2019年九年级数学上期末试卷及答案

合集下载

2019--2020学年第一学期期末考试试卷及答案

2019--2020学年第一学期期末考试试卷及答案

2019-—2020学年第一学期期末考试试卷九年级 数学一.选择题:(本大题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请将正确选项的代号填在左边的括号里. 1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程中是一元二次方程的是( )A .B .C .D .3.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性 4 已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47->k B .047≠-≥k k 且 C .47-≥k D .047≠->k k 且 5.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .106.如图,点O 为优弧ACB 所在圆的圆心,AOC 108∠=,点D 在AB 的延长线上,BD BC =,则D ∠= . A .540 B . 720 C . 270 D . 3007.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,下列结论正确的是( )A 不等式ax 2+bx+c <0的解集是X>3或X<-1 B 不等式ax 2+bx+c <0的解集是-1<X<3 012=+x 12=+x y 012=+x 0122=++x xDB A O8.已知实数a ,b 分别满足,,且,则的值是( )A . 11B . -7C . 7D . -119.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A. 4πB. 3πC. 2πD. 2π10. 已知二次函数()的图象如图所示,有下列4个结论:①②;③;④;其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题:(本题共8小题;每小题4分,共32分,不需写解答过程,请把结果填在横线上。

山西省太原市2019届九年级上期末考试数学试题含答案

山西省太原市2019届九年级上期末考试数学试题含答案

山西省太原市2019届九年级上期末考试数学试题含答案—学年第一学期期末考试九年级数学一、选择题(每小题2分,共20分)1、在平面直角坐标系中,反比例函数1y x=的图象位于( ) A.第二、四象限 B.第一、三象限 C.第一、四象限 D.第三、四象限2、若23a b b -=,则ab 等于( ) A. 13 B. 23 C. 43 D. 533、一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是( )4、校运动会上甲、乙、丙、丁四名选手参加100米决赛,赛场有1、2、3、4条跑道。

如果选手以随机抽签的方式决定各自的跑道,则甲抽到1号跑道,乙抽到2号跑道的概率是( )A. 14B. 16C. 112D. 1245、已知△ABC ∽△'''A B C ,△'''A B C 的面积为6 ,周长为△ABC 周长的一半,则△ABC 的面积等于( )A.1.5cm 2B.3cm 2C.12cm 2D.24cm 26、如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )A 、(3)(4)(1)(2)B 、(4)(3)(1)(2)C 、(4)(3)(2)(1)D 、(2)(4)(3)(1)7、如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M 下的影长在地面上的变化情况是( )A 、逐渐变短B 、先变短后变长C 、先变长后变短D 、逐渐变长8、若A (3,y 1),B (2,y 2)在函数2y x=的图象上,则y 1,y 2大小关系是( ) A 、y 1>y 2 B 、y 1=y 2 C 、y 1<y 2 D 、无法确定9、从一块正方形铁皮的四角上各剪去一个边长为3cm 的小正方形,制成一个无盖的盒子,若盒子的容积为300cm 3,则铁皮的边长为( ) A 、16cm B 、14cm C 、13cm D 、11cm10、一次函数y ax a =-与反比例函数(0)ay a x=≠在同一平面直角坐标系中的图象可能是( )二、填空题(每小题3分,共18分)11、已知1x =是方程240x x c -+=的一个根,则c 的值是 . 12、如图,已知直线,分别交直线m 、n 于点 A 、C 、D 、E 、F ,AB =5cm ,AC =15cm ,DE =3cm ,则EF 的长为 cm.13、一个不透明的袋子中有1个白球、3个黄球和2个红球,这些球除颜色外都相同. 将袋子中的球搅拌均匀,从中一次随机摸出两个球都是黄球的概率为 .14、将一副三角尺按如图所示的方式叠放在一起,边AD 不BC 相交不点E,则BE EC的值等于15、如图是反比例函数3y x =与7y x=-在x 轴上方的图像,点C 是y 轴正半轴上的一点,过点C 作AB//x 轴分别交这两个图象于点A,B.若点P 在x 轴上运动,则△ABP 的面积等于 .16、如图,正方形纸片ABCD 的边长为12,E,F 分别是边AD,BC 上的点,将正方形纸片沿EF 折叠,使得点A 落在CD 边上的点'A 处,此时点 落在点'B 处.已知折痕EF =13,则AE 的长等于三、解答题(本大题含8个小题,共62分) 17.(本题5分) 解方程: 2210x x +-=A B C是以点O为位似中心的位似图形,它们18.(本题7分)如图,△ABC 与△'''的顶点都在正方形网格的格点上.(1)画出位似中心O;A B C的相似比为,面积比为(2)△ABC 与△'''19.(本题8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求BC的长.20.(本题8分)晚上,小亮在广场上乘凉.中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照亮灯.知小亮的身高1.6m.(1)图中画出小亮在照明灯P照射下的影子BC;(2)如果灯杆高PO=12m,小亮不灯杆的距离BO=13m,求小亮影子BC的长度.21. (本题8分)如图,在△ABC 中,AB=8cm,BC=16cm,动点P从点A开始沿AB运动,速度为2cm/s;动点Q从点B开始沿BC运动,速度为4cm/s.设P、Q两点同时运动,运动时间为ts(0<t<4),当△QBP不△ABC 相似时,求t的值.22. (本题10分)数学活动——探究特殊的平行四边形.问题情境如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC.请你添加条件,使它们成为特殊的平行四边形.提出问题(1)第一小组添加的条件是“AB∥CD”,则四边形ABCD是菱形.请你证明;(2)第二小组添加的条件是“∠B=90°,∠BCD=90°”,则四边形ABCD是正方形.请你证明.23. (本题6分)说明:从(A),(B)两题中任选一题做答.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能多售出40件.(A)在降价的情况下,要使该商品每天的销售盈利为1800元,每件应降价夗少元?(B)为了使该商品每天销售盈利为1980元,每件定价多少元?我选择:24. (本题10分)说明:在解答“结论应用”时,从(A),(B)两题中仸选一题做答. 问题探究启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接AC,BD,如果△ABC与△BCD的面积相等,那么AD∥BC 在小组交流时,他们在图(1)中添加了如图所示的辅助线,AE⊥BC于点E,DF⊥BC于点F.请你完成他们的证明过程.结论应用在平面直角坐标系中,反比例函数(0)my x x=≠的图象经过A (1,4),B (a ,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D. (A )(1)求反比例函数的表达式;(2)如图(2),已知b =1,AC ,BD 相交于点E ,求证:CD ∥AB (B )(1)求反比例函数的表达式;(2)如图(3),若点B 在第三象限,判断并证明CD 与AB 的位置关系 我选择:参考答案1、B2、D3、A4、C5、D6、C7、B8、C9、A 10、D 11、3 12、613、15 14315、5 16、1692417、18、解:(1)答案如图所示,点O 为所画的位似中心(2)2:1; 4:119、解:△ABO是等边三角,AB=4所以,OA=OB=AB=420、21、22、23、24、11 / 11。

2019届天津市河西区九年级上期末数学试卷【含答案及解析】

2019届天津市河西区九年级上期末数学试卷【含答案及解析】

2019届天津市河西区九年级上期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍 B.8倍 C.4倍 D.2倍2. 下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3. 下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A.某种幼苗在一定条件下的移植成活率B.某种柑橘在某运输过程中的损坏率C.某运动员在某种条件下“射出9环以上”的概率D.投掷一枚均匀的骰子,朝上一面为偶数的概率4. 正六边形的边长为2,则它的面积为()A. B. C. D.5. 袋中装有除颜色外完全相同的a个白球、b个红球、c个黄球,则任意摸出一个球是黄球的概率为()A. B. C. D.6. 如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m7. 下列说法正确的是()A.两个大小不同的正三角形一定是位似图形B.相似的两个五边形一定是位似图形C.所有的正方形都是位似图形D.两个位似图形一定是相似图形8. 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b) B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1) D.(﹣a,﹣b﹣2)9. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B.C. D.10. 过以下四边形的四个顶点不能作一个圆的是()A.等腰梯形B.矩形C.直角梯形D.对角是90°的四边形11. 如图,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,连接ED,图中的相似三角形的对数为()A.4对 B.6对 C.8对 D.9对12. 二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题13. 两地的实际距离是2000m,在绘制的地图上量得这两地的距离是2cm,那么这幅地图的比例尺为.14. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.15. 在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△A′BO′,点A、O旋转后的对应点为A′、O′,那么AA′的长为.16. 如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是.17. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.18. 将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、解答题19. 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.20. 学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次获取的牌不能放回.(1)若每人随机取手中的一张牌进行比较,请列举出所有情况;(2)并求学生乙本局获胜的概率.21. 如图,在△ABC中,DE∥BC,分别交AB、AC于点D、E,若AD=3,DB=2,BC=6,求DE 的长.22. 已知二次函数y=2x2﹣4x+1(1)用配方法化为y=a(x﹣h)2+k的形式;(2)写出该函数的顶点坐标;(3)当0≤x≤3时,求函数y的最大值.23. 如图,CD是圆O的弦,AB是直径,且CD⊥AB,垂足为P.(1)求证:PC2=PA•PB;(2)PA=6,PC=3,求圆O的直径.24. 已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.(1)如图1,求证:ED为⊙O的切线;(2)如图2,直线ED与切线AG相交于G,且OF=1,⊙O的半径为3,求AG的长.四、填空题25. 如图,抛物线(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【解答】解:∵(﹣5)=0∴2﹣5=0,∴方程(﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程2+2+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD =70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣2﹣2+c转化成顶点坐标式为y=﹣(+1)2+c+1,又知二次函数的开口向下,对称轴为=﹣1,故当=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是4.【解答】解:把=2代入方程2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(+2)2﹣1.【解答】解:由“左加右减”的原则可知,二次函数y=22的图象向下平移1个单位得到y=22﹣1,由“上加下减”的原则可知,将二次函数y=22﹣1的图象向左平移2个单位可得到函数y=2(+2)2﹣1,故答案是:y=2(+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是2﹣6+4=0.【解答】解:设雕像的上部高m,则题意得:,整理得:2﹣6+4=0,故答案为:2﹣6+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=27°时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴=,∴1=,2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移2个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣+;(2)根据题意,得:(﹣+)=384,解得:=18或=32,∵墙的长度为24m,∴=18;(3)设菜园的面积是S,则S=(﹣+)=﹣2+=﹣(﹣25)2+∵﹣<0,∴当<25时,S随的增大而增大,∵≤24,∴当=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=,则AE=2,AH=,∵AE=EC,∴AC=2AH=2,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2,∴DC=CE=2,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣2+2+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=+b的图象l经过抛物线上的点C(m,n),∴3+b=0,∴b=﹣3,∴一次函数的解析式为y=﹣3,∵直线l与抛物线只有一个公共点,∴方程﹣3=﹣2+2+3有两个相等的实数根,∴(﹣2)2+4(3+3)=0,解得=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2019届九年级上学期期末考试数学试题一、选择题(每小题3分,共30分)1.cos30°的值是()A.1B.C.D.2.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6B.﹣2C.2D.63.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.抛物线y=(x+2)2﹣1可以由抛物线y=x2平移得到,下列平移方法中正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5D.107.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+160)C.160米D.360米9.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 C.0<x<1B.x<﹣2D.﹣2<x<0或x>110.如图,若二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则( 【①二次函数的最大值为 a +b +c ;②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是()A .1B .2C .3D .4二、填空题(每小题 3 分,共 15 分)11.抛物线 y =3(x ﹣2)2+5 的顶点坐标是.12.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排 21 场比赛,应邀请多少个球队参赛?设邀请 x 个球队参赛,根据题意,可列方程为.13.如图,某商店营业大厅自动扶梯AB 的倾斜角为 31°,AB 的长为 12 米,则大厅两层之间的高度为米.结果保留一位小数)参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】14.如图,在平面直角坐标系中,矩形 OABC 的 两边 OA ,OC 分别在 x 轴和 y 轴上,并且OA =5,OC =3.若把矩形 OABC 绕着点 O 逆时针旋转,使点 A 恰好落在 BC 边上的 A 1处,则点 C 的对应点 C 1 的坐标为.( ,15.如图,A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 △4,则 OAB 的面积是.三、解答题16.(11 分)(1)计算 2tan60°(2)解方程:2x 2+3x ﹣1=017. 8 分)如图,一次函数 y =kx +b 的图象与反比例函数 y = 的图象交于点 A (﹣3,m +8)B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式;(△2)求 AOB 的面积.18.(8 分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表项目机器人3D打印航模其他男生(人数)7m25女生(人数)942n根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.19.(7分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.20.(7分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(9分)如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?22.(11分)如图(1),△Rt ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(△1)中的ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.0 , y23.(14 分)如图,已知抛物线 y =ax 2+ x +c 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,且A (2, ) C (0,﹣4),直线 l : =﹣ x ﹣4 与 x 轴交于点 D ,点 P 是抛物线 y =ax 2+ x +c 上的一动点,过点 P 作 PE ⊥x 轴,垂足为 E ,交直线 l 于点 F .(1)试求该抛物线表达式;(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;(3)如图(2),过点 P 作 PH ⊥y 轴,垂足为 H ,连接 AC .①求证:△ACD 是直角三角形;②试问当 P 点横坐标为何值时,使得以点 P 、C 、H 为顶 点的三角形与△ACD 相似?参考答案一、选择题1.解:cos30°=.故选:B.2.解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.3.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在△Rt OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.解:俯视图从左到右分别是2,1,2个正方形,如图所示:.故选:B.5.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选:B.6.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==∴AO=3,,在△Rt AOB中,由勾股定理得:AB=故选:C.7.解:如图,==5,,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选:A.8.解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在△Rt ABD中,BD=AD•tan30°=120×在△Rt ACD中,CD=AD•tan60°=120×∴BC=BD+CD=160(m).故选:C.=40=120(m),(m),9.解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.解:①∵二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二、填空题(本大题共5个小题每小题3分,共15分)11.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为:(2,5).12.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.13.解:在△Rt ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.14.解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,NO=∠A1MO=90°,由题意可得:∠C1∠1=∠2=∠3,则△A1△OM∽OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x =± (负数舍去),则 NO = ,NC 1=,故点 C 的对应点 C 1 的坐标为:(﹣ ,故答案为:(﹣ ,).).15.解:∵A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 4,∴当 x =2 时,y =2,即 A (2,2),当 x =4 时,y =1,即 B (4,1).如图,过 A ,B 两点分别作 AC ⊥x 轴于 C ,BD ⊥x 轴于 D ,则 S △AOC =S △BOD = ×4=2.∵S 四边形 AODB = △S AOB + △S BOD =S △AOC+S 梯形 ABDC ,∴ △S AOB =S 梯形 ABDC ,∵S 梯形 ABDC = (BD +AC )•CD = (1+2)×2=3, ∴ △S AOB =3.故答案是:3.三、解答题(本大题共 8 个小题,共 75 分,解答应写出文字说明证明过程或演算步骤)16.解:(1)原式=2×﹣2 ﹣1+3=2;(2)∵2x 2+3x ﹣1=0,∴a =2,b =3,c =﹣1,∴△=9+8=17,∴x=17.解:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,△S AOB△S AOC+△S BOC,==×2×2+×2×6,=2+6,=8.18.解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=故答案为:144;(3)列表得:×360°=144°,男1男2女1女2男1﹣﹣男1男2男1女1男1女2男2男2男1﹣﹣男2女1男2女2女1女1男1女1男2﹣﹣女1女2女2女2男1女2男2女2女1﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.19.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.20.解:在△Rt ACE中,∵tan∠CAE=∴AE=在△Rt DBF中,∵tan∠DBF=∴BF=,=≈≈21(cm),=≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.21.解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6﹣t.当QA=AP时,△QAP为等腰直角三角形,即:6﹣t=2t,解得:t=2(s),所以,当t=2s时,△QAP为等腰直角三角形.(2)根据题意,可分为两种情况来研究,在矩形ABCD中:①当QA:AB=AP:BC时,△QAP∽△ABC,那么有:(6﹣t):12=2t:6,解得t==1.2(s),即当t=1.2s时,△QAP∽△ABC;②当QA:BC=AP:AB时,△P AQ∽△ABC,那么有:(6﹣t):6=2t:12,解得t=3(s),即当t=3s时,△P AQ∽△ABC;所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.22.(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CF A=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CF A=∠AED,又∠AED=∠CEF,∴∠CF A=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.23.解:(1)由题意得:,解得:,∴抛物线的表达式为y=x2+x﹣4.(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).m.∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.当m=﹣时,m2+m﹣4=﹣,当m=﹣8时,m2+m﹣4=﹣4.∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,=,即=解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,=,即=,解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.。

上海市虹口区2019届九年级上期末考试数学试卷含答案解析

上海市虹口区2019届九年级上期末考试数学试卷含答案解析

虹口2019学年第一学期期终教学质量监控测试初三数学 试卷(满分150分,考试时间100分钟) 2019.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.已知α为锐角,如果2sin 2α=,那么α等于 A .30︒; B .45︒; C .60︒; D .不确定. 【考点】特殊角的三角函数值 【试题解析】为锐角,,则=45°,故选B【答案】B2.把二次函数241y x x =-+化成2()y a x m k =++的形式是A .2(2)1y x =-+;B .2(2)1y x =--;C .2(2)3y x =-+;D .2(2)3y x =--. 【考点】二次函数的概念及表示方法 【试题解析】 原式=,故选D【答案】D3.若将抛物线平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是 A .向左平移3个单位; B .向右平移3个单位; C .向上平移3个单位; D .向下平移3个单位. 【考点】二次函数图像的平移 【试题解析】对称轴为x=0,顶点坐标(0,0);平移后对称轴x=-3,顶点(-3,0);可知为向左平移3个单位,故选A【答案】A4.若坡面与水平面的夹角为α,则坡度i 与坡角α之间的关系是A .cos i α=;B .sin i α=;C .cot i α=;D .tan i α=. 【考点】锐角三角函数 【试题解析】坡度定义为坡角的正切值,则,故选D【答案】D5.如图,□ABCD 对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量1()2m n +相等的向量是A .OA ;B .OB ;C .OC ;D .OD .【考点】对角线 【试题解析】 在□ABCD 中,=,故选C【答案】C6.如图,点A 、B 、C 、D 的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE 与 △ABC 相似,则点E 的坐标不可能是 A .(4,2); B .(6,0); C .(6,4); D .(6,5). 【考点】相似三角形判定及性质 【试题解析】图中△ABC 为直角三角形,且BC=3,AC=6;A 选项△ECD 为直角三角形,CD=2,CE=1,,故△CDE 与△ABC 相似;B 选项Rt △CDE 中,CD=2,DE=1,,故△CDE 与△ABC 相似;C 选项Rt △CDE 中,CD=2,DE=3,,故△CDE 与△ABC 不相似;D 选项Rt △CDE中,CD=2,DE=4,,故△CDE 与△ABC 相似;故选C【答案】C二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若:5:2x y =,则():x y y +的值是 ▲ . 【考点】比例线段的相关概念及性质 【试题解析】=【答案】8. 计算:13(2)2a ab --= ▲ .【考点】函数 【试题解析】=【答案】9.二次函数22y x x =-的图像的对称轴是直线 ▲ . 【考点】二次函数图像与a,b,c 的关系 【试题解析】的对称轴为.【答案】1x =10. 如果抛物线231y x x m =-+-+经过原点,那么m = ▲ . 【考点】二次函数表达式的确定 【试题解析】将原点(0,0)代入抛物线解析式,得-1+m=0,解得m=1. 【答案】111.已知点11(,)A x y 、22(,)B x y 为二次函数图像上的两点,若,则 ▲ .(填“>”、“<”或“=”) 【考点】二次函数的图像及其性质 【试题解析】开口向上,对称轴为x=1,则当x <1时,y 随x 的增大而减小;因为,所以y1>y2 【答案】12.用“描点法”画二次函数2y ax bx c =++的图像时,列出了下面的表格:x … ﹣2 ﹣1 0 1 … y…﹣11﹣21﹣2…x 时,y=▲.根据表格上的信息回答问题:当2【考点】二次函数的图像及其性质【试题解析】观察表格中数据可以看出,当x=-1与x=1时y值相等,可得该二次函数的对称轴为,所以x=2时y值与x=-2时y值相等,查表为-11【答案】-1113.如果两个相似三角形的周长的比为,那么周长较小的三角形与周长较大的三角形对应角平分线的比为▲ .【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】令两相似三角形分别为△ABC与△A’B’C’,其中△ABC周长较小,相似比为k,则由题意可得:,即两三角形的相似比为1:4;又相似三角形对应的角平分线比等于相似比,故角平分线之比为1:4【答案】1:414.如图,在□ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,,则= ▲ .【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】如图,过C点作CF//AE交AD与点F,则可知在□ABCD中BO=DG,又已知,则;又AE//CF,故;又BC=AD=5,所以【答案】215.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC 的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为▲ 厘米.【考点】三角形的面积梯形的有关概念和性质【试题解析】令正方形边长为a,则由图可知:S△ABC=S梯形DGCB+S△ADG,代入数值得方程为,解得a=,即正方形DEFG的边长为厘米.【答案】16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,2cos3BCG∠=,BC=4,则CG=▲ .【考点】相似三角形判定及性质三角形的内心、外心和重心【试题解析】如图,延长CG交AB于D,连接AG延长交BF于E,过D点作DF//AE;在Rt△ABC中,D为斜边中点,则AD=CD=DB,.所以∠BCG=∠B,即cos∠B=,AB=BC×=6,故CD=3;又在△ABE 中,DF//AE,D为AB中点,则可得F为BE中点,即EF=BE=CE;又在△CDF中,GE//DF,EF=CE,所以DG=CG=CD=1,CG=2【答案】217.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,4tan3A=,则CD= ▲ .【考点】直角三角形与勾股定理解直角三角形【试题解析】如图,延长AD、BC交于点E;AB=3,,得BE=4,又BC=2,所以EC=2;由题意可得tan ∠ECD=tan∠A=,令CD=a,则DE=a;在△CDE中,根据勾股定理得,解得a=,所以CD=【答案】18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos ECF∠= ▲ .【考点】解直角三角形图形的翻折【试题解析】由题知△ABE≌△AFE,∠AEB=∠AEF,所以∠AEB+∠AEF+∠FEC=2∠AEB+∠FEC=180°;又E 为BC中点,EC=BE=EF,得∠ECF=∠EFC,所以在△EFC中,∠ECF+∠EFC+∠FEC=2∠ECF+∠FEC=180°;所以∠ECF=∠BEA,cos∠ECF=cos∠BEA=G C AE D B第21题图F H 【答案】三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 计算:【考点】特殊角的三角函数值 【试题解析】 原式==1【答案】120.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过A (0,-3)、B (2,-3)、C (-1,0)三点. (1)求这个二次函数的解析式;(2)将这个二次函数图像平移,使顶点移到点P (0,-3)的位置,求所得新抛物线的表达式. 【考点】二次函数图像的平移二次函数表达式的确定 【试题解析】解:(1)设所求二次函数的解析式为:,由题意得:解得:∴这个二次函数的解析式为(2)∵新抛物线是由二次函数的图像平移所得∴a=1又∵顶点坐标是(0,-3) ∴【答案】(1)(2)21.(本题满分10分)如图,DC //EF //GH //AB ,AB =12,CD =6,DE ∶EG ∶GA =3∶4∶5. 求EF 和GH 的长.【考点】比例线段的相关概念及性质【试题解析】过点D作CB的平行线,分别交EF、GH、AB于点I、J、K∵DC∥AB ∴KB=DC=6∴AK=6∵EF∥AB∴∵DE∶EG∶GA=3∶4∶5∴∴∴同理:∴∴GH【答案】EF;22.(本题满分10分)如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的实际应用【试题解析】过点C作CG⊥AE,垂足为点G由题意得∠CEF=45°=∠CEG,∠ACG=60°设CG=x,在Rt△ACG中,在Rt△ECG中,∵AG+EG=AE∴解得:又可求得:CF=EG=∴答:该旗杆CD的高为()米.【答案】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.⋅=⋅;(1)求证:DE AB BC AE(2)求证:∠AED+∠ADC=180°.【考点】二次函数与一次函数综合二次函数与几何综合二次函数表达式的确定【试题解析】(1)∵当时,,∴C(0,3)在Rt△COB中,∵∴∴∴点B(6,0)把A(2,0)、B(6,0)分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点D(4,-1)∴(3)点E的坐标是(10,8)或(16,35)【答案】(1)(2)8(3)(10,8)或(16,35)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy中,抛物线与轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,1 tan2CBA∠=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】(1)在□ABCD中,AD=BC,AD∥BC∴∵x=1,即∴∴AD=AB,AG=BE∵E为BC的中点∴∴即∵(2)∴不妨设AB=1,则AD=x,∵AD∥BC ∴∴,∵GH∥AE ∴∠DGH=∠DAE ∵AD∥BC ∴∠DAE=∠AEB ∴∠DGH=∠AEB在□ABCD中,∠D=∠ABE∴△GDH ∽△EBA∴∴∴(3)①当点H在边DC上时,∵DH=3HC ∴∴∵△GDH ∽△EBA ∴∴解得②当H在DC的延长线上时,∵DH=3HC ∴∴∵△GDH ∽△EBA ∴∴解得 综上所述,可知的值为或【答案】(1)(2)(3)或25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在□ABCD 中,E 为边BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EF x AB AF==. (1)当1x =时,求:AG AB 的值;(2)设GDH EBAS y S ∆∆=,求关于x 的函数关系式,并写出x 的取值范围; (3)当3DH HC =时,求x 的值.【考点】相似三角形判定及性质【试题解析】(1)∵∠BAE=∠DAC ∴∠BAE+∠EAC =∠DAC+∠EAC即∠BAC=∠EAD∵∠ABC=∠ABE +∠CBD ∠AED=∠ABE +∠BAE∵∠CBD=∠BAE∴∠ABC=∠AED∴△ABC ∽△AED∴∴(2)∵△ABC∽△AED∴即∵∠BAE=∠DAC∴△ABE∽△ACD∴∠AEB=∠ADC∵∠AED +∠AEB =180°∴∠AED+∠ADC=180°【答案】见解析。

2019-2020学年福建泉州南安九年级(上)期末数学试卷(含解析)

2019-2020学年福建泉州南安九年级(上)期末数学试卷(含解析)

2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列实数中,介于与之间的是()A.B.C.D.π2.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a23.(4分)为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()市文旅局获悉,A.1.7118×102B.0.17118×107C.1.7118×106D.171.18×104.(4分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都改变5.(4分)不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个球,摸出蓝球的概率是0.6,则袋子中有红球()A.4个B.6个C.8个D.10个6.(4分)如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30°B.45°C.55°D.60°7.(4分)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°8.(4分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12B.15C.20D.329.(4分)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m10.(4分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:|﹣3|﹣sin30°=.12.(4分)已知一组数据:12,10,8,15,6,8.则这组数据的中位数是.13.(4分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.14.(4分)如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.15.(4分)等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是.16.(4分)动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l 有交点,则b的取值范围是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组,并把解集在数轴上表示出来:18.(8分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.19.(8分)先化简,再求值:,其中x=1﹣.20.(8分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?21.(8分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤50aC51≤m≤7550D m≥7666根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.22.(10分)阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.23.(10分)如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.24.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.25.(14分)已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当AC⊥BC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S 取得最大值时点P的坐标.2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵<<<<π<,∴介于与之间的是.故选:A.2.【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.【解答】解:将171.18万用科学记数法表示为:1.7118×106.故选:C.4.【解答】解:①的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;故选:A.5.【解答】解:设袋子中有红球x个,根据题意得=0.6,解得x=4.经检验x=4是原方程的解.答:袋子中有红球有4个.故选:A.6.【解答】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.7.【解答】解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角=,故选:B.8.【解答】解:如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD==5,∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入y=,得,k=8×4=32,故选:D.9.【解答】解:设小矩形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m﹣a)+2(m﹣3b)=2n+2m﹣2a+2m﹣6b=4m+2n﹣2n=4m,故选:D.10.【解答】解:设AB=x,则AE=EB=由折叠,FE=EB=则∠AFB=90°由tan∠DCE=∴BC=,EC=∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y=故选:D.二、填空题:本题共6小题,每小题4分,共24分.11.【解答】解:原式=3﹣=.故答案为:.12.【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.13.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.14.【解答】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.15.【解答】解:∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=2,故答案为:2.16.【解答】解:∵动点A(m+2,3m+4)在直线l上,∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC==若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴BC=∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为(﹣,0)或(+,0)∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为:三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:由不等式①得:x>4.由不等式②得:x>2.不等式组的解集:x>4.18.【解答】证明:∵AB∥DE,∴∠B=∠E,∵AC∥DF∴∠ACB=∠EFD,∵BF=CE∴BC=EF,且∠B=∠E,∠ACB=∠EFD,∴△ABC≌△DEF(ASA)∴AC=DF19.【解答】解:原式=÷=•=1﹣x,当x=1﹣时,∴原式=1﹣(1﹣)=;20.【解答】解:设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32﹣24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)﹣(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.21.【解答】解:(1)调查的样本容量为50÷25%=200(人),a=200﹣20﹣50﹣66=64(人),故答案为200,64;(2)刚好抽到A类学生的概率是20÷200=0.1,故答案为0.1;(3)全校学生中家庭藏书不少于76本的人数:2000×=660(人).答:全校学生中家庭藏书不少于76本的人数为660人.22.【解答】解:(1)方程的解为x1=c,x2=,验证:当x=c时,∵左边=c+,右边=c+,∴左边=右边,∴x=c是x+=c+的解,同理可得:x=是x+=c+的解;(2)方程整理得:(x﹣3)+=(a﹣3)+,解得:x﹣3=a﹣3或x﹣3=,即x=a或x=,经检验x=a与x=都为分式方程的解.23.【解答】解:如图所示:(1)作∠A的平分线交BC于点P,点P即为所求作的点.(2)作PE⊥AB于点E,则PE=PC=3,∴AB与圆相切,∵∠ACB=90°,∵AC与圆相切,∴AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,∵∠B=∠B,∠PEB=∠ACB,∴△PEB∽△ACB∴==∴==解得x=2,答:BD的长为2.24.【解答】解:(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=.(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=:2:,设AC=,则AD=2a,CD=a,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴,∵=,解得a=2,a=﹣2(舍去),∴,判断:CM不是△ACD的“匀称中线”.理由:假设CM是△ACD的“匀称中线”.则CM=AD=2AM=4,AM=2,∴tan,又在Rt△CBH中,∠CHB=90°,CH=,BH=4﹣,∴tan B=,即∠AMC≠∠B,这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.25.【解答】解:(1)y=2ax2﹣ax﹣3(a+1)=a(2x2﹣x﹣3)﹣3,令2x2﹣x﹣3=0,解得:x=或﹣1,故第三象限内的一个定点C为(﹣1,﹣3);(2)函数的对称轴为:x=﹣=,设函数对称轴与x轴交点为M,则其坐标为:(,0),则CM==,则AB=2CM=,则点A、B的坐标分别为:(﹣3,0)、(,0);将点A的坐标代入函数表达式得:18a+3a﹣3a﹣3=0,解得:a=,函数的表达式为:y=(x+3)(x﹣)=x2﹣x﹣;(3)过点E作EF⊥PH,设:∠ACB=α,则∠ACB=∠HPE=∠DEF=α,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=x﹣,设点P(h,h2﹣h﹣),则点D(h,h﹣),故tan∠ACB=tanα=,则sinα=,y D﹣y E=DE sinα=PD sinα•sinα,S=S△ABE﹣S△ABD=×AB×(y D﹣y E)=××(h﹣﹣h2+h+=﹣h2+h﹣,∵﹣<0,∴S有最大值,当h=时,S的最大值为:,此时点P(,﹣).。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

2019年山西省太原市九年级上册期末考试数学试题(有答案)

2019年山西省太原市九年级上册期末考试数学试题(有答案)

太原市第一学期九年级期末考试数学试卷考试时间上午8.00—9.30说明本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置 1.一元二次方程2+4=0的一根为=0,另一根为A.=2B.=-2C.=4D.=-4 【答案】D 【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13 B 16 C 19 D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23 B 49 C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于轴对称 B.与原四边形关于原点位似,相似比为12 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为21 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或-.8,股市规定股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为,则满足的方程是A.(1+10%)(1-)2=1B.(1-10%)(1+)2=1C.(1-10%)(1+2)=1D.(1+10%)(1-2)=1 【答案】A【解析】(1+10%)(1-)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四 【解析】当>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随的增大而减小; 当<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随的增大而增大;两个分支无限接近和y 轴,但永远不会与轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形. ∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________【答案】3【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴12AM AD =即32DM DA -=同理可得DN DB =∵∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA=即2MN =∴3MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】14【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+ 化简得4m n =∴袋中红、白两种颜色小球的数量比应为mn=1415.如图,点A,C 分别在反比例函数4-y x= (<0)与9y x = (>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,) 【解析】如图,作AD ⊥轴,垂足为D ,CE ⊥轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴B m n y ==== ∴B(0,三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程(每题4分,共8分) (1)2-8+1=0; 解:移项得:2-8=-1 配方得:2-8+42=-1+42 即(-4)2=15直接开平方得4x -=∴原方程的根为1244x x ==(2)(-2)+-2=0解:提取公因式(-2)得(-2)(+1)=0 ∴原方程的根为122,1x x ==- 17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证四边形ADEF 是正方形.DE【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m 【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,个月还清,且y 是的反比例函数,其图象如图所示 (1)求y 与的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与之间的函数关系式为ky x= (≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k =解得=60 ∴y 与之间的函数关系式为60y x= (>0) (2)90;∵王叔叔每月偿还贷款本金y 万元,个月还清∴贷款金额y=60万元∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,=300由图,y ≤2000的图像位于Ⅱ区域即≥300 ∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分Ⅱ0.2割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21=.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解设这种商品的涨价元,根据题意,得(40-30+)(600-10)=10000即(10+)(60-)=1000 ()()x x++-=+=⨯=106070(205070,20501000)解得1=10,2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元答售价应定为50元.22.(本题12分)综合与实践问题情境如图1,矩形ABCD中,BD为对角线,AD k=,且>1.将△ABD以B为旋转中AB Array心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含的式子表示); 【答案】(1)△DBE;【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF相似比为BD AB = 数学思考(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时的值为______【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 603AD AB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBCA BOD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A 当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或【解析】如图B 当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:4m3m3mG3mE425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(≠0)的图象上(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明过点A 作AE ⊥轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(≠0)的表达式. 4mCG【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题请从A,B 两题中任选一题作答,我选择___________ A 若点B 的对应点B’恰好落在反比例函数ky x= (≠0)的图象上,求m 的值,并直接写出此时S 的值 【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B 若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO212A MN ABO S A H A H S AH AH'''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴AH '=∴AA’=AH -A’H=4- 即m=4- (4)如图3,连接BC,交AO于点D,点P 是反比例函数ky x= (≠0)的图象上的一点,请从A,B 两题中任选一题作答,我选择____________A 在轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0); PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B 在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由 【答案】存在,点Q 的坐标如下()()()12344,24,10,5,(2,4)Q Q Q Q ---【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=,P 2(m ,n )∴n=m 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x =与12y x =联立解得x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩∴((24,P P -22202Q A P O x x x x =+-=-+=,22404Q A P O y y y y =+-==∴()24Q同理4(2,4)Q -设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --。

2019届湖南省郴州市九年级上学期期末考试数学试卷【含答案及解析】

2019届湖南省郴州市九年级上学期期末考试数学试卷【含答案及解析】

2019届湖南省郴州市九年级上学期期末考试数学试卷【含答案及解析】2019届湖南省郴州市九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. 已知反⽐例函数y=(k≠0)的图象经过点M(-2,2),则k的值是A.-4 B.-1 C.1 D.42. 下列⼀元⼆次⽅程中.没有实数根的是A.x2+ 2x -4=0 B.x2- 4x +4=0C.x2—2x -5 =0D.x2+ 3x +4=03. 在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为A. B. C. D.4. 某班为调查每个学⽣⽤于课外作业的平均时间,从该班学⽣中随机抽取了10名学⽣进⾏调查,得到他们⽤于课外作业的时间(单位:min)如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学⽣⽤于课外作业的平均时间是A.80 B.81 C.82 D.835. △ABC与△A'B'C'是位似图形,且△ABC与△A'B'C'的位似⽐是1:2.已知△ABC的⾯积是2.则△A'B'C'的⾯积是A.1 B.2 C.4 D.86. 已知点A(⼀1,y1),B(l,y2),C(2,y3)是函数y= ⼀图象上的三点,则y1,y2,y3的⼤⼩关系是A.y1< y2< y3 B.y2< y3< yl C.y37. 如图,为测量⼀棵与地⾯垂直的树OA的⾼度,在距离树的底端O点30⽶的B处,测得树顶4的仰⾓∠ABO为α,则树OA的⾼度为A.⽶ B.30sinα⽶ C.30tanα⽶ D.30cosα⽶8. 如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使得点A落在A′处.若A'为CE的中点,则折痕DE的长为A.1 B.2 C.3 D.4,⼆、填空题9. 已知,则的值为10. ⼀元⼆次⽅程x2—2x=0的实数根是____.11. 已知反⽐例函数y=(k为常数,且k≠0)的图象位于第⼀、三象限,请写出⼀个符合条件的k的值12. 在Rt△ABC中,∠C=90°.若sinA=,则cosB的值是13. 已知某实验区甲、⼄品种⽔稻的平均产量相等,且甲、⼄品种⽔稻产量的⽅差分别为=79.6,=68.5.由此可知:在该地区____种⽔稻更具有推⼴价值.14. 关于x的⽅程(m-3) -3x-4=0是⼀元⼆次⽅程,则m= 。

2019-2020 学年天津市南开区九年级上期末数学试卷附详细解析参考答案

2019-2020 学年天津市南开区九年级上期末数学试卷附详细解析参考答案

CD⊥x 轴于点 D(如图),则四边形 ABCD 的面积为(

A.1
B.2
C.4
D.8

9.(3 分)已知当 x>0 时,反比例函数 y= 的函数值随自变量的增大而减小,此时关于 x

2
2
的方程 x ﹣2(k+1)x+k ﹣1=0 的根的情况为(

A.有两个相等的实数根
B.没有实数根
11.
(3 分)如图,在圆内接正六边形 ABCDEF 中,BF,BD 分别交 AC 于点 G,H.若该圆
的半径为 15cm,则线段 GH 的长为(

A. 5cm
B.5 3cm
C.3 5cm
D.10 3cm
2
12.(3 分)如图,抛物线 y=ax +bx+c(a≠0)与 x 轴交于点(﹣3,0),其对称轴为直线
(3)当售价 x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润 y(元)
最大?最大利润是多少?
24.
(10 分)在平面直角坐标系中,已知点 A(2,0),点 B(0,2 3),点 O(0,0).△AOB
绕着 O 顺时针旋转,得△A'OB',点 A、B 旋转后的对应点为 A',B',记旋转角为 α.
第 4 页(共 25 页)
#
的小球,其中红球 2 个,篮球 1 个,若从中任意摸出一个球,摸到球是红球的概率为 .
!
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是
红色与黄色这种组合(不考虑红、黄球顺序)的概率.

2019年山西省太原市九年级上册期末考试数学试卷有答案

2019年山西省太原市九年级上册期末考试数学试卷有答案

太原市第一学期九年级数学期末考试一、选择题(本大题含1 0 个小题,每小题3 分,共3 0 分)1. 小明同学拿一个等边三角形木框在太阳光下观察投影,此木框在水平地面上的影子不可能()2.若四条线段a,b,c,d 成比例,且a=3cm,b=2cm,c=9cm,则线段d 的长为()A.4cm B.5cm C.6cm D.8cm3.小明所在班里共有50 名同学,他们给生日相同的小红与小亮过完生日后,对“多少人中必有2 人生日相同”进行了讨论,下列说法正确的是()A.50 人中必有2 人的生日相同B.100 人中必有2 人的生日相同C.365 人中必有2 人的生日相同D.367 人中必有2 人的生日相同4.如图所示,几何体的俯视图是()5.如图,在6×6 的方格纸上有△ABC 和△DEF,它们的顶点都在格点上,AG 和DH 分别是它们的高,则AG:DH 等于()A.1:2 B.2:3 C.1:3 D.3:46.顺次连接四边形ABCD 四边的中点得到的四边形是矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形7.如图,已知两个三角形是位似图形,则它们的位似中心是()A.点PB.点OC.点MD.点N第5题第7题第8题8.如图,在平面直角坐标系中,点A 是反比例函数y =mx的图象上的一点,过点A 作AB⊥轴于点B,点C 在y 轴的负半轴上,连接AC,BC,若△ABC 的面积为5,则m 的值为()A.-10B.10C.-5D.59.规定运算:对于函数y=n x (n 为正整数),规定1'n y nx -= .例如:对于函数y=4x ,有3'4y x =。

已知函数y =3x ,满足'y =18 的 的值为( )A.1x = 3 ,2x =-3B.1x = 2x = 0C.1x = ,2x =D.1x ,2x = -10.如图,点A,B,C,D 的坐标分别为(1,7),(1,1),(4,1),(6,1),若以点C,D,E 为顶点的三角形与△ABC 相似,则下列坐标中,不可能是点E 的坐标是( )A 、(6,0)B 、(6,3) C.、(6,5) D 、(4,2)二、 填空题(本大题含6 个小题,每小题3 分,共1 8 分)11.在△ABC 中,∠ACB=90°,AB=8,CD 为AB 边上的中线,则CD 的长等于____.12.若两个相似多边形的周长之比为13,则它们的面积之比为____.13.已知,反比例函数6y x=的图象经过点A (2,1y )和B (3,2y ),则1y ______2y .(填“>”或“<”) 14.有一面积为54cm 2的矩形纸片,将它的一边剪短5cm ,另一边剪短2cm ,恰好变成一个正方形, 求这个正方形的边长,设这个正方形的边长为x cm ,根据题意,列出的方程是_____.15.如图,在2×3的方格纸中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,AB 与 CD 相交于点E ,则EB 的长为_______.16. 如图,在矩形ABCD 中,对角线AC,BD 相交于点O ,OE ⊥BC 于点E ,连接DE 交OC 于点 F ,作FG ⊥BC 于点G ,则线段BG 与GC 的数量关系是_______第15题 第16题三、 解答题(本大题含8 个小题,共5 2 分)写出必要的文字说明、演算步骤和推理过程.17. (本题 5 分)解方程:2263x x +=18.(本题6 分)如图,为了测量一个大峡谷的宽度,位于峡谷一侧的地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A,B,D,使得AB⊥AO,DB⊥AB,然后确定DO和AB 的交点C,测得AC=120m,CB=60m,BD=50m,请你帮助他们求出峡谷的宽AO.19.(本题6 分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《大学》,《中庸》(依次用字母A,B,C 表示这三个材料).将A,B,C 分别写在3 张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上.比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片.他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.20.(本题5 分)从A,B 两题中任选一题做答,我选择A.如图(1)是两棵树在同一盏路灯下的影子.(1)确定该路灯灯泡所在的位置(2)如果此时小颖所在位置恰好与这两棵树所在的位置共线(三点在一条直线上),请画出图中表示小颖影子的线段AB.B. 如图(2),小明从点A 出发沿AB 方向匀速前进,2 秒后到达点D,此时他在某一灯光下的影子为DA,继续按此速度行走2 秒到达点F,此时他在同一灯光下的影子落在其身后的线段DF 上,测得此时影长MF 为1.2 米;然后他将速度提高到原的1.5 倍,再行走2 秒到达点H,他在同一灯光下的影子恰好是HB,图中线段CD,EF,GH 表示小明的身高.(1)请在图中画出小明的影子MF;(2)若A,B 两地相距12 米,则小明原的速度为.21.某农村居委会以16000 元的成本收购了一种农产品40 吨,目前就可以按600 元/吨的价格全部销往外地。

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若关于的方程有一个根为 -1,则的值为A. B. C. D.2. 二次函数的最大值为A.3 B.4 C.5 D.63. 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球4. 在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为A. B. C. D.25. 若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx =5的解为A. B.C. D.6. 如图,在△ABC中,,,,则的值为A. B. C. D.7. 如图,⊙O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠P=30°,则弦AB的长为A. B. C. D.28. 如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为A.70° B.90° C.110° D.120°9. 如图1,在中,,.点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A. B. C. D.二、填空题10. 请你写出一个一元二次方程,满足条件:①二次项系数是1;②方程有两个相等的实数根.此方程可以是.11. 将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.12. 已知,AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点,若CD=,则⊙O半径的长为.13. 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,则旗杆的高度为米.14. 如图,已知A(,2),B(,1),将△AOB绕着点O逆时针旋转90°,得到△A′O B′,则图中阴影部分的面积为.三、解答题15. 阅读下面材料:在数学课上,老师提出如下问题:小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是.16. 解方程:.17. 如图,△ABC中,D为BC 上一点,∠BAD=∠C,AB=6, BD=4,求CD的长.18. 已知:抛物线y=x2+(2m-1)x+m2-1经过坐标原点,且当x<0时,y随x的增大而减小.(1)求抛物线的解析式;(2)结合图象写出y<0时,对应的x的取值范围;(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,直接写出矩形ABCD的周长.19. 列方程或方程组解应用题:某公司在2013年的盈利额为200万元,预计2015年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,求该公司这两年盈利额的年平均增长率是多少?20. 如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′,使它和△ABC关于点O成中心对称;(2)请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形.21. 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.22. 如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若,半径OA=3,求AE的长.23. 如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A处测得杆顶端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求出具体值;若不同意,提出你的测量方案,并简要写出计算思路.24. 请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图,△ABC中, AD是角平分线.求证:.证明:过C作CE∥DA,交BA的延长线于E.∴.①AD是角平分线,∴ ...②又,.③.(1)上述证明过程中,步骤①②③处的理由是什么?(写出两条即可)(2)用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB=7cm,AC=4cm,BC=6cm,求BD 的长;(3)我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD和△ACD面积的比来证明三角形内角平分线定理.25. 在平面直角坐标系xOy中,抛物线y=mx2-8mx+16m-1(m>0)与x轴的交点分别为A(x1,0),B(x2,0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若AB=2,求此抛物线的解析式.(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2-8mx+16m-1(m>0)与线段CD有交点,请写出m的取值范围.26. 已知:在等边△ABC中, AB=,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,a.猜想在旋转过程中,线段CE1与AD1的数量关系并证明;b.求∠APC的度数;(3)点P到BC所在直线的距离的最大值为.(直接填写结果)27. 已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1,y2,都有点(x,y1)、(x,y2)关于点(x,x)对称,则称这两个函数为关于y=x的对称函数.例如,和为关于y=x的对称函数.(1)判断:①和;②和;③和,其中为关于y=x的对称函数的是__________(填序号).(2)若和()为关于y=x的对称函数.①求k、b的值.②对于任意的实数x,满足x>m时,恒成立,则m满足的条件为______.(3)若和为关于y=x的对称函数,且对于任意的实数x,都有,请结合函数的图象,求n的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。

人教版数学九年级上学期《期末考试试题》附答案

人教版数学九年级上学期《期末考试试题》附答案

人教版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=22.观察下列四个图形,中心对称图形是( )A.B.C.D.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣15.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 47.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC 向右平移3个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.答案与解析一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2[答案]D[解析]因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.2.观察下列四个图形,中心对称图形是( )A.B.C.D.[答案]C[解析]根据中心对称图形的概念对各选项分析判断即可得解.A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°[答案]D.[解析]根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣1[答案]A.[解析]∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)[答案]D[解析]把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 4[答案]A[解析]连接BD,∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =, ∴AB =BC =17.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.[答案]D .[解析]易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积. 扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5[答案]B .[解析]五个数中有两个负数,根据概率公式求解可得.∵在﹣3.﹣l ,π,0,3这五个数中,负数有﹣3和﹣1这2个,∴抽取一个数,恰好为负数的概率为.二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .[答案]74[解析]抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,∴4222m n a a+=-=- 线段AB 的长不大于4,413a ∴+12a ∴ 21a a ∴++的最小值为:2117()1224++=; 故答案为74. 12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 . [答案].[解析]根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.[答案]60[解析]根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .[答案]4.[解析]直接把x =2代入进而得出答案.∵关于x 的方程3x ﹣kx +2=0的解为2,∴3×2﹣2k +2=0,解得:k =4.15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .[答案]100°[解析]∵四边形ABCD 为⊙O 的内接四边形,∴∠DCE =∠A =100°16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .[答案]20%.[解析]设这两年中投入资金的平均年增长率是x ,由题意得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去).这两年中投入资金的平均年增长率约是20%.三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.[答案]m=1,此方程的根为121x x ==[解析]先由原一元二次方程有实数根得判别式240b ac -≥进而求出m 的范围;结合m 的值为正整数,求出m 的值,进而得到一元二次方程求解即可.∵关于x 的方程22210x x m -+-=有实数根,∴()()22424121484880b ac m m m ∆=-=--⨯⨯-=-+=-≥ ∴1m ≤又∵m 为正整数,∴m=1,此时方程为2210x x -+=解得根为121x x ==,∴m=1,此方程的根为121x x ==18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.[答案]见解析.[解析]根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;根据弧长计算公式求出即可.此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.(1)如图所示:(2)点C1所经过的路径长为:=2π.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.[答案](1)如下图;(2)1 3[解析]此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键,难度中等.(1)1025%40÷=(人)获一等奖人数:408612104----=(人)(2)七年级获一等奖人数:1414⨯=(人)八年级获一等奖人数:1414⨯=(人)∴九年级获一等奖人数:4112--=(人)七年级获一等奖的同学人数用M表示,八年级获一等奖的同学人数用N表示,九年级获一等奖的同学人数用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123=.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.[答案]见解析.[解析]本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.[答案]见解析.[解析]此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.。

山东省潍坊市潍城区九年级(上)期末数学试卷(解析版)

山东省潍坊市潍城区九年级(上)期末数学试卷(解析版)

2019-2019学年山东省潍坊市潍城区九年级(上)期末数学试卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,满分36分、多选、不选、错选均记零分)1.tan60°的值等于()A.B.C.D.2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.5.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰6.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE 9.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>010.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm12.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(本题共6小题,要求将每小题的最后结果写在答题卡上每小题4分,满分24分)13.正六边形的每个外角是度.14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=.15.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.16.已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1y2.17.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为.18.如图,AB是圆O的直径,C是AB的一个四等分点,过C作AB的垂线交圆O于M,N两点,连结MB,则cos∠MBA=.三、解答题(本题共7小题,解答应写出文字说明、证明过程或推演步骤.共60分)19.(10分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为.(2)在坐标系中利用描点法画出此抛物线;x……y……20.(10分)某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.根据以上提供的信息,解答下列问题:(1)表中a=,b=,c=,补全频数分布直方图;(2)此次调查中,中位数所在的时间段是min.时间分段/min 频(人)数百分比10≤x<15820%14a15≤x<201025%20≤x<25b12.50%25≤x<3037.50%30≤x<35合计c100%(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?21.(7分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,求调整后的楼梯AC的长.22.(8分)有两个构造完全相同(除所标数字外)的转盘A、B.(1)单独转动A 盘,指向奇数的概率是;(2)小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.23.(8分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.求证:△ADE是等腰三角形.24.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.25.(9分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?2019-2019学年山东省潍坊市潍城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,满分36分、多选、不选、错选均记零分)1.tan60°的值等于()A.B.C.D.【分析】求得60°的对边与邻边之比即可.【解答】解:在直角三角形中,若设30°对的直角边为1,则60°对的直角边为,tan60°==,故选:D.【点评】考查特殊角的三角函数值;熟练掌握特殊角的三角函数值是解决此类问题的关键.2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理;熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.【分析】根据正切是对边比邻边,可得答案.【解答】解:如图,tan∠CAB==,故选:C.【点评】本题考查了锐角三角函数的定义,利用正切函数等于对边比邻边是解题关键.5.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选:D.【点评】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:D.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.【点评】本题主要考查反比例函数的性质,掌握反比例函数在各象限内的增减性是解题的关键.8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE【分析】根据垂径定理及圆周角定理进行解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴BD=BC,故C正确;∵∠D=∠A,∠DEB=∠AEC,∴△BDE∽△CAE,故D正确.故选:B.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>0【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,故选:C.【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x ﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选:A.【点评】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.12.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax+2a2,大致图象为:故选:C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(本题共6小题,要求将每小题的最后结果写在答题卡上每小题4分,满分24分)13.正六边形的每个外角是60度.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.【点评】本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=3.【分析】一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据根与系数的关系即可得出答案.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据韦达定理,∴x1+x2=3,故答案为:3.【点评】本题考查了根与系数的关系,难度不大,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.15.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴取出黑球的概率是=;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1>y2.【分析】先求得函数的对称轴为x=0,再判断A(﹣1,y1),B(﹣2,y2)在对称轴左侧,从而判断出y1与y2的大小关系.【解答】解:∵函数y=x2+1的对称轴为x=0,∴A(﹣1,y1),B(﹣2,y2)在对称轴左侧,∴抛物线开口向上,在对称轴左侧y随x的增大而减小.∵﹣1<﹣2∴y1>y2.故答案为:>.【点评】此题考查了二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键.17.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为4.△AOB【分析】根据S=2利用反比例函数系数k的几何意义即可求出k值,再根据函数在△AOB第一象限有图象即可确定k的符号,此题得解.【解答】解:∵AB⊥x轴于点B,且S=2,△AOB∴S=|k|=2,△AOB∴k=±4.∵函数在第一象限有图象,∴k=4.故答案为:4.【点评】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.”是解题的关键.18.如图,AB是圆O的直径,C是AB的一个四等分点,过C作AB的垂线交圆O于M,N两点,连结MB,则cos∠MBA=.【分析】首先连接OM,由已知易得∠BOM=60°,继而可得△OBM是等边三角形,继而求得答案.【解答】解:连接OM,∵AB是圆O的直径,C是AB的一个四等分点,∴OC=OM,∵MN⊥AB,∴cos∠BOM==,∴∠BOM=60°,∵OB=OM,∴△OBM是等边三角形,∴∠MBA=60°,∴cos∠MBA=.故答案为:.【点评】此题考查了圆周角定理、等边三角形的判定与性质以及特殊角的三角函数问题.注意准确作出辅助线是解此题的关键.三、解答题(本题共7小题,解答应写出文字说明、证明过程或推演步骤.共60分)19.(10分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为(1,0)和(3,0),与y轴交点的坐标为(0,3),顶点坐标为(2,﹣1).(2)在坐标系中利用描点法画出此抛物线;x…01234…y…30﹣103…【分析】(1)利用待定系数法配方法即可解决问题;(2)利用描点法即可解决问题;【解答】解:(1)对于抛物线y=x2﹣4x+3令x=0得到y=3,令y=0得到x2﹣4x+3=0,解得x=1或3,∴与x轴交点的坐标为(1,0)和(3,0),与y轴交点的坐标为(0,3);∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标(2,﹣1),故答案为:(1,0)和(3,0),(0,3),(2,﹣1);(2)取点(0,3),(1,0),(2,﹣1),(3,0),(4,3),利用描点法画出图象如图所示:故答案为0,1,2,3,4,3,0,﹣1,0,3;【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.根据以上提供的信息,解答下列问题:(1)表中a=35%,b=5,c=40,补全频数分布直方图;(2)此次调查中,中位数所在的时间段是15≤x<20min.时间分段/min 频(人)数百分比10≤x<15820%15≤x<2014a20≤x<251025%25≤x<30b12.50%30≤x<3537.50%合计c100%(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?【分析】(1)根据10≤x<15的有8人,占20%,据此即可求得总人数,然后根据百分比的定义即可求得a,b的值;(2)确定第20和第21名所在的组,即可;(3)总人数乘以后3组人数占总人数的比例即可.【解答】解:(1)调查的总人数是:c=8÷20%=40(人),则a=×100%=35%,b=40×12.5%=5;故答案为:35%,5,40.(2)由(1)知,共40个数据,则其中位数在15≤x<20范围内,故答案为:15≤x<20.(2)所用时间不少于20min的共有:10+5+3=18(人),则估算从下课到就餐结束所用时间不少于20min的共有1200×=540(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,求调整后的楼梯AC的长.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC=(m).【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.22.(8分)有两个构造完全相同(除所标数字外)的转盘A、B.(1)单独转动A盘,指向奇数的概率是;(2)小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.【分析】(1)由单独转动A盘,共有3种情况,指向奇数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次转动后指针指向的数字之和为奇数与数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:(1)∵单独转动A盘,共有3种情况,指向奇数的有2种情况,∴单独转动A盘,指向奇数的概率是:;故答案为:;(2)画树状图得:∵共有9种等可能的结果,两次转动后指针指向的数字之和为奇数的有5种情况,数字之和为偶数的有4种情况,∴P(小红获胜)=,P(小明获胜)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.求证:△ADE是等腰三角形.【分析】连接OD,根据切线的性质求出∠ODC=∠ODE=90°,求出∠A=∠E=30°,根据等腰三角形的判定得出即可.【解答】证明:连接OD,∵CD是⊙O的切线,切点为D,∴∠ODC=∠ODE=90°,∵∠ADC=60°,∴∠ODA=90°﹣60°=30°,∵OA=OC,∴∠A=∠ODA=30°,∴∠DOE=∠A+∠ODA=60°,∴∠E=90°﹣∠DOE=30°,∴∠A=∠E,∴△ADE是等腰三角形.【点评】本题考查了切线的性质、等腰三角形的判定和圆周角定理等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.24.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A 点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.【解答】解:(1)把A点坐标代入y=x+2,可得3=m+2,解得m=2,∴A(2,3),∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;(2)在y=x+2中,令y=0可求得x=﹣4,∴C(﹣4,0),∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S=×3|t+4|,△ACP∵△ACP的面积为3,∴×3|t+4|=3,解得t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).【点评】本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.(9分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b ,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2019;(3)W=﹣2(x﹣65)2+2019,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.第21页/共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年九年级数学上期末试卷及答案一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .2019 3.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( )A .2B .1C .0D .﹣1 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5406.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12 7.二次函数236y x x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++D .()2313y x =-+- 8.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-9.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =2 10.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 11.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④12.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .二、填空题13.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.14.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.15.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .16.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画»AC,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)17.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.18.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.19.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .20.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 三、解答题21.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?22.如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D 表示).23.已知如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为3,∠EAC =60°,求AD 的长.24.如图,等腰Rt△ABC 中,BA=BC ,∠ABC=90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE 的度数;(2)若AB=4,CD=3AD ,求DE 的长.25.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.3.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.6.A解析:A【解析】【分析】先根据勾股定理得到2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴2,∴S 扇形ABD =(2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 7.A解析:A【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果.【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+, 故选:A .【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.8.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =2602123602π⨯-⨯=23π 故选B . 9.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2=4x ,x 2﹣4x =0,x (x ﹣4)=0,x ﹣4=0,x =0,x 1=4,x 2=0,故选B .【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.10.C解析:C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.11.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.12.D解析:D【解析】【分析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.二、填空题13.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.14.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣1 3,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.15.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式解析:【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式16.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:12π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S 1﹣S 2=12π, 故答案为12π. 【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.17.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4 【解析】 【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=,2(21)490m --=, (2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=.故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.18.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π 【解析】 【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可. 【详解】 解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.19.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.20.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2解析:2【解析】试题解析:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=2. 故答案为2.三、解答题21.(1)21533y x x =-++;(2)254米;(3)水柱能越过树 【解析】 【分析】(1)根据直角三角形的性质求出点A 、B 的坐标,再利用待定系数法求解可得; (2)水柱离坡面的距离d=-13x 2x+5-(-3x+5),整理成一般式,再配方成顶点式即可得;(3)先求出点C 的坐标为(1),再求出y ,与1+3.5比较大小即可得. 【详解】(1)∵AB=10、∠OAB=30°, ∴OB=12AB=5、OA=ABcos ∠OAB=10×2=5, 则A (0)、B (0,5), 将A 、B 坐标代入y=-13x 2+bx+c ,得:175035c c ⎧-⨯++⎪⎨⎪⎩==,解得:5b c ⎧⎪⎨⎪⎩=,∴抛物线解析式为y=-13x 2;(2)水柱离坡面的距离d=-13x2+433x+5-(-33x+5)=-13x2+53x=-13(x2-53x)=-13(x-53)2+254,∴当x=53时,水柱离坡面的距离最大,最大距离为254米;(3)如图,过点C作CD⊥OA于点D,∵AC=2、∠OAB=30°,∴CD=1、3则3当3y=-13×(32+33×3>1+3.5,所以水柱能越过树.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、直角三角形的性质、二次函数的图象与性质.22.(1)34.(2)公平.【解析】【分析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 23.(1)证明见解析;(2)37.【解析】【分析】(1)连接FO,可根据三角形中位线的性质可判断易证OF∥AB,然后根据直径所对的圆周角是直角,可得CE⊥AE,进而知OF⊥CE,然后根据垂径定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通过Rt△ABC可知∠OEC+∠FEC=90°,因此可证FE为⊙O的切线;(2)根据⊙O的半径为3,可知AO=CO=EO=3,再由∠EAC=60°可证得∠COD=∠EOA=60°,在Rt△OCD中,∠COD=60°,OC=3,可由勾股定理求得CD=33,最后根据Rt△ACD,用勾股定理求得结果.【详解】解:(1)连接FO易证OF∥AB∵AC⊙O的直径∴CE⊥AE∵OF∥AB∴OF所在直线垂直平分CE∴FC=FE,OE=OC∴∠FEC=∠FCE,∠0EC=∠OCE∵Rt△ABC∴∠ACB=90°即:∠OCE+∠FCE=90°∴∠OEC+∠FEC=90°即:∠FEO=90°∴FE为⊙O的切线(2)∵⊙O的半径为3∴AO=CO=EO=3∵∠EAC=60°,OA=OE∴∠EOA=60°∴∠COD=∠EOA=60°∵在Rt△OCD中,∠COD=60°,OC=3∴CD=33∵在Rt△ACD中,∠ACD=90°,CD=33,AC=6∴AD=37【点睛】本题考查切线的判定,中位线的性质,以及特殊直角三角形的边角关系和勾股定理.24.解:(1)90°;(2)5【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴2242+=.AB BC∴,.由旋转的性质可知:.∴= 考点:旋转的性质. 25.2008年盈利3600万元. 【解析】 【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利. 【详解】解:设每年盈利的年增长率为x ,由题意得: 3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去), ∴年增长率20%, ∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.。

相关文档
最新文档