复合函数知识总结及例题
复合函数知识总结材料及例题
复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
复合函数(知识点总结、例题分类讲解)
复合函数的定义域和解析式以及单调性【复合函数相关知识】1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。
例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。
说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。
实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。
通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。
② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。
实际上是已知直接变量x 的取值范围,即)(b a x ,∈。
先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。
3.求有关复合函数的解析式①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。
②已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。
配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得)(x f 。
复合函数知识点总结题型
复合函数知识点总结题型一、复合函数的定义1.1 复合函数的概念复合函数是指一个函数作用于另一个函数的结果,即一个函数的输入值是另一个函数的输出值。
设有两个函数f(x)和g(x),那么复合函数可以表示为f(g(x))或g(f(x))。
例如,若f(x) = 2x,g(x) = x^2,则f(g(x)) = 2x^2,g(f(x)) = (2x)^2。
1.2 复合函数的符号表示复合函数一般用圆括号来表示,如f(g(x))或g(f(x)),表示函数g和f的复合函数。
若有多个函数进行复合,如f(g(h(x))),则可以用括号表示复合次序,从内到外进行计算。
1.3 复合函数的定义域和值域复合函数的定义域和值域需要满足前一个函数的值域和后一个函数的定义域的交集,即f(g(x))的定义域是g(x)的定义域,f(g(x))的值域是f的值域。
二、复合函数的性质2.1 复合函数的可交换性对于函数f(x)和g(x),一般情况下f(g(x)) ≠ g(f(x)),即复合函数的次序一般是不能交换的。
但对于一些特殊的函数,如幂函数、指数函数等,复合函数的次序可以交换。
2.2 复合函数的代数性质复合函数具有分配律、结合律等代数性质,如(f+g)(x) = f(x) + g(x)、(f·g)(x) = f(x)·g(x)等。
2.3 复合函数的可逆性如果两个函数f和g满足f(g(x)) = x和g(f(x)) = x,则称f和g是互逆的函数。
在这种情况下,f和g都是可逆的函数,且f(g(x))和g(f(x))互为逆函数。
三、复合函数的求导3.1 复合函数的导数法则复合函数的求导可以使用链式法则,即对于复合函数f(g(x)),其导数为f'(g(x))·g'(x)。
链式法则是求导复合函数的一般方法,可以推广到多重复合函数的情况。
3.2 复合函数的高阶导数对于复合函数的高阶导数,可以依次求导,或者使用高阶链式法则进行求导。
复合函数(知识点总结、例题分类讲解)
2
x 1
在区间 [0,) 上都是增函数。
其中正确命题的序号是:__________。 (把你认为正确的命题序号都填上)
7
2.函数 y e |ln x| | x 1 | 的图象大致是(
)
6
Go the distance
3. (2008 江苏南通模拟, 5 分) 设 f ( x) o g l
3 3
a
( a 0 且 a 1) , 若 f ( x1 ) f ( x2 ) f ( xn ) 1 ( xi R , x
a a a 函数.而实质上原函数的最大单调增区间是 , ,由 ,3 , 得 3 ,即 a 6 . 2 2 2
【过关检测】
1. (1) f ( x)
x 2 5x 4 ;
2) g ( x) ( ) 4( ) 5
4.求复合函数的单调性 若 u g ( x) 增函数 减函数 增函数 减函数 即“同增异减”法则 5.复合函数的奇偶性 一偶则偶,同奇则奇
【例题讲解】
y f ( x)
增函数 减函数 减函数 增函数
则 y f [ g ( x)] 增函数 增函数 减函数 减函数
一、复合函数定义域解析式 例1 设函数 f ( x) 2 x 3, g ( x) 3x 5 ,求 f ( g ( x)), g ( f ( x)) .
1 2
2
2.求函数 y 4
x
3 2 x 5 的单调区间和值域.
例2
求 f ( x) = 5 - 4 x - x 2 的单调区间及值域
变式练习 2 求函数 f(x)= 2
复合函数(知识点总结、例题分类讲解)
复合函数的定义域和解析式以及单调性【复合函数相关知识】1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。
例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。
说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。
实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。
通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。
② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。
实际上是已知直接变量x 的取值范围,即)(b a x ,∈。
先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。
3.求有关复合函数的解析式①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。
②已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。
配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得)(x f 。
复合函数习题大全
复合函数习题大全
1.基本概念
复合函数是由两个或多个函数组合而成的函数。
设有函数f(x)
和g(x),则两个函数的复合函数可以表示为f(g(x))。
2.复合函数的求导
对于两个函数的复合函数,可以通过链式法则来求导。
设有函
数f(x)和g(x),则复合函数f(g(x))的导数可以表示为f'(g(x)) * g'(x)。
3.复合函数的求值
要求复合函数的值,需要先将内层函数的输出作为外层函数的
输入。
计算复合函数的值时,需要按照函数的定义顺序依次进行计算。
4.复合函数的题示例
题1:
已知函数f(x) = 2x^2 + 3x,g(x) = x + 1,求复合函数f(g(x))的
表达式。
题2:
已知函数f(x) = 3x - 1,g(x) = 2x^2,求复合函数f(g(x))的导数
f'(g(x)) * g'(x)。
题3:
给定函数f(x) = sin(x),g(x) = cos(x),求复合函数f(g(x))的值。
题4:
已知函数f(x) = x^2,g(x) = x + 1,求复合函数f(g(x))的值。
题5:
已知函数f(x) = 2x,g(x) = x^3,求复合函数f(g(x))的导数
f'(g(x)) * g'(x)。
以上是一些关于复合函数的题示例,通过解答这些题,可以帮
助理解和掌握复合函数的基本概念、求导方法和求值过程。
让我们通过练习习题,加深对复合函数的理解吧!。
复合函数知识总结与例题
复合函数知识总结与例题(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若A ⊇B,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)DD,又fDxg∈)(E域。
例1.0,1_____________。
0,1(0,1)又f对lnx1,e)例2.______________。
解析:先求f即ff对f(x)作用x(2Df的作用围为E,又f对x例3._________。
所以f f对x例4.______________。
解析:先求ff f对x作用,作用围不变,(3D围为E,又f F为例5.____________。
又f评注:函数定义域是自变量x 的取值围(用集合或区间表示)f 对谁作用,则谁的围是f 的作用围,f 的作用对象可以变,但f 的作用围不会变。
利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。
(二)同步练习:1、 已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域。
答案:]1,1[-2、 已知函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域。
答案:]9,3[-3、 已知函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域。
答案:)23,1()0,21(⋃- 4、设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --解:选C.由202x x +>-得,()f x 的定义域为{}|22x x -<<。
(完整word版)复合函数相关性质和经典例题
定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。
求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ;(4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。
若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤.(7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数(8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增.(9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减。
(10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增.(11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.(12) 结论:同曾异减(13) 例1. 求函数222)(-+=x xx f 的单调区间.(14) 解题过程: (15) 外层函数:t y 2=(16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],21[+∞-∈x (18) 内层函数的单调减区间:]21,[--∞∈x (19) 由于外层函数为增函数(20) 所以,复合函数的增区间为:],21[+∞-∈x (21) 复合函数的减区间为: ]21,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间.(23) 解 原函数是由外层函数u y 21log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 21log =(25) 令0232>--=x x u ,解得x 的取值范)1,3(-; (26) 解题过程:(27) 外层函数:t y 2log =(28) 内层函数:22-+=x x t (29) 022>-+=x x t(30) 由图知:(31) 内层函数的单调增区间:],1[+∞∈x(32) 内层函数的单调减区间:]2,[--∞∈x(33) 由于外层函数为增函数(34) 所以,复合函数的增区间为:],1[+∞∈x(35) 复合函数的减区间为:]2,[--∞∈x结合二次函数的图象可知)1,3(-不是内层函数223x x u --=的一个单调区间,但可以把区间)1,3(-划分成内层函数的两个单调子区间]1,3(--和)1,1[-,其中]1,3(--是其单调增区间,)1,1[-是其单调减区间;于是由复合函数“同增异减”的复合原则可知,]1,3(--是原函数的单调减区间,)1,1[-是原函数的单调增区间。
复合函数的单调性例题和知识点总结
复合函数的单调性例题和知识点总结在数学的学习中,函数是一个非常重要的概念,而复合函数的单调性更是函数知识中的重点和难点。
理解并掌握复合函数的单调性,对于解决函数相关的问题有着至关重要的作用。
下面,我们将通过一些例题来深入探讨复合函数的单调性,并对相关知识点进行总结。
首先,我们来明确一下复合函数的概念。
如果函数$y=f(u)$的定义域为$D_1$,函数$u=g(x)$的值域为$D_2$,且$D_2\subseteq D_1$,那么对于定义域内的某个区间上的任意一个$x$,经过中间变量$u$,有唯一确定的$y$值与之对应,则变量$y$是变量$x$的复合函数,记为$y=fg(x)$。
接下来,我们探讨复合函数单调性的判断方法——同增异减。
也就是说,当内层函数与外层函数的单调性相同时,复合函数为增函数;当内层函数与外层函数的单调性不同时,复合函数为减函数。
下面通过几个例题来加深对复合函数单调性的理解。
例题 1:求函数$f(x)=\log_2(x^2 2x + 3)$的单调性。
首先,令$u = x^2 2x + 3$,则$f(u) =\log_2 u$。
对于$u = x^2 2x + 3$,其图象开口向上,对称轴为$x = 1$。
所以$u$在$(\infty, 1)$上单调递减,在$(1, +\infty)$上单调递增。
而$f(u) =\log_2 u$在定义域$(0, +\infty)$上单调递增。
因为内层函数$u$在$(1, +\infty)$上单调递增,外层函数$f(u)$也单调递增,根据同增异减,所以复合函数$f(x)$在$(1, +\infty)$上单调递增。
又因为内层函数$u$在$(\infty, 1)$上单调递减,外层函数$f(u)$单调递增,所以复合函数$f(x)$在$(\infty, 1)$上单调递减。
例题 2:求函数$f(x) = 2^{x^2 + 2x 3}$的单调性。
令$u = x^2 + 2x 3$,则$f(u) = 2^u$。
高考数学经典常考题型第12专题 复合函数零点问题
高考数学经典常考题型第12专题复合函数零点问题第12专题训练:复合函数零点问题一、基础知识:1、复合函数定义:设 $y=f(t),t=g(x)$,且函数 $g(x)$ 的值域为 $f(t)$ 的定义域的子集,那么 $y$ 通过 $t$ 的联系而得到自变量 $x$ 的函数,称 $y$ 是 $x$ 的复合函数,记为$y=f(g(x))$。
2、复合函数函数值计算的步骤:求 $y=g(f(x))$ 函数值遵循“由内到外”的顺序,一层层求出函数值。
例如:已知$f(x)=2x,g(x)=x^2-x$,计算 $g(f(2))$。
解:$f(2)=2\times 2=4$,$\therefore g(f(2))=g(4)=12$3、已知函数值求自变量的步骤:若已知函数值求 $x$ 的解,则遵循“由外到内”的顺序,一层层拆解直到求出 $x$ 的值。
例如:已知 $f(x)=2x,g(x)=x^2-2x$,若 $g(f(x))=0$,求 $x$。
解:令 $t=f(x)$,则 $g(t)=0$,$\therefore t=0$ 或 $t=2$。
当 $t=0$ 时,$f(x)=0$,XXX;当 $t=2$ 时,$f(x)=2$,$\therefore x=1$。
综上所述,$x=1$。
由上例可得,要想求出 $g(f(x))=0$ 的根,则需要先将$f(x)$ 视为整体,先求出 $f(x)$ 的值,再求对应 $x$ 的解。
这种思路也用来解决复合函数零点问题。
先回顾零点的定义:4、函数的零点:设 $f(x)$ 的定义域为 $D$,若存在 $x\in D$,使得 $f(x)=0$,则称 $x$ 是 $f(x)$ 的一个零点。
5、复合函数零点问题的特点:考虑关于 $x$ 的方程$g(f(x))=0$ 的根的个数,在解此类问题时,要分为两层来分析。
第一层是解关于 $f(x)$ 的方程,观察有几个 $f(x)$ 的值使得等式成立;第二层是结合着第一层 $f(x)$ 的值求出每一个$f(x)$ 被几个 $x$ 对应,将 $x$ 的个数汇总后即为$g(f(x))=0$ 的根的个数。
高一数学复合函数例题
高一数学复合函数例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇、复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (一)例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x ,所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. 已知f x x x ()lg 22248-=-,则函数f x ()的定义域为______________。
复合函数讲义
复合函数教师:司马红丽复合函数【知识要点归纳】 1、复合函数的定义2、定义域和值域:3、单调性【经典例题】例1:设函数2(32)35f x x x +=+−,求()f x 的解析式例2:设函数f (x )的定义域是[—1,1]那么函数f (x 2-1)的定义域是________例3:若,且,求的最值。
例4:若函数的值域为一切实数,求实数的取值范围。
例5:求函数23log (32)y x x =++的单调增区间和单调减区间。
例6:讨论函数3428.0+−=x x y 的单调性。
例7:已知)32(log 24x x y −+=. (1)求定义域;(2)求f (x )的单调区间;(3)求y 的最大值,并求取最大值时x 值.例8:若)3(log ax y a −=在[0,1]上是减函数,则a 的取值范围是_______。
例9:若()()25log 3log 3x x −≥()()25log 3log 3yy−−−,则( )A .x y −≥ 0B .x y +≥ 0C .x y −≤ 0D .x y +≤ 0【课堂练习】 1.函数y=在区间[4,5]上的最大值是_______,最小值是_______。
2.函数y =(2 – x – x 2)的单调减区间是_______。
3.已知y = a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围.4.若y = f (x )定义域为[-2, 1],求y = f (2x + 1)和y = f (x 2)的定义域5.求函数1x x 24325−−⋅+的单调区间和值域.6.已知y = f (x )在R 上是增函数,试判断y = f (-2x + 3x + 1)的单调性.7.已知函数122−+−=ax x y 在区间()3,∞−上是增函数,求a 的范围.8.是否存在常数λ使函数y=4x +(2-λ)2x +2-λ在区间(-∞,-2)上是减函数,在[-1,0]上是增函数?若存在,求出λ范围,若不存在求出λ的取值范围。
复合函数的定义域详细讲义及练习详细答案
复合函数一,复合函数得定义:设y就是u得函数,即y=f(u),u就是x得函数,即u=g(x),且g(x)得值域与f(u)得定义域得交集非空,那么y通过u得联系成为x得函数,这个函数称为由y=f(u),u=g(x)复合而成得复合函数,记作y=f[g(x)],其中u称为中间变量、二,对高中复合函数得通解法——综合分析法1、解复合函数题得关键之一就是写出复合过程例1:指出下列函数得复合过程。
(1)y=√2—x2 (2)y=sin3x (3)y=sin3x (4)y=3cos√1—x2 解:(1) y=√2-x2就是由y=√u,u=2-x2复合而成得、(2)y=sin3x就是由y=sinu,u=3x复合而成得。
(3)∵y=sin3x=(sinx)-3∴y=sin3x就是由y=u—3,u=sinx复合而成得。
(4)y=3cos√1+x2就是由y=3cosu,u=√r,r=1+x2复合而成得。
2、解复合函数题得关键之二就是正确理解复合函数得定义、瞧下例题:例2:已知f(x+3)得定义域为[1、2],求f(2x-5) 得定义域。
经典误解1:解:f(x+3)就是由y=f(u),u=g(x)=x+3复合而成得。
F(2x—5)就是由y=f(u2),u2=g(x)=2x-5复合而成得。
由g(x),G(x)得:u2=2x-11即:y=f(u2),u2=2x-11∵f(u1)得定义域为[1、2]∴1≤x﹤2∴—9≤2x-11﹤—6即:y=f(u2)得定义域为[—9、—6]∴f(2x—5)得定义域为[—9、-6]经典误解2:解:∵f(x+3)得定义域为[1、2]∴1≤x+3﹤2∴—2≤x﹤-1∴-4≤2x﹤-2∴-9≤2x—5﹤-7∴f(2x-5)得定义域为[—9、-7](下转2页)注:通过以上两例误解可得,解高中复合函数题会出错主要原因就是对复合函数得概念得理解模棱两可,从定义域中找出“y”通过u得联系成为x得函数,这个函数称为由y=f(u),u=g(x)复合而成得复合函数,记作y=f[g(x)],其中u称为“中间变量”、从以上误解中找出解题者易将f(x+3)得定义域理解成(x+3)得取值范围,从而导致错误。
复合函数(知识点总结、例题分类讲解)
千里之行,始于足下。
复合函数(知识点总结、例题分类讲解)复合函数是指由两个或多个函数相互作用形成的新函数。
在数学中,复合函数是一种常见的概念,并且在高等数学、线性代数、微积分等多个领域中都有应用。
本文将对复合函数的知识点进行总结,并通过分类讲解一些例题。
一、复合函数的定义:设有函数f和g,对于g的定义域中的每个x,存在f的定义域中的y,使得y=g(x),则有一个复合函数h(x)=f(g(x)),它的定义域是所有能使得g(x)的值能成为f(x)定义域中的自变量的值的x。
二、复合函数的求解步骤:1. 确定复合函数的形式h(x)=f(g(x))。
2. 确定g(x)的定义域和f(x)的定义域,并找到能使得g(x)的值成为f(x)的自变量的值。
3. 将g(x)的值代入f(x)中,得到新的函数h(x)。
三、复合函数的性质:1. 复合函数的定义域是g(x)的定义域和f(x)的定义域的交集。
2. 复合函数的值域是f(x)的值域的子集。
四、复合函数的例题分类讲解:1. 简单的复合函数求导:例题1:已知f(x)=x²和g(x)=2x+1,求复合函数h(x)=f(g(x))的导函数h'(x)。
第1页/共2页锲而不舍,金石可镂。
解析:首先计算g'(x)=2,然后计算f'的导函数f'(x)=2x。
根据链式法则,h'(x)=f'(g(x))*g'(x)=2(2x+1)*2=8x+4。
2. 复合函数中含有指数函数:例题2:已知f(x)=eˣ和g(x)=ln(x),求复合函数h(x)=f(g(x))的导函数h'(x)。
解析:首先计算g'(x)=1/x,然后计算f'的导函数f'(x)=eˣ。
根据链式法则,h'(x)=f'(g(x))*g'(x)=eˣ*(1/x)=eˣ/x。
3. 复合函数中含有三角函数:例题3:已知f(x)=sin(x)和g(x)=x²,求复合函数h(x)=f(g(x))的导函数h'(x)。
复合函数知识总结及例题
复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
复合函数求导例题大全
复合函数求导例题大全一、基本概念。
在学习复合函数求导之前,我们首先需要了解一些基本概念。
复合函数是由两个或多个函数组合而成的新函数。
设有函数y=f(u)和u=g(x),则复合函数可以表示为y=f(g(x))。
在求解复合函数的导数时,我们需要运用链式法则,即将复合函数的导数分解为内函数和外函数的导数相乘。
这是复合函数求导的核心概念,也是我们解题的关键所在。
二、常见例题。
1. 求解 y=(3x^2+2x+1)^3 的导数。
解析,首先,我们将内函数和外函数分别确定。
内函数是3x^2+2x+1,外函数是x^3。
根据链式法则,我们可以得到导数的计算公式。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
按照这个步骤,我们可以得到最终的导数结果。
2. 求解 y=sin(2x+1) 的导数。
解析,这是一个三角函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
3. 求解 y=e^(2x+1) 的导数。
解析,这是一个指数函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
4. 求解 y=ln(3x^2+2x+1) 的导数。
解析,这是一个对数函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
5. 求解 y=tan(2x+1) 的导数。
解析,这是一个切线函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
复合函数知识总结及例题
复合函数问题一、复合函数定义:设y=f(u)的定义域为A, u=g(x)的值域为B,若A=B,则y关于X函数的y=f[g(x)]叫做函数f与g的复合函数,U叫中间量.二、复合函数定义域问题:(1)、已知f (χ)的定义域,求f[g(χ) 1的定义域思路:设函数f (X)的定义域为D,即X ∙ D ,所以f的作用范围为D,又f对g(χ)作用,作用范围不变,所以g(x)∙ D ,解得X ∙E,E为f Ig(X)]的定义域。
例1.设函数f (u)的定义域为(O,1),贝U函数f (Inx)的定义域为___________________ 。
解析:函数f (U)的定义域为(0,1)即u • (0,1),所以f的作用范围为(0,1)又f对InX作用,作用范围不变,所以0 ::: In X ::: 1解得X • (1, e),故函数f (In x)的定义域为(1, e)1例2.若函数f (X)= ----------- ,则函数f [f (x)]的定义域为 ___________________ 。
X +11解析:先求f的作用范围,由f (X) ,知X = -1X +1即f的作用范围为■ RlX= ,又f对f(χ)作用所以f (X) ∙R且f (x) - -1 ,即f If(X) 1中X应r d x≠-1X 式一1 L满足彳即{1 ,解得x≠一1且x≠一2I f(X)H—1 —≠-1ιX +1故函数f If (X) 的定义域为CX R|x = -1且Xn -2(2)、已知f Ig(X)】的定义域,求f (x)的定义域思路:设f Ig(X) 1的定义域为D,即X ∙D ,由此得g(x) ∙E ,所以f的作用范围为E,又f对X作用,作用范围不变,所以X ∙E, E为f (X)的定义域。
例3.已知f (3 —2x)的定义域为X E[―1, 2 ],则函数f (x)的定义域为 _________________ 。
复变函数的极限与连续性例题和知识点总结
复变函数的极限与连续性例题和知识点总结在复变函数的学习中,极限与连续性是非常重要的概念。
理解和掌握它们对于解决许多复变函数的问题至关重要。
下面我们将通过一些例题来深入探讨复变函数的极限与连续性,并对相关知识点进行总结。
一、复变函数极限的定义设函数\(f(z)\)定义在\(z_0\)的去心邻域内,如果存在一个复数\(A\),对于任意给定的正数\(ε\),总存在正数\(δ\),使得当\(0 <|z z_0| <δ\)时,有\(|f(z) A| <ε\),则称\(A\)为\(f(z)\)当\(z\)趋于\(z_0\)时的极限,记作\(\lim_{z \to z_0} f(z) = A\)。
二、复变函数连续性的定义如果函数\(f(z)\)在\(z_0\)处满足\(\lim_{z \to z_0} f(z) = f(z_0)\),则称\(f(z)\)在\(z_0\)处连续。
三、例题分析例 1:设\(f(z) = z^2\),求\(\lim_{z \to 1 + i} f(z)\)。
解:\(\lim_{z \to 1 + i} f(z) =\lim_{z \to 1 + i} z^2 =(1 + i)^2 = 1 + 2i + i^2 = 2i\)例 2:判断函数\(f(z) =\frac{z}{|z|}\)在\(z = 0\)处的连续性。
解:当\(z\)沿实轴趋于\(0\)时,\(f(z) =\frac{x}{|x|}\),极限不存在;当\(z\)沿虚轴趋于\(0\)时,\(f(z) =\frac{iy}{|iy|}\),极限不存在。
所以\(f(z)\)在\(z = 0\)处不连续。
例 3:设\(f(z) =\begin{cases} \frac{z^2 1}{z 1},& z \neq 1 \\ 2, & z = 1 \end{cases}\),判断\(f(z)\)在\(z = 1\)处的连续性。
解:\(\lim_{z \to 1} f(z) =\lim_{z \to 1} \frac{z^2 1}{z 1} =\lim_{z \to 1} (z + 1) = 2\),且\(f(1) = 2\),所以\(f(z)\)在\(z = 1\)处连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数问题一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (1)、已知的定义域,求的定义域思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范围不变,所以D x g ∈)(,解得,E 为的定义域。
例1.设函数的定义域为(0,1),则函数的定义域为_____________。
解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以解得,故函数的定义域为(1,e )例2.若函数,则函数的定义域为______________。
解析:先求f 的作用范围,由,知即f 的作用范围为,又f 对f(x)作用所以,即中x 应满足即,解得故函数的定义域为(2)、已知的定义域,求的定义域 思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以为的定义域。
例3.已知的定义域为,则函数的定义域为_________。
解析:的定义域为,即,由此得所以f 的作用范围为,又f 对x 作用,作用范围不变,所以即函数的定义域为例4.已知,则函数的定义域为-------解析:先求f 的作用范围,由f x x x ()lg 22248-=-,知解得,f 的作用范围为,又f 对x 作用,作用范围不变,所以,即的定义域为 (3)、已知的定义域,求的定义域 思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对作用,作用范围不变,所以,解得,F 为的定义域。
例5.若函数的定义域为,则的定义域为____________。
解析:的定义域为,即,由此得的作用范围为,又f 对作用,所以,解得即的定义域为评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。
利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。
三、复合函数单调性问题(1)引理证明已知函数))((x g f y =.若)(x g u =在区间b a ,()上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,()上是增函数.证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <, 故函数))((x g f y =在区间b a ,()上是增函数. (2).复合函数单调性的判断复合函数的单调性是由两个函数共同决定。
为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”. (3)、复合函数))((x g f y =的单调性判断步骤: ⅰ确定函数的定义域;ⅱ将复合函数分解成两个简单函数:)(u f y =与)(x g u =。
ⅲ分别确定分解成的两个函数的单调性;ⅳ若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数;若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。
(4)例题演练例1、求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域130322-<>⇒>--x x x x 或 单调减区间是),3(+∞设2121),3(,x x x x <+∞∈且则)32(log 121211--=x x y )32(log 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x∴)32(121--x x >)32(222--x x 又底数1210<<∴012<-y y 即12y y < ∴y 在),3(+∞上是减函数同理可证:y 在)1,(--∞上是增函数[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为}.31,1|{-<>x x x 或则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数. 若31-<x ,∵1232--=x x u 为减函数. ∴)123(log )(2--=x x x f a 为减函数。
当10<<a 时,若1>x ,则)123(log )(2--=x x x f a 为减函数,若31-<x ,则)123(log )(2--=x x x f a 为增函数.例3、.已知y=a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1当a >1时,函数t=2-xa >0是减函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1由x ∈[0,1]时,2-xa ≥2-a >0,得a <2, ∴1<a <2当0<a<1时,函数t=2-xa >0是增函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0<a<1由x ∈[0,1]时,2-xa ≥2-1>0,∴0<a<1 综上述,0<a<1或1<a <2例4、已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。
[解析]由已知0)2(=-m f ,得02)3(2=-+--a m a am ,其中.0,≠∈a R m ∴0≥∆即09232≤--a a , 解得.37213721+≤≤-a ∵a 为负整数,∴.1-=a∴1)2(34)2(2+--=-+-=-2x x x x f ,即.1)(2+-=x x f 242221)1()]([)(x x x x f f x g +-=++--==, ∴.1)12()()()(24+-+-=+=x p px x f x pg x F假设存在实数)0(<p p ,使得)(x F 满足条件,设21x x <,∴].12)()[()()(2221222121-++--=-p x x p x x x F x F ∵3)2(-=f ,当)3,(,21--∞∈x x 时,)(x F 为减函数,∴0)()(21>-x F x F ,∴.012)(,022212221>-++->-p x x p x x ∵3,321-<-<x x ,∴182221>+x x , ∴11612)(2221-->-++-p p x x p , ∴.0116≥--p ①当)0,3(,21-∈x x 时,)(x F 增函数,∴.0)()(21<-x F x F∵02221>-x x ,∴11612)(2221--<-++-p p x x p , ∴0116≤--p . ②由①、②可知161-=p ,故存在.161-=p一.指函数与对数函数.同底的指数函数xy a =与对数函数log a y x =互为反函数;(二)主要方法:1.解决与对数函数有关的问题,要特别重视定义域;2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论; 3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差. (三)例题分析:例1.(1)若21a b a >>>,则log b ba,log b a ,log a b 从小到大依次为; (2)若235x y z==,且x ,y ,z 都是正数,则2x ,3y ,5z 从小到大依次为;(3)设0x >,且1x xa b <<(0a >,0b >),则a 与b 的大小关系是() (A )1b a <<(B )1a b <<(C )1b a <<(D )1a b <<解:(1)由21a b a >>>得b a a <,故log b b a<log b a 1<<log a b .(2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =, ∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).例2.已知函数2()1x x f x a x -=++(1)a >,求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<,则1212121222()()11xx x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++,∵121x x -<<,∴110x +>,210x +>,120x x -<,∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x xa a -<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201xx a x -+=+, 即00000023(1)31111x x x ax x x --+===-+++,① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <, ∴①式不成立;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而00x a >, ∴①式不成立.综上所述,方程()0f x =没有负数根.例3.已知函数()log (1)xa f x a =-(0a >且1a ≠).求证:(1)函数()f x 的图象在y 轴的一侧;(2)函数()f x 图象上任意两点连线的斜率都大于0.证明:(1)由10x a ->得:1x a >,∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧; 当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧. ∴函数()f x 的图象在y 轴的一侧;(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,则直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1x x x a a a x a y y a a a --=---=-,当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x xa a <-<-,∴121011x xa a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x xa a ->->, ∴12111x xa a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.同步练习(二)同步练习:1、已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域。