: ø=0 (如P阶时ø1=ø2=…øp=0) 5.计算LM=nR2 ~X2(1,a) X2(p,a)
适合性检验(joint significance test) LM检验(Lagrange Multiplier test) 信息基准值检验(information crierion) 模型的非线性检验
3
1.适合性检验(joint significance test)
Yi 0 1 X 1i 2 X 2 i k X ki i
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现v_hat • 第三,估计出新的回归方程 即选择Quick/Estimate Equation后写入 v_hat c xi x2i x3i… • 命令scalar LM=@regobs*@R² --Enter 双击LM时,在下边出现LM值./或直接计算。
26
18
作为自变量进行回归分析 (H0: a1=a2=a3=a4=a5)
3.用Eviews的检验法
• 建立一般模型 • View/Residual Test/White Heteroscedasticity/选择(no crossterms)与 (crossterms)会出现不同的检验结果。 • 用上面的F值(P值)判断是否拒绝假设。 no crossterms—无交叉项XiXi+1 Crossterms—有交叉项XiXi+1