最新高中数学必修3课件全册课件(人教A版)

合集下载

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布 PPT课件

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布  PPT课件
0.16
0.08 0.12 0.08 0.04 0.3 0.5 0.44
有数无形欠直观, 在频率直 有形无数难入微 方图中,
0.28
12%
3.5 4 4.5
0 .1
0
各小矩形 的面积的 总和等于1
0.5
1
1.5
2
2 .5
3
88%
月均用水量/t
探究:
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同。不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断。观 察分别以1和0.1为组距的图象,谈谈你对图的印象。
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 90 100 110 120 130 140 150
次数
频率= 频数
第二小组频数 12 样本容量 150 样本容量 第二小组频率 0.08
频率分布折线图.
频率/组距 (取各小长方形上端中点, 并连线 )
0.6 0.5 0.4 0.3
0.3
0.16 0.12 0.08 0.04 0.28 0.5 0.44
0.2
0.1 0.08 0 0.5 1 1.5 2 2.5 3
3.5 4
4.5
月均用水量/t
利用样本频分布对总体分布进行相应估计 用样本分布直方图去估计相应的总体分布时, (1)样本容量越大,这种估计越精确。 一般样本容量越大,频率分布直方图就会越接 (2)当样本容量无限增大,组距无限缩小,那么相应的 近总体密度曲线,就越精确地反映了总体的分 频率折线图会无限接近于一条光滑曲线 ———总体密度曲线 布规律,即越精确地反映了总体在各个范围内 取值百分比。 (3)总体密度曲线反映了总体在各个范围内取值的百

7.5正态分布 课件(共24张PPT)-(2024年)高二下学期数学人教A版选择性必修第三册

7.5正态分布  课件(共24张PPT)-(2024年)高二下学期数学人教A版选择性必修第三册

正态曲线的性质 :
(1)曲线位于 x 轴的上方与 x 轴不相交;
(4)曲线与 x 轴之间的面积为 1;
且对称区域面积相等;
(间高、左右对称的基本特征.
正态曲线的性质 :
σ=1
μ=0
μ=0
=0.5
μ=-1
μ=1
=1
=2
σ越大,表示总体的分布越分散;
σ越小,表示总体的分布越集中.
标准正态曲线:

1
e
正态函数表示式:f ( x )
2
( x )2
x (,)
2 2
当 μ= 0,σ=1时,可得 标准正态函数表示式:
x2
f ( x)
1 2
e
x (,)
2
标准正态
曲线
y
μ=0
σ=1
-3 -2 -1 0 1 2 3 x
∴考试成绩X位于区间(80,100]内的概率为0.6827.
由共有2000名考生,知考试成绩在(80,100]间的考生大
约有2000×0.6827≈1 365(人).
例2 若X~N(5,1),求P(6<X<7).
解: 因为X~N(5,1),
故正态密度曲线关于直线 x=5 对称,
1).若X~N(μ,σ2),问X位于区域(μ,μ+σ)内的概率是多少?
22 x (,)
则称随机变量X 服从正态分布,记为X~N(μ,2).
若X ~ N ( , 2 ), 如图所示,
P( X x) S A
P (a X b) S B
若X ~ N ( , 2 ), 则 E ( X ) , D( X ) 2
在实际遇到的许多随机现象都服从或近似服从正态分布:

人教版高中数学必修3(A版) 几何概型 PPT课件

人教版高中数学必修3(A版) 几何概型 PPT课件

2 5
1 6
第二种三块区域圆心 角之比为1:2:3;
1 4
第三种圆盘两圆的半 径之比为1:2
[情境二] 问题1:在区间[0,9]上任取一个整数,恰 好取在区间[0,3]上的概率为多少? 2
5
问题2:在区间[0,9]上任取一个实数,恰 好取在区间[0,3]上的概率为多少? 1
3
探究:
请问飞镖射中靶心A(看成一个点)的 概率是多少?
中国刑法第三百零三条规定:以营利为目的,聚众 赌博或者以赌博为业的,处三年以下有期徒刑、拘役 或者管制,并处罚金;“开设赌场的,处三年以下有期徒 刑、拘役或者管制,并处罚金;情节严重的,处三年以 上十年以下有期徒刑,并处罚金.
复习提问:
1、古典概型的两个特点: (1)试验中所有可能出现的基本事件只有 有限个. (2)每个基本事件出现的可能性相等. 2、计算古典概型的公式:
几何概型的概率计算公式:
构成事件A的测度(长度、弧度、 角度、面积、体积) P( A) 全部结果的测度(长度 构成事件A的测度(长度、弧度、 角度、面积、体积) P( A) 全部结果的测度(长度 、弧度、角度、面积、 体积)
例1:取一根长度为60cm的绳子,拉直后在任意
A包含基本事件的个数 公式:P( A) 基本事件的总数
创设情境:
情境一:摸球游戏:袋子中有分别写有1 号、2号、3号、4号、5号的5个球, 问题:随机抽取一个抽到1号的概率是多 1 少? 5 上述情景改为如图所示,问 1 5 题:圆盘中指针指到到1号的 4 2 概率是多少? 3
注:五个扇形区域面 积相同;
解:设A={等待的时间不多于10分钟}. 所求的事件A恰好是打开收音机时的 时刻位于[50,60]时间段内。 因此由几何概型的概率公式得

6.2.1排列-【新教材】人教A版高中数学选择性必修第三册课件

6.2.1排列-【新教材】人教A版高中数学选择性必修第三册课件
件事共有 N m1 m2 mn 种不同的方法.
2.分步乘法计数原理:
完成一件事,需要分成n个步骤,做 第 1 步有 m1种不同的方法,做第2步有m2种不同的方法…, 做 第 n 步 有mn种不同的方法.那 么 完 成这件 事
共有 N m1 m2 mn 种不同的方法.
二、探究新知:
1.问题1:从甲、乙、丙3名同学中选出2名参加一 项活动,其中1名同学参加上午的活动,另1名同 学参加下午的活动,有多少种不同的选法?
解:(1).可以先从这5盘菜中取1盘给同学甲,然后从剩下4盘 菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.
按分步乘法计数原理,不同的取法种数为:5×4×3=60.
(2).可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从
从5种菜中选1种,有5种选法; 最后让同学丙从5种菜中选1种,有5 种选法. 按分步乘法计数原理,不同的取法种数为:5×5×5=125.

人去选,有2种选法.根据分步乘法计
数原理,不同选法的种数N=3×2=6.
6种选法如图6.2-1所示

下午

相应的排法
甲乙

甲丙

乙甲

乙丙

丙甲
乙 图6.2-1 丙乙
2.若把上面问题中被取的对象叫做元素, 于是问题1就可以叙述为:
从3个不同的元素a,b,c中任取2个,然后 按照一定的顺序排成一列,一共有多少种 不同的排列方法?
7! 4!
7
6
5
210
4
(4)A
4 6
A
2 2
65
4
321
6!
720
8.例4.证明:

7.1.2全概率公式-【新教材】人教A版高中数学选择性必修第三册课件

7.1.2全概率公式-【新教材】人教A版高中数学选择性必修第三册课件
a
a 1baFra bibliotek

a b a b 1 a b a b 1
a

ab
P ( R1 )
R2
R1 R2
B2
R1 B2
R2
B1 R2
B2
B1 B2
R1

P ( B1 )
B1
问题1:从有a个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放
a
回.显然,第1次摸到红球的概率为
.那么第2次摸到红球的概率是多大?如何
• 1.利用概率的加法公式和乘法公式归纳得到全概率公式;
• 2.能用全概率公式计算较复杂的概率问题;
问题1:从有a个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放
a
回.显然,第1次摸到红球的概率为
.那么第2次摸到红球的概率是多大?如何
ab
计算这个概率呢?
用 Ai表示事件“第i次摸到红球”,Bi表示事件“第i次摸到蓝球”,i=1,2.事件R2可按第1次可能的摸球结
例6:在数字通讯中,信号是由数字0和1组成的序列。由于随机因素的干扰,发送的
信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别
为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0
和1是等可能的.
(1)分别求接收的信号为0和1的概率;
我们称上面的公式为全概率公式。
2*贝叶斯公式:
一般地,设A1,A2, ,An是一组两两互斥的事件,有A1 A2
且P(A i )>0,i=1,2, ,n,则对任意的事件B ,P( B) 0有
An ,

人教A版 高中数学 必修3 第一章 1.1.2 循环结构的程序框图课件(共16张PPT)

人教A版 高中数学 必修3 第一章 1.1.2 循环结构的程序框图课件(共16张PPT)

巩固提高
1、设计一算法,求 积:1×2×3×…×100, 画出流程图
思考:该流程图与前面 的例1中求和的流程图有 何不同?
开始 i=0,S=1
i=i+1 S=S*i 否 i>=100?
是 输出S 结束
巩固提高
2、设计一算法输出1~1000以内能被3整除的整数
开始
算法:
i=0
S1:确定i的初始值为0;
开始 i=0,S=0
否 i<100? 是 i=i+1 S=S+ i
输出S 结束
思考:将步骤A和步骤B交换位 置,结果会怎样?能达到预期结果 吗?为什么?要达到预期结果,还 需要做怎样的修改?
步骤A
步骤B 答:达不到预期结果;
当i = 100时,退出循环,i 的值未能加入到S中;修 改的方法是将判断条件改 为i<101
1.1.2 程序框图与算法的基本逻辑
——————循环结构
复习回顾
1、程序框图(流程图)的概念: 2、算法的三种逻辑结构: 3、顺序结构的概念及其程序框图: 4、条件结构的概念及其程序框图:
复习回顾
i) 顺序结构
ii) 条件结构
Yp N A
A
B
B
循环结构
循环结构:在一些算法中,也经常会出现从某处开始,
小结:
4.画循环结构流程图前: ①确定循环变量和初始条件; ②确定算法中反复执行的部分,即循环体; ③确定循环的转向位置; ④确定循环的终止条件.
循环结构的三要素:
循环变量,循环体、循环的终止条件。
其中顺序结构是最简单的结构,也是最基 本的结构,循环结构必然包含条件结构,所以 这三种基本逻辑结构是相互支撑的,无论怎样 复杂的逻辑结构,都可以通过这三种结构来表 达。

人教A版高中数学必修三课件全集

人教A版高中数学必修三课件全集

解决具体问题的能力.
返回
题型探究
重点突破
题型一 算法设计
算法的设计与一般意义上的解决问题并不相同,它是对一类
问题一般解法的抽象与概括.我们将一般问题划分为数值型 问题和非数值型问题两类;对于数值型问题,我们可以采用 数值分析的方法进行处理,数值分析中许多现成的固定算法, 我们可以直接使用,当然我们也可以根据问题的实际情况设
阅读如图所示的
INPUT x
“x = ” ;
程序,当分别输入 x= 2, x = 1, x=0时,输出的y值分别为
IF
x>1
THEN
________
________.

________

y=1/x-1 ELSE IF THEN x = 1
y=1
ELSE y = x^2 + 1/x -1 END IF
法;否则,将i的值增加1,仍用i表示.
第五步,判断“i>(n-1)”是否成立.
若是,则n是质数,结束算法;否则,返回第三步.
解析答案
题型三 算法的应用
例3 一位商人有9枚银元,其中有1枚略轻的是假银元,你能
用天平(无砝码)将假银元找出来吗?
反思与感
解析答案
跟踪训练3
“韩信点兵”问题:韩信是汉高祖手下的大将,
计算法;对于非数值型问题,可以根据过程模型分析算法并
进行处理,也可以选择一些成熟的办法进行处理,如排序、 递推等.
例1
求两底面直径分别为 2和4,且高为4的圆台的表面积及
体积,写出解决该问题的算法. 解 算法如下:第一步,取r1=1,r2=2,h=4.
第二步,计算 l= r2-r12+h2.
1 2 2 2 2 第三步,计算 S=πr1+πr2+π(r1+r2)l 与 V= π(r1+r2+r1r2)h. 3

最新人教版高中数学必修三课件PPT

最新人教版高中数学必修三课件PPT
C.流程线无论什么方向,总要按箭头的指向执行
D.流程线是带有箭头的线,它可以画成折线
【2】具有判断条件是否成立的程序框是( C )
2021/10/31
画程序框图时应注意:
用框图表示算法比较直观、形象,容易理解,通常说
“一图胜万言”,所以用程序框图能更清楚地展现算法
的逻辑结构,在画程序框图时必须注意:
则,返回第三步.
2021/10/31
当d=0.005时,按照以上算法,可得下面表和图.
a
b
|a-b|
1
2
1
1
1.5
0.5
1.25
1.5
0.25
1.375
1.5
0.125
1.375
1.437 5
0.062 5
1.406 25
1.437 5
0.031 25
1.406 25
1.421 875
0.015 625
- 5)两点连线的方程可
先求MN的斜率,再利用点斜式方程求得。
A.1个
2021/10/31
B.2个
C.3个
D.0个
例题剖析1
设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0,
所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0,
所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0,
算法步骤:
第一步,输入三角形三条边的边长 a,b,c.
a+b+c
第二步,计算 p= 2 .
第三步,计算 S= p(pa)(pb.)(pc)
第四步,输出S.
2021/10/31
新课探究

高中数学必修三ppt课件

高中数学必修三ppt课件

指数函数图像
指数函数的图像是单调递 增或递减的,随着x的增大 ,y的值无限趋近于0或无 穷大。
对数函数
对数函数定义
对数函数是指数函数的反函数, 形式为y=logₐx(a>0且a≠1)。
对数函数性质
对数函数具有连续性、单调性、奇 偶性等性质,其定义域为(0,∞), 值域为R。
对数函数图像
对数函数的图像是单调递增或递减 的,随着x的增大,y的值趋近于正 无穷或负无穷。
学中,概率被用于预测市场行为和制定投资策略;在政治学中,概率被
用于预测选举结果和民意调查。
THANK YOU
总结词
掌握用描述法表示集合的方法和步骤
详细描述
用描述法表示集合时,需要先明确集合中元素的共同特征 ,然后使用大括号{}将特征和条件括起来。例如,表示所 有偶数的集合可以表示为{x | x是偶数}。
总结词
能够运用数轴、韦恩图等工具表示集合
详细描述
数轴是一种常用的表示集合的工具,可以将数轴上的任意 一段区间表示为一个集合。韦恩图则是一种更为直观的表 示集合的工具,可以通过圆圈的交、并、补等运算来表示 集合的运算。
象限角和第四象限角。
三角函数的定义
正弦函数
定义为直角三角形中锐角的对边与斜边的比值。
余弦函数
定义为直角三角形中锐角的邻边与斜边的比值。
正切函数
定义为直角三角形中锐角的对边与邻边的比值。
三角函数的性质和图像
周期性
三角函数具有周期性,即正弦函数、余弦函数和正切函数的值会 按照一定的规律重复。
奇偶性
正弦函数和正切函数是奇函数,余弦函数是偶函数,具有特定的对 称性。
集合的运算
总结词
掌握集合的基本运算

新课标高中数学人教A版必修三全册课件3.2古典概型(三)

新课标高中数学人教A版必修三全册课件3.2古典概型(三)
我们也可以ቤተ መጻሕፍቲ ባይዱ用计算机产生随机数.
第五页,编辑于星期日:十三点 十五分。
探究 1:随机数的产生 用 Excel 演示:
第六页,编辑于星期日:十三点 十五分。
探究 1:随机数的产生
用 Excel 演示:
(1)选定 Al 格,键人“=RANDBETWEEN (0,9)”,按 Enter 键,则在此格中的数是 随机产生数;
第十一页,编辑于星期日:十三点 十五分。
知识迁移 例 1 天气预报说,在今后的三天中,每一天 下雨的概率均为 40%,用随机模拟方法估计 这三天中恰有两天下雨的概率约是多少?
练习. 书本 P.133练习第1-4题.
第十二页,编辑于星期日:十三点 十五分。
习题讲评
1.某县城有两种报纸甲、乙供居民订阅, 记事件 A 为“只订甲报”,事件 B 为“至少订 一种报”,事件 C 为“至多订一种报”,事件 D 为“不订甲报”,事件 E 为“一种报纸也不 订”.判断下列每对事件是不是互斥事件,如 果是,再判断它们是不是对立事件. (1)A 与 C; (2)B 与 E; (3)B 与 D; (4)B 与 C; (5)C 与 E.
探究 1:随机数的产生 思考 1:对于某个指定范围内的整数,每次从中有 放回随机取出的一个数都称为随机数. 那么你有 什么办法产生 1~20 之间的随机数? 抽签法
思考 2:随机数表中的数是 0~9 之间的随机数, 你有什么办法得到随机数表?
我们可以利用计算器产生随机数,其操作 方法见教材 P130 及计算器使用说明书.
(D )
A. 5
B. 4
C. 4
D.1
9
9
5
作业:《习案 》三十三.
第十七页,编辑于星期日:十三点 十五分。

高中数学《古典概型》(47张) 新人教A版必修3PPT课件

高中数学《古典概型》(47张) 新人教A版必修3PPT课件
n
我们把可以作古典概型计算的概率称为古典概率.
注: A即是一次随机试验的样本空间的一个子集, 而m是这个子集里面的元素个数;n即是一次随机 试验的样本空间的元素个数.
古典概率
3、概率的性质 (1) 随机事件A的概率满足
0<P(A)<1
(2)必然事件的概率是1,不可能的事件的概率是0,

P(Ω) =1 , P(Φ) =0.
• (1)试问:一共有多少种不同的结果?请
•思维点拨:用空间坐标(a,b,c)的形式列出 所有可能结果,再把事件“3次摸球所得总分 为5分”的个数列出,根据古典概型概率公式 可求. •解答:(1)一共有8种不同的结果,列举如下: •(红、红、红)、(红、红、黑)、(红、黑、红)、
• 思维点拨:用空间坐标(a,b,c)的形式列 出所有可能结果,再把事件“3次摸球所得 总分为5分”的个数列出,根据古典概型概 率公式可求.
【答题模板】
•解析:基本事件有20个,只要通过枚举的方法 找到随机事件“卡片上两个数的各位 •数字之和不小于14”所包含的基本事件的个数, 再按照等可能性事件的概率公式计 •算.大于14的点数的情况通过列举可得,有5
【分析点评】
• 1. 本题中,当两个数字k,k+1是一位数时, 只有k≥7时,才会使两个数的各位数字之和 不小于14;当k,k+1是两位数时,只有当 第一个两位数的数字之和不小于7才有可 能.这类题目也曾出现在高考中,如2008年 江西卷中:电子钟一天显示的时间是从
(1)两枚硬币都出现正面的概率是 0.25 (2)一枚出现正面,一枚出现反面的概率是 0.5
4、在一次问题抢答的游戏,要求答题者在问题所列出的 4个答案中找出唯一正确答案。某抢答者不知道正确答案 便随意说出其中的一个答案,则这个答案恰好是正确答

高中数学人教A版必修三全册课件高中数学人教A版必修三全册课件正弦高中数学人教A版必修三全册课件函数、余

高中数学人教A版必修三全册课件高中数学人教A版必修三全册课件正弦高中数学人教A版必修三全册课件函数、余

5. 举例应用
例2.不通过求值,指出下列各式大于 0还是小于0.
5. 举例应用 例3.
5. 举例应用
思考.
课堂小结
1. 正弦函数、余弦函数的周期性; 2. 正弦函数、余弦函数的奇偶性; 3. 正弦函数、余弦函数的单调性; 4. 正弦函数、余弦函数的最值.
课后作业
1. 阅读教材P.34-P.40; 2. 教材P.41练习第5、6题; 3. 《习案》作业十.
; y=2cosx的单调递减区间为
.
4. 最大值与最小值
练习5.
4. 最大值与最小值
练习5.
4. 最大值与最小值
练习5.
4. 最大值与最小值
练习5.
4. 最大值与最小值
练习5.
5. 举例应用
例1.下列函数有最大值、最小值吗?如果 有,请写出取最大值、最小值时的自变 量x的集合,并说出最大值、最小值分别 是什么.
练习2.
正弦函数图象的对称中心是

对称轴为

余弦函数图象的对称中心是

对称轴为

2. 奇偶性及对称性
练习2.
正弦函数图象的对称中心是

对称轴为

余弦函数图象的对称中心是

对称轴为

2. 奇偶性及对称性
练习2.
正弦函数图象的对称中心是

对称轴为

余弦函数图象的对称中心是

对称轴为Biblioteka ;3. 单调性练习3.教材P.40练习第3题;
习题课
——正弦函数、余弦函数的性质
主讲老师:陈震
1. 周期性 练习1.求下列函数的周期:
2. 奇偶性及对称性

人教A版高中数学必修三课件1。2。1-1。2。3三课时

人教A版高中数学必修三课件1。2。1-1。2。3三课时

练习巩固
2、分析下面程序执行的结果 (1) A=-1000 A=A+100 PRINT“A=”;A END (2) INPUT“A,B=”;A,B B=A+B A=B-A B=B-A PRINT“A,B=”;A,B END (运行时从键盘输入3,7)
A=-900
A,B=73
将一个变量的值赋给另一个变量,前一个变量的值保持不 变;可先后给一个变量赋多个不同的值,但变量的取值总 是最近被赋予的值。
开始 输入非零数a,b x1=a+b
x1=a+b x2=a*b x3=a-b x4=a/b PRINTx1,x2,x3,x4 END
输出x1,x2,x3,x4 x2=a*b x3=a-b x4=a/b
结束
练习3
若三角形的三边分别是a,b,c,借助三角型面积公式 (海伦-秦九韶公式)
S p ( p a )( p b )( p c ),( p a b c
开始
输入x
y x3 3x2 24x 30
输出x,y
结束
y x 3x 24x 30 例1.用描点法作函数的图象时,需要求出
3 2
自变量和函数的一组对应值,编写程序,分别计算当x=-5, -4,-3,-2,-1,0,1,2,3,4,5时的函数值。 程序: INPUT“x=”;x y=x^3+3x^2-24x+30 * * PRINTx PRINTy END 输入语句: INPUT“提示内容”;变量 输出语句: PRINT“提示内容”;表达式 赋值语句: 变量=表达式
作业:
P24练习1-4
小结
1、输入语句、输出语句和赋值语句的功能与 表示方法 2、能够设计程序,并准确运用输入语句、输出 语句和赋值语句
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环体
满足条件? 是
循环体

满足条件? 是

二、程序框图
1、顺序结构
设计一算法,求和1+2+3+ … +100, 并画出程序框图。
算法:
第一步:取n=100; 第二步:计算 n(n 1);
2
第三步:输出结果。
开始 输入n=100 s=(n+1)n/2
输出s 结束
二、程序框图
2、条件结构
设计一个算法,求数x的绝对值,并画出程序框图。
PRINT S
结束
END
A
P否

(C) A D
A P是

(D)
设计一个计算1+2+3+……+100的值的算法,并画出程序框图。
算法:
程序框图如下:
第一步:令i=1,s=0;
第二步:s=s+i
第三步:i=i+1;
第四步: 直到i>100时,输出S,
结束算法,否则返回第二步。
开始 i=1 s=0
循环结构
s=s+i
循环体

条件
否 输出S
S=S+i 当型循环语句 i=i+1
WEND
PRINT S
结束
END
条件 是

WHILE 条件 循环体
WEND
直到型循环语句
开始
i 1
i=1
S 0
直到型循环结构
S=0
DO
S Si
i i1
i 100?

输出S
直到型循环语句 S=S+i

i=i+1
LOOP UNTIL i>100
算法最重要的特征: 1.有序性 2.确定性 3.有限性
算法的基本特点
1、有限性
一个算法应包括有限的操作步骤,能在执 行有穷的操作步骤之后结束。
2、确定性 算法的计算规则及相应的计算步骤必须是唯 一确定的,既不能含糊其词,也不能有二义 性。
3、有序性 算法中的每一个步骤都是有顺序的,前一步 是后一步的前提,只有执行完前一步后,才 能执行后一步,有着很强逻辑性的步骤序列。
i=1
循环体
条件 是

s=0
i<=100? 否 输出s
结束
i=i+1 是 s=s+i
三.五种基本算法语句
语句
一般格式
1.输入 语句
INPUT “提示内容”;变量
2.输出 PRINT “提示内容”;表达式 语句
3.赋值 语句
变量=表达式
主要功能
可对程序中 的变量赋值
说明
(1)提示内容和它后面 的“;”可以省略 (2)一个语句可以给多个变
输入、输出 表示算法的输入和输出的信


处理框(执 赋值、计算 行框)
判断框
判断一个条件是否成立,用 “是”、“否”或“Y”、 “N”标明
二、程序框图
1、顺序结构
步骤n 步骤n+1
2、条件结构
先做后判, 否去循环
满足条件? 否 是
步骤A
步骤B
满足条件? 否
先判是 后做, 步是骤去A 循环
3、循环结构
(4)条件语句
IF-THEN-ELSE格式
IF 条件 语句1
ELSE 语句2
END IF
THEN
IF-THEN格式
IF 条件 THEN 语句 END IF
满足条件? 是
语句1
否 语句2
满足条件? 否
是 语句
(5)循环语句
①WHILE语句
WHILE 条件 循环体 WEND
②UNTIL语句
DO 循环体 LOOP UNTIL 条 件
算法分析:实数X的绝对值
x (x 0) x x (x 0)
算法: 第一步:输入x; 第二步:如果x≥0; 则输出x;否则输出 -x。
开始
输入x
N
x≥0
Y
输出x
输出-x
结束
二、程序框图
3、循环结构
直到型循环结构
当型循环结构
A
A

P


P

(A)
(B)
直到型循环结构对应的程序框图是 当型循环结构对应的程序框图是
二、程序框图
用程序框、流程线及文字说明来表示算 法的图形称为程序框图,它使算法步骤显得 直观、清晰、简明.

终端框 输入、 处理框 (起止框) 输出框 (执行框) 判断框 流程线 连接点
程序框图又称流程图,是一种用规定的图形,指向线及 文字说明来准确、直观地表示算法的图形。
程序框
名称
功能
终端框(起 表示一个算法的起始和结束 止框)
满足条件? 否
循环体 是
循环体

满足条件? 是
两种循环结构有什么差别?
While(当型)循环
A P 成立
不成立
先判断 后执行
先判断指定的条件是否为真, 若条件为真,执行循环条件, 条件为假时退出循环。
Until(直到型)循环
A P 不成立
成立
先执行 后判断
先执行循环体,然后再检查条 件是否成立,如果不成立就重 复执行循环体,直到条件成立 退出循环。

直到型循环结构
i=i+1
i>100? 是
输出s 结束
设计一个计算1+2+3+……+100的值的算法,并画出程序框图。
算法:
第一步:令i=1,s=0; 第二步:若i<=100成立,则执行第三步;否则,输出s,结束算法; 第三步:s=s+i; 第四步:i=i+1,返回第二步。
程序框图如下:
开始
当型循环结构
量赋值,中间用“,”分隔
(3)无计算功能
(1)表达式可以是变量,
可输出表达式 的值,计算
计算公式,或系统信息 (2)一个语句可以输入多
个表达式,中间用“,”分隔 (3)有计算功能
(1)“=”的右侧必须是表达
可对程序中 式,左侧必须是变量
的变量赋值, 计算
(2)一个语句只能给一个 变量赋
(3)有计算功能
高中数学必修三课件全册 (人教A版)
2019年10月10日
《全册课件》
第一章 算法初步
算法知识结构:
基本概念 表示方法
自然语言 程序框图
输入、输出语句 赋值语句
算 法
基本结构
基本算法语句
顺序结构 条件构 循环结构
条件语句 循环语句
应用
辗转相除法和更相减损数 秦九韶算法 进位制
算法的定义:
通常指可以用计算机来解决的某一类 问题的程序或步骤,这些程序或步骤必 须是明确和有效的,而且能够在有限步 之内完成。
X≥0 N
Y 输出X
输出-X
IF X>=0 THEN PRINT X
ELSE PRINT -X
END IF
结束
END
当型循环语句
练:设计一算法,求和1+2+3+ … +100。
程序框图: 程序语句:
循环体
开始
i 1
S 0 当型循环结构
i=1 S=0
WHILE i<=100
i i1
SSi i 100? 是
编写程序,求和1+2+3+ … +n。
顺序结构:
开始
程序语句:
输入n s=(n+1)n/2
输出s
输入语句 赋值语句 输出语句
INPUT n
变量=表达式
s=(n+1) * n/2
PRINT “S=” ; S
结束
END
练:编写一程序,求实数X的绝对值。
开始
程序:
输入X 条件结构: INPUT X 条件语句:
相关文档
最新文档