数值分析第三版课本习题及答案
数值分析课后习题及答案
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案
0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析课后部分习题答案
习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解*20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =-由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解*12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明()1nkk lx ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又(1)1()()()0(1)!n n n f R x x n ξω++==+,可得 ()()1n l x f x ==,从而()1nkk lx ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式. 解 方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f x g x f x g x h =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++- ()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[ 0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [(()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [(8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--, 即 ()P x 41=4x 332x -29+4x .方法二 设()P x 23401234=a a x a x a x a x ++++, 则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而()P x 41=4x 332x -29+4x . 方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩ 解 因为22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩, 66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解 因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令1221[]=0x x dx αα-∂-∂⎰,得=0α. 12()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204x x x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小? ∑=-ni x i iCe x f 12))((解21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑, 令21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x ii nx xx i f x ef x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922t f t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩. 方法二方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令(,)0(,)0I x y x I x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数 124810()0152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈= 二阶微商用三点公式(中点公式),首先用插值法求(5)f , 由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =-从而 1(5)(5)9f L ≈=,于是,2(2)2(5)(8)4(5).39f f f f -+''≈= 8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明设1111()=T ij aa A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设⎥⎦⎤⎢⎣⎡=989999100A(1) 计算2||||,||||A A ∞; (2) 计算∞)(A Cond ,及2)(A Cond . 解 (1) 计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=,又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2)1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1xx n x ∞∞≤≤; (2)∞∞≤≤An A A n11.证明 (2) 由(1)1x x n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则 11Ax Ax n Ax n x xx∞∞∞∞≤≤,从而11max max max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得∞∞≤≤An A A n11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③ 三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1. 设有方程组(b )1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi迭代法,G-S 迭代法解此方程组的收敛性.解 系数矩阵分裂如下,122111221A -⎛⎫⎪= ⎪ ⎪⎝⎭D L U =--10022110112200-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ Jacobi迭代矩阵为1()J D L U -=+=02211220-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭, J 的特征方程为2211022λλλ-=,展开得 30λ=,即01λ=<,所以用Jacobi 迭代法解此方程组是收敛的.G-S 迭代矩阵为1()G D L U -=-11022=11012210--⎛⎫⎛⎫⎪ ⎪⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭100022=110010210-⎛⎫⎛⎫ ⎪ ⎪-⋅- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭122=023002-⎛⎫ ⎪- ⎪ ⎪⎝⎭, G 的特征方程为12221002λλλ---=-, 展开得 (1)(2)(2)0λλλ---=,即1λ=或2λ=,由迭代基本定理得用G-S 迭代法解此方程组是不收敛的.4. 设有方程组Ax b =,其中A 为对称正定阵,且有迭代公式(1)()()()k k k x x b Ax ω+=+- (0,1,k =),试证明当20ωβ<<时,上述迭代法收敛(其中A 的特征值满足0()A αλβ<≤≤).证明 A 为对称正定阵, A 的特征值满足0()A αλβ<≤≤,且20ωβ<<,则0()2A ωλ<<又迭代公式可变形为(1)()()k k x I A x bωω+=-+ (0,1,k =),从而迭代矩阵 B I A ω=-,迭代矩阵的特征值为1()A ωλ-,且满足11()1A ωλ-<-<,即 |()|1B λ<,由迭代基本定理得该迭代法是收敛的.5. 设111a a A aa a a⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中a 为实数,试确定a 满足什么条件时,解Ax b =的Jacobi 迭代法收敛.解 系数矩阵分裂如下,111a a A aa a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭D L U =--1001100a a aa aa--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭Jacobi迭代矩阵为1()J D L U -=+=000a a aa a a--⎛⎫⎪-- ⎪ ⎪--⎝⎭,J 的特征方程为0a aa a aaλλλ=,展开得 323320a a λλ--=,即a λ=-或2a λ=-,()max{||,|2|}J a a ρ=--()1J ρ<当且仅当1122a -<<,所以当1122a -<<时,解Ax b=的Jacobi 迭代法收敛.。
数值分析书本答案
习题一1、取3.14,3.15,722,113355作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
解:14.31=x312110211021--⨯=⨯≤-x π 所以,1x 有三位有效数字绝对误差:14.3-=πe ,相对误差:ππ14.3-=r e 绝对误差限:21021-⨯≤ε,相对误差限:213106110321-+-⨯=⨯⨯=r ε21122105.0105.01084074.000840174.015.315.3---⨯=⨯≤⨯==-=πx所以,2x 有两位有效数字绝对误差:15.3-=πe ,相对误差:ππ15.3-=r e 绝对误差限:11021-⨯=ε,相对误差限:11061-⨯=r ε31222105.0105.01012645.00012645.0722722---⨯=⨯≤⨯==-=πx所以,3x 有三位有效数字绝对误差:722-=πe ,相对误差:ππ722-=r e绝对误差限:21021-⨯=ε,相对误差限:21061-⨯=r ε1133551=x 7166105.0105.01032.000000032.0113355---⨯=⨯≤⨯==-π 所以,4x 有七位有效数字 绝对误差:113355-=πe ,相对误差:ππ113355-=r e绝对误差限:61021-⨯=ε,相对误差限:61061-⨯=r ε3、下列各数都是对准确数四舍五入后得到的近似数,试分别指出它们的绝对误差限和相对误差限,有效数字的位数。
5000,50.31,3015.0,0315.04321====x x x x解:0315.01=x m=-13141*10211021---⨯=⨯≤-x x 所以,n=3,1x 有三位有效数字绝对误差限:41021-⨯=ε,相对误差:2110611021-+-=⨯=n r a ε3015.02=x m=04042*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:41021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50.313=x m=24223*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:21021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50004=x m=44404*10211021-⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:5.010210=⨯=ε,相对误差:23110105211021--+-=⨯=⨯=n r a ε 4、计算10的近似值,使其相对误差不超过%1.0。
数值分析课后习题与解答
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析书本标准答案
习题一1、取3.14,3.15,722,113355作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
解:14.31=x312110211021--⨯=⨯≤-x π所以,1x 有三位有效数字绝对误差:14.3-=πe ,相对误差:ππ14.3-=r e 绝对误差限:21021-⨯≤ε,相对误差限:213106110321-+-⨯=⨯⨯=r ε 21122105.0105.01084074.000840174.015.315.3---⨯=⨯≤⨯==-=πx所以,2x 有两位有效数字绝对误差:15.3-=πe ,相对误差:ππ15.3-=r e 绝对误差限:11021-⨯=ε,相对误差限:11061-⨯=r ε31222105.0105.01012645.00012645.0722722---⨯=⨯≤⨯==-=πx所以,3x 有三位有效数字绝对误差:722-=πe ,相对误差:ππ722-=r e绝对误差限:21021-⨯=ε,相对误差限:21061-⨯=r ε1133551=x7166105.0105.01032.000000032.0113355---⨯=⨯≤⨯==-π 所以,4x 有七位有效数字绝对误差:113355-=πe ,相对误差:ππ113355-=r e绝对误差限:61021-⨯=ε,相对误差限:61061-⨯=r ε3、下列各数都是对准确数四舍五入后得到的近似数,试分别指出它们的绝对误差限和相对误差限,有效数字的位数。
5000,50.31,3015.0,0315.04321====x x x x解:0315.01=x m=-13141*10211021---⨯=⨯≤-x x 所以,n=3,1x 有三位有效数字绝对误差限:41021-⨯=ε,相对误差:2110611021-+-=⨯=n r a ε3015.02=x m=04042*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:41021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50.313=x m=24223*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:21021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50004=x m=44404*10211021-⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:5.010210=⨯=ε,相对误差:23110105211021--+-=⨯=⨯=n r a ε4、计算10的近似值,使其相对误差不超过%1.0。
数学分析三习题答案
数学分析三习题答案【篇一:《数学分析》第三版全册课后答案 (1)】class=txt>------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第页(共)------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。
111.求函数f(x,y)??在点(0,0)处的二次极限与二重极限.yx11解:f(x,y),因此二重极限为0.……(4分)yx1111因为与均不存在,x?0yxy?0yx故二次极限均不存在。
……(9分)zxf(xy),yy(x),2. 设? 是由方程组?所确定的隐函数,其中f和f分别f(x,y,z)?0z?z(x)??dz数,求.dx解:对两方程分别关于x求偏导:dy?dzf(xy)xf(xy)(1),??dxdx?……(4分)dydz?f?f?fz?0。
xydxdxdzfy?f(x?y)?xf?(x?y)(fy?fx)?解此方程组并整理得.……(9分) dxfy?xf?(x?y)fz3. 取?,?为新自变量及w?w(?,v)为新函数,变换方程2z2zzz。
2?x?x?y?xx?yx?y设??,??,w?zey (假设出现的导数皆连续).22解:z看成是x,y的复合函数如下:wx?yx?y。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析第三版课本习题及答案
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析课后习题部分参考答案.doc
数值分析课后习题部分参考答案Chapter 1(P10) 5.求厲的近似值x*,使其相对误差不超过0.1%。
解:V2 = 1.4 ••- o设X*有"位有效数字,则le(x*)lV0.5xl0xl(T"。
,*““0.5x10-" 牛(x )1< ] 。
从而,丨<故,若0.5x10-" <0.1%,则满足要求。
解之得,M>4O %* =1.414 O(P10) 7.正方形的边长约100cm ,问测量边长时误差应多大,才能保证面积的误差不超过1 cm2 o解:设边长为a ,则a心100cm。
设测量边长时的绝对误差为e,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:® 2xl00xe…按测量要求,l2xl00xel<l解得,lel< 0.5x10 2 oChapter 2(P47) 5.用三角分解法求下列矩阵的逆矩阵:‘1 1 -1]A = 2 1 0 。
J j 0丿解:设A1 =(«0 /)=分别求如下线性方程组:先求A的LU分解(利用分解的紧凑格式),气1)1 (1)1 (-D-(2)2(D-1(0)2、⑴1(-1)2 (0) —3,(1 0 0、 ri 1 -1] 即,厶=2 1 0 ,U =0-12 J 2 1丿<0 0-3经直接三角分解法的回代程,分别求解方程组,1 0Ly =0 和 Ua = v ,得,a = 0J3 2 3 1(P47) 6.分别用平方根法和改进平方根法求解方程组:(1 2 1 -3兀1)2 50 -5兀2 2 10 14 1 x 3 16 、一 -5 1 15丿3解:平方根法:先求系数矩阵4的Cholesky 分解(利用分解的紧凑格式),'(1)1、< 1 0 0 0、(2)2(5)1,即,L =2 1 0 0 (1)1 (0)-2 (14)3 1 -2 3 、(_3) _ 3 (-5)1 (1)2 (15<-31 2 b216 改进平方根Ly = 和 II x = y ,得,x = 先求系数矩阵A 的形如A = LDU 的分解,其中厶-(/y .)4x4为单位下二角矩阵,D = diag{d l ,d 2,d 3,d 4}为对角矩阵。
数值分析课后习题答案
x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12
数值分析课后部分习题答案
证明 由差商的定义 (a) 如果 F ( x ) = cf ( x ) ,则
F [ x0 , x1 ,⋯ , xn ] =
=
F [ x1 , x2 ,⋯ , xn ]-F [ x0 , x1 ,⋯ , xn− 1 ] x n − x0
cf [ x1 , x2 , ⋯ , xn ]-cf [ x0 , x1 ,⋯ , xn −1 ] x n − x0 f [ x1 , x2 , ⋯ , xn ]-f [ x0 , x1 ,⋯ , xn−1 ] = cf [ x0 , x1 , ⋯ , xn ] . x n − x0
1 1 1 1 |e( x*)| ≤ × 10m − n = × 10−2 , |e( y*)| ≤ × 10m − n = × 10 −2 , 2 2 2 2 1 1 |e( z*)| ≤ × 10 m − n = × 10 −2 , 2 2 | e( y * z*) |≈| z * e ( y*) + y * e ( z *) |≤ z * | e ( y *) | + y * | e (z *) |
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 , 2 2
1 1 ≤ 2.35 × × 10−2 + 1.84 × × 10−2 = 2.095 × 10−2 , 2 2 1 | e( x * + y * z*) |≈| e( x*) + e( y * z*) |≤ × 10 −2 + 2.095 × 10−2 2 1 = 0.2595 × 10−1 ≤ × 10−1 , 2
《数学分析》第三版全册课后答案 (1)
4、一阶微分方程 (3x 4 xy)dx 2 x dy 0 的通解(可以用隐函数表达)为 5、设二阶可微函数 f ( x, y) 满足 .
专业:
2 f 2 f 2 f y , x y , x, 则 f ( x, y) 的表达形式为 x 2 xy y 2
得分
评阅人
(2) f ( x, y) 在 (0, 0) 点的可微性.
2、 (本题 7 分)设函数 f ( x ) 在0, 上有界且连续, f (0) 0, 讨论函数
F ( y)
0
yf ( x) dx 的连续性. x2 y 2
得分
评阅人
三、计算题 II(共 4 小题,共 40 分)
第 2 页(共
3 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
1、 (本题 10 分)设定义在 (0, ) 上的函数 f 满足下列三个条件: (1) x 0, f ( x) 0, f (1) 1; (2) f ( x 1) xf ( x), x 0; (3) ln f 是 (0, ) 上的凸函数. 证明: (1) f ( x) lim
n x n! ; n x( x 1) ( x n)
(2)验证欧拉积分 ( x) 也满足题述的三个条件,并由此证明 f ( x) ( x).
2 2、 (本题 10 分)设 u ( x, y ) 在 R 上连续,对任意 r 0 ,证明:等式
数值分析参考答案
数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。
可以参照课本的例1.5来编写函数。
8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。
数学分析课本(华师大三版)-习题及答案第十七章
第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有xy1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1x Z ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty ,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x xF x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y ,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0)证明:(1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x xf x +()z ,y ,x kyf y +()z ,y ,x mzf z =nf(x,y ,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n kn k21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:t u ∂∂=222xu a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x .2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctgx y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求x dZ α; (2) 设Z=xy y x 2222e xyy x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)gradr 1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数;(7)Z=f(x+y,xy ,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0); (4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y xy x +-,(){}1y x y ,x ≤+;(3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y ,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数 ⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1n n1n 21n 12n2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n 1k k0;x u (2)∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f (a y k x h dt g(t)d n n n++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求x k z h y g y f x e z d zc y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z )h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin x y ,试证 m y y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.设x>0,x得相对误差为δ,求得误差、2.设x得相对误差为2%,求得相对误差、3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指出它们就是几位有效数字:4.利用公式(3、3)求下列各近似值得误差限:其中均为第3题所给得数、5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少?6.设按递推公式( n=1,2,…)计算到、若取≈27、982(五位有效数字),试问计算将有多大误差?7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、8.当N充分大时,怎样求?9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝?10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增加,而相对误差却减小、11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程稳定吗?12.计算,取,利用下列等式计算,哪一个得到得结果最好?13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠?15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足第二章插值法1.根据(2、2)定义得范德蒙行列式,令证明就是n次多项式,它得根就是,且、2.当x= 1 , 1 , 2 时, f(x)= 0 , 3 , 4 ,求f(x)得二次插值多项式、3.给出f(x)=ln x得数值表用线性插值及二次插值计算ln 0、54 得近似值、4.,研究用线性插值求cos x 近似值时得总误差界、5.设,k=0,1,2,3,求、6.设为互异节点(j=0,1,…,n),求证:i)ii)7.设且,求证8.在上给出得等距节点函数表,若用二次插值求得近似值,要使截断误差不超过,问使用函数表得步长应取多少?9.若,求及、10.如果就是次多项式,记,证明得阶差分就是次多项式,并且为正整数)、11.证明、12.证明13.证明14.若有个不同实根,证明15.证明阶均差有下列性质:i)若,则;ii)若,则、16.,求及、17.证明两点三次埃尔米特插值余项就是并由此求出分段三次埃尔米特插值得误差限、18.求一个次数不高于4次得多项式,使它满足并由此求出分段三次埃尔米特插值得误差限、19.试求出一个最高次数不高于4次得函数多项式,以便使它能够满足以下边界条件,,、20.设,把分为等分,试构造一个台阶形得零次分段插值函数并证明当时,在上一致收敛到、21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处得与得值,并估计误差、22.求在上得分段线性插值函数,并估计误差、23.求在上得分段埃尔米特插值,并估计误差、24.给定数据表如下:i)ii)25.若,就是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若,式中为插值节点,且,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰、26. 编出计算三次样条函数系数及其在插值节点中点得值得程序框图(可用(8、7)式得表达式)、第三章 函数逼近与计算1. (a)利用区间变换推出区间为得伯恩斯坦多项式、(b)对在上求1次与三次伯恩斯坦多项式并画出图形,并与相应得马克劳林级数部分与误差做比较、 2. 求证:(a)当时,、 (b)当时,、3. 在次数不超过6得多项式中,求在得最佳一致逼近多项式、4. 假设在上连续,求得零次最佳一致逼近多项式、5. 选取常数,使达到极小,又问这个解就是否唯一?6. 求在上得最佳一次逼近多项式,并估计误差、7. 求在上得最佳一次逼近多项式、8. 如何选取,使在上与零偏差最小?就是否唯一? 9. 设,在上求三次最佳逼近多项式、 10. 令,求、11. 试证就是在上带权得正交多项式、12. 在上利用插值极小化求1得三次近似最佳逼近多项式、13. 设在上得插值极小化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14. 设在上,试将降低到3次多项式并估计误差、15. 在上利用幂级数项数求得3次逼近多项式,使误差不超过0、005、16. 就是上得连续奇(偶)函数,证明不管就是奇数或偶数,得最佳逼近多项式也就是奇(偶)函数、 17. 求、使为最小、并与1题及6题得一次逼近多项式误差作比较、 18. 、,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们就是否构成内积?19. 用许瓦兹不等式(4、5)估计得上界,并用积分中值定理估计同一积分得上下界,并比较其结果、 20. 选择,使下列积分取得最小值:、21. 设空间,分别在、上求出一个元素,使得其为得最佳平方逼近,并比较其结果、 22. 在上,求在上得最佳平方逼近、23. 就是第二类切比雪夫多项式,证明它有递推关系、24. 将在上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差、25.把在上展成切比雪夫级数、26.用最小二乘法求一个形如得经验公式,使它与下列数据拟合,并求均方误差、27.28.在某化学反应里,根据实验所得分解物得浓度与时间关系如下:29.编出用正交多项式做最小二乘拟合得程序框图、30.编出改进FFT算法得程序框图、31.现给出一张记录,试用改进FFT算法求出序列得离散频谱第四章数值积分与数值微分1.确定下列求积公式中得待定参数,使其代数精度尽量高,并指明所构造出得求积公式所具有得代数精度:(1);(2);(3);(4)、2.分别用梯形公式与辛普森公式计算下列积分:(1); (2);(3); (4)、3.直接验证柯特斯公式(2、4)具有5次代数精度、4.用辛普森公式求积分并计算误差、5.推导下列三种矩形求积公式:(1);(2);(3)、6.证明梯形公式(2、9)与辛普森公式(2、11)当时收敛到积分、7.用复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍入误差)?8.用龙贝格方法计算积分,要求误差不超过、9.卫星轨道就是一个椭圆,椭圆周长得计算公式就是,这里就是椭圆得半长轴,就是地球中心与轨道中心(椭圆中心)得距离,记为近地点距离,为远地点距离,公里为地球半径,则、我国第一颗人造卫星近地点距离公里,远地点距离公里,试求卫星轨道得周长、10.证明等式试依据得值,用外推算法求得近似值、11.用下列方法计算积分并比较结果、(1)龙贝格方法;(2)三点及五点高斯公式;(3)将积分区间分为四等分,用复化两点高斯公式、12.用三点公式与五点公式分别求在1、0,1、1与1、2处得导数值,并估计误差、得值由下表给出:第五章常微分方程数值解法1、就初值问题分别导出尤拉方法与改进得尤拉方法得近似解得表达式,并与准确解相比较。
2、用改进得尤拉方法解初值问题取步长h=0、1计算,并与准确解相比较。
3、用改进得尤拉方法解取步长h=0、1计算,并与准确解相比较。
4、用梯形方法解初值问题证明其近似解为并证明当时,它原初值问题得准确解。
5、利用尤拉方法计算积分在点得近似值。
6、取h=0、2,用四阶经典得龙格-库塔方法求解下列初值问题:1)2)7、证明对任意参数t,下列龙格-库塔公式就是二阶得:8、证明下列两种龙格-库塔方法就是三阶得:1)2)9、分别用二阶显式亚当姆斯方法与二阶隐式亚当姆斯方法解下列初值问题:取计算并与准确解相比较。
10、证明解得下列差分公式就是二阶得,并求出截断误差得首项。
11、导出具有下列形式得三阶方法:12、将下列方程化为一阶方程组:1)2)3)13、取h=0、25,用差分方法解边值问题14、对方程可建立差分公式试用这一公式求解初值问题验证计算解恒等于准确解15、取h=0、2用差分方法解边值问题第六章方程求根1、用二分法求方程得正根,要求误差<0、05。
2、用比例求根法求在区间[0,1]内得一个根,直到近似根满足精度时终止计算。
3、为求方程在附近得一个根,设将方程改写成下列等价形式,并建立相应得迭代公式。
1),迭代公式;2),迭代公式;3),迭代公式。
试分析每种迭代公式得收敛性,并选取一种公式求出具有四位有效数字得近似根。
4、比较求得根到三位小数所需得计算量;1)在区间[0,1]内用二分法;2) 用迭代法,取初值。
5、给定函数,设对一切存在且,证明对于范围内得任意定数λ,迭代过程均收敛于得根。
6、已知在区间[a,b]内只有一根,而当a<x<b时,,试问如何将化为适于迭代得形式?将化为适于迭代得形式,并求x=4、5(弧度)附近得根。
7、用下列方法求在附近得根。
根得准确值=1、87938524…,要求计算结果准确到四位有效数字。
1) 用牛顿法;2)用弦截法,取;3)用抛物线法,取。
8、用二分法与牛顿法求得最小正根。
9、研究求得牛顿公式证明对一切且序列就是递减得。
10、对于得牛顿公式,证明收敛到,这里为得根。
11、试就下列函数讨论牛顿法得收敛性与收敛速度:1)2)12、应用牛顿法于方程,导出求立方根得迭代公式,并讨论其收敛性。
13、应用牛顿法于方程,导出求得迭代公式,并用此公式求得值。
14、应用牛顿法于方程与,分别导出求得迭代公式,并求15、证明迭代公式就是计算得三阶方法。
假定初值充分靠近根,求第七章解线性方程组得直接方法1、考虑方程组:(a)用高斯消去法解此方程组(用四位小数计算),(b)用列主元消去法解上述方程组并且与(a)比较结果。
2、(a) 设A就是对称阵且,经过高斯消去法一步后,A约化为证明A2就是对称矩阵。
(b)用高斯消去法解对称方程组:4、设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A得所有顺序主子式均不为零。
5、由高斯消去法说明当时,则A=LU,其中L为单位下三角阵,U 为上三角阵。
6、设A 为n阶矩阵,如果称A为对角优势阵。
证明:若A就是对角优势阵,经过高斯消去法一步后,A具有形式。