上海一模题压轴汇编
2022年上海初三数学一模(期末)压轴题模拟汇编 压轴第25题精选30道-几何综合问题(解析版)
压轴第25题精选30道-几何综合问题(教师版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒【答案】C【分析】 设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,①612t <≤和①1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;①如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;①如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.如图,E 在线段BA 的延长线上,①EAD =①D ,①B =①D ,EF①HC ,连FH 交AD 于G ,①FGA 的余角比①DGH 大16°,K 为线段BC 上一点,连CG ,使①CKG =①CGK ,在①AGK内部有射线GM ,GM 平分①FGC ,则下列结论:①AD①BC ;①GK 平分①AGC ;①①E +①EAG +①HCK =180°;①①MGK 的角度为定值且定值为16°,其中正确结论的个数有( )A.4个B.3个C.2个D.1个【答案】B【分析】根据平行线的判定定理得到AD①BC,故①正确;由平行线的性质得到①AGK=①CKG,等量代换得到①AGK=①CGK,求得GK平分①AGC;故①正确;延长EF交AD于P,延长CH交AD于Q,根据平行线的性质和三角形外角的性质得到①E+①EAG+①HCK=180°;故①正确;根据题意列方程得到①FGA=①DGH=37°,设①AGM=α,①MGK=β,得到①AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:①①EAD=①D,①B=①D,①①EAD=①B,①AD①BC,故①正确;①①AGK=①CKG,①①CKG=①CGK,①①AGK=①CGK,①GK平分①AGC;故①正确;延长EF交AD于P,延长CH交AD于Q,①EF①CH,①①EPQ=①CQP,①①EPQ=①E+①EAG,①①CQG=①E+①EAG,①AD①BC,①①HCK+①CQG=180°,①①E+①EAG+①HCK=180°;故①正确;①①FGA的余角比①DGH大16°,①90°-①FGA-①DGH=16°,①①FGA=①DGH,①90°-2①FGA=16°,①①FGA=①DGH=37°,设①AGM=α,①MGK=β,①①AGK=α+β,①GK平分①AGC,①①CGK=①AGK=α+β,①GM平分①FGC,①①FGM =①CGM ,①①FGA +①AGM =①MGK +①CGK ,①37°+α=β+α+β,①β=18.5°,①①MGK =18.5°,故①错误,故选:B .【点睛】本题考查了平行线的判定和性质,角平分线的定义,三角形的外角的性质,正确的识别图形是解题的关键.3.如图,在矩形纸片ABCD 中,6AB =,8BC =.将矩形纸片沿GH 折叠,使点B 与D 重合.有下列语句:①四边形BGDH 是菱形;①74AG =;①7.5GH =;①60BGH ∠=︒.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】 根据折叠的性质及矩形的性质可得BH =DH =GD =BG ,即可判定①正确;若设AG =x ,则BG =DG =8-x ,在Rt ①AGB 中由勾股定理建立方程可求得x ,即AG 的长,因此可判定①;连接BD ,利用菱形的面积相等,可求得GH 的长,从而可判定①;根据对①的判定可确定①ABG 是否为30°即可判定①.【详解】根据折叠的性质得:BH =DH ,BG =GD ,①BHG =①DHG ,①BGH =①DGH①四边形ABCD 是矩形①AD ①BC ,AD =BC =8,①A =90°①①DGH =①BHG①①DGH =①DHG①GD =DH①BH =DH =GD =BG①四边形BGDH 是菱形即①正确设AG =x ,则BG =GD =8-x在Rt ①AGB 中,由勾股定理建立方程得:2226(8)x x +=- 解得:74x = 即AG 的长74故①正确如图,连接BD在Rt ①ABD 中,由勾股定理得:10BD = ①12BD GH GD AB =,GD =AD -AG =725844-= ①12510624GH ⨯=⨯ ①GH =7.5故①正确①BG =GD =254 ①12AG BG ≠ ①①A =90°①①ABG ≠30°即①AGB ≠60°①①BGH =①DGH①①BGH +①DGH ≠120°从而①BGH ≠60°即①不正确故正确的有3个故选:C .【点睛】本题是矩形的折叠问题,有一定的综合性质,考查了矩形的性质,菱形的判定与性质,折叠的性质,勾股定理,解一元一次方程等知识,熟练掌握并灵活运用这些知识是解决本题的前提.4.如图,正方形ABCD 中,P 为CD 边上任意一点,DE①AP 于点E ,点F 在AP 延长线上,且EF =AE ,连结DF 、CF ,①CDF 的平分线DG 交AF 于G ,连结BG .给出以下结论:①DF=DC ;①①DEG 是等腰直角三角形;①①AGB =45°;①DG+BG .所有正确的结论是( )A .①①B .①①①C .①①①D .①①①①【答案】D【分析】 根据等腰三角形三线合一,得到AD =DF ,又根据正方形性质得AD =DC ,从而等量代换得,DF =DC ,即可判断①;设DAF DFA α∠=∠=,则1802ADF α∠=-,由902PDF ADF ADC α∠=∠-∠=-,推得1452FDG PDF α∠=∠=-,进一步得到=45DGE DFA FDG ∠=∠+∠,从而可判断①;在Rt ADE △和Rt ADP △中进行角等量代换,得到DAP EDP ∠=,再由AD DF =和角平分线两个条件,进行角之间的等量代换,结合DE AF ⊥,即可判断①;作BH ①AF ,分别在Rt BHG 和Rt DEG △中,进行边的转换,再根据BAH ADE ≅△△得到DG ,由AH GH AG +=,代入化简即可判断①.【详解】解:①四边形ABCD 是正方形,①AD DC =,90BAD ADC ∠=∠=,DE AF ⊥,EF AE =,①AD DF =,①DF DC =,①①正确;①AD DF =,①DAF DFA ∠=∠,设DAF DFA α∠=∠=,则1802ADF α∠=-,①902PDF ADF ADC α∠=∠-∠=-,①DG平分①CDF,①1452FDG PDFα∠=∠=-,①=45DGE DFA FDG∠=∠+∠,①①DEG是等腰直角三角形,①①正确;①四边形ABCD是正方形①90ADC∠=,①90ADE EDP∠+∠=,①DE AF⊥,①90ADE DAP∠+∠=,①DAP EDP∠=∠,①AD DF=,①DAP DFP∠=∠,①EDP DFP∠=∠,①CDF∠的平分线交AF于点G,①CDG FDG∠=∠,①EDP CDG DFP FDG ∠+∠=∠+∠,①EDG EGD∠=∠,又①DE AF⊥,①DEG△是等腰直角三角形.①①正确如下图:作BH①AF于H,①①AGB=45°,①BG,①DEG△是等腰直角三角形,①DG=,①四边形ABCD是正方形①AB AD=,又①BH AF⊥,DE AP⊥,①90BHA AED∠=∠=,①90BAH EAD EAD ADE∠+∠=∠+∠=,①BAH ADE∠=∠,①BAH ADE≅△△,①AH DE=,①DG=,①AH GH AG+=,=,①DG BG+=,①①正确;①故选:D.【点睛】本题考查等腰三角形的性质,全等三角形的判定,正方形的性质等相关知识点,结合条件找见相关切入点是解题关键.5.如图,Rt①ACB中,①ACB=90°,①ACB的角平分线AD,BE相交于点P,过P作PF①AD 交BC的延长线于点F,交AC于点H,则下列结论:①①APB=135°;①AD=PF+PH;①DH平分①CDE;①S四边形ABDE=74S①ABP;①S①APH=S①ADE,其中正确的结论有()个A.2B.3C.4D.5【答案】B【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.①正确.证明①ABP①①FBP,推出P A=PF,再证明①APH①①FPD,推出PH=PD即可解决问题.①错误.利用反证法,假设成立,推出矛盾即可.①错误,可以证明S四边形ABDE=2S①ABP.①正确.由DH①PE,利用等高模型解决问题即可.【详解】解:在①ABC中,A D、BE分别平分①BA C、①ABC,①①A +①B =90°,又①A D 、BE 分别平分①BA C 、①ABC ,①①BAD +①ABE =12(①A +①B )=45°,①①APB =135°,故①正确.①①BPD =45°,又①PF ①AD ,①①FPB =90°+45°=135°,①①APB =①FPB ,又①①ABP =①FBP ,BP =BP ,①①ABP ①①FBP (ASA ),①①BAP =①BFP ,AB =FB ,P A =PF ,在①APH 和①FPD 中, APH FPD PA PFPAH PFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①APH ①①FPD (ASA ),①PH =PD ,①AD =AP +PD =PF +PH .故①正确.①①ABP ①①FBP ,①APH ①①FPD ,①S ①APB =S ①FPB ,S ①APH =S ①FPD ,PH =PD ,①①HPD =90°,①①HDP =①DHP =45°=①BPD ,①HD ①EP ,①S ①EPH =S ①EPD ,①S ①APH =S ①AED ,故①正确,①S 四边形ABDE =S ①ABP +S ①AEP +S ①EPD +S ①PBD=S ①ABP +(S ①AEP +S ①EPH )+S ①PBD=S ①ABP +S ①APH +S ①PBD=S ①ABP +S ①FPD +S ①PBD=S ①ABP +S ①FBP=2S ①ABP ,故①不正确.若DH 平分①CDE ,则①CDH =①EDH ,①①CDH=①CBE=①ABE,①①CDE=①ABC,①DE①AB,这个显然与条件矛盾,故①错误,故选B.【点睛】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将①ADE沿AE对折至①AFE,延长EF交BC于点G,连结AG,CF,下列结论:①①ABG①①AFG;①BG=CG;①S①AGE=18;①①GAE=45°,其中正确的是()A.①①①B.①①①C.①①①D.①①①【答案】D【分析】根据正方形的性质得出AB=AD=DC=6,①B=①D=90°,求出DE=2,AF=AB,根据HL推出Rt①ABG①Rt①AFG,推出BG=FG,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,在Rt①ECG中,由勾股定理得出(6-x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,由DE=2,得出GE=GF+EF=5,AF=AB=6,计算出S△AGE=15;根据全等得出①DAE=①F AE,①BAG=①F AG,即可得出△GAE.【详解】解:①四边形ABCD是正方形,①AB=AD=DC=6,①B=①D=90°,①CD=3DE,①DE=2,①①ADE沿AE折叠得到①AFE,①DE=EF=2,AD=AF,①D=①AFE=①AFG=90°,①AF=AB,①在Rt①ABG和Rt①AFG中AG AG AB AF ==⎧⎨⎩ ,①Rt ①ABG ①Rt ①AFG (HL ).①①正确;①Rt ①ABG ①Rt ①AFG ,①BG =FG ,①AGB =①AGF .设BG =x ,则CG =BC -BG =6-x ,GE =GF +EF =BG +DE =x +2.在Rt ①ECG 中,由勾股定理得:CG 2+CE 2=EG 2.①CG =6-x ,CE =4,EG =x +2,①(6-x )2+42=(x +2)2,解得:x =3.①BG =GF =CG =3.①①正确;①BG =GF =CG =3,CD =3DE ,AB =AD =DC =6,DE =EF =2,①GE =GF +EF =5,AF =AB =6,①S △AGE =11561522GE AF ⨯=⨯⨯=, ①①错误;①①ADE 沿AE 折叠得到①AFE ,①①DAE ①①F AE .①①DAE =①F AE .①①ABG ①①AFG ,①①BAG =①F AG .①①BAD =90°,①①EAG =①EAF +①GAF =12×90°=45°.①①正确.故选D .【点睛】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.7.如图,在平面直角坐标系中,一次函数12125y x =-+的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF x ⊥轴于点F ,交BD 于点E ,连接AE .则下列说法中正确的是( )A.点D的坐标为(17,7)B.45EAF∠=︒C.点C的坐标为(12,17)D.AEF的周长为(14+【答案】C【分析】根据一次函数教师式,令x、y分别为0,即可求出A、B两点坐标,再利用勾股定理即可算出AB的长,过点D作x轴垂线交x轴于点H,构造三角形全等即可推出点D的坐标;求出BD的教师式,可得点E的坐标,可得出AF≠EF,则①EAF≠45°,过点C作y轴垂线交y轴于点N,构造三角形全等即可推出点C的坐标;将AE+EF利用全等转换为CF即可求出①AEF 的周长.【详解】解:①一次函数12125y x=-+的图象交x轴、y轴与A、B两点,①当x=0,则y=12,故B(0,12),当y=0,则x=5,故A(5,0),①AO=5,BO=12,在Rt①AOB中,AB,故AB的长为13;过点D作x轴垂线交x轴于点H,过点C作y轴垂线交y轴于点N,如图所示:①四边形ABCD是正方形,①①ABC =①BAD =90°,AB =DA =BC =CD ,①①OAB +①OBA =①OAB +①HAD =90°,①①OBA =①HAD ,在①OBA 和①HAD 中,AOB DHA OBA HAD AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①OBA ①①HAD (AAS ),①DH =AO =5,AH =BO =12,①OH =OA +AH =17,①点D 的坐标为(17,5),A 错误,不符合题意;①①CBN +①NCB =①CBN +①ABO =90°,①①NCB =①ABO ,在①CNB 和①BOA 中,NCB OBA CNB BOA CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①CNB ①①BOA (AAS ),①BN =AO =5,CN =BO =12,又①CF ①x 轴,①CF =BO +BN =12+5=17,①C 的坐标为(12,17),C 正确,符合题意;设直线BD 的教师式为y =kx +b ,①17512k b b +=⎧⎨=⎩,解得:71712k b ⎧=-⎪⎨⎪=⎩, ①直线BD 的教师式为71217y x =-+, ①OF =CN =12, ①AF =12-5=7,E 点的坐标为(12,12017), ①EF =12017≠AF , ①CF ①x 轴,①①EAF ≠45°,B 错误,不符合题意;在①CDE 和①ADE 中,CD AD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①①CDE ①①ADE (SAS ),①AE =CE ,①AE +EF =CF =17,AF =OF -AO =12-5=7,①C ①AEF =AE +EF +AF =CF +AF =17+7=24,D 错误,不符合题意.故选:C .【点睛】本题考查一次函数性质的综合应用,熟练一次函数图象的基本性质并能结合全等三角形逐步推理细心运算是解题关键.8.如图,在ABC 中,AD 是BC 边上的高,90BAF CAG ∠=∠=︒,AB AF =,AC AG =.连接FG ,交DA 的延长线于点E ,连接BG ,CF .则下列结论:①BG CF =;①BG CF ⊥;①2BC AE =;①EF EG =,其中正确的有( )A .①①①B .①①①C .①①①D .①①①①【答案】D【分析】 证得①CAF ①①GAB (SAS ),从而推得①正确;利用①CAF ①①GAB 及三角形内角和与对顶角,可判断①正确;证明①AFM ①①BAD (AAS ),得出FM =AD ,①F AM =①ABD ,同理①ANG ①①CDA ,得出NG =AD ,则FM =NG ,证明①FME ①①GNE (AAS ).可得出结论①,①正确.【详解】解:①①BAF =①CAG =90°,①①BAF +①BAC =①CAG +①BAC ,即①CAF =①GAB ,又①AB =AF ,AC =AG ,①①CAF ①①GAB (SAS ),①BG =CF ,故①正确;①①F AC ①①BAG ,①①FCA =①BGA ,又①BG 与AC 所交的对顶角相等,①BG 与FC 所交角等于①GAC ,即等于90°,①BG ①CF ,故①正确;过点F 作FM ①AE 于点M ,过点G 作GN ①AE 交AE 的延长线于点N ,①①FMA =①F AB =①ADB =90°,①①F AM +①BAD =90°,①F AM +①AFM =90°,①①BAD =①AFM ,又①AF =AB ,①①AFM ①①BAD (AAS ),①FM =AD ,①F AM =①ABD ,同理①ANG ①①CDA ,①NG =AD ,,AN CD =①FM =NG ,①FM ①AE ,NG ①AE ,①①FME =①ENG =90°,①①AEF =①NEG ,①①FME ①①GNE (AAS ).①,EM EN = EF =EG .故①正确.222,BD DC BC AM AN AM ME AE ∴+==+=+=故①正确故选:D .【点睛】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键. 9.如图,ABC ∆中,135ACB ∠=︒,CD AB ⊥,垂足为D ,若6AD =,20BD =,则CD 的长为( )A.B .C .72 D .4【答案】D【分析】 做,ACD BCD ∆∆分别关于,AC BC 的对称图形,ACE BCF ∆∆延长,AE BF 交于点G ,连接CG ,构造正方形,再根据等量关系用勾股定理计算.【详解】做,ACD BCD ∆∆分别关于,AC BC 的轴对称图形,ACE BCF ∆∆延长,AE BF 交于点G ,连接CG ,如图:①,ACE BCF ∆∆是,ACD BCD ∆∆的对称三角形①6,20,AE AD BF BD CE CD CF ======,,,AEC ADC BFC BDC ACE ACD BCF BCD ∠=∠∠=∠=∠∠=∠①CD AB ⊥①90ADC BDC AEC BFC ∠=∠=∠=∠=︒又①135ACB ∠=︒①135ACE BCF ∠+∠=︒①36013513590ECF ∠=︒-︒-︒=︒①四边形CEGF 是正方形设CD CF GF CE GE x =====,在Rt GAB ∆ 中:222AG +BG AB =即:()()22262026x x +++= 解得:124,30x x ==-(舍) ①CD 的长为4.【点睛】 本题是一道综合性较强的题目,整体图形的对称构造正方形是解决本题的关键. 10.如图,ABC 中,,AB AC BAC α=∠=,点D 在ABC 内部,且使得302ABD BAD α=∠-∠=︒.则ACD ∠的度数为( )A .30α-︒B .60α-︒C .30D .不能确定【答案】C【分析】 如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,证明ABD ACE ≅,得到ACE 为等腰三角形,再证明ADE 为等边三角形,推出DCE 为等腰三角形,由三角形外角的性质得出12ACD AED ∠=∠即可. 【详解】如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,在ABD △和ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,(),ABD ACE SAS ∴≅ABD BAD ∠=∠,∴ABD △为等腰三角形,∴ACE 为等腰三角形,CAE BAD ∠=∠,BAC α∠=,302BAD α-∠=︒,30302260,DAE BAC BAD CAEααα∴∠=∠-∠-∠⎛⎫⎛⎫=--︒--︒ ⎪ ⎪⎝⎭⎝⎭=︒ADE ∴为等边三角形,,DE AE CE ∴==∴DCE 为等腰三角形,延长CE 交AD 于F 点,(),,2222,116030,22AEF EAC ECA DEF ECD EDC AED AEF DEFACE DCEACE DCE ACD ACD AED ∠=∠+∠∠=∠+∠∴∠=∠+∠=∠+∠=∠+∠=∠∴∠=∠=⨯︒=︒故选:C .【点睛】 本题主要考查了三角形的综合问题,涉及等腰三角形的等边三角形的判定和性质,全等三角形的判定和性质,三角形外角的性质,有一定难度,根据题意做出适当的辅助线是解题的关键.二、填空题11.如图,在等腰①ABC 中,AB=AC ,①BAC=120°,点D 是线段BC 上一点,①ADC=90°,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC ,下面的结论:①①APO=①ACO ;①①APO+①DCO=30°;①AC=AO+AP ;①PO=PC ,其中正确的有______.【答案】①①①①【分析】连接BO ,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出①APO =①ACO ,①APO +①DCO =30°,由三角形的内角和定理,角的和差求出①POC =60°,再由等边三角的判定证明①OPC 是等边三角形,得出PC =PO ,①PCO =60°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO +AP =AC ,即可得出结果.【详解】解:连接BO ,如图1所示:①AB=AC,AD①BC,①BO=CO,①①OBC=①OCB,又①OP=OC,①OP=OB,①①OBP=①OPB,又①在等腰①ABC中①BAC=120°,①①ABC=①ACB=30°,①①OBC+①OBP=①OCB+①ACO,①①OBP=①ACO,①①APO=①ACO,故①正确;又①①ABC=①PBO+①CBO=30°,①①APO+①DCO=30°,故①正确;①①PBC+①BPC+①BCP=180°,①PBC=30°,①①BPC+①BCP=150°,又①①BPC=①APO+①CPO,①BCP=①BCO+①PCO,①APO+①DCO=30°,①①OPC+①OCP=120°,又①①POC+①OPC+①OCP=180°,①①POC=60°,又①OP=OC,①①OPC是等边三角形,①PC=PO,①PCO=60°,故①正确;在线段AC上截取AE=AP,连接PE,如图2所示:①①BAC +①CAP =180°,①BAC =120°,①①CAP =60°,①①APE 是等边三角形,①AP =EP ,又①①OPC 是等边三角形,①OP =CP ,又①①APE =①APO +①OPE =60°,①CPO =①CPE +①OPE =60°,①①APO =①EPC ,在①APO 和①EPC 中,AP EP APO EPC OP CP =⎧⎪∠=∠⎨⎪=⎩, ①①APO ①①EPC (SAS ),①AO =EC ,又①AC =AE +EC ,AE =AP ,①AO +AP =AC ,故①正确;故答案为:①①①①.【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的性质定理、等腰三角形的判定与性质、等边三角形的判定与性质、角的和差、线段的和差、等量代换等相关知识点;作辅助线构建等腰三角形、等边三角形、全等三角形是解题的关键.12.如图,矩形ABCD 中,AB =8,AD =4,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是________.【答案】【分析】取CD中点H,连接AH,BH,可证四边形AECH是平行四边形,可得AH//CE,由三角形中位线定理可得PH//EC,可得点P在AH上,当BP①AH时,PB有最小值,即可求解.【详解】解:如图,取CD中点H,连接AH,BH,设AH与DE的交点为O,连接BO,①四边形ABCD是矩形,①AB=CD=8,AD=BC=4,CD//AB,①点E是AB中点,点H是CD中点,①CH=AE=DH=BE=4,①四边形AECH是平行四边形,①AH//CE,①点P是DF的中点,点H是CD的中点,①PH//EC,①点P在AH上,①当BP①AH时,此时点P与H重合,BP有最小值,①AD=DH=CH=BC=4,①①DHA=①DAH=①CBH=①CHB=45°,AH=BH=①①AHB=90°,①BP的最小值为故答案为【点睛】本题考查了矩形的性质,三角形中位线定理,等腰直角三角形的性质,平行四边形的性质,垂线段最短等知识,确定点P的运动轨迹是本题的关键.13.如图,在ABC中,点D,点E分别是AC和AB上的点,且满足2=,3AE BE=,CD AD过点A的直线l平行BC,射线BD交CE于点O,交直线l于点F.若CDF的面积为12,则四边形AEOD的面积为____________.【答案】525【分析】连接AO ,根据三角形边之间的关系得到面积之间的关系进行推理解答.【详解】如图,连接AO ,①CD =3AD ,①AD :CD =1:3, ①13ADF CDF S S =△△,13ADO CDO S S =△△,3ABD CBD S S =△△, ①12CDF S =△,①4ADF S =△,16ACF S =△,①AF ①BC ,①16ABF ACF S S ==△△,①12ABD S =,①36CBD S =△,48ABC S =△,①AE =2BE ,①BE :AE =1:2,①2AEC BEC S S =△△,2AEO BEO S S =△△,①32AEC S =△,16BEC S =△,①()2AOE AOD COD BOE BOC S S S S S ++=+△△△△△,即22AOE AOD COD BOE BOC S S S S S ++=+△△△△△, ①123COD COD BOC S S S +=△△△,即423COD BOC S S =△△, ①:3:2COD BOC S S =△△,①36BCD BOC COD S S S =+=△△△, ①1085COD S =△, ①S 四边形AEOD 108523255AEC COD S S =-=-=△△. 故答案为:525. 【点睛】 本题考查了三角形的边与面积之间的关系,平行线之间距离处处相等,能正确把边之间的关系转化为面积之间的关系是解题的关键.14.已知①ABC 和①ADE 均为等腰直角三角形,①BAC=①DAE=90°,AB=6,AD=4,连接CE 、BE ,点F 和G 分别为DE 和BE 的中点,连接FG ,在①ADE 旋转过程中,当D 、E 、C 三点共线时,线段FG 的长为_______.【分析】分两种情况画出图形,如图1,连接BD ,证明①ADB ①①AEC ,求得①BDC =90°,在Rt ①BDC 中利用勾股定理求出BD 长度,最后利用三角形中位线性质求解FG 长度,如图2,同理可求出BD 的长,则可得出答案.【详解】解:如图1,连接BD ,①①BAD =90°-①BAE ,①CAE =90°-①BAE ,①①BAD =①CAE .在①ADB 和①AEC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===①①ADB ①①AEC (SAS ).①BD =CE ,①ADB =①AEC =135°,①①BDC =135°-45°=90°.①①ABC 和①ADE 均为等腰直角三角形,AB =6,AD =4,①DE =42,BC =62. 设BD =x ,则DC =42+x ,在Rt ①BDC 中,利用勾股定理BD 2+DC 2=BC 2,①x 2+(42+x )2=72,解得x 1=-22-27(舍去),x 2=-22+27.①点F 、G 分别为DE 、BE 的中点,①FG =12BD =-2+7.如图2,同理,设BD =CE =a ,在Rt ①BDC 中,BD 2+CD 2=BC 2,①a 2+(a −42)2=72,解得a =22-27(舍去),a =22+27,①FG =12BD =2+7,故答案为:72±.【点睛】本题主要考查了全等三角形的判定和性质、勾股定理、三角形中位线性质,解题的关键是找到共顶点的全等三角形,从而得到直角三角形,运用勾股定理求解线段长度.15.如图, ABCD 中,AB //x 轴,12AB =.点A 的坐标为()2,8-,点D 的坐标为()6,8-,点B 在第四象限,点G 是AD 与y 轴的交点,点P 是CD 边上不与点C ,D 重合的一个动点,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将①PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,点P 的坐标为______.【答案】8)或(8) 【分析】 先求出直线AD 的教师式为24y x =--,则可求(0,4)G -,设(,8)P m ,则(,4)M m -,可求12PM =,8PN =,分两种情况讨论:当M '在x 轴负半轴时,由折叠可知12PM '=,在Rt ①M NP '中,由勾股定理可求M N '=Rt ①M OG '中,M G x '=,4OG =,可求M O ',所以x =855x ,则P ,8);当M '在x 轴正半轴时,同理可得,x -x =(P 8). 【详解】解:设AD 的直线教师式为y kx b =+,将(2,8)A -,(6,8)D -代入可得,2868k b k b +=-⎧⎨-+=⎩, 解得24k b =-⎧⎨=-⎩, 24y x ∴=--,(0,4)G ∴-,点P 是CD 边上,//CD x 轴,设(,8)P m , //GM y 轴,(,4)M m ∴-,12PM ∴=,8PN =,当M '在x 轴负半轴时,如图,由折叠可知GM GM '=,PM PM '=,12PM '∴=,在Rt ①M NP '中,M N '在Rt ①M OG '中,M G x '=,4OG =,M O '∴=∴x = 解得855x,P ∴,8); 当M '在x 轴正半轴时,如图,同理可得,x -+=解得x =(P ∴8);综上所述:P 点坐标为8)或(8),故答案为8)或(8).【点睛】本题考查折叠的性质,熟练掌握平行四边形的性质、平面上点的坐标特点、并灵活应用勾股定理是解题的关键.16.如图,矩形ABCD的边AB=112,BC=3,E为AB上一点,且AE=1,F为AD边上的一个动点,连接EF,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,连接CG,则CG的最小值为______.【答案】2.5【分析】过点G作GH①AB于H,过点G作MN①AB,由“AAS”可证①GEH①①FEA,可得GH=AE=1,可得点G在平行AB且到AB距离为1的直线MN上运动,则当F与D重合时,CG有最小值,即可求解.【详解】解:如图,过点G作GH①AB于H,过点G作MN①AB,①四边形ABCD是矩形,AB=112,BC=3,①①B=90°,CD=112,AD=3,①AE=1,①BE=92,①①GHE=①A=①GEF=90°,①①GEH+①EGH=90°,①GEH+①FEA=90°,①①EGH =①FEA ,又①GE =EF ,①①GEH ①①EF A (AAS ),①GH =AE =1,①点G 在平行AB 且到AB 距离为1的直线MN 上运动,①当F 与D 重合时,CG 有最小值,此时AF =EH =3,①CG 2.5, 故答案为:2.5.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,确定点G 的运动轨迹是本题的关键.17.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合)且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .若CG =则四边形BCDG 的面积为 _____.【答案】【分析】过点C 作CM ①GB 于M ,CN ①GD 于N ,先证明①ABD 为等边三角形,AED DFB △≌△求得60BGD ∠=︒,证明①CBM ①①CDN , 所以S 四边形BCDG =S 四边形CMGN ,CG 是NGB ∠的角平分线,进而求得CGM S △,根据S 四边形BCDG =S 四边形CMGN 即可求得四边形BCDG 的面积.【详解】如图,过点C 作CM ①GB 于M ,CN ①GD 于N .四边形ABCD 是菱形AB AD DC BC ∴===,A BDC ∠=∠AB BD =AB BD DA ∴==ABC ∴是等边三角形60A ∴∠=︒60BDC A ∴∠=∠=︒BCD ∴△是等边三角形60BCD ∴∠=︒,BC CD =,AE DF AD BD ==∴AED DFB △≌△ADE DBF ∴∠=∠60BGE BDG FBD BDG ADE ∴∠=∠+∠=∠+∠=︒180********BGD BGE ∴∠=︒-∠=︒-︒=︒12060180BGD BCD ∴∠+∠=︒+︒=︒180CBM CDG ∴∠+∠=︒180CDG CDN ∠+∠=︒CDN CBM ∴∠=∠,CN DN CM BM ⊥⊥90CND CMB ∴∠=∠=︒又CD CB =CDN CBM ∴△≌△CN CM ∴=CG ∴是NGB ∠的角平分线1602CGM DGB ∴∠=∠=︒ 12CGM S GM CG ∴=⨯△ ①CBM ①①CDN ,S 四边形CMGN =CGM CDG BMC CGM CDG DNC S S S S S S ++=++=△△△△△△2S ①CMG ,①①CGM =60°,30MCG ∴∠=︒①GM =12CG ,CM ∴===①S 四边形CMGN =2S ①CMG =2×12×12CG 2,2CG =∴ S 四边形CMGN =故答案为:【点睛】本题考查了菱形的性质,等边三角形的性质,含30度角的直角三角形的性质,三角形全等的性质与判定,角平分线的性质,证明60CGM ∠=︒是解题的关键.18.如图,在边长为2的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),连接AE ,BF 交于点P ,过点P 作PM①CD交BC 于M 点,PN①BC 交CD 于N 点,连接MN ,在运动过程中则下列结论:①①ABE①①BCF ;①AE =BF ;①AE①BF ;①线段MN 1.其中正确的结论有___.(填写正确的序号)【答案】①①①①【分析】由正方形的性质及F ,E 以相同的速度运动,利用SAS 证明①ABE ①①BCF ,得到AE =BF ,①BAE =①CBF ,再根据①CBF +①ABP =90°,可得①BAE +①ABP =90°,进而得到AE ①BF ,根据点P 在运动中保持①APB =90°,可得点P 的路径是一段以AB 为直径的弧,设AB 的中点为H ,连接CH 交弧于点P ,此时CP 的长度最小,根据勾股定理,求出CH 的长度,再求出PH 的长度,即可求出线段CP 的最小值,根据矩形对角线相等即可得到MN .【详解】解:①动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动,①DF =CE ,①四边形ABCD 是正方形,①AB =BC =CD =2,①ABC =①BCD =90°,①CF =BE ,①①ABE ①①BCF (SAS ),故①正确;①AE =BF ,①BAE =①CBF ,故①正确;①①CBF +①ABP =90°,①①BAE +①ABP =90°,①①APB =90°,即AE ①BF ,故①正确;①点P 在运动中始终保持①APB =90°,①点P 的路径是一段以AB 为直径的弧,如图,设AB 的中点为H ,连接CH 交弧于点P ,此时CP 的长度最小,在Rt ①BCH 中,CH①PH =12AB =1,①CP =CH -PH 1,①PM ①CD ,PN ①BC ,①四边形PMCN 是平行四边形,①①BCD =90°,①四边形PMCN 是矩形,①MN =CP 1,即线段MN 1,故①正确.故答案为:①①①①.【点睛】本题主要考查正方形的性质、全等三角形、勾股定理等,解题的关键是证明①ABE ①①BCF .19.如图,A 在正方形CDBG 的边BD 的延长线上,且知AD BD =,E 在CD 上,EF AE ⊥交BC 的延长线于点F .有以下结论:①AE EF =①45EAB EFB ∠+∠=︒①BC CE CF =+①CF .其中,正确的结论有______.(填序号)【答案】①①①【分析】根据正方形性质得到①CBD =45°,进而得到①F AB +①AFB =135°,根据三角形性质即可得到①EAB +①EFB =45°,判断①正确;连接BE ,先证明AE =BE ,得到①EAB =①EBA ,根据①EAB+①EFB=45°证明EF=EB,即可判断①正确;作EH①BF,得到BC= FC+2CH,根据①CHE为等腰直角三角形得到CE,即可得到BC=FC,即可判断①错误;证明BC=,根据BC=FC得到FC=,即可得到①正确.【详解】解:①四边形CDBG为正方形,①①CBD=1①DBG=45°,2①①F AB+①AFB=135°,即①EAF+①AFE+①EAB+①EFB=135°,①EF①AE,①①AEF=90°,①①EAF+①AFE=90°,①①EAB+①EFB=45°,故①正确;连接BE,①四边形CDBG为正方形,①DE①AB,①AD=BD,①AE=BE,①①EAB=①EBA,①①EAB+①EFB=45°,①EBD+①EBF=45°,①①EFB=①EBF,①EF=EB,①AE=EF,故①正确;作EH①BF,①BE=FE,①BH=FH,①BC=BH+CH=FH+CH=FC+2CH,①四边形CDBG为正方形,①DCG=45°,①①HCE=12①EH①BF,①CE,即CH =, ①BC = FC +2CH =FC,故①不正确;①①BCD =45°,①CDB =90°,①BC,①BC = FC,①FC)CE CD +,①FC=,故①正确.故答案为:①①①【点睛】本题考查了正方形的性质,线段的垂直平分线性质,等腰直角三角形性质,等腰三角形性质等知识,综合性较强,熟知正方形性质和等腰直角三角形三边数量关系,添加适当辅助线是解题关键.20.在综合实践课上,小明把边长为2cm 的正方形纸片沿着对角线AC 剪开,如图l 所示.然后固定纸片①ABC ,把纸片①ADC 沿AC 的方向平移得到①A′D′C′,连A′B ,D′B ,D′C ,在平移过程中:(1)四边形A′BCD′的形状始终是 __;(2)A′B+D′B 的最小值为 __.【答案】平行四边形【分析】(1)利用平移的性质证明即可.(2)如图2中,作直线DD ′,作点C 关于直线DD ′的对称点C ″,连接D ′C ″,BC ″,过点B 作BH ①CC ″于H .求出BC ″,证明A ′B +BD ′=BD ′+CD ′=BD ′+D ′C ″≥BC ″,可得结论.【详解】解:(1)如图2中,①A ′D ′=BC ,A ′D ′①BC ,①四边形A ′BCD ′是平行四边形,故答案为:平行四边形.(2)如图2中,作直线DD ′,作点C 关于直线DD ′的对称点C ″,连接D ′C ″,BC ″,过点B 作BH ①CC ″于H .①四边形ABCD 是正方形,①AB =BC =2,①ABC =90°,①AC AB①BJ ①AC ,①AJ =JC ,①BJ =12AC ①①BJC =①JCH =①H =90°,①四边形BHCJ 是矩形,①BJ =CJ ,①四边形BHCJ 是正方形,①BH =CH在Rt ①BHC ″中,BH HC ,①BC ''==①四边形A ′BCD ′是平行四边形,①A ′B =CD ′,①A ′B +BD ′=BD ′+CD ′=BD ′+D ′C ″≥BC ″,①A ′B +BD①A ′B +D ′B 的最小值为故答案为:【点睛】本题考查作图-平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题21.ACB △和CDE △都是等腰直角三角形,90ACB DCE ∠=∠=︒,将CDE △绕点D 旋转.(1)如图1,当点B 落在直线DE 上时,若26AC =,CE =BE 的长;(2)如图2,直线BD 、AE 交于点F ,再连接CF EF DF =+;(3)如图3,8AC =,4CD =,G 为ED 中点,连接AG ,BG ,以AG 直角边构造等腰Rt AHG ,过H 作HI AB ⊥交AB 于点I ,连接GI ,当HI 最小时,直接写出GI 的长度.【答案】(1)34,(2)证明见教师,(3)【分析】(1)作CF ①DB 于F ,根据勾股定理求出CF 和BF 即可;(2)将①CEF 绕点C 逆时针旋转90°,得到①CDM ,可证点M 在BD 上,再证①FCM 是等腰直角三角形即可;(3)作CN ①AB 于N ,作AF ①AC 交AN 延长线于F ,得出①GAC ①①HAF ,当点H 落在CF 上时,HI 最小,此时点I 与点N 重合,利用勾股定理求解即可.【详解】解:(1)作CF ①DB 于F ,①90DCE ∠=︒,CE =CDE △都是等腰直角三角形,①20DE ,10DF CF EF ===,①点B 落在直线DE 上,26AC BC ==①24BF =,①34BE EF FB =+=;BE 的长为34.(2)将①CEF 绕点C 逆时针旋转90°,得到①CDM ,由(1)得,①CDB =①CEA ,①点M 在BD 上,CF =CM ,①FCM =90°,EF =DM ,FM =,①FM DM DF EF DF =+=+;EF DF =+.(3)作CN ①AB 于N ,作AF ①AC 交AN 延长线于F ,①ACB △是等腰直角三角形,①①ACF =45°,①AC =AF ,①①GAH =①CAF =90°,①①GAC =①HAF ,①AG =AH ,①①GAC ①①HAF ,①CG =FH ,①当点H 落在CF 上时,HI 最小,此时点I 与点N 重合,如图所示,①①GCA =①AFC =45°,①①GCI =90°,①8AC =,4CD =, ①IC =CG =IG =【点睛】本题考查了全等三角形的判定与性质和勾股定理,解题关键是恰当作辅助线,构造全等三角形进行推理证明.22.教材呈现:如图为华师版八年级上册数学教材第65页的部分内容.做一做:如图,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所画的三角形都全等吗?此时,符合条件的角形有多少种?如图1,通过作图我们可以发现,此时(即“边边角”对应相等)的两个三角形全等(填“一定”或“不一定”).(2)[探究证明]阅读并补全证明已知:如图2,在ABC和DEF中,①B=①E,AC=DF,①C+①F=180°(①C<①F).求证:AB=DE.证明:在BC上取一点G,使AG=AC.①AG=AC,①①C=.又①①C+①F=180°,而①AGC+①AGB=180°,①①AGB=.①AC=DF,①AG=又①①ABC①DEF(AAS).①AB=DE.(3)[拓展应用]在ABC中,AB=AC,点D在射线BA上,点E在AC的延长线上,且BD=CE,连结DE,DE与BC边所在的直线交于点F.①当点D在线段BA上时,如图3所示,求证:DF=EF.①过点D 作DH①BC 交直线BC 于点H ,若BC =4,CF =1,则BH = (直接写出答案).【答案】(1)不一定;(2)①AGC ,①F ,DF , ①B =①E ;(3)①见详解;①1或3【分析】(1)根据SSA 可知两个三角形不一定全等;(2)在BC 上取一点G ,使AG =AC ,根据AAS 证明ABG ①DEF ,即可得到结论; (3)①过点D 作DG ①AC ,证明DGF ECF ≌,即可得到结论;①分两种情况:当点D 在线段AB 上时,过点E 作EO ①BC 交BC 的延长线于点O ;当点D 在BA 的延长线上时,过点E 作EO ①BC 交BC 的延长线于点O ,分别证明DHB EOC ≌,DHF EOF ≌,进而即可求解.【详解】解:(1)通过作图我们可以发现,此时(即“边边角”对应相等)的两个三角形不一定全等,故答案是:不一定;(2)证明:在BC 上取一点G ,使AG =AC .①AG =AC ,①①C = ①AGC .又①①C +①F =180°,而①AGC +①AGB =180°,①①AGB = ①F .①AC =DF ,①AG = DF又①①B =①E ①ABG ①DEF (AAS ).①AB =DE .故答案是:①AGC ,①F ,DF , ①B =①E ;(3)①过点D 作DG ①AC ,。
2020上海初三一模-压轴汇编
(宝山)如图,点A 在直线x y 43=上,如果把抛物线2x y =沿OA 方向平移5个单位,那么平移后的抛物线的表达式为 ▲ .24.(本题共12分,每小题各4分)在平面直角坐标系内,反比例函数和二次函数)1(2-+=x x a y 的图像交于点A (1,a )和点B (﹣1,﹣a ).(1)求直线AB 与y 轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y 随着x 的增大而增大,求a 应满足的条件以及x 的取值范围;(3)设二次函数的图像的顶点为Q ,当Q 在以AB 为直径的圆上时,求a 的值.25.(本题共14分,其中第(1)、(3)小题各4分,第(2)小题6分)如图,OC 是△ABC 中AB 边的中线,∠ABC=36°,点D 为OC 上一点,如果OD =k ·OC ,过D 作DE ∥CA 交于BA 点E ,点M 是DE 的中点.将△ODE 绕点O 顺时针旋转α度(其中︒︒1800ππα)后,射线OM 交直线BC 于点N .(1)如果△ABC的面积为26,求△ODE的面积(用k的代数式表示);(2)当N和B不重合时,请探究∠ONB的度数y与旋转角α的度数之间的函数关系式;(3)写出当△ONB为等腰三角形时,旋转角α的度数.(崇明)如图,在Rt ABC △中,90C =︒∠,10AB =,8AC =,点D 是AC 的中点,点E在边AB 上,将ADE △沿DE 翻折,使得点A 落在点A '处,当A E AB '⊥时,那么A A '的长为 ▲ .24、如图,抛物线与x 轴相交于点(3,0)A -、点(1,0)B ,与y 轴交于点(0,3)C ,点D 是抛物线上一动点,联结OD 交线段AC 于点E . (1)求这条抛物线的解析式,并写出顶点坐标; (2)求ACB ∠的正切值;(3)当AOE △与ABC △相似时,求点D 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,在ABC △中,10AB AC ==,16BC =,点D 为BC 边上的一个动点(点D 不与点B 、点C 重合).以D 为顶点作ADE B =∠∠,射线DE 交AC 边于点E ,过点A 作AF AD ⊥交射线DE 于点F .(1)求证:AB CE BD CD ⋅=⋅;(2)当DF 平分ADC ∠时,求AE 的长;(3)当AEF △是等腰三角形时,求BD 的长.DBAFEC(第25题图)(奉贤) 如图,已知矩形ABCD ()AB CD >,将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么BEG ∠的正切值是24. 如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点(2,3)A -和点(5,0)B , 顶点为C .(1)求这条抛物线的表达式和顶点C 的坐标;(2)点A 关于抛物线对称轴的对应点为点D ,联结OD 、BD ,求∠ODB 的正切值; (3)将抛物线2y x bx c =++向上平移t (0t >)个单位,使顶点C 落在点E 处,点B,求t的值. 落在点F处,如果BE BF25. 如图,已知平行四边形ABCD 中,5AD =,5AB =,tan 2A =,点E 在射线AD 上,过点E 作EF ⊥AD ,垂足为点E ,交射线AB 于点F ,交射线CB 于点G ,联结CE 、CF ,设AE m =. (1)当点E 在边AD 上时,① 求CEF V 的面积;(用含m 的代数式表示) ② 当4DCE BFG S S =V V 时,求:AE ED 的值;(2)当点E 在边AD 的延长线上时,如果AEF V 与CFG V 相似,求m 的值.(虹口)、如图,在等腰梯形ABCD 中,//AD BC ,sin 5C 4=,9AB =,6AD =,点E 、F 分别在边AB 、BC 上,联结EF ,将BEF V 沿着EF 所在直线翻折,使BF 的对应线段'B F 经过顶点A ,'B F 交对角线BD 于点P ,当'B F AB ⊥时,AP = .24、在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于()1,0A -、B 两点,与y 轴交于点()0,3C ,点P 在该抛物线的对称轴上,且纵坐标为 (1)求抛物线的表达式以及点P 的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”, ①当D 在射线AP 上,如果DAB ∠为ABD V 的特征角,求点D 的坐标;②点E 为第一象限内抛物线上一点,点F 在x 轴上,CE EF ⊥,如果CEF ∠为ECF V 的特征角,求点E 的坐标.25、在Rt ABC V 中,90ACB ∠=o ,4BC =,3sin 5ABC ∠=,点D 为射线BC 上一点,联结AD ,过点B 作BE AD ⊥分别交射线AD 、AC 于点E 、F ,联结DF ,过点A 作//AG BD ,交直线BE 于点G .(1)当点D 在BC 的延长线上时,如果2CD =,求tan FBC ∠;(2)当点D 在BC 的延长线上时,设AG x =,ADF S y =V ,求y 关于x 的函数关系式(不需要写函数的定义域); (3)如果8AG =,求DE 的长.(黄浦).如图8,在△ABC 中,AB =AC ,点D 、E 在边BC 上,∠DAE =∠B =30°,且32AD AE=,那么DE BC的值是 ▲ .24.(本题满分12分)在平面直角坐标系xOy 中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y 轴,那么新抛物线称为原抛物线的“影子抛物线”. (1)已知原抛物线表达式是225y x x =-+,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是25y x =-+,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y 轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y 轴对称.”你认为这个结论成立吗?请说明理由.图8ECBAD xOy25.(本题满分14分)如图12,△ABC 是边长为2的等边三角形,点D 与点B 分别位于直线AC 的两侧,且AD =AC , 联结BD 、CD ,BD 交直线AC 于点E . (1)当∠CAD =90°时,求线段AE 的长.(2)过点A 作AH ⊥CD ,垂足为点H ,直线AH 交BD 于点F ,①当∠CAD <120°时,设AE x =,BCEAEFS y S =V V (其中BCE S V 表示△BCE 的面积,AEF S V 表示△AEF 的面积),求y 关于x 的函数关系式,并写出x 的取值范围;②当7BCEAEFS S =V V 时,请直接写出线段AE 的长.B图12备用图(嘉定)在ABC V 中,∠ACB =90°,AB =10,3cos 5A(如图4),把ABC V 绕着点C 按照顺时针的方向旋转,将A 、B 的对应点分别记为点','A B ,如果''A B 恰好经过点A ,那么点A 与点'A 的距离为____________24. 在平面直角坐标系xOy 中,将点()1,P a b a -定义为点(),P a b 的“关联点”.已知:点(),A x y 在函数2y x =的图像上(如图9所示),将点A 的“关联点”记为点1A .(1)请在图9的基础上画出函数22y x =-的图像,简要说明画图方法;(2)如果点1A 在函数22y x =-的图像上,求点1A 的坐标;(3)将点()2,P a b na -称为点(),P a b 的“待定关联点”(其中,0n ≠),如果点(),A x y 的“待定关联点”2A 在函数2y x n =-的图像上,试用含n 的代数式表示点2A 的坐标.25. 已知:点P在ABCV内,且满足∠APB=∠APC(如图10),∠APB+∠BAC=180°.(1)求证:PAB PCA:V;(2)如果∠APB=120°,∠ABC=90°,求PCPB的值;(3)当∠BAC=45°,ABCV为等腰三角形时,求tan∠PBC的值.(静安)、如图,有一菱形纸片ABCD ,60A ∠=o,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos EFB ∠的值为 .24、在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的图像经过点()0,3A -、()1,0B 、()3,0C ,联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S =V V ,求tan DBC ∠的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分BAE ∠时,求点E 的坐标.25、已知,如图,在ABC V 中,AB AC =,点D 、E 分别在边BC 、DC 上,2AB BE DC =⋅,:3:1DE EC =,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与ACD V 相似的三角形,并说明理由;(2)当DF 平分ADC ∠时,求:DG DF 的值;(3)如图,当90BAC ∠=o ,且DF AE ⊥时,求:DG DF 的值.(闵行). 如图,在等腰△ABC 中,4AB AC ==,6BC =,点D 在底边BC 上,且DAC ACD ∠=∠,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为24. 已知,在平面直角坐标系xOy 中,对称轴为直线2x =-的抛物线经过点(0,2)C ,与x 轴交于(3,0)A -、B 两点(点A 在点B 的左侧).(1)求这条抛物线的表达式;(2)联结BC ,求BCO ∠的余切值;(3)如果过点C 的直线,交x 轴于点E ,交抛物线于点P ,且CEO BCO ∠=∠,求点P 的坐标.25. 已知:如图,在Rt △ABC 和Rt △ACD 中,AC BC =,90ACB ∠=︒,90ADC ∠=︒,2CD=(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt△=,CE yABC的重心,射线CG交边AB于点F,AD x=.∠=∠;(1)求证:DAB DCF(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.。
上海各区中考物理一模压轴题汇总之计算:压强专题
计算压轴:压强专题1. (15年宝山区)如图13所示,一个髙为1米、底面积为5x2F 米:的轻质薄壁圆柱形容器 放在水平地面上,且容器内盛有0.8米深的水。
⑴求水对容器底部的压强P 水。
⑵若将体积都为0 02米'的甲乙两个实心小球(Q =0.5X 10?千克/米',p^=lxio 2 3千克/米3),先后慢1馳放入该容器中的水里,当小球静止时,容器对地面的压强是否相等?若相等,请计算出该压强的大小;若不相等,请通过计算说明理由。
08米图132 (15年奉贤区一模)如图11所示,实心均匀正方体A. B 放置在水平地而上,它们的高度 分别为0.2米和0.1米,A 的密度为2X103T-克/米S B 质量为1T •克。
求:(1) A 的质量:(2) B 对水平地面的压强;(3) 若实心正方体A 的密度和边长分别为2。
和2力,实心 正方体B 的密度分别为Q 和力,现将正方体A 、B 沿竖直方向齐 截取四分之-,并将截卜的部分分别叠放在对方剩余部分的上方,求叠放前后A 、B 对地面的压强的变化量厶以与An 的比值。
图143. (15年II口区一模)如图口所示,高为0.55米、底面积为1X10-2米'的轻质薄壁柱形容器中盛有0.4米深的水,静止放在水平地面上。
1求容器内水的质量力水。
②求容器对水平地面的压强Q。
③现有物体A、B和C (其体积及在水中静止后的状态如下表所示).请选择其中一个物体放入容器中,使水对容器底部压强的变化星最大,写出选择的物体并求出此时水面上升的高度△九G求甲中水的质量巾水。
②求水面下0.1米处水的压强P水。
③若将乙沿竖直方向在右侧切去一个底面积为S的部分,并将切去部分浸没在甲的水中时,乙剩余部分对水平地面压强Q乙恰为水对甲底部压强増加量3水的四倍。
求乙的密度Q 乙。
乙图105. (15年嘉定区一横)如图n所示薄壁轻质柱形容器甲、乙放置在水平地面上,已知底面积为"10'米'的乙容器中装有“io'米彳的水.且A点离水面0.2米。
2023上海各区一模数学整理(阅读理解与第18题填空压轴)
2023上海各区一模数学整理(阅读理解与
第18题填空压轴)
2023年上海各区一模数学考试中,涵盖了阅读理解和第18题填空压轴两部分。
下面是对这两部分内容的整理:
阅读理解
阅读理解部分共包含多篇文章,每篇文章后面跟随几道问题。
在回答问题时,考生需要根据文章内容理解并准确回答。
这部分要求考生具备较好的阅读理解能力和运用数学知识进行推理的能力。
第18题填空压轴
第18题填空压轴是一道填空题,要求考生根据已给出的线索和条件,选择合适的数字或数学符号填入空白处,使得整个等式或不等式成立。
在解答这道题时,考生需要灵活运用数学知识,分析线索和条件,并进行合理推测和计算。
以上就是2023上海各区一模数学考试中的阅读理解和第18题填空压轴的内容概述。
注意:
- 本文档为概述性说明,不包含具体的题目内容。
- 考生在备考过程中应注重阅读理解能力的培养和数学推理能力的提升,同时熟悉各种解题方法和技巧。
- 请确保你亲自核实了题目内容,本文档不包含任何无法确认的引文。
详情请参考考试相关资料和真题。
祝你在2023上海各区一模数学考试中取得好成绩!。
上海市2020届初三数学一模提升题汇编第25题(压轴题)
已知:点 在 内,且满足 (如图10), .
(1)求证: ∽ ;
(2)如果 , ,求 的值;
(3)如果 ,且 是等腰三角形,
试求 的值.
(嘉定)25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)
证明:(1)∵ , ,1分
25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)
如图,在梯形ABCD中,AD∥BC,BC=BD=10,CD=4,AD=6.点P是线段BD上的动点,点E、Q分别是线段DA、BD上的点,且DE=DQ=BP,联结EP、EQ.
(1)求证:EQ∥DC;
(2)当BP>BQ时,如果△EPQ是以EQ为腰的等腰三角形,求线段BP的长;
(1)求证:∠DAB=∠DCF;
(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;
(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.
(闵行)
25.(1)证明:∵点G是Rt△ABC的重心,
∴CF是Rt△ABC的中线.…………………………………………(1分)
又∵在Rt△ABC,AC=BC,∠ACB=90°,
(2)如图(2),联结OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;
(3)如图(3),当△AFD与△CDF相似时,求m的值.
25.解:(1)过点D作DP⊥CF于点P,交AE于点Q
则∠PDC=∠DAQ=∠MON……(1分)
∵在Rt△CDP中
DC=2,tan∠PDC=2
可得 ,……(1分)
在Rt△ADQ中
在 中, .(1分)
(2)过P作 ,垂足为点H.
2022年上海初三数学一模(期末)压轴题模拟汇编 压轴题精选30道-圆与正多边形综合问题(解析版)
压轴题精选30道-圆与正多边形综合问题(教师版)学校:___________姓名:___________班级:___________考号:___________一、单选题⊥于点E,点F为圆上一点,若1.如图,AB是O的直径,CD为O的弦,且CD AB=,AD CFAE BFOE=,则BC的长为()=,1B.C.4D.5A.【答案】A【分析】如图,连接OC交AF于J,设BC交AF于T,过点T作TH AB⊥于H.利用全等三角形的性质证明AE CJ BF BH=,再利用勾股定理求出EC,BC即可.=.EH BH===,CT BH【详解】解:如图,连接OC交AF于J,设BC交AF于T,过点T作TH AB⊥于H.⊥,AB CD∴AD AC=,=,AD CF∴AC CF=,∴⊥,OC AF∴∠=∠=︒,90AJO CEO=,∠=∠,OA OCAOJ COE∴∆≅∆,AJO CEO AAS()∴=,OJ OE∴=,AE CJAB 是直径,90F CJT ∴∠=∠=︒,AE BF =,BF CJ ∴=,CTJ BTF ∠=∠,()CTJ BTF AAS ∴∆≅∆,CT BT ∴=,TH AB ⊥,CD AB ⊥,//TH CE ∴,EH BH ∴=,CF AC =,TBF TBH ∴∠=∠,90F THB ∠=∠=︒,BT BT =,()BTF BTH AAS ∴∆≅∆,BF BH ∴=,AE BF =,AE BH ∴=,OA OB =,1OE OH ∴==,2EH BH ∴==,2AE BH ∴==,6AB ∴=,3OC OB ==,EC ∴BC ∴故选:A .【点睛】本题考查全等三角形的判定和性质,垂径定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.2.如图,已知在平面直角坐标系xOy 中,点M 的横坐标为3,以M 为圆心,5为半径作M ,与y 轴交于点A 和点B ,点P 是AC 上的一动点,Q 是弦AB 上的一个动点,延长PQ 交M于点E ,运动过程中,始终保持AQP APB ∠=∠,当AP QB +的结果最大时,PE 长为( )A B .C D 【答案】D【分析】根据△AQP △△APB ,确定2AP AQ AB =•,过点M 作MG △AB ,垂足为G ,根据垂径定理计算AB =8,用AQ 的代数式表示AP +QB ,运用二次函数的思想确定最值,确定AQ =2,AP =4,证明AE =AP =4,连接MA ,交PE 于点N ,根据垂径定理的推论,确定AM △PE ,设AN =x ,则MN =5-x ,用勾股定理同时表示EN 求得x ,从而求得EN ,根据PE =2EN 计算即可【详解】如图,△AQP APB ∠=∠,PAQ PAB ∠=∠,△△AQP △△APB ,△AP :AB =AQ :AP ,△2AP AQ AB =•,过点M 作MG △AB ,垂足为G ,连接MA ,则AG =GB ,△点M 的横坐标为3,圆的半径为5,△MG =3,MA =5,根据勾股定理,得AG =,△AB =2AG =8,△28AP AQ =,△AP =或AP =-,△AQ =AB -QB ,△AP +QB =-AQ =28-+=210-+△AP +QB 10,△AQ =2,AP =,连接AE ,设MA 与PE 的交点为N ,△△AQP △△APB ,△△APQ =△ABP ,△△AEP =△ABP ,△△APQ =△AEP ,△AP =AE =4,AE AP =,根据垂径定理的推论,得AM △PE ,设AN =x ,则MN =5-x ,在Rt △AEN 中,222224EN AE AN x =-=-,在Rt △MEN 中,222225(5)EN ME MN x =-=--,△224x -=225(5)x --,解得x =85, △22284()5EN =-,△EN =5,△PE =2EN 故选D .【点睛】本题考查了圆的对称性,三角形的相似,二次函数的最值,勾股定理,熟练掌握圆的对称性,活用三角形相似的判定和性质,勾股定理是解题的关键.3.如图,矩形ABCD 中,6,9AB BC ==,以D 为圆心,3为半径作D ,E 为D 上一动点,连接AE ,以AE 为直角边作Rt AEF ,使90EAF ∠=︒,1tan 3AEF ∠=,则点F 与点C 的最小距离为( )A .1B .C .1D 【答案】A【分析】 如图,取AB 的中点G ,连接FG ,FC ,GC ,DE 由FAG EAD △△,推出::1:3FG DE AF AE ==,因为3DE =,可得1FG =,推出点F 的运动轨迹是以G 为圆心1为半径的圆,再利用两点之间线段最短即可解决问题.【详解】如图,取AB 的中点G ,连接FG ,FC ,GC ,DE .△90EAF ∠=︒,1tan 3AEF ∠=, △13AF AE =, △6AB =,AG GB =,△3AG GB ==,△9AD =, △3193AG AD ==, △DAF AE AG A =,△四边形ABCD 是矩形,△90BAD B EAF ∠=∠=∠=︒,△FAG EAD ∠=∠,△FAG EAD △△,△::1:3FG DE AF AE ==,△3DE =,△1FG =,△点F 的运动轨迹是以G 为圆心1为半径的圆,△GC△FC GC FG ≥-,△1FC ≥,△CF 的最小值为1.故选:A .【点睛】本题是一个动点问题,考查了矩形、圆、三角形相似的判定和性质、两点间线段最短等知识,本题的难点是点G 的运动轨迹的探索,关键是构造两个相似的三角形.4.如图,已知O 的半径为3,弦4CD =,A 为O 上一动点(点A 与点C 、D 不重合),连接AO 并延长交CD 于点E ,交O 于点B ,P 为CD 上一点,当120APB ∠=︒时,则AP BP ⋅的最大值为( )A .4B .6C .8D .12【答案】C【分析】如图(见教师),先利用解直角三角形可得12FP AP =,再根据圆周角定理可得C PBD ∠=∠,然后根据相似三角形的判定与性质可得CP FP BP DP=,从而可得FP BP CP DP ⋅=⋅,设CP x =,从而可得4DP x =-,最后利用二次函数的性质求解即可得.【详解】解:如图,延长BP 交O 于点F ,连接,,AF CF BD ,AB 为O 的半径,90AFB ∴∠=︒,120APB ∠=︒,18060APF APB ∴∠=︒-∠=︒,在Rt AFP △中,1cos 2FP AP APF AP =⋅∠=,即2AP FP =, 2AP BP FP BP ∴⋅=⋅,由圆周角定理得:C PBD ∠=∠,在CFP 和BDP △中,C PBD CPF BPD ∠=∠⎧⎨∠=∠⎩, CFP BDP ∴~,CP FP BP DP∴=,即FP BP CP DP ⋅=⋅, 设,FP BP y CP x ⋅==,则4DP x =-,且04x <<,2(4)(2)4y x x x ∴=-=--+,由二次函数的性质可知,在04x <<内,当2x =时,y 取最大值,最大值为4, 即FP BP ⋅的最大值为4,则AP BP ⋅的最大值为248⨯=,故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定与性质、二次函数的几何应用等知识点,通过作辅助线,构造相似三角形和直角三角形是解题关键.5.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为( ).A .3.5B .2.5C .2D .1.2【答案】C【分析】 连接OC ,由垂径定理得OC AB ⊥,再由圆周角定理得点C 在以OA 为直径的圆上(点A 除外),以OA 为直角作P ,过P 点作直线PH DE ⊥于H ,交P 于M 、N ,利用一次函数教师式确定(0,3)-E ,(4,0)D ,则5DE =,然后证DPH DEO ∆∆∽,利用相似比求出PH 的长,得MP 、NH 的长,当C 点与M 点重合时,S 最大;C 点与N 点重合时,S 最小,然后计算出NED S ∆和MED S ∆得到S 的范围,即可求解.【详解】解:连接OC ,如图,点C 为弦AB 的中点,OC AB ∴⊥,90ACO ∴∠=︒,∴点C 在以OA 为直径的圆上(点A 除外),以OA 为直径作P ,过P 点作直线PH DE ⊥于H ,交P 于M 、N ,当0x =时,3334y x =-=-,则(0,3)-E ,当0y =时,3x 304-=,解得4x =,则(4,0)D ,4OD ∴=,5DE ∴,(2,0)A ,(1,0)P ∴,1OP ∴=,3PD OD OP ∴=-=,PDH EDO ∠=∠,PHD EOD ∠=∠,DPH DEO ∴∆∆∽,::PH OE DP DE ∴=,即:33:5PH =, 解得95PH =,1415MH PH ∴=+=,415NH PH =-=, 145225NED S ∆∴=⨯⨯=,1145725MED S ∆=⨯⨯=, 设CDE ∆面积为S ,当C 点与M 点重合时,S 最大;C 点与N 点重合时,S 最小,S ∴的范围为27S ≤≤,CDE ∴∆面积的最小值为2.故选:C .【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、相似三角形的判定与性质和一次函数的性质,解题的关键是正确寻找点C 的运动轨迹,属于中考填空题中的压轴题.6.如图,等腰Rt ABC 中,90BAC ∠=︒,点D 是ABC 外一点,分别以BD ,CD 为斜边作两个等腰直角BDE 和CDF ,并使点F 落在BC 上,点E 落在ABC 的内部,连结EF .若5tan 2FDB ∠=,则ABE △与DEF 的面积之比为( )A .74B .73C .52D .3【答案】B【分析】 如图,取BD 中点O ,以O 为圆心,以OB 为半径作圆,连接OE ,OF ,作直线EF 分别交AB 、CD 与M 、N .证明四边形AMNC 为矩形,△BEM △△EDN ,得到BM =EN ,ME =DN ,设DF =2x ,得到BF =5x ,进而求出BM x =,DN ,ME FN DN ===,EN BM ==,2EF EN FN x =-=,从而求出232DEF S x =△,272ABE S x =△,问题得解.【详解】解:如图,取BD 中点O ,以O 为圆心,以OB 为半径作圆,连接OE ,OF ,作直线EF 分别交AB 、CD 与M 、N .△BDE 和CDF 都是等腰直角三角形,△△BED =△BFD =90°,BE =DE ,△DCF =△CDF =△DBE =△BDE =45°,△O 为BD 中点,△OB =OD =OE =OF =12BD ,△点E 、F 都在圆O 上,△△EFB =△EDB =45°,△△ABC 为等腰三角形,90BAC ∠=︒,△△ACB =45°,△△ACB =△EFB ,△ACD =△ACB +△BCD =90°,△MN △AC ,△△BME =△DNE =90°=△AME =90°,△△MBE +△MEB =90°,四边形AMNC 为矩形,△△BED =90°,△△DEN +△MEB =90°,△△MBE =△DEN ,△BE =DE ,△△BEM △△EDN ,△BM =EN ,ME =DN ,设DF =2x ,△Rt△BDF 中,5tan 2FDB ∠=, △BF =5x ,△在Rt△BMF 中,252cos 522BM BF FBM xx =∠==, 在Rt△DFN 中,2cos 222DN DF FDN xx =∠==,△ME FN DN ==,EN BM x ==,△2EF EN FN x =-=,△2113222DEF S EF DN x x ==⨯=△, △CDF 是等腰直角三角形,△FND =90°, △DN CN =,△四边形AMNC 为矩形,△AM CN =,△2AB AM BM x =+=,△2117222ABE S AB ME x x ==⨯=△, △ABE △与DEF 的面积之比2273:7:322x x =. 故选:B【点睛】本题考查了直角三角形的性质,解直角三角形,圆周角定理,全等三角形等知识,综合性较强,根据题意添加辅助线,证明点E 、F 都在圆O 上,△BEM △△EDN 是解题关键. 7.如图,在平面直角坐标系中,点()12,0A -,点()0,4B ,点()4,0D -,以点A 为圆心,4个单位长度为半径作圆,点C 是△A 上的一个动点,则12BC CD +的最小值为( )A .B .C .D .【答案】A【分析】取E (-10,0),证明△AEC △△ACD ,得到CE =12CD ,则可将BC +12CD 的最小值转化为BE 的长,再利用勾股定理计算即可.【详解】解:△A (-12,0),B (0,4),D (-4,0),△OA =12,OD =4,则AD =8,AC =4,取E (-10,0),则AE =2,DE =6,在△AEC 和△ACD 中,△CAE =△DAC ,12AE AC AC AD ==,△△AEC△△ACD,△12CECD=,即CE=12CD,则BC+12CD=BC+CE≥BE,即BC+12CD的最小值为BE的长,故选A.【点睛】本题主要考查了相似三角形的判定与性质、两点之间线段最短原理,值得强调的是,本题是一类典型几何最值问题,构造“子母型相似”是解答此问题的关键.8.如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当△A与直线5 :12 l y x=只有一个公共点时,点A的坐标为()A .(12,0)-B .(13,0)-C .(12,0)±D .(13,0)± 【答案】D【分析】当△A 与直线5:12l y x =只有一个公共点时,则此时△A 与直线5:12l y x =相切,(需考虑左右两侧相切的情况);设切点为B ,此时B 点同时在△A 与直线5:12l y x =上,故可以表示出B 点坐标,过B 点作//BC OA ,则此时AOB OBC △∽△,利用相似三角形的性质算出OA 长度,最终得出结论.【详解】如下图所示,连接AB ,过B 点作//BC OA ,此时B 点坐标可表示为512x,x ⎛⎫ ⎪⎝⎭, △512OC x =,BC x =, 在Rt OBC中,1312OB x =, 又△A 半径为5,△5AB =,△//BC OA ,△AOB OBC △∽△, 则OA AB OB BO OC BC==, △51351212OA =x x , △13OA =,△左右两侧都有相切的可能,△A点坐标为(13,0)±,故选:D.【点睛】本题考查的是直线与圆的位置关系,熟知相似三角形的判定与性质是解答此题的关键.9.如图,在Rt△AOB中,△ABO=90°,△AOB=30°,AB=AOC的圆心角为60°,点D为AC上一动点,P为线段BD上的一点,且PB=2PD,当点D从点A运动至点C,则点P的运动路径长为()A B C.D.【答案】A【分析】在OB上取BE=2OE,在AB上BF=2AF,在BC上取BG=2CG,分别连接EF、PE、GE、OD,则可证明△DBO△△PBE,从而求得PE的长为定值,这样可确定点P的运动路径为一段弧,且弧的两端为点F和点G,因此只要求出OA的长及圆心角△FEG的大小,即可求得圆弧的长,从而求得结果.【详解】在OB上取BE=2OE,在AB上BF=2AF,在BC上取BG=2CG,分别连接EF、PE、GE、OD,如图△BP=2PD,BE=2OE△23 BP BE BD OB==△△DBE=△PBE △△DBO△△PBE△23 PE OD=即23 PE OD=△△ABO=90°,△AOB=30°,AB=△2OA AB==△OD OA OC===23PE =⨯=同理:EF =23OA =23EG OC == △PE =EF =EG△当点D 与点A 重合时,点P 与点F 重合;当点D 与点C 重合时,点P 与点G 重合△点P 在以点E 为圆心,FG 上运动△△AOC =60°△△COB =△AOC +△AOB =90°△△FBE △△ABO ,△BEG △△BOC△△FEB =△AOB =30°,△GEB =△COB =90°△△FEG =90°-△FEB =60°FG = 故选:A .【点睛】本题考查了相似三角形的判定与性质,含30度角直角三角形的性质,弧长公式等知识,难点和关键在于点P 的运动路径的探寻,有一定的难度.10.如图,在等边三角形ABC 的AC ,BC 边上分别任取一点P ,Q ,且AP =CQ ,AQ 、BP相交于点O .下列四个结论:△若PC =2AP ,则BO =6OP ;△若BC =8,BP =7,则PC =5;△AP 2=OP•AQ ;△若AB =3,则OC )A .△△△B .△△△C .△△△D .△△△【答案】B【分析】 △根据等边三角形的性质得到AC =BC ,根据线段的和差得到CP =BQ ,过P 作PD △BC 交AQ于D,根据相似三角形的性质得到△正确;△过B作BE△AC于E,解直角三角形得到△错误;△根据全等三角形的性质得到△ABP=△CAQ,PB=AQ,根据相似三角形的性质得到△正确;△以AB为边作等边三角形NAB,连接CN,证明点N,A,O,B四点共圆,且圆心即为等边三角形NAB的中心M,设CM与圆M交点O′,CO'即为CO的最小值,根据30度角的直角三角形的性质即可求出结果.【详解】解:△△△ABC是等边三角形,△AC=BC,△AP=CQ,△CP=BQ,△PC=2AP,△BQ=2CQ,如图,过P作PD△BC交AQ于D,△△ADP△△AQC,△POD△△BOQ,△13PD APCQ AC==,PD OPBQ BO=,△CQ=3PD,△BQ=6PD,△BO=6OP;故△正确;△过B作BE△AC于E,则142CE AC==,△△C=60°,△BE=△1PE==,△PC=4+1=5,或PC=4-1=3,故△错误;△在等边△ABC中,AB=AC,△BAC=△C=60°,在△ABP与△CAQ中,△AB=AC,△BAP=△C,AP=CQ △△ABP△△ACQ(SAS),△△ABP=△CAQ,PB=AQ,△△APO=△BP A,△△APD△△BP A,△AP OP PB AP=,△2AP OP PB=,△2AP OP AQ=,故△正确;△以AB为边作等边三角形NAB,连接CN,△△NAB=△NBA=60°,NA=NB,△△PBA=△QAC,△△NAO+△NBO=△NAB+△BAQ+△NBA+△PBA=60°+△BAQ+60°+△QAC=120°+△BAC=180°,△点N,A,O,B四点共圆,且圆心即为等边三角形NAB的中心M,设CM与圆M交点O′,CO′即为CO的最小值,△NA=NB,CA=CB,△CN垂直平分AB,△△MAD=△ACM=30°,△△MAC=△MAD+△BAC=90°,在Rt△MAC中,AC=3,△tan2MA AC ACM CM AM=∠===△'MO MA==即CO△正确.综上:正确的有△△△.故选:B.【点睛】本题属于三角形的综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,等边三角形的性质,四点共圆,锐角三角函数,最短路径问题,综合掌握以上知识并正确的作出辅助线是解题的关键.二、填空题11.如图,Rt△ABC 中,△C =90°,AC =3,BC =4,点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___.【答案】15582AD ≤< 【分析】首先由Rt ABC △中,90C ∠=︒,3AC =,4BC =,可求得AB 的长,然后根据题意画出图形,分别从当D 与BC 相切时与当D 与BC 相交时,去分析求解即可求得答案.【详解】解:Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,5AB ∴==,以D 为圆心,AD 的长为半径画D ,△如图1,当D 与BC 相切时,DE BC ⊥时,设AD x =,则==DE AD x ,5BDAB AD x ,90BED C ∠=∠=︒,B 是公共角, BDE BAC ∴∆∆∽, ∴BD DE AB AC=, 即553x x -=,解得:158x=;△如图2,当D与BC相交时,若交点为B或C,则1522 AD AB==,AD∴的取值范围是155 82AD≤<.故答案为:155 82AD≤<.【点睛】此题考查了直线与圆的位置关系、勾股定理以及相似三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.12.如图,圆O是锐角△ABC的外接圆,D是弧AB的中点,CD交AB于点E,△BAC的平分线交CD于点F,过点D的切线交CA的延长线于点P,连接AD,则有下列结论:△点F是△ABC的内心;△PD△AB;△AF=AE;△DF2=DE•CD,其中正确结论的序号是______.【答案】△△△【分析】根据圆周角定理得到△ACD=△BCD,则可根据三角形内心的定义对△进行判断;连接OD,如图,利用切线的性质得到OD△PD,利用垂径定理得到OD△AB,则可对△进行判断;利用三角形外角性质得到△AFE=△1+△3,△AEF=△2+△B,由于只有当△BAC=2△B时AF=AE,于是可对△进行判断;先证明△DAF=△DF A得到DF=DA,再证明△DAE△△CAD,利用相似比可对△进行判断.【详解】解:△D是弧AB的中点,即AD BD=,△△ACD=△BCD,△CE平分△CAB,△AF平分△BAC,△点F是△ABC的内心,所以△正确;连接OD,如图,△PD为△O的切线,△OD△PD,△D是弧AB的中点,△OD△AB,△PD△AB,所以△正确;△△AFE=△1+△3,△AEF=△2+△B,△BAC,而△1=△2,△3=12△只有当△BAC=2△B时,△AFE=△AEF,此时AF=AE,所以△不一定正确;△△DAF=△DAB+△BAF=△2+△3=△1+△3=△DF A,△DF=DA,△△DAB=△1,△ADE=△CDA,△△DAE△△DCA,△DA:DC=DE:DA,△DA2=DE•DC,△DF2=DE•DC,所以△正确.故答案为:△△△.【点睛】本题考查了相似三角形的判定与性质、圆周角定理、三角形的内心和切线的性质.解答本题的关键是明确题意,找出所求问题需要的条件.13.我国古代伟大的数学家刘徽于公元263年撰《九章算术注》中指出,“周三径一”不是圆周率值,实际上是圆内接正六边形周长和直径的比值(图1).刘徽发现,圆内接正多边形边数无限增加时,多边形的周长就无限通近圆周长,从而创立“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法,如图2,六边形ABCDEF是圆内接正六边形,把每段弧二等分,作出一个圆内接正十二边形,连接AG,CF,AG交CF于点P,若AP则CG 的长为________.【答案】【分析】设正六边形外接圆的圆心为O ,连接OG ,于是得到3603012COG ︒∠==︒,由题意得,75FAG ∠=︒,60CFA ∠=︒,过A 作AH CF ⊥于H ,推出AHP ∆是等腰直角三角形,得到AH ==求得4sin 60AH AF ==︒,得到圆的半径,过点G 作GQ △OC ,垂足为Q ,解直角三角形OCG 即可得到CG .【详解】解:设正六边形外接圆的圆心为O ,连接OG ,则3603012COG ︒∠==︒, 由题意得,75FAG ∠=︒,60CFA ∠=︒,过A 作AH CF ⊥于H ,90AHF ∴∠=︒,30FAH ∴∠=︒,45HAP ∴∠=︒,AHP ∴∆是等腰直角三角形,AH AP ∴==4sin 60AH AF ∴==︒, 4OC AF ∴==,过点G 作GQ △OC ,垂足为Q ,△GQ =12OG =2,△OQ△QC =OC -OQ=4-△CG ,故答案为:.【点睛】本题考查了正多边形和圆,正六边形和正十二边形的性质,解直角三角形,弧长的计算,正确的理解题意是解题的关键.14.如图,矩形ABCD 中,点E 在AD 上,过点E 作EF BE ⊥交CD 于F ,且10BC BE ==,FC FE =5=,点M 是线段CF 上的动点,连接BM ,过点E 作BM 的垂线交BC 于点N ,垂足为H .以下结论:△FED EBA ∠=∠;△6AE =;△··AE ED CD DF =;△连接CH ,则CH 的5;其中正确的结论是_________.(所有正确结论的序号都填上).【答案】△△△△【分析】根据△FED +△AEB =90°、△EBA +△AEB =90°可判断△;连接BF ,CE 交于点O ,由BE =BC ,EF =FC 可得BF 垂直平分EC ,在Rt △BEF 中,利用相似三角形的性质,EO ,FO ,BF 均可求解,设DF 为x ,DC =5+x ,DE Rt △EGC 中,利用勾股定理可以建立关于x 的方程,求出x ,图形中的定线段长均可求解,可判断△;利用三角形相似可判断△;由EN △BM ,BE =10可判断点H 的运动轨迹为以BE 中点I 为圆心,5为半径的OHG 上运动,在△IHC 中,CH ≥CI -IH ,即可求出CH 的最小值.【详解】解:△四边形ABCD 是矩形,△△A =△D =90°△△EBA +△AEB =90°△EF BE ⊥,即,△BEF =90°△△FED +△AEB =90°△FED EBA ∠=∠,故△正确;连接BF ,CE 交于点O ,由BE =BC ,EF =FC 可得BF 垂直平分EC ,在Rt △BEF 中,BF ==△△BEF =90°,即△FEO +△BEO =90°又90FBE BEO ∠+∠=︒△△FBE =△FEO又△EFO =△BFE△BFE EFO ∆∆△FE BFFO FE=,即:2EF FO BF ===△BO ==△EO 2EC EO ==设DF 为x ,DC =5+x ,DE过E 作EG △BC ,则四边形EGCD 是矩形,△EG =DC =DF +FC =5+x ,GC =DE =在Rt △EGC 中,EG 2+GC 2=EC 2,即222(5)x ++=,解得x =3,经检验:x =3是原方程的根,△DF =3△DC =5+3=8,4DE =,△AE =10-4=6,故△正确; △35AE DF AB ED ==, △△ABE △△DEF ,△AB =CD ,△AE DF CD ED=,即AE •ED =CD •DF ,△正确; △EN △BM ,BE =10,△点H 的运动轨迹为以BE 中点I 为圆心,5为半径的OHG 上运动,过I 作IT △DC 于T ,CI =在△IHC 中,5CH CI IH ≥-=,△正确.故答案为:△△△△.【点睛】本题考查全等三角形的判定好性质以及三角形相似,勾股定理,垂直平分线的性质等知识,明确点H 的运动轨迹是解题的关键.15.如图,点O 是三角形ABC 内的一点,4,45OA OB OC BAC ===∠=︒,已知2AOC AOB S S -=,则BOC ∠=___________,ABC S =___________.【答案】90︒ 8【分析】(1)由已知,三角形ABC 的外接圆的圆心为O ,根据圆周角定理可求△BOC 度数;(2)三角形OBC 的面积可求,只需求出三角形OAB 和三角形OAC 的面积即可求出三角形ABC 的面积;为此,延长AO 交三角形ABC 的外接圆于点P ,分别过点B 、C 作BM △AP 于点M ,CN △AP 于点N ,求出BM +CN 的长即可.【详解】解:(1)△OA =OB =OC =4,△ABC 的外接圆的圆心为O ,半径为4,如图所示.BC BC =∵,224590BOC BAC ==⨯=∴∠∠.故答案为:90(2)延长AO 交O 于点P ,分别过点B 、C 作BM △AP 于点M ,CN △AP 于点N ,如图所示.2AOC AOB S S -=△△∵,11222OA CN OA BM -=∴. ()122OA CN BM -=∴. 4OA =∵,1CN BM -=∴.+90+90BOM CON CON OCN ==∵∠∠,∠∠, =BOM OCN ∴∠∠.在BOM 和OCN 中,==90BOM OCN BMO ONC OB CO ∠∠⎧⎪∠∠=⎨⎪=⎩()BOM OCN AAS ≅∴△△.OM CN =∴.在Rt OBM 中,2222416BM OM OB +===∵,2216BM CN +=∴.△CN -BM =1,△设BM =x ,则CN =x +1.()22116x x ++=∴.整理得,222150x x +-=.解得,12x x ==(不合题意,舍去)x =∴2121BM CN x +=+==∴ ABC AOC AOB BOC S S S S =++△△△△∴111222OA CN OA BM OB OC =++ ()1122OA CN BM OB OC =++ 114422=⨯⨯⨯8=.故答案为:8【点睛】本题考查了三角形的外接圆、圆周角定理、勾股定理、三角形的面积等知识点,熟知上述知识点、根据题目特征,构造三角形的外接圆是解决第(1)问的基础;构造AOC △和AOB 底边OA 上的高是解决第(2)问的关键.16.如图,在Rt ABC 中,90C ∠=︒,AB 的垂直平分线分别交AB 、AC 于点D 、E ,8BE =,O 为BCE 的外接圆,过点E 作O 的切线EF 交AB 于点F ,则下列结论正确的是______.(写出所有正确结论的序号)△AE BC =;△AED CBD ∠=∠;△若40DBE ∠=︒,则DE 的长为89π;△DF EF EF BF =;△若6EF =,则 2.24CE =.【答案】△△△【分析】△根据线段垂直平分线定理,BE 为O 的直径,BC 为O 的弦,即可得出结论; △根据段垂直平分线得出△A +△AED =90°,再证△A +△ABC =90°,等量代换即可; △根据已知条件先得出△EBC 的度数,再利用圆周角定理得△EOC =2△EBC ,根据弧长公式计算即可;△根据角角相似证明△EFD △△BFE 即可得出结论;△先根据勾股定理得出BF 的长,再根据等面积法得出ED ,根据角角相似证明Rt △ADE △Rt △ACB ,得出AD AE AC AB =,即可计算出结果. 【详解】解:△△DE 是AB 的垂直平分线△AE BE =BE 为O 的直径,BC 为O 的弦BE BC ∴>AE BC ∴>.故△不正确.△△DE 是AB 的垂直平分线△DE △AB△△A +△AED =90°△90C ∠=︒△△A +△ABC =90°△AED CBD ∠=∠故△正确.△连接OD40DBE ∠=︒280EOD EBD ∴∠=∠=︒8BE =142OE OB BE ∴=== DE ∴的长为801641809ππ⋅=. 故△错误.△△DE △AB ,E F 是O 的切线△△FEB =△EDF =90°又△EFD =△EFD△△EFD △△BFE △DF EF EF BF=. 故△正确.△△6EF =,8BE =△BF10== △1122EF BE BF ED ⋅=⋅ △68 4.810ED ⨯== 在Rt △EDB 中,6.4BD ==,△DE 是AB 的垂直平分线,△ 6.4AD DB ==,AE =BE =8,△在Rt △ADE 和Rt △ACB 中,△A =△A ,△ADE =△ACB =90°△Rt △ADE △Rt △ACB △AD AE AC AB = △6.4812.8AC = △AC =10.24又AE =BE =8△CE =AC -AE =10.24-8=2.24.故△正确.综上所述:正确的有△△△.故答案为:△△△.【点睛】本题考查圆周角定理,相似三角形的判定及性质、线段垂直平分线的性质及定理、勾股定理、切线的性质、等面积法是常用的计算边长的方法、灵活进行角的转换是关键17.如图,Rt ABC 中,90,6,8ACB AC BC ∠=︒==,延长BC 到点D ,使BD BA =,点O 是BC 边上一动点.点P 在射线BA 上,且OP OB =,以点O 为圆心,OD 长为半径作O ,连接OP .(1)当OC 长为________时,AB 与O 相切;(2)当O 恰好经过点B 时,点Q 在O 上运动,连接PQ ,点M 为PQ 的中点,连接AM ,则AM 长的取值范围是________.【答案】74AM ≤≤ 【分析】 (1)设AB 与O 相切于点E ,连接OE ,先根据圆的切线的性质可得OE AB ⊥,再利用勾股定理可得10BD AB ==,从而可得2CD =,然后设(0)OC x x =>,从而可得8,2OB x OE x =-=+,最后在Rt BOE △中,解直角三角形即可得;(2)过点O 作OG AB ⊥于点G ,先利用圆的性质、解直角三角形求出,,OB OP OG 的长,再设OP 的中点为点N ,过点N 作NE AB ⊥于点E ,连接,OQ MN ,根据三角形中位线定理可得1522MN OQ ==,从而可得点M 是在以点N 为圆心,ON 长为半径的圆上,然后利用点与圆的位置关系即可得.【详解】解:(1)如图,设AB 与O 相切于点E ,连接OE ,则OE AB ⊥,90,6,8ACB AC BC ∠=︒==,10AB ∴=,BD AB =,10BD ∴=,2CD BD BC =-=,设(0)OC x x =>,则8,2OB x OE OD x =-==+,在Rt ABC 中,63sin 105AC B AB ===, 在Rt BOE △中,sin OE B OB =,即2385x x +=-, 解得74x =, 经检验:74x =是原方程的根,且符合题意, 即74OC =, 故答案为:74; (2)如图,过点O 作OG AB ⊥于点G , O 恰好经过点B ,BD ∴为O 的直径,152OQ OB OP BD ∴====, 在Rt BOG △中,sin 3355OG OB B =⋅==⨯,4BG ∴,,O OG AB B OP ⊥=,4PG BG ∴==,2AP AB BG PG ∴=--=,设OP 的中点为点N ,过点N 作NE AB ⊥于点E ,连接,OQ MN ,点M 为PQ 的中点,1522MN OQ ∴==, ∴点M 是在以点N 为圆心,ON 长为半径的圆上,如图,连接AN ,交N 于点F ,延长AN 交N 于点M ,则AM 即为所求的最大值,AF 即为所求的最小值,,NE AB OG AB ⊥⊥,//NE OG ∴, 又点N 为OP 的中点,131,2222EN OG EP PG ∴====, 224AE AP EP ∴=+=+=,在Rt AEN △中,AN = 52FN MN ==,AM AN MN ∴=+=AF AN FN =-=则AM AM ≤≤AM ≤≤【点睛】本题考查了圆的切线的性质、点与圆的位置关系、解直角三角形等知识点,较难的是题(2),正确找出点M 的运动轨迹是解题关键.18.如图,正方形ABCD 的边长为4,点E 是边BC 上一点,且3BE =,以点A 为圆心,3为半径的圆分别交AB 、AD 于点F 、G ,DF 与AE 交于点H .并与A 交于点K ,连结HG 、CH .给出下列四个结论.(1)H 是FK 的中点;(2)HGD HEC ≌;(3)916AHG DHC S S =△△:∶;(4)75DK =,其中正确的结论有________(填写所有正确结论的序号).【答案】(1)(3)(4).【分析】由正方形的性质可证明DAF ABE △≌△,则可推出90AHF ∠=︒,利用垂径定理即可证明结论(1)正确;过点H 作//MN AB 交BC 于N ,交AD 于M ,由三角形面积计算公式求出125AH =,再利用矩形的判定与性质证得MG NE =,并根据相似三角形的判定与性质分别求出4825MH =,5225NH =,则最后利用锐角三角函数证明MGH HEN ∠≠∠,即可证明结论(2)错误;根据(2)中结论并利用相似三角形的性质求得3625AM =,即可证明结论(3)正确;利用(1)所得结论2DK DF FH =-并由勾股定理求出FH ,再求得DK ,即可证明结论(4)正确.【详解】解:(1)△四边形ABCD 是正方形,△4AD AB ==,90DAF ABE ∠=∠=︒.又△3AF BE ==,△DAF ABE △≌△.△AFD BEA ∠=∠.△90BEA BAE ∠+∠=︒,△90AFD BAE ∠+∠=︒,△90AHF ∠=︒,△AH FK ⊥,△FH KH =,即H 是FK 的中点;故结论(1)正确;(2)过点H 作//MN AB 交BC 于N ,交AD 于M ,由(1)得AH FK ⊥,则1122AD AF DF AH ⋅=⋅.△5DF ==, △125AH =. △四边形ABCD 是正方形,//MN AB ,△90DAB ABC AMN ∠=∠=∠=︒.△四边形ABNM 是矩形.△4MN AB ==,AM BN =.△AG BE =,△AG AM BE BN -=-.即MG NE =.△//AD BC ,△MAH AEB ∠=∠.△90ABE AMN ∠=∠=︒,△MAH BEA . △AH MH AE AB=. 即12554MH =. 解得4825MH =. 则52425NH MH =-=. △tan MH MGH MG ∠=,tan NH HEN NE∠=.△MG NE =,MH NH ≠, △MG NE MH NH≠. △MGH HEN ∠≠∠.△DGH CEH ∠≠∠.△HGD △与HEC △不全等,故结论(2)错误;(3)△MAH BEA , △AH AM AE BE =. 即12553AM =. 解得3625AM =. 由(2)得12AHG S MH AG =⋅,()12DHC S DC AD AM =⋅-. △()48392536164425AHG DHC S MH AG S DC AD AM ⨯⋅===⋅-⎛⎫⨯- ⎪⎝⎭;故结论(3)正确;(4)由(1)得,H 是FK 的中点,△2DK DF FH =-. 由勾股定理得95FH ===. △975255DK =-⨯=;故结论(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查了正方形的综合问题,掌握特殊四边形、相似三角形的判定与性质及等腰三角形的性质是解题的关键.19.如图,在四边形ABCD 中,6AD =,60C ∠=°,连接,BD BD AB ⊥且BD CD =,求四边形ABCD 面积的最大值.小明过点C 作CH AB ⊥,交AB 的延长线于点H ,连接DH ,则AHD ∠的正弦值为______,据此可得四边形ABCD 面积的最大值为______.【分析】答题空1:先证BCD △是等边三角形,再求9030HBC CBD ∠=∠=︒°-,那么在Rt BDH 中,tan BD BC AHD BH BH ∠==,在Rt BCH 中,cos cos30BH HBC BC ∠=︒=,即可得到tan AHD ∠值,则可求得sin AHD ∠的 值;答题空2:通过//HC BD ,得到BCD BHD S S =△△,进而求得()1++=2ABD BCD ABD BHD ADH ABCD S S S S S S AD AD ===⋅四边形边上的高,即:求ABCD S 四边形最大值,则是求ADH S △面积最大,AD 为定值,则当AD 边上高最长时即为所求.可作ADH 的外接圆O ,过点O 作OE AD ⊥,连接AO,DO ,连接OE 并延长OE 并交O 于点'H ,设半径为R ,求得OE 与R 的长,''H E OH OE R OE =+=+,当'H 与H 重合时,AD 边上高最长,ADH S △最大,即可求得答案.【详解】解:答题空1:△CH AB ⊥,BD AB ⊥△//HC BD△60BCD ∠=︒,BD CD =△BCD △是等边三角形△60CBD ∠=︒ △BD AB ⊥△9030HBC CBD ∠=∠=︒°-在Rt BDH 中,tan BD BC AHD BH BH∠==在Rt BCH 中,cos cos30BH HBC BC ∠=︒=△tanBD BC AHD BH BH ∠==△sin AHD ∠= 答题空2:△//HC BD△BCD BHD S S =△△ △()1++=2ABD BCD ABD BHD ADH ABCD S SS S S S AD AD ===⋅四边形边上的高求ABCD S 四边形最大值,即求ADH S △面积最大,AD 为定值,则当AD 边上高最长时即为所求.△tan AHD ∠=,6AD = △可作ADH 的外接圆O ,过点O 作OE AD ⊥,连接AO,DO ,设半径为R△AOD ∠与AHD ∠分别为同弧所对圆心角、圆周角△AOD ∠=2AHD ∠△OE AD ⊥,6AD =△AOE ∠=12AOD ∠=AHD ∠,132AE AD ==△3tan tan =AE AOE AHD OE OE ∠=∠=即得OE =△R OA ===连接OE 并延长OE 并交O 于点'H ,则''H E OH OE R OE =+=+=当'H 与H 重合时,ADH S △最大 △11++='=622ABD BCD ABD BHD ADH ABCD S S S S S S AD H E ===⋅⨯⨯⎝⎭△△△△△四边形【点睛】本题考查利用三角函数解直角三角形和三角形外接圆的应用,解题的关键是学会通过添加常用辅助线,构造直角三角形和圆解决问题,属于中考压轴题型.20.如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】△△△△【分析】由题意易得△APF =△ABC =△ADE =△C =90°,AD =AB ,△ABD =45°,对于△:易知点A 、B 、F 、P 四点共圆,然后可得△AFP =△ABD =45°,则问题可判定;对于△:把△AED 绕点A 顺时针旋转90°得到△ABH ,则有DE =BH ,△DAE =△BAH ,然后易得△AEF △△AHF ,则有HF =EF ,则可判定;对于△:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证△AOP △△ABF ,进而问题可求解;对于△:过点A 作AN △EF 于点N ,则由题意可得AN =AB ,若△AEF 的面积为定值,则EF 为定值,进而问题可求解;对于△由△可得AP AF =进而可得△APG △△AFE ,然后可得相似比为AP AF =似比的关系可求解.【详解】解:△四边形ABCD 是正方形,PF AP ⊥,△△APF =△ABC =△ADE =△C =90°,AD =AB ,△ABD =45°,△△180ABC APF ∠+∠=︒,△由四边形内角和可得180BAP BFP ∠+∠=︒,△点A、B、F、P四点共圆,△△AFP=△ABD=45°,△△APF是等腰直角三角形,△AP PF=,故△正确;△把△AED绕点A顺时针旋转90°得到△ABH,如图所示:△DE=BH,△DAE=△BAH,△HAE=90°,AH=AE,△45∠=∠=︒,HAF EAF△AF=AF,△△AEF△△AHF(SAS),△HF=EF,△HF BH BF=+,△DE BF EF+=,故△正确;△连接AC,在BP上截取BM=DP,连接AM,如图所示:△点O是对角线BD的中点,⊥,△OB=OD,BD AC△OP=OM,△AOB是等腰直角三角形,△AB,由△可得点A、B、F、P四点共圆,△APO AFB∠=∠,△90ABF AOP ∠=∠=︒,△△AOP △△ABF ,△OP OA AP BF AB AF ===,△OP =, △2BP DP BP BM PM OP -=-==,△PB PD -=,故△正确; △过点A 作AN △EF 于点N ,如图所示:由△可得△AFB =△AFN ,△△ABF =△ANF =90°,AF =AF , △△ABF △△ANF (AAS ),△AN =AB ,若△AEF 的面积为定值,则EF 为定值, △点P 在线段OD 上,△EF 的长不可能为定值,故△错误; △由△可得AP AF = △△AFB =△AFN =△APG ,△F AE =△P AG , △△APG △△AFE ,△GP AP EF AF ==△212AGP AEF S S ==⎝⎭, △12AGP AEF S S =,△APG PEFG S S =四边形,故△正确;综上所述:以上结论正确的有△△△△; 故答案为△△△△. 【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.三、解答题21.在ABC 中,90ACB ∠=︒,以BC 为直径的O 交AB 于点D .(1)如图△,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若66ABC ∠=︒,求ACM ∠;(2)如图△,过点D 作O 的切线DE 交AC 于点E ,求证:AE EC =; (3)如图△,在(1)(2)的条件下,若3tan 4A =,求:ADE ACM S S △△的值. 【答案】(1)见教师;(2)见教师;(3)45【分析】(1)由三角形内角和角的计算问题;(2)证明()EDO ECO SAS ∆≅∆,则DE CE =,得到A ADE ∠=∠,即可求解;(3)设3BC x =,4AC x =,5AB x =,则122ED EC AC AE x ====,由AMH ABC ∆∆∽,得到21161242255ACM S AC MH x x x ∆=⨯⨯=⨯=,同理可得:21148482222525ADE S AE DI x x x ∆=⋅=⨯⨯=,即可求解. 【详解】解:(1)由题意知,BC BM =,。
2023上海各区中考一模数学压轴题
中考模拟数学试卷一、单项选择题(共12分)1.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对2.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=33.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=34.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:25.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈二、填空题(共24分)1.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达()。
(结果保留根号)|与(tanB−√3)2互为相反数,则∠C的度数2.已知△ABC,若有|sinA−12是。
三、解答题3.如图,在四边形A BCD中,A D∥BC,A B⊥BC,点E在A B上,∠DEC=90°。
求证:△ADE∽△BEC。
1.如图,同心圆O,大圆的面积被小圆所平分,若大圆的弦AB,CD分别切小圆于E、F点,当大圆半径为R时,且AB∥CD,求阴影部分面积。
2.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C,在x轴的正半轴上(C在B的右侧),BC=2,AB=2根号3,△ADC与△ABC关于AC所在的直线对称。
上海初三数学各区一模压轴题汇总套全
上海初三数学各区一模压轴题汇总套全TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理 廖老师宝山区一模压轴题18(宝山)如图,D 为直角ABC 的斜边AB 上一点,DE AB 交AC 于E ,如果AED 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC ,1tan 2A ,那么:___________.CF DF24(宝山)如图,二次函数232(0)2y ax x a 的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知点(4,0)A .(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.25(宝山)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC 运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。
设P Q 、同时出发t 秒时,BPQ 的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求05t 时,BPQ 的面积y 关于t 的函数解析式;(2)求出线段BC BE ED 、、的长度;(3)当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE 相似;(4)如图(3)过点E 作EF BC 于F ,BEF 绕点B 按顺时针方向旋转一定角度,如果BEF 中E F 、的对应点H I 、恰好和射线BE CD 、的交点G 在一条直线,求此时C I 、两点之间的距离.崇明县一模压轴题18(崇明)如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;24(崇明)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD = ,联结AD 、将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求cot EDF ∠的值;(3)点G 在直线l 上,且45EDG ︒∠=,求点G 的坐标.25(崇明)在ABC ∆中,90ACB ︒∠=,3cot 2A =,AC =,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .(1)求证:PC CE CD BC =; (2)若PE x =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是__ ____.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线2y x bx c =-++与x 轴相交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
2024届上海初三一模数学各区25题解答压轴题
图11上海市2024届初三一模数学分类汇编—25题解答压轴题【2024届·宝山区·初三一模·第25题】1.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知ABC 中,1AB AC ,D 是边AC 上一点,且BD AD ,过点C 作//CE AB ,并截取CE AD ,射线AE 与BD 的延长线交于点F .(1)求证:2AF DF BF ;(2)设AD x ,DF y ,求y 与x 的函数关系式;(3)如果ADF 是直角三角形,求DF 的长.第25题图2备用图第25题图12.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知Rt ABC 中,90ACB ,3AC ,5AB ,点D 是AB 边上的一个动点(不与点A 、B 重合),点F 是边BC 上的一点,且满足CDF A ,过点C 作CE CD 交DF 的延长线于E .(1)如图1,当//CE AB 时,求AD 的长;(2)如图2,联结BE ,设AD x ,BE y ,求y 关于x 的函数解析式并写出定义域;(3)过点C 作射线BE 的垂线,垂足为H ,射线CH 与射线DE 交于点Q ,当CQE 是等腰三角形时,求AD 的长.图122图121 3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在直角梯形ABCD 中,//AD BC ,90B ,6AD ,4AB ,BC AD ,ADC 的平分线交边BC 于点E ,点F 在线段DE 上,射线CF 与梯形ABCD 的边相交于点G .(1)如图121 ,当4tan 3BCD 时,求BE 的长;(2)如图122 ,如果点G 在边AD 上,联结BG ,当4DG ,且CGB BAG ∽时,求sin BCD的值;(3)当F 是DE 中点,且1AG 时,求CD 的长.图14①图14②备用图4.(本题满分14分,第(1)小题满分4分,第(2)①小题满分5分,第(2)②小题满分5分)如图14①,在Rt ABC 中,90ACB ,4tan 3ABC,点D 在边BC 的延长线上,联结AD ,点E 在线段AD 上,EBD DAC .(1)求证:DBA DEC ∽;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图14②).①如果2AC AF ,且DEC 是以DC 为腰的等腰三角形,求tan FDC的值;②如果2DE CD,3EM ,:5:3FM DM ,求AF 的长.第25题图(本题满分4分)5.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,O 是Rt ABC 斜边AB 的中点,BH CO 交AC 于D ,垂足为H ,联结OD .(1)求证:2BC AC CD ;(2)如果ODH 与ABC 相似,求其相似比;(3)如果:4:1BH DH ,求ADO 的大小.图11图12备用图6.(本题满分14分,第(1)小题3分,第(2)①小题5分,第(2)②小题6分)如图11,在ABC 和ACD 中,90ACB CAD ,16BC ,15CD ,9DA .(1)求证:B ACD ;(2)已知点M 为边BC 上一点(与点B 不重合),且MAN BAC ,AN 交CD 于点N ,交BC 的延长线于点E .①如图12,设BM x ,CE y ,求y 关于x 的函数关系式,并写出定义域;②当CEN 是等腰三角形时,求BM 的长.第25题图7.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:如图,在ABC 中,AB AC ,CAD ABC ,DC AC ,AD 与边BC 相交于点P .(1)求证:212AB AD BC;(2)如果4sin 5ABC ,求:BP PC 的值;(3)如果BCD 是直角三角形,求ABC 的正切值.第25题图1第25题图2备用图8.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知梯形ABCD 中,//AD BC ,2AB ,4AD ,3DC ,7BC .点P 在射线BA 上,点Q 在射线BC 上(点P 、点Q 均不与点B 重合),且PQ BQ ,联结DQ ,设BP x ,DQC 的面积为y .(1)如图1所示,求sin B 的值;(2)如图2所示,点Q 在线段BC 上,求y 关于x 的函数解析式,并写出定义域;(3)当DQC 是等腰三角形时,求BP 的长.第25题图1第25题图2备用图9.(本题满分14分,第(1)小题4分,第(2)①小题5分,第(2)②小题5分)如图,在Rt ABC 中,90ACB ,以AC 、BC 为边在ABC 外部作等边三角形ACE 和等边三角形BCF ,且联结EF .(1)如图1,联结AF 、EB ,求证:ECB ACF ≌;(2)如图2,延长AC 交线段EF 于点M .①当点M 为线段EF 中点时,求ACBC的值;②请用直尺和圆规在直线AB 上方作等边三角形ABD (不要求写作法,保留作图痕迹,并写明结论),当点M 在ABD 的内部时,求ACBC的取值范围.第25题图备用图备用图10.(本题满分14分,第(1)小题5分,第(2)小题5分,第(2)小题4分)如图,已知正方形ABCD 的边长为6,点E 是射线BC 上一点(点E 不与点B 、C 重合),过点A 作AF AE ,交边CD 的延长线于点F ,直线EF 分别交射线AC 、射线AD 于点M 、N .(1)当点E 在边BC 上时,如果15ND AN ,求BAE 的余切值;(2)当点E 在边BC 延长线上时,设线段BE x ,y EN MF ,求y 关于x 的函数解析式,并写出函数定义域;(3)当3CE 时,求EMC 的面积.图1311.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)如图13,在矩形ABCD 中,2AB ,4BC ,E 是边BC 延长线上一点,过点B 作BM DE ,垂足为点M ,联结CM ,设CE a (01a ).(1)求证:DCE BME ∽;(2)CME 的大小是否是一个确定的值?如果是,求出CME 的正切值;如果不是,那么用含字母a的代数式表示CME 的正切值;(3)P 是边AD 上一动点(不与点A 、D 重合),联结PB 、PM .随着点P 位置的变化,在PBM中除BPM 外的两个内角是否会有与CME 相等的角?如果有,请用含字母a 的代数式表示此时线段AP 的长;如果没有,请说明理由.第25题(1)图第25题(2)图第25题(3)图12.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在ABC 中,90ACB ,6AC ,8BC .点D 、E 分别在边AB 、BC 上,联结ED ,将线段ED ,绕点E 按顺时针方向旋转90 得到线段EF .(1)如图,当点E 与点C 重合,ED AB 时,AF 与ED 相交于点O ,求:AO OF 的值;(2)如果5AB BD (如图),当点A 、E 、F 在一条直线上时,求BE 的长;(3)如图,当DA DB ,2CE 时,联结AF ,求AFE 的正切值.第25题图第25题备用图13.(本题满分14分,第(1)①小题4分,第(1)②小题5分,第(2)小题5分)在ABC 中,AC BC .点D 是射线AC 上一点(不与A 、C 重合),点F 在线段BC 上,直线DF 交直线AB 于点E ,2CD CF CB .(1)如图,如果点D 在AC 的延长线上.①求证:DE BD ;②联结CE ,如果//CE BD ,2CE ,求EF 的长.(2)如果:1:2DF DE ,求:AE EB 的值.第25题图备用图14.(本题满分14分)如图,在Rt ABC 中,90BAC,AB AC ,点D 是边AB 上的动点(点D 不与点B 重合),以CD 为斜边在直线BC 上方作等腰直角三角形DEC .(1)当点D 是边AB 的中点时,求sin DCB 的值;(2)联结AE ,点D 在边AB 上运动的过程中,EAC 的大小是否变化?如果变化,请说明理由;如果不变,请求出EAC 的大小;(3)设DE 与AC 的交点为G ,点P 是边BC 上的一点,且CPD CGD ,如果点P 到直线CD 的距离等于线段GE 的长度,求CDE 的面积.第25题图备用图15.(本题满分14分,第(1)小题4分,第(2)小题10分)如图,已知正方形ABCD ,点P 是边BC 上的一个动点(不与点B 、C 重合),点E 在DP 上,满足AE AB ,延长BE 交CD 于点F .(1)求证:135BED ;(2)联结CE .①当CE BF 时,求BP PC的值;②如果CEF 是以CE 为腰的等腰三角形,求FBC 的正切值.第25题图1备用图备用图16.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知ABC 中,2ABC C ,BG 平分ABC ,8AB ,163AG,点D 、E 分别是边BC 、AC 上的点(点D 不与点B 、C 重合),且ADE ABC ,AD 、BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE ,求:BF GF 的值;(3)如果ADE 是以AD 为腰的等腰三角形,求BD 的长.。
2024 浦东一模数学 压轴题
2024 浦东一模数学压轴题全文共四篇示例,供读者参考第一篇示例:2024年浦东一模数学考试压轴题目揭晓,引起了广泛关注和议论。
这道题目难度极大,挑战了学生们的数学解题能力和思维逻辑。
许多学生在看到这道题目时,感叹于数学的无限魅力,同时也感叹于自己的学习之路还有多长需要努力。
这道压轴题目是一个复杂的几何问题,涉及到多个几何概念和定理。
题目要求在给定条件下,证明特定三角形符合某种特性。
这道题目要求学生充分运用数学知识和技巧,展现出解决问题的能力和思维的灵活性。
许多学生在考试中遇到这道题目时,都感到有些手足无措,不知从何入手。
但是经过认真分析题目条件和仔细推理,部分学生成功解决了这道难题。
他们通过画图、分析角度、运用几何定理等方法,最终找到了解题的关键点,得出了正确的结论。
这道题目的出现引发了对教育教学的思考和探讨。
一方面,这道题目展现了数学的魅力和无限可能性,激发了学生对数学的兴趣和探究欲望。
这道题目也暴露了学生在数学学习中存在的薄弱环节和学习方法的不足之处。
如何有效提高学生的数学解题能力和思维逻辑,成为了当前教育领域亟需解决的问题。
教育部门和学校应该重视数学教学的核心和关键环节,加强对学生数学基础知识的巩固和拓展,培养学生的数学思维和创新能力。
学生也要积极主动地学习数学知识,注重实践和应用,积累解决问题的经验和技巧。
2024年浦东一模数学考试的压轴题目给学生们带来了巨大的挑战和机会。
面对这样的难题,学生们要有勇气和信心,敢于挑战自己,克服困难,努力解决问题。
只有通过实际的实践和努力,才能取得优异的成绩和收获美好的未来。
希望学生们在今后的学习中,不断提高自己的数学水平和能力,努力追求卓越,创造美好的人生!第二篇示例:2024年浦东一模数学考试即将来临,学子们踊跃备战,希望能在这次考试中取得优异的成绩。
而在这场备受关注的考试中,压轴题更是备受关注,考生们对于这道题目的内容和难度都颇为好奇。
究竟2024年浦东一模数学的压轴题是什么呢?下面让我们一起揭晓吧。
2019-2021年上海各区一模压轴题分类汇编18题-定义新图形及其他题型
2019-2021年上海各区一模压轴题分类汇编18题-定义新图形及其他题型专题定义新图形及其他题型【知识梳理】根据题目中给的知识点,结合所学函数及图形知识解答【历年真题】1.(2021秋•浦东新区期末)如图,a∥b∥c,直线a与直线b之间的距离为3,直线c与直线b之间的距离为23,等边△ABC的三个顶点分别在直线a、直线b、直线c上,则等边三角形的边长是.2.(2021秋•宝山区期末)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“特征三角形”.已知y=x2+bx(b>0)的“特征三角形”是等腰直角三角形,那么b的值为.3.(2021秋•青浦区期末)如图,一次函数y=ax+b(a<0,b>0)的图象与x 轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图象过点A,B,C的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y=﹣kx+k(k>0)的关联二次函数是y=mx2+2mx+c(m≠0),那么这个一次函数的解析式为.4. (2021秋•青浦区期末)若抛物线y1=ax2+b1x+c1的顶点为A,抛物线y2=ax2+b1x+c1的顶点为B,且满足顶点A在抛物线y2上,顶点B在抛物线y1上,则称抛物线y1与抛物线y2互为“关联抛物线”已知顶点为M的抛物线y=(x-2)2+3与顶点为N的抛物线互为“关联抛物线”,直线MN与x轴正半轴交于点D,如果3tan MDO=4∠,那么顶点为N的抛物线的表达式为5.(2020秋•长宁区期末)如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=ACAD=CD=32,点E、点F分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.6.(2020秋•青浦区期末)如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图①,在四边形ABCD中,点Q在边AD上,如果△QAB、△QBC和△QDC都相似,那么点Q就是四边形ABCD的“强相似点”;如图②,在四边形ABCD中,AD∥BC,AB=DC=2,BC=8,∠B=60°,如果点Q是边AD上的“强相似点”,那么AQ=.7.(2020秋•浦东新区期末)如图,△ABC中,AB=10,BC=12,AC=8,点D 是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.8.(2020秋•徐汇区期末)如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=45,ED=5,如果△ECD的面积是6,那么BC的长是.9.(2020秋•金山区期末)已知在Rt△ABC中,∠C=90°,BC=1,AC=2,以点C为直角顶点的Rt△DCE的顶点D在BA的延长线上,DE交CA的延长线于点G,若tan∠CED=12,CE=GE,那么BD的长等于.10.(2020秋•黄浦区期末)已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为.11.(2019秋•黄浦区期末)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且AD3=AE2,那么DEBC的值是.12.(2019秋•宝山区期末)如图,点A在直线34y x上,如果把抛物线y=x²沿OA方向平移5个单位,那么平移后的抛物线的表达式为_ _.。
2022年上海初三数学一模(期末)压轴题模拟汇编 压轴题精选30道-锐角的三角比综合问题(解析版)
压轴题精选30道-锐角的三角比综合问题(教师版) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·黑龙江龙沙·二模)如图,在△ABC 中,AC =2,△CAB =45°,AD 为△CAB 的角平分线,若点E 、F 分别是AD 和AC 上的动点,则CE+EF 的最小值为( )A.1B C .2 D .3【答案】B【分析】过点C 作CG AB ⊥,交AD 于点E ,过点E 作EF AC ⊥,利用等腰直角三角形的性质即可求解.【详解】解:过点C 作CG AB ⊥,交AD 于点E ,过点E 作EF AC ⊥,△AD 为△CAB 的角平分线,△EF EG =,△CE +EF 的最小值即为CE +EG 的最小值,当CG AB ⊥时,CE +EG 的值最小,△AC =2,△CAB =45°,△CG == 故答案为:B .【点睛】本题考查角平分线的性质,垂线段最短,等腰直角三角形的性质等内容,掌握上述性质定理是解题的关键.2.(2021·四川南充·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:△顺次连接点'A ,'B ,C ,D 的图形是平行四边形;△点C 到它关于直线'AA 的对称点的距离为48;△''A C B C -的最大值为15;△''A C B C +的最小值为 )A .1个B .2个C .3个D .4个【答案】D【分析】 根据平移的性质和平行四边形的判定方法判断△,再利用等积法得出点C 到BD 的距离,从而对△做出判断,再根据三角形的三边关系判断△,如图,作D 关于AA '的对称点D ,DD '交AA '于,M 连接BD ',过D 作D N BC '⊥于,N 分别交,AM BD 于,,K H 证明D C ' 是最小值时的位置,再利用勾股定理求解D C ',对△做出判断.【详解】解:由平移的性质可得AB //A B ''且AB =A B ''△四边形ABCD 为矩形△AB //CD ,AB =CD =15△A B ''//CD 且A B ''=CD△四边形A B ''CD 为平行四边形,故△正确在矩形ABCD 中,BD过A 作AM △BD ,CN △BD ,则AM =CN△S △ABD =12AB ·CD =12 BD ·AM△AM =CN =152025⨯=12 △点C 到AA '的距离为24△点C 到它关于直线AA '的对称点的距离为48△故△正确△A C B C A B ''''-≤△当,,A B C ''在一条直线时A C B C ''-最大,此时B '与D 重合△A C B C ''-的最大值=A B ''=15△故△正确,如图,作D 关于AA '的对称点D ,DD '交AA '于,M 连接BD ',过D 作D N BC '⊥于,N 分别交,AM BD 于,,K H则////,15,AB A B KH AB KH ''== KM 为D HD '的中位线, BD DD '⊥,15,D K HK '∴==由A B CD ''可得B C A D ''=,,B C A D A D ''''∴==,A C B C A C A D D C ''''''∴+=+= 此时最小,由△同理可得:12,DM D M '==153tan =,204DC HN DBC BC BN∠=== 设3,HN x = 则4,BN x =由勾股定理可得:22222,DD BD BD BN D N '''+==+()()222225243034,x x ∴+=++整理得:2251803010,x x +-= ()()575430,x x ∴-+= 解得:12743,55x x ==-(负根舍去), 72171204,,55NC x D N '∴=-==D C '∴== △故△正确故选D .【点睛】本题主要考查了平行四边形的判定,矩形的性质以及平移的性质,锐角三角函数的应用等知识点,熟练掌握相关的知识是解题的关键.3.(2021·黑龙江鹤岗·模拟预测)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:△2GF =;△OD =;△1tan 2CDE ∠=;△90ODF OCF ∠=∠=︒;△点D 到CF .其中正确的结论是( )A .△△△△B .△△△△C .△△△△D .△△△△【答案】C【分析】由题意易得,,45,90BC CD BO OD OA OC BDC BCD DCE ====∠=︒∠=∠=︒,△由三角形中位线可进行判断;△由△DOC 是等腰直角三角形可进行判断;△根据三角函数可进行求解;△根据题意可直接进行求解;△过点D 作DH △CF ,交CF 的延长线于点H ,然后根据三角函数可进行求解.【详解】解:△四边形ABCD 是正方形,△,,45,90BC CD BO OD OA OC BDC BCD DCE ====∠=︒∠=∠=︒,AC BD ⊥,△点F 是DE 的中点, △1,//2OF BE OF BE =, △6OF =,4CE =,△12BE =,则8CD BC ==,△OF △BE ,△△DGF △△DCE , △12DG GF CD CE ==, △2GF =,故△正确;△点G 是CD 的中点,△OG △CD ,△△ODC =45°,△△DOC 是等腰直角三角形,△OD =,故△正确;△CE =4,CD =8,△DCE =90°, △1tan 2CE CDE CD ∠==,故△正确; △1tan 12CDE ∠=≠, △45CDE ∠≠︒,△90ODF ∠≠︒,故△错误;过点D 作DH △CF ,交CF 的延长线于点H ,如图所示:△点F 是CD 的中点,△CF =DF ,△△CDE =△DCF , △1tan tan 2CDE DCF ∠=∠=, 设DH x =,则2CH x =,在Rt △DHC 中,22464x x +=,解得:x =△DH =△正确; △正确的结论是△△△△;故选C .【点睛】本题主要考查正方形的性质、相似三角形的性质与判定及三角函数,熟练掌握正方形的性质、相似三角形的性质与判定及三角函数是解题的关键.4.(2021·四川·广安中学九年级开学考试)如图,在正方形ABCD 中,4AB =,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF AB ⊥于点F ,EG BC ⊥于点G ,连接,DE FG .下列结论:△DE FG =;△DE FG ;△BFG ADE ∠=∠;△FG 的最小值为3.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】C【分析】 延长DE ,交FG 于点N ,交AB 于点M ,连接BE ,交FG 于点O ,先根据正方形的性质、三角形全等的判定定理与性质得出DE BE =,再根据矩形的判定与性质可得BE FG =,由此可判断△;先根据三角形全等的性质可得ABE ADE ∠=∠,再根据矩形的性质可得OB OF =,然后根据等腰三角形的性质可得BFG ABE ∠=∠,由此可判断△;根据直角三角形的性质可得90ADE AMD ∠+∠=︒,从而可得90BFG AMD ∠+∠=︒,由此可判断△;先根据垂线段最短可得当DE AC ⊥时,DE 取得最小值,再解直角三角形可得DE 的最小值,从而可得FG 的最小值,由此可判断△.【详解】解:如图,延长DE ,交FG 于点N ,交AB 于点M ,连接BE ,交FG 于点O ,四边形ABCD 是正方形,4AB =,4,90,45AD AB ABC BAD BAE DAE ∴==∠=∠=︒∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()ABE ADE SAS ∴≅,,BE DE ABE ADE ∴=∠=∠,90,,ABC EF AB EG BC ∠=︒⊥⊥,∴四边形BFEG 是矩形,,BE FG OB OF ∴==,DE FG ∴=,即结论△正确;OB OF =,BFG ABE ∴∠=∠,BFG ADE ∴∠=∠,即结论△正确;90BAD ∠=︒,90ADE AMD ∴∠+∠=︒,90BFG AMD ∴∠+∠=︒,90FNM ∴∠=︒,即DE FG ,结论△正确;由垂线段最短可知,当DE AC ⊥时,DE 取得最小值,此时在Rt ADE △中,sin 4DE AD DAE =⋅∠== 又DE FG =,FG ∴的最小值与DE 的最小值相等,即为△错误;综上,正确的结论为△△△,共有3个,故选:C .【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质、解直角三角形等知识点,通过作辅助线,构造全等三角形和直角三角形是解题关键.5.(2021·黑龙江·二模)如图,四边形ABCD 中,BC//AD ,60,24A D AD BC ∠=∠=︒==,动点P 从点A 以每秒1个单位长度的速度向点D 运动,动点Q 也同时从点A 沿A B C D →→→的路线以每秒2个单位长度的速度向点D 运动,当点Q 到达点D 时,点P 也随之停止运动,设点P 运动的时间为t (单位:秒),DPQ 的面积为S ,当S =t 的值为( )A .2或2B .3或2C .3D .2【答案】D【分析】 分△点Q 在AB 边上,△点Q 在BC 边上,△点Q 在CD 边上三种情况进行讨论即可【详解】解:过点C 作CE △AD 于E 、点B 作BF △AD 于F ,△BC //AD ,△得到矩形AEFB 及直角△ABF ,△DCE .△60A CDA ∠=∠=︒,△△ABF △△DCE , △1()2DE AF AD BC ==-,AB =CD ; △24AD BC ==,△DE =AF =1,△=1cos60=2AB CD =÷△如图△,当点Q 在AB 边上运动时,01t ≤≤,作QE AD ⊥于点E .211(4)22S DP QE t =⋅=-=+.当S =2t =+2t = △如图△,当点Q 在BC 边上运动时,12t <≤,作BF AD ⊥于点F .11(4)22S DP BF t =⋅=-+当S =3t =(舍); △如图△,当点Q 在CD 边上运动时,23t <≤,作QH AD ⊥于点H .211(4))22S DP QH t t =⋅=--=+当S =t =t = 故选D .【点睛】此题主要考查了四边形的动点问题,以及解一元二次方程,关键是注意分类讨论,不要漏解.6.(2021·浙江龙湾·二模)如图,六边形AEBCFD 是中心对称图形.点M ,N 在面积为8的正方形ABCD 的对角线上.若1BM DN ==,点E ,M 关于AB 对称,则四边形AGCH 的面积为( )A .275B .325C .9215D .9415【答案】B【分析】连AC 交B D 于O ,过M 作MK △BC 于K ,连结ME 交BA 于L ,FN 交CD 于R ,由正方形ABCD 面积为8,可求AD,BD =4,M 、E 关于AB 对称,可得EB =MB =1,可证△BEA △△BMC (SAS ),由三角函数BK =MK,KCMC四边形AGCH 为矩形,再证△MOC △△ACG,可求AG =,CG 【详解】解:连AC 交B D 于O ,过M 作MK △BC 于K ,连结ME 交BA 于L ,FN 交CD 于R , △正方形ABCD 面积为8,△AD 2=8,AD△BD 为正方形对角线,△BD4,△M 、E 关于AB 对称,△EL =LM ,EB =MB =1,△EBA =△MBA =45°=△MBC ,在△BEA 和△BMC 中,BE BM EBA MBC BA BC =⎧⎪∠=∠⎨⎪=⎩,△△BEA △△BMC (SAS ),△AE =MC ,△EAB =△MCB ,△BM =1,△BK =MK△KC =BC -BK△MC =△六边形AEBCFD 是中心对称图形. △△AND △△CMB ,△AEB △△CFD , △△AND △△CMB △△AEB △△CFD , 设CG 交AB 于W ,△△GAW =△BCW ,△AWG =△CWB , △△AGW =△CBW =90°,△同理可证AH △CF ,△AHC =90°, △△BCM =△DCF ,△△GCH =△DCH +△GCD =△BCG +△GCD =△BCD =90°, △△AGC =△GCH =△AHC =90°, △四边形AGCH 为矩形, △AC △BD ,△△MOC =△AGC =90°, △△MCO =△ACG , △△MOC △△AGC ,△=MO MC OC AG AC CG =即12AG CG,△AG =,CG△S 矩形AGCH =AG ·GC 325, 故选择B .【点睛】本题考查正方形性质,中心对称图形性质,轴对称性质,三角形全等判定与性质,锐角三角函数应用,勾股定理应用,三角形相似判定与性质,矩形判定与性质,掌握正方形性质,中心对称图形性质,轴对称性质,三角形全等判定与性质,锐角三角函数应用,勾股定理应用,三角形相似判定与性质,矩形判定与性质.7.(2021·山东东营·二模)如图,在正方形ABCD 中,连接AC ,以点A 为圆心,适当长为半径画弧,交AB 、AC 于点M ,N ,分别以M ,N 为圆心,大于MN 长的一半为半径画弧,两弧交于点H ,连结AH 并延长交BC 于点E ,再分别以A 、E 为圆心,以大于AE 长的一半为半径画弧,两弧交于点P ,Q ,作直线PQ ,分别交CD ,AC ,AB 于点F ,G ,L ,交CB 的延长线于点K ,连接GE ,下列结论:△22.5LKB ∠=︒;△//GE AB ; △tan KBCGF LB∠=; △CGECABS :S1:4=.其中正确的是( )A .△△△B .△△△C .△△△D .△△△【答案】A 【分析】△在△AOL 和△BLK 中,根据三角形内角和定理,如图两个角对应相等,则第三个角△LKB =△BAC =22.5°;△根据线段中垂线定理证明△AEG =△EAG =22.5°=△BAE ,可得EG △AB ;△根据等量代换可得:△CGF =△BLK ,可作判断;△连接EL ,证明四边形ALEG 是菱形,根据EL >BL ,及相似三角形的性质可作判断. 【详解】解:△△四边形ABCD 是正方形,△△BAC=12△BAD=45°,由作图可知:AE平分△BAC,△△BAE=△CAE=22.5°,△PQ是AE的中垂线,△AE△PQ,△△AOL=90°,△△AOL=△LBK=90°,△ALO=△KLB,△△LKB=△BAE=22.5°;故△正确;△△OG是AE的中垂线,△AG=EG,△△AEG=△EAG=22.5°=△BAE,△EG△AB,故△正确;△△△LAO=△GAO,△AOL=△AOG=90°,△△ALO=△AGO,△△CGF=△AGO,△BLK=△ALO,△△CGF=△BLK,在Rt△BKL中,tan△CGF=tan△BLK=BK BL,故△正确;△连接EL,△AL=AG=EG,EG△AB,△四边形ALEG是菱形,△AL=EL=EG>BL,△12 EGAB,△EG△AB,△△CEG△△CBA,△21()4CEG CBA S EG S AB ∆∆=≠, 故△不正确;本题正确的是:△△△, 故选:A . 【点睛】本题考查了基本作图:角平分线和线段的垂直平分线,三角形相似的性质和判定,菱形的性质和判定,三角函数,正方形的性质,熟练掌握基本作图是关键,在正方形中由于性质比较多,要熟记各个性质并能运用;是中考常考的选择题的压轴题.8.(2021·山东历下·三模)如图1,在Rt△ABC 中,△A =90°,BC =10cm ,点P ,点Q 同时从点B 出发,点P 以2cm/s 的速度沿B→A→C 运动,终点为C ,点Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图象如图2(曲线OM 和MN 均为抛物线的一部分),给出以下结论:△AC =6cm ;△曲线MN 的教师式为y =﹣45t 2+285t (4≤t≤7);△线段PQ;△若△PQC 与△ABC 相似,则t =407秒,其中正确的说法是( )A .△△△B .△△△C .△△△D .△△△【答案】A 【分析】△根据图2可知:P 走完AB 用了4秒,得248AB cm =⨯=,利用勾股定理得AC 的长;△当P 在AC 上时,47t ≤≤,利用同角的三角函数表示高PD 的长,利用三角形面积公式可得y 与t 的关系式;△当P 与A 重合时,PQ 最大,如图4,此时4t =,求出PQ 的长;△当P 在AC 上时,PQC ∆与ABC ∆,列比例式可得t 的值.【详解】解:△由图2可知:4t =时,485y =, 248AB cm ∴=⨯=,90A ∠=︒,BC 10cm =,6AC cm ∴=,故△正确;△当P 在AC 上时,如图3,过P 作PD BC ⊥于D ,此时:6872+=, △47t ≤≤,由题意得:2AB AP t +=,BQ t =,142PC t ∴=-,sin PD ABC PC BC∠==, ∴84142105PD t ==-, 4(142)5t PD -∴=, 2114(142)42822555BPQ t y S BQ PD t t t ∆-∴====-+,故△正确; △当P 与A 重合时,PQ 最大,如图4,此时4t =,4BQ ∴=,过Q 作GH AB ⊥于H ,sin QH AC B BQ BC∠==, ∴6410QH =, 125QH ∴=, 同理:165BH =,1624855AH ∴=-=,PQ ∴==∴线段PQ △不正确; △若PQC ∆与ABC ∆相似,点P 只有在线段AC 上, 分两种情况:142PC t =-,10QC t =-,)i 当CPQ CBA ∆∆∽,如图5,则PC CQCB AC=,∴14210106t t--=, 解得8t 不合题意.)ii 当PQC ABC ∆∆∽时,如图6,∴PC QC AC BC=, ∴14210610t t--=, 407t =; ∴若PQC ∆与ABC ∆相似,则407t =秒,故△正确; 其中正确的有:△△△, 故选:A .【点睛】本题是动点问题的图象问题,此类问题比较复杂,考查了二次函数的关系式、三角形相似的性质和判定、勾股定理、三角函数,解题的关键是学会读懂函数图象信息,并构建直角三角形,利用三角形相似或三角函数列方程解决问题.9.(2021·广东深圳·中考真题)在正方形ABCD 中,2AB =,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF DE =,过点F 作FG DE ⊥,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:△1tan 2GFB ∠=;△MN NC =;△12CM EG =;△GBEM S =四边形 )A .4B .3C .2D .1【答案】B 【分析】解:△中由FG DE ⊥即可得到GFB EDC ∠=∠,再由正切等于对边比邻边即可求解; △中先证明DEC FEM △≌△得到EM=EC ,DM=FC ,再证明DMN FCN △≌△即可求解;△中先证明GE //CM ,得到CM CF EG EF ==即可求解;△中由1tan tan 2GB F EDC BF ∠=∠==得到12GB BF ==再由2GBE GBEM S S △四边形=即可求解. 【详解】解:△△FG DE ⊥,△△DMF =90°=△NCF ,且对顶角△MND =△CNF , △△GFB =△EDC ,△ABCD 为正方形,E 是BC 的中点, △BC =CD ,△1tan tan 2EC GFB EDC CD ∠=∠==,△正确; △由△知MDN CFN ∠=∠,又=90ECD EMF ∠=∠,已知EF ED =,△DEC FEM △≌△(SAS ), △EM EC =, △DM FC =,△MDN CFN ∠=∠,MND CNF ∠=∠,DM FC =, △DMN FCN △≌△(AAS ), △MN NC =,故△正确; △△BE EC =,ME EC =, △BE =ME ,且△B =△GME =90°,GE 为Rt GBE 和Rt GME 的公共边, △Rt GBE Rt GME △≌△(HL ), △BEG MEG ∠=∠, △ME EC =, △EMC ECM ∠=∠,由三角形外角定理可知:EMC ECM BED BEG MEG ∠+∠=∠=∠+∠, △GEB MCE ∠=∠, △//MC GE , △CM CFEG EF=,△EF DE =,1CF EF EC =-=,△CM CF EG EF ===△错误;△由上述可知:1BE EC ==,1CF ,△1BF =, △1tan tan 2GB F EDC BF ∠=∠==,△12GB BF ==△1222GBE GBEM S S BE BG ==⋅⋅⋅=△四边形△正确.故选B . 【点睛】本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,三角函数等知识,解题的关键是灵活运用所学知识解决问题.10.(2021·四川达州·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2C .()202020202,2D .()201120212,2-【答案】C 【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题. 【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22,()2020202020212,2A ∴,故选:C . 【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.二、填空题 11.(2021·全国·九年级专题练习)将矩形ABCD 按如图所示的方式折叠,BE 、EG 、FG 为折痕,若顶点A 、C 、D 都落在点O 处,且点B 、O 、G 在同一条直线上,同时点E 、O 、F 在另一条直线上.(1)EGBE的值为________.(2)若BEGF 的面积为________.【分析】(1)由折叠可得,E ,G 分别为AD ,CD 的中点,证明△BEG =90°,将EGBE 转化为AE AB,设CD =2a ,AD =2b ,在Rt △BCG 中,CG 2+BC 2=BG 2,可得a 2+(2b )2=(3a )2,则b a ,进而得出EGBE的值; (2)在△BCG 中,由勾股定理得出a 2+42=(3a )2,解得a ,证明△EDG △△GCF ,得出比例线段ED DGCG CF=,求出CF .则可求出EF .由四边形面积公式可求出答案. 【详解】解:(1)△四边形ABCD 是矩形, △△A =△D =△C =90°,AB =CD ,AD =BC , 由折叠的性质得:AE =OE =DE ,CG =OG =DG , △ABE =△OBE ,△AEB =△OEB ,△DEG =△OEG ,△△BEG =180°÷2=90°,且E ,G 分别为AD ,CD 的中点, △tan △OBE =EGBE =tan △ABE =AE AB, 设CD =2a ,AD =2b ,则AB =2a =OB ,DG =OG =CG =a ,BG =3a ,BC =AD =2b , 在Rt △BCG 中,CG 2+BC 2=BG 2, 即a 2+(2b )2=(3a )2, △b 2=2a 2,△b ,△ba=△11212222AD bEG AE b BE AB AB a a ⨯====⨯=(2)由(1)得:AB =2a =OB ,DG =OG =CG =a ,BG =3a ,BC =AD=△△C =90°,△Rt △BCG 中,CG 2+BC 2=BG 2,△a 2+(2=(3a )2,△a =2或-2(舍),△DG =CG =2,△BG =OB +OG =4+2=6,由折叠可得△EGD =△EGO ,△OGF =△FGC ,△△EGF =90°,△△EGD +△FGC =90°,△△EGD +△DEG =90°,△△FGC =△DEG ,△△EDG =△GCF =90°,△△EDG △△GCF , △ED DG CG CF =,2CF=, △CF,△FO△EF=△点B ,O ,G 在同一条直线上,△EF △BG ,△S 四边形EBFG =12×BG ×EF=162⨯⨯,. 【点睛】本题考查了折叠的性质,相似三角形的判定与性质,直角三角形的性质,勾股定理等知识,熟练掌握折叠的性质是解题的关键.12.(2021·浙江鹿城·二模)矩形ABCD 的面积记为1S 、正方形DEFG 的面积记为2S 、正方形FHMN 的面积记为3S ,它们的位置如图所示,点C 在FH 上,FG 交CD 于点P ,延长DE 交AB 于点K ,26AD AK ==,点B ,C ,M 在同一直线上,则23S S =_______;若123S S S +=,射线EP 交HM 于点Q ,则QM 的长为__________.【答案】14【分析】先推出△ADK =△GDP ,可得12AK PG AD DG ==,再证明DPG CPF ≌,然后证明12CH DE HM CE ==,HF =2CF =2DG , 进而即可得23S S 的值;设DE =x ,则EC = FH =HM =2x ,DC ==,列出方程,求出x 的值,再证明12QH AK EH AD ==,进而即可得到QM 的长. 【详解】 解:△在矩形ABCD 、正方形DEFG 中,△ADC =△EDG =90°,△△ADK =△GDP , △tan△ADK =tan△GDP ,即:12AK PG AD DG ==, △GP =1122DG FG =, △GP=FP ,△△DGP =△CFP =90°,△DPG =△CPF ,△DPG CPF ≌,△DG =CF ,△DE =DG =EF =CF ,即EC =2DE ,△点B,C ,M 在同一直线上,△△DCM =90°,△△DCE +△MCH =△MCH +△CMH ,△△DCE =△CMH ,即:tan△DCE =tan△CMH , △12CH DE HM CE ==, △HM =HF =2CH ,△CF =CH ,△HF =2CF =2DG , △222314S DG S FH ==. 设DE =x ,则EC = FH =HM =2x ,DC =,△123S S S +=,+x 2=4 x 2,解得:x x =0(舍去),△EH =x +2x =3x△PF 垂直平分EC ,△PE =PC ,△△PEC =△PCE =△PDG =△ADK , △tan△PEC =tan△ADK ,即:12QH AK EH AD ==, △QH =12△Q M =HM-QH故答案是:14 【点睛】本题主要考查正方形的性质,锐角三角函数的定义,全等三角形的判定和性质,勾股定理,通过锐角三角函数的定义,推出小正方形边长是大正方形边长的一半,是解题的关键. 13.(2021·浙江婺城·二模)有一种双层长方体垃圾桶AB =70cm ,BC =25cm ,CF =30cm ,侧面如图1所示,隔板EG 等分上下两层,下方内桶BCHG 绕底部轴(CF )旋转开,若点H 恰好能卡在原来点G 的位置,则内桶边CH 的长度应设计为___;现将CH 调整为25cm ,打开最大角度时,点H 卡在隔板上,如图2所示,则可完全放入下方桶内的球体的直径不大于____.【答案】 21【分析】△ 由题意,EG 等分上下两层,BH BG =,勾股定理直接求解即可△过点G '作G I BH '⊥于点I ,交BG 于点J ,过点J 作JK BG '⊥于点K ,分别通过勾股定理和三角函数求出,,JK JB 继而求出sin JBK ∠,过点H 作HL ⊥BG '于点L ,交BG 于点N ,过G 作GM HL ⊥于点M ,通过证明JBK GHM ∠=∠,继而用勾股定理和锐角三角函数解直角三角形,求出ML ,即为球的直径大小【详解】△点H 恰好能卡在原G 点的位置1352BH BG AB ∴=== 25BC =CH ∴=故答案为:△如图:根据旋转,25BC BC '==,25C H CH '==,BH ∴=5GH ∴C H C B ''=45C BH '∴∠=︒45HBG '∴∠=︒过点G '作G I BH '⊥于点I ,交BG 于点J过点J 作JK BG '⊥于点K ,BI G I '===51tan 357HG HBG BG ∠===1tan 7IJ HBG BI ∴=∠⨯==G J IG IJ ''∴=-==1122BJG S JG BI BG JK '''=⨯=⨯△21535JG BI JK BG '⨯∴==='25BJ BI === 153sin 255JK JBK JB ∴∠=== 过点H 作HL ⊥BG '于点L ,交BG 于点N ,过G 作GM HL ⊥于点M90JBK BNL HNG GHM ∠+∠=∠+∠=︒又HNG BNL ∠=JBK GHM ∴∠=∠3sin 5GHM ∴∠=,4cos 5GHM ∠= 4cos 545HM GH GHM ∴=⋅∠=⨯= 25421ML HL HM ∴=-=-=∴球体的直径不大于21cm故答案为21.【点睛】本题考查了解直角三角形,锐角三角函数的实际应用,正确的添加辅助线是解题的关键.14.(2021·黑龙江牡丹江·中考真题)如图,矩形ABCD 中,AD ,点E 在BC 边上,且AE=AD ,DF△AE 于点F ,连接DE ,BF ,BF 的延长线交DE 于点O ,交CD 于点G .以下结论:△AF=DC ,△OF :BF=CE :CG ,△S △BCG △DFG ,△图形中相似三角形有6对,则正确结论的序号是____.【答案】△△【分析】通过证明△ABE 和△ADF 是等腰直角三角形,结合已知条件,可判断△正确;通过证明△DCE △△BCG ,得到2CE CG =△ABF △△ADE ,得到2BF DE =,再通过相似和三角形的外角性质,得到OE =12DE ,进而证得OF CE BF CG=,可判断△正确;证明△BEF △△FDG ,连接CF 后,可知BCF BEF S △△,结合图象,即可判断△不正确;通过图形中相似三角形超过6对,可判断△不正确,问题即可得解.【详解】△AE =AD ,AD =AB ,△AE .在Rt△ABE 中,△ABE =90°,cos△BAE =AB AE,△cos△BAE =2AB AE = △△BAE =45°,即△ABE 是等腰直角三角形.△在矩形ABCD 中,△BAD =90°,△△DAF =45°.△DF △AE ,△△ADF=45°,即△ADF 是等腰直角三角形.△AD .△AF =AB .△在矩形ABCD 中,AB =CD ,△AF =CD .故△正确;又△AF =AB ,△BAE =45°,△△ABF =67.5°.△△CBG =22.5°.又△AE =AD ,△DAE =45°,△△ADE =67.5°.△△CDE =22.5°.△△CBG =△CDE .△△C=△C ,△△DCE △△BCG . △CE DC CG BC=.△在矩形ABCD 中,BC =AD ,△CE CG = 在△ABF 和△ADE 中.△BAF =△DAE =45°,AF =AB ,AE =AD ,△△ABF △△ADE .△BF AB DE AD == 在△ABF 和△OEF 中,△OEF =△ADE =67.5°=△ABF ,△△AFB =△OFE ,△AFB =△ABF ,△△ABF △△OEF ,△OEF=△OFE .△OE =OF ,△EOF =45°.又△△EOF =△DFO +△ODF =45°,△ODF =△ADE -△ADF =22.5°,△△ODF =△DFO .△OF =OD .△OE =OF =OD 12=DE .△12OF DE CE BF BF CG=⋅== .故△正确; 在△BEF 和△FDG 中, BE =FD ,△EBF =△DFG ,△BEF =△FDG=△ADC -△ADF =45°, △△BEF △△FDG .连接CF .又△ BC =AD ,△BCF BEF DFG BCG S S =△△△△< .故△不正确;△△ABF △△ADE ,△ABF △△OEF ,△△ADE △△OEF .在△BEF 和△BOE 中, △BEF =△BOE =45°,△EBF =△OBE ,△△BEF △△BOE .在△BOE 和△DOG 中, △ODG =△OBE ,△BOE =△DOG ,△△BOE △△DOG .△△BEF △△DOG .又△△DCE △△BCG ,△图形中相似三角形超过6对,故△不正确.综上,正确的结论是△△.故答案为:△△.【点睛】本题主要考查了矩形的性质、等腰三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质,涉及了特殊角的三角函数值、三角形的外角性质、举反例等,是一道综合题.相似和全等是证明边的比例关系中最常用的方法.15.(2021·重庆实验外国语学校二模)如图,在菱形ABCD 中,△BAD =120°,2BC =+将菱形纸片翻折,使点B落在CD边上的点P处,折痕为MN,点M、N分别在边BC、AB 上,若PN△AB,则点N到边MP的距离为________.【分析】过点P作PE△BC于E,作MF△AB于F,作NH△BM于H,根据菱形的性质和翻折的性质,求点N到边MP的距离等于求点N到BM的距离NH,在Rt△NBH中求出NH即可.【详解】解:如图,过点P作PE△BC于E,过点M作MF△AB于F,过点N作NH△BM于H,NG△MP,△四边形ABCD为菱形,AB△CD,AD△BC,△BAD=120°,△△ABC=△DCE=60°,又PE△BC,△△CPE=30°,△PC=2CE,PE,△翻折,△△NBM△△NPM,△NH=NG,△BNM=△PNM,BM=MP,△B=△NPM=60°,△NP△BA,△△BNP=90°,△△BNM=△PNM=45°,△△B+△BNP+△NPM+△BMP=360°,△△BMP=150°,△△PME=30°,△MP=2PE=,ME=3CE,△BM=PM=,MC=2CE,△BC=2+2CE+,△CE=1,△MB=△MF=MB×sin B==3,BF=MB×cos B=△△FNM=45°,FM△FN,△FN=MF=3,△BN=BF+FN3,△NH=BN×sin B=(3×sin60°△NG【点睛】此题主要考查四边形的综合性质求解,解题的关键是根据题意作出辅助线,利用菱形与三角函数的性质求解.16.(2021·山东庆云·九年级期末)如图,在Rt△ABC中,△ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE△BD交DF延长线交于点E,连接CE,下列结论:△若BF=CF,则CE2+AD2=DE2;△若△BDE=△BAC,AB=4,则CE=158;△△ABD和△CBE一定相似;△若△A=30°,△BCE=90°,则DE_____.(填写所有正确结论的序号)【答案】△△△.【分析】△由直角三角形斜边上的中线等于斜边的一半,得AD=BD,由BF=CF,BD=CD得DE 是BC的垂直平分线,得BE=CE,再由勾股定理便可得结论,由此判断结论的正误;△证明△ABC△△DBE,求得BE,再证明DE△AB,得DE垂直平分BC,得CE=BE,便可判断结论的正误;△证明△ABD=△CBE,再证明BE与BC或BC与BE两边的比不一定等于AB与BD的比,便可判断结论正误;△先求出AC,进而得BD,再在Rt△BCE中,求得BE,进而由勾股定理求得结果,便可判断正误.【详解】解:△△△ABC=90°,D为斜边AC的中点,△AD=BD=CD,△BF=CF,△DE△BC,△BE=CE,△BE△BD,△BD2+BE2=DE2,△CE2+AD2=DE2,故△正确;△△AB=4,BC=3,△AC5,△52BD AD CD,△△A=△BDE,△ABC=△DBE=90°,△△ABC△△DBE,△AB BCDB BE,即4352BE=.△BE=158,△AD=BD,△△A=△ABD,△△A=△BDE,△△ABD=△BDE,△DE△AB,△DE△BC,△BD=CD,△DE 垂直平分BC ,△BE =CE ,△CE =158, 故△正确;△△△ABD 一定是等腰三角形,而△CBE 不一定是等腰三角形,△△ABD 和△CBE 不一定相似,故△错误;△△△A =30°,BC =3,△△A =△ABD =△CBE =30°,AC =2BC =6,△BD =132AC =, △BC =3,△BCE =90°,△BE =cos30BC ︒=△DE ==故△正确;故答案为:△△△.【点睛】本题是三角形的一个综合题,主要考查了勾股定理,相似三角形的性质与判定,解直角三角形,直角三角形的性质,线段垂直平分线的判定与性质,考试的内容多,难度较大,关键是综合应用以上性质灵活解题.17.(2021·辽宁锦州·中考真题)如图,△MON =30°,点A 1在射线OM 上,过点A 1作A 1B 1△OM 交射线ON 于点B 1,将△A 1OB 1沿A 1B 1折叠得到△A 1A 2B 1,点A 2落在射线OM 上;过点A 2作A 2B 2△OM 交射线ON 于点B 2,将△A 2OB 2沿A 2B 2折叠得到△A 2A 3B 2,点A 2落在射线OM 上;…按此作法进行下去,在△MON 内部作射线OH ,分别与A 1B 1,A 2B 2,A 3B 3,…,A n B n 交于点P 1,P 2,P 3,…P n ,又分别与A 2B 1,A 3B 2,A 4B 3,…,A n +1B n ,交于点Q 1,Q 2,Q 3,…,Q n .若点P 1为线段A 1B 1的中点,OA 1A n P n Q n A n +1的面积为___________________(用含有n 的式子表示).【分析】先证明△OA 1P 1△△OA 2P 2,△OP 1B 1△△OP 2B 2,又点P 1为线段A 1B 1的中点,从而可得P 2为线段A 2B 2的中点,同理可证P 3、P 4、P n 依次为线段A 3B 3、A 4B 4、△A n B n 的中点.结合相似三角形的性质可得△P 1B 1Q 1的P 1B 1上的高与△P 2A 2O 1的A 2P 2上的高之比为1△2,所以△P 1B 1Q 1的P 1B 1上的高为1213A A ,同理可得△P 2B 2Q 2的P 2B 2上的高为2313A A △,从而1121PQ A A S 四边形=112AB A S ∆﹣111P B Q S ∆,以此类推来求2232P Q A A S 四边形,从而找到四边形P An nQnAn S 的面积规律. 【详解】解:由折叠可知,OA 1=A 1A 2由题意得:A 1B 1//A 2B 2,△△OA 1P 1△△OA 2P 2,△OP 1B 1△△OP 2B 2, △111222A P OA A P OA ==12OP OP =1122P B P B= 12,又△点P 1为线段A 1B 1的中点,△A 1P 1=P 1B 1,△A 2P 2=P 2B 2,则点P 2为线段A 2B 2的中点,同理可证,P 3、P 4、△P n 依次为线段A 3B 3、A 4B 4、△A n B n 的中点.△A 1B 1//A 2B 2,△△P 1B 1Q 1△△P 2A 2O 1, △1122P B P A =1122A P P A =12, 则△P 1B 1Q 1的P 1B 1上的高与△P 2A 2O 1的A 2P 2上的高之比为1△2,△△P 1B 1Q 1的P 1B 1上的高为1213A A ,同理可得△P2B 2Q 2的P 2B 2上的高为2313A A , ,由折叠可知A 2A 3=A 3A 4=△△MON =30°,△A 1B 1=tan30°×OA 1=1,△A 2B 2=2,A 3B 3=4, ,△1121PQ A A S 四边形=112A B A S ∆﹣111P B Q S ∆ =121112A A A B ⋅﹣11121123A P A A ⋅=1111222-⨯ 同理,2232P Q A A S 四边形=223A B A S ∆﹣222P B Q S ∆ =232212A A A B ⋅﹣22231123A P A A ⋅=11121223⨯-⨯⨯⨯1n n n n A P Q A S +四边形=1n n n A B A S +∆﹣n n nP B Q S ∆=1111212222223n n n n ----⨯-⨯⨯⨯22122(2)3n n n ----【点睛】本题考查了规律型:图形的变化类,相似三角形的判定与性质,折叠的性质,锐角三角函数等知识,解决本题的关键在根据图形的变化找到规律.18.(2021·黑龙江·哈尔滨工业大学附属中学校一模)如图,在菱形ABCD 中,点F 是CD 的中点,BF 与AC 交于点E ,点N 在FB 上,CN 与AB 交于点M ,若tan FBC ∠=32AM DF =,BM =AE =__________.【分析】如图1中:过点F作FP△BC交BC的延长线于P.由tan FBC∠PFPB,可以假设PF,PB=5k,在Rt△PFC中,根据CF2=PF2+PC2,构建方程求出k,再证明△FCP=60°即可解决问题;【详解】解:如图1中:过点F作FP△BC交BC的延长线于P.△四边形ABCD是菱形,△AB=BC=CD,AB△CD,△点F是CD的中点,△DF=CF=12CD=12AB,△3AM=2DF,△设DF=3a,AM=2a,△CD=AB=6a,△BM=AB−AM=4a,△BM=4a.△a△CF BC△tan FBC∠=PF PB,△可以假设PF ,PB =5k ,在Rt △PFC 中,△CF 2=PF 2+PC 2,△2)2+(5k 2, 整理得:282k 2−600k +3×225=0,解得k ,△PF PC =5k△tan△FCP =PF PC △△PCF =60°,△AB △CD ,△△ABC =△FCP =60°,△四边形ABCD 是菱形,△AB =BC ,△△ABC 是等边三角形,△BC △CF △AB ,△△FCE △△BAE , △12CF CE AB AE ==,△AE =23【点睛】本题考查相似三角形综合题,菱形的性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.19.(2021·湖南长沙·九年级期中)如图,在正方形ABCD 中,2AB =.G 为对角线BD 的延长线上一点,E 为线段CD 的中点,BF AE ⊥,连接OF .已知15DAG ∠=︒,下列说法正确的是______.(将正确答案的序号填写下来)△AG BD =;△BF =△13OP OA =;△13POF S =△;△若E 点为线段CD 上一动点,当AE EC CQ =+时,4AQ =.【答案】△△△【分析】根据正方形的性质与解直角三角形的方法逐个解题求解.△根据15DAG ∠=︒可得含60︒角的直角三角形AOG ,求出2AG AO =.△由90DAE BAF ∠+∠=︒,90BAF ABF ∠+∠=︒得BAF DAE ∠=∠,1tan tan 2DE AF BAF DAE AD BF ∠=∠===,通过解直角三角形求出BF 长度. △将:OP OA 转化为:OP OD ,通过ADP QBP ∆∆∽求解.△先通过:1:3OP OD =求出三角形OAP 的面积,再通过PF 与AP 的比值求出三角形POF 的面积.△设ED x =,2EC x =-,通过相似三角形与勾股定理求出x 的值从而求出AQ .【详解】解:△15DAG ∠=︒,60GAO DAG DAO ∴∠=∠+∠=︒,30G ∴∠=︒,2AG AO =,2BD AO =,AG BD ∴=,∴△正确,符合题意.△E 为CD 中点,12DE CD ∴=, 90DAE BAF ∠+∠=︒,90BAF ABF ∠+∠=︒,BAF DAE ∴∠=∠,1tan tan 2DE AF BAF DAE AD BF ∴∠=∠===, 2BF AF ∴=,在Rt ABF 中,由勾股定理得:2AB ===,AF ∴=2BF AF = ∴△错误,不符合题意.△E 为CD 中点,//EC AB ,EC ∴为ABQ ∆的中位线,C 为BQ 中点,22BQ BC AD ∴==,//AD BQ ,ADP QBP ∴∆∆∽, ∴12DP AD BP QB ==, ∴12DP BD DP =-, 13DP BD ∴=,111236OP OD DP BD BD BD =-=-=, ∴116132OD OP OP OA OD OD ===, ∴△正确,符合题意.△2AB =,24BQ AB ==,AQ ∴=12AP AD PQ BQ ==,13AP AQ ∴=∴35AF AP =, ∴32155FP AP =-=, 即25POF AOP S S ∆∆=,13OP OA =, 11113343AOP AOD ABCD S S S ∆∆∴==⨯=正方形, 22515POF AOP S S ∆∆∴==, ∴△错误,不符合题意.△设ED x =,2EC x =-,则DE ADEC CQ =, 即22x x CQ =-,42x CQ x -∴=, 24242x x AE EC CQ x x x--∴=+=-+=, 在Rt ADE △中,由勾股定理得:AE∴24x x-解得x =或x =).AE ∴ //AD BQ , DAE BQA ∴∠=∠,1sin sin 2DE DAE BQA AE ∴∠=∠==, 24AQ AB ∴==,∴△正确,符合题意.故答案为:△△△.【点睛】本题考查正方形与三角形的综合问题,解题关键是熟练掌握正方形的性质与解直角三角形的方法.20.(2021·广东龙岗·九年级期末)如图,已知在菱形ABCD ,BC=9,△ABC=60°,点E 在BC 上,且BE=6,将ΔABE 沿AE 折叠得到ΔAB′E ,其中B′E 交CD 于点F ,则CF=____________.【答案】95【分析】过点A 作AG △BC 交BC 于G ,取HG 使HG =GE ,过H 作HM △AE 于H ,过F 作FN △BC 交BC 延长线于N ,通过直角三角形求出BG 、AE ,由三角形的面积求得HM ,再通过折叠求出CF .【详解】解:过点A 作AG △BC 交BC 于G ,取HG 使HG =GE ,过H 作HM △AE 于H ,过F 作FN △BC 交BC 延长线于N ,△四边形ABCD 是菱形,△AB =BC =9,在Rt △ABG 中,△B =60°,△sinB =sin 60°=AG AB =,△AG △cosB =cos 60°=12BG AB =, △BG =12AB =92, △BE =6,△HE =2GE =2(BE -BG )=2×(962-)=3, 在Rt △AGE 中,AE = △S △AHE =12×HE ×AG =12×AE ×HM ,△1212HM ,解得,HM , △HG =GE ,AG △HE ,△△AHE 是等腰三角形,△AH =AE ,△AHE =△HEA ,在Rt △AHM 中,AM, △AB △CD ,△△FCN =△B =60°,△FN CN =tan △折叠,△△AEB ′=△HEA ,在△AHE 中,△△HAE =180°-△HEA -△AHE =180°-2△HEA ,又△FEN =180°-△HEA -△AEB ′=180°-2△HEA ,△△HAE =△FEN,设CN =x ,FN ,△tan △FEC =tan △HAM =FN HM EN AM=,==, △910x =, △CN=910, FN, △CF 95=. 故答案为:95. 【点睛】本题考查了翻折求线段,综合利用了等腰三角形和直角三角形等性质以及三角函数关系求线段,综合难度较高.三、解答题21.(2021·山东·日照市新营中学三模)(1)如图1,在正方形ABCD 中,E 是AB 上一点,点F 是AD 延长线上一点,且DF=BE ,求证:CE=CF .(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE=BE+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在四边形ABCD 中,AD //BC (BC>AD ),90B ∠=︒,AB=BC=2AD ,E 是AB 上一点,且45DCE ∠=︒,求sin DEC ∠的值.【答案】(1)证明见教师;(2)证明见教师;(3【分析】 (1)利用正方形的性质证明△CBE △△CDF ,从而可得结论;(2)延长AD 至F ,使DF =BE .连接CF ,利用(1)的结论,再证明△ECG △△FCG ,从而可得结论;(3)如图,延长,AD 过C 作CM AD ⊥于,M 在AM 的延长线上截取,MQ BE = 先证明四边形ABCM 是正方形,结合(1)(2)可得:,,CBE CMQ CDE CDQ ≌≌ 设,,BE x AB a == 再利用勾股定理可得:3,a x = 从而可得答案.【详解】证明(1)解:(1)在正方形ABCD 中,,90,CB CD B ADC =∠=∠=︒90,CDF ∴∠=︒90CB CD B CDF BE DF =⎧⎪∴∠=∠=︒⎨⎪=⎩△△CBE △△CDF ,△CE =CF ;(2)如图, 延长AD 至F ,使DF =BE .连接CF ,由(1)知△CBE △△CDF ,。
2019-2021年上海各区数学中考一模压轴题分类汇编18题-图形的翻折含详解
专题图形的翻折【知识梳理】【历年真题】1.(2021秋•长宁区期末)如图,在△ABC中,∠C=90°,AC=BC=3,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=1,则BE=.2.(2021秋•虹口区期末)如图,在△ABC中,AB=AC=15,sin∠A=45.点D、E分别在AB和AC边上,AD=2DB,把△ADE沿着直线DE翻折得△DEF,如果射线EF⊥BC,那么AE=.3.(2021秋•金山区期末)在△ABC中,AB=AC=10,sin B=45,E是BC上一点,把△ABE沿直线AE翻折后,点B落在点P处,如果PE∥AC,那么BE=.4.(2021秋•闵行区期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AC边上一点,将△ACB沿着过点P的一条直线翻折,使得点A落在边AB上的点Q处,联结PQ,如果∠CQB=APQ,那么AQ的长为.5.(2021秋•徐汇区期末)如图,在Rt△ABC中,∠CAB=90°,AB=AC,点D为斜边BC上一点,且BD=3CD,将△ABD沿直线AD翻折,点B的对应点为B′,则sin∠CB′D=.6.(2021秋•崇明区期末)如图所示,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,如果将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点D处,折痕为CM,那么cos∠DMA=.7.(2021秋•奉贤区期末)如图,在Rt△ABC中,∠C=90°,sin B=35.D是边BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点F处.如果线段FD交边AB于点G,当FD⊥AB时,AE:BE的值为.8.(2020秋•崇明区期末)在△ABC中,AB=2,∠B=45°,∠C=60°.点D为线段AB的中点,点E在边AC上,连接DE,沿直线DE将△ADE折叠得到△A′DE.连接AA′,当A′E⊥AC时,则线段AA′的长为.9.(2020秋•长宁区期末17)如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.10.(2020秋•虹口区期末)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B'处,线段B'D交边AB于点F,联结AB'.当△AB'F是直角三角形时,BE的长为.11.(2020秋•松江区期末)如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.12.(2020秋•普陀区期末)如图,在▱ABCD中,点E在边BC上,将△ABE沿着直线AE 翻折得到△AFE,点B的对应点F恰好落在线段DE上,线段AF的延长线交边CD于点G,如果BE:EC=3:2,那么AF:FG的值等于.13.(2019秋•虹口区期末)如图,在等腰梯形ABCD中,AD∥BC,sin C=45,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为.14.(2019秋•青浦区期末)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.15.(2019秋•闵行区期末)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC 上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.16.(2019秋•杨浦区期末)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B 所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=.17.(2019秋•崇明区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC 的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.18.(2019秋•静安区期末)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.专题图形的翻折【历年真题】2.(2021秋•长宁区期末)如图,在△ABC 中,∠C =90°,AC =BC =3,点D 、E 分别在AC 边和AB 边上,沿着直线DE 翻折△ADE ,点A 落在BC 边上,记为点F ,如果CF =1,则BE =724.【考点】翻折变换(折叠问题);等腰直角三角形.【专题】平移、旋转与对称;几何直观.【分析】过F 作FG ⊥AB 于点G .先求出AB =3,BF =3﹣1=2.则FG =GB =BF ,所以AG =AB﹣BG =﹣=,设AE =x ,则EF =x ,EG =﹣x ,在Rt △EGF 中,EG 2+FG 2=EF 2,利用勾股定理解列出(﹣x )2+()2=x 2,解得x =524,即求出BE .【解答】解:过F 作FG ⊥AB 于点G .∵∠C =90°,AC =BC =3,CF =1,∴AB =,BF =3﹣1=2.∴FG =GB =BF =,∴AG =AB ﹣BG ==,设AE =x ,则EF =x ,EG =﹣x ,在Rt △EGF 中,EG 2+FG 2=EF 2,即(﹣x )2+)2=x 2,解得x =524,∴BE =AB ﹣AE =﹣524=724.故答案为:724.【点评】本题考查翻折变换,等腰直角三角形的性质等知识,解题的关键是熟练运用勾股定理,属于中考常考题型.2.(2021秋•虹口区期末)如图,在△ABC 中,AB =AC =15,sin ∠A =45.点D 、E 分别在AB 和AC 边上,AD =2DB ,把△ADE 沿着直线DE 翻折得△DEF ,如果射线EF ⊥BC ,那么AE =510-.【考点】翻折变换(折叠问题);解直角三角形;等腰三角形的性质.【专题】推理填空题;等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】先根据折叠得到DE 平分∠AEF ,根据角平分线过D 作∠AEF 两边垂线即可.【解答】过D 作DM ⊥AC 于M ,过B 作BH ⊥AC 于H∵AB =AC =15,4sin 5A ∠=,AD =2DB ∴AD =10,DM =8,AM=6,BH=12,AH=9,∴CH =AC-CH=6∴22tan 2,5BHC BC BH CH CH∠===+过D 作DG ⊥EF 交EF 于N,交AC 于G∵把△ADE 沿着直线DE 翻折得△DEF∴DE 平分∠AEF,∴DM=DN=8,EM=EN,∵EF⊥BC 于点G,∴DH∥BC,∴23DG AD BC AB ==,∠C=∠NHE,∴23DG BC ==∴8NG DG DN =-=-∵tan tan 2EN C NGE NG∠=∠==∴216EM EN NG ===∴10AE AM EM =+=故答案为:10-【点评】本题难度比较大,综合考查折叠的性质、三角函数、相似三角形的性质与判定,解题的关键是由折叠得到角平分线再根据角平分线作垂线.3.(2021秋•金山区期末)在△ABC 中,AB=AC=10,sinB=45,E 是BC 上一点,把△ABE 沿直线AE 翻折后,点B 落在点P 处,如果PE∥AC,那么BE=2.【考点】翻折变换(折叠问题);解直角三角形;平行线的性质;等腰三角形的判定与性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;解直角三角形及其应用;几何直观;应用意识.【分析】过A 作AD ⊥BC 于D ,设AP 交BC 于F ,根据AB =AC =10,sin B =45,AD ⊥BC ,可得AD =8,BD =CD =6,BC =12,由△ABE 沿直线AE 翻折后,点B 落在点P 处,即得∠P =∠B =∠C ,∠BAE =∠PAE ,而PE ∥AC ,有∠P =∠FAC ,可证得∠AEC =∠EAC ,CE =AC =10,即得BE =BC ﹣CE =2.【解答】解:过A 作AD ⊥BC 于D ,设AP 交BC 于F ,如图:∵AB =AC =10,sin B =45,AD ⊥BC ,∴4105AD AD AB ==,∴AD =8,∴BD =CD =6,∴BC =12,∵△ABE 沿直线AE 翻折后,点B 落在点P 处,∴∠P =∠B =∠C ,∠BAE =∠PAE ,∵PE ∥AC ,∴∠P =∠FAC ,∴∠B =∠FAC ,∴∠B +∠BAE =∠FAC +∠PAE ,即∠AEC =∠EAC ,∴CE =AC =10,∴BE =BC ﹣CE =2,故答案为:2.【点评】本题考查等腰三角形中的折叠问题,解题的关键是掌握折叠的性质,能熟练运用锐角三角函数解直角三角形.4.(2021秋•闵行区期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AC边上一点,将△ACB沿着过点P的一条直线翻折,使得点A落在边AB上的点Q处,联结PQ,如果∠CQB=APQ,那么AQ的长为395.【考点】相似三角形的判定与性质;解直角三角形;勾股定理;翻折变换(折叠问题).【专题】几何综合题;压轴题;推理填空题;运算能力;推理能力.【分析】利用三角形内角和180°,以及平角180度,推导出PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,利用三角形等面积法和相似三角形性质求出AQ的长,再利用相似三角形的性质构建方程即可解决问题.【解答】解:根据题意如图所示:在Rt△ABC中,∠C=90°,∵AC=8,BC=6,∴AB=10,根据折叠的性质可知∠A=∠PQA,∵∠AQP+∠A+∠APQ=180°,∠AQP+∠PQC+∠CQB=180°,∵∠CQB=∠APQ,∴∠A=∠AQP=∠PQC,∴PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,如图,过点C作CD⊥AB于点D,PE⊥AB于点E,∴S △ABC =12⨯AC •BC =12⨯AB •CD ,∴10CD =6×8,∴CD =245,∵CD ⊥AB ,PE ⊥AB ,∴PE ∥CD ,∴△APE ∽△ACD ,∴AP PE AC CD =,∴82485x PE -=,∴PE =35(8﹣x ),∴AE=45(8﹣x ),∴AQ =2AE =85(8﹣x ),∵∠PCQ =∠QCA ,∠PQC =∠A ∴△PCQ ∽△QCA ,∴CQ CP PQ AC CQ AQ==,∴CQ,88(8)5x x -=-,∴258x =,∴AQ =85(8﹣x )=395.故答案为:395.【点评】本题属于几何综合题,是中考填空题的压轴题,主要考查了翻折的性质、解直角三角形、相似三角形的判定和性质、勾股定理,三角形等面积法,综合性较强,熟练解直角三角形中线段问题是解题的捷径.5.(2021秋•徐汇区期末)如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D =1010.【考点】翻折变换(折叠问题);平行线分线段成比例;解直角三角形;等腰直角三角形.【专题】平移、旋转与对称;解直角三角形及其应用;运算能力;推理能力.【分析】过点D 作DE ⊥AB 于点E ,由折叠的性质得出AB =AB ',∠BAD =∠B 'AD ,证出∠CB 'D =∠CAD ,由平行线的性质得出∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==,设AE =a ,则DE =3a ,求出AD=,由锐角三角函数的定义可得出答案.【解答】解:过点D 作DE ⊥AB 于点E ,∵将△ABD 沿直线AD 翻折,∴AB =AB ',∠BAD =∠B 'AD ,∵AB =AC ,∴AC =AB ',∴∠AB 'C =∠ACB ',设∠B 'AC =x ,∠CB 'D =α,∠CAD =β,∵AB =AC ,∠CAB =90°,∴∠B =∠ACB =∠AB 'D =45°,∴2(α+45°)+x =180°,∴2α=90°﹣x ,又∵∠B 'AD +∠BAD =∠B 'AC +∠CAB ,∴2(x +β)=90°+x ,∴2β=90°﹣x ,∴α=β,∴∠CB 'D =∠CAD ,∵CD ⊥AB ,DE ⊥AB ,∴CA ∥DE ,∴∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==,∵BE =DE ,∴13AE BE =,设AE =a ,则DE =3a ,∴AD =,∴sin ∠CB ′D =sin ∠ADE =AE DE ==10.故答案为:1010.【点评】本题考查了折叠的性质,等腰直角三角形的性质,平分线分线段成比例定理,锐角三角函数的定义,熟练掌握折叠的性质是解题的关键.6.(2021秋•崇明区期末)如图所示,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,如果将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点D 处,折痕为CM ,那么cos ∠DMA =3132.【考点】翻折变换(折叠问题);解直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】由折叠的性质可知,CB =CD =6,∠BCM =∠ACM ,证明△BCM ∽△BAC ,由相似三角形的性质得出CD BM CM AB BC AC==,求出BM 和AC 的长,过点D 作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x ,由勾股定理求出x ,根据锐角三角函数的定义可得出答案.【解答】解:由折叠的性质可知,CB =CD =6,∠BCM =∠ACM,∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴CD BM CM AB BC AC ==,∴696BM =,∴BM =4,∴AM =CM =5,∴659AC =,∴AC =152,∴AD =AC ﹣CD =152﹣6=32,过点D 作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x ,∴22223((5)42x x +-=-,解得318x =,∴cos ∠DMA =31318432MN DM ==.故答案为:3132.【点评】本题考查了折叠的性质,相似三角形的判定与性质,勾股定理,解直角三角形,证明△BCM ∽△BAC 是解题的关键.7.(2021秋•奉贤区期末)如图,在Rt△ABC中,∠C=90°,sin B=35.D是边BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点F处.如果线段FD交边AB于点G,当FD⊥AB时,AE:BE的值为4.【考点】平行线分线段成比例;解直角三角形;翻折变换(折叠问题).【专题】解直角三角形及其应用;推理能力.【分析】如图,过B点作BH∥DE交GD的延长线于H,如图,利用正弦的定义得到sin B=35DGBD=,则设DG=3x,BD=5x,所以BG=4x,再根据折叠的性质和平行线的性质得到∠H=∠DBH,所以DH=DB=5x,接着根据平行线分线段成比例定理得到35GE DGBE DH==,则BE=52x,然后证明△BDG∽△BAC,利用相似比得到BA=252x,最后计算AE:BE的值.【解答】解:如图,过B点作BH∥DE交GD的延长线于H,如图,∵FD⊥AB,∴∠DGB=90°,∵sin B=35DGBD=,∴设DG=3x,BD=5x,∴BG4x,∵△BDE沿直线DE翻折得到△FDE,∴∠BDE=∠FDE,∵DE∥BH,∴∠FDE=∠H,∠BDE=∠DBH,∴∠H=∠DBH,∴DH=DB=5x,∵DE∥BH,∴35 GE DGBE DH==,∴BE=58×4x=52x,∵∠BGD=∠C=90°,∠DBG=∠ABD,∴△BDG∽△BAC,∴BD BGBA BC=,即5410x xBA x=,∴BA=252x,∴AE=AB﹣BE=252x﹣52x=10x,∴AE:BE=10x:52x=4.故答案为:4.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了折叠的性质和解直角三角形.8.(2020秋•崇明区期末)在△ABC中,AB=2,∠B=45°,∠C=60°.点D为线段AB的中点,点E在边AC上,连接DE,沿直线DE将△ADE折叠得到△A′DE.连接AA′,当A′E⊥AC时,则线段AA′的长为26.【考点】翻折变换(折叠问题).【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】画出相应的图形,结合图形通过作高构造直角三角形,求出AM=BM=4,进而求出AC,再利用相似三角形的性质和判定求出AE,根据对称在Rt△AEF中求出AF即可.【解答】解:如图,过点A作AM⊥BC,垂足为M,在Rt△ABM中,∠B=45°,AB=2,∴AM=BM=AB•sin∠B=4,在Rt△ACM中,AM=4,∠C=60°,∴AC=AM4=sin C sin60∠833,又∵A′E⊥AC,∴∠A′EC=90°,由折叠得∠AED=∠A′ED=12(180°﹣90°)=45°,AA′⊥DE,∵∠AED=45°=∠B,∠DAE=∠CAB,∴△DAE∽△CAB,∴AE AD=AB DC,∵点D为线段AB的中点,∴AD=BD=12AB=22,AE2242833AE=3,在Rt△AEF中,AF=EF=AE•sin∠AED=3×226,∴AA′=2AF=6,故答案为:6.【点评】本题考查轴对称的性质,相似三角形的判定和性质,解直角三角形,掌握轴对称、相似三角形的性质以及解直角三角形是解决问题的关键.9.(2020秋•长宁区期末17)如图,矩形ABCD 沿对角线BD 翻折后,点C 落在点E 处.联结CE 交边AD 于点F .如果DF =1,BC =4,那么AE 的长等于655.【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;推理能力.【分析】首先根据题意得到EG =CG ,CE ⊥BD ,证明△CDF ∽△BCD 和△CDG ∽△BDC ,可计算CD 和CG 的长,再证明△EFD ∽△AED ,可得AE 的长.【解答】解:由折叠得:CE ⊥BD ,CG =EG ,∴∠DGF =90°,∴∠DFG +∠FDG =90°,∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,∴∠ADG +∠CDG =90°,∴∠CDG =∠DFG ,∵∠CDF =∠BCD =90°,∴△CDF ∽△BCD ,∴CD DF =BC CD,∵AB =4,DF =1,∴CD 1=4CD,∴CD =2,由勾股定理得:CF =221+2=5,BD 222+45,同理得:△CDG∽△BDC,∴CD CG=BD BCCG4,∴CG =455,∴CE=2CG =85 5,∴EF=CE﹣CF =855=355,∵DF1=ED2,ED21==AD42,且∠EDF=∠AED,∴△EFD∽△AED,∴EF DF=AE DE ,即15=AE2,∴AE【点评】本题主要考查了几何变换中的翻折变换、相似三角形的性质和判定、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,利用相似三角形列比例式是本题的关键.10.(2020秋•虹口区期末)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B'处,线段B'D交边AB于点F,联结AB'.当△AB'F是直角三角形时,BE的长为2或40 17.【考点】翻折变换(折叠问题);相似三角形的判定与性质;勾股定理.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】分两种情况画出图形,①方法一:如图1,当∠AFB′=90°时,由相似三角形的性质及直角三角形的性质可求出答案;方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,由BF的长列出方程,解方程求出a即可;②方法一如图2,当∠AB′F=90°时,由相似三角形的性质及直角三角形的性质可求出答案.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,得出9442a a+=,求出a的值则可得出答案.【解答】解:①方法一:如图1,当∠AFB′=90°时.在Rt △ABC 中,∵AC =6,BC =8,∴AB 22226810AC BC +=+=,∵D 是BC 的中点,∴BD =CD =12BC =4,∵∠AFB '=∠BFD =90°,∠ACB =90°,∴∠DFB =∠ACB ,又∵∠DBF =∠ABC ,∴△BDF ∽△BAC ,∴BF BD BC AB =,即4810BF =,解得:BF =165,设BE =B 'E =x ,则EF =165﹣x ,∵∠B =∠FB 'E ,∴sin ∠B =sin ∠FB 'E ,∴'AC EF AB B E =,∴166510x x-=,解得x =2.∴BE =2.方法二:过点E 作EH ⊥BC 于点H ,设EH =3a ,BE =5a ,则BH =4a ,∵将△BDE 沿直线DE 翻折,∴EF =3a ,∴BF =8a =BD •cos ∠B =4×45,∴a =25,∴BE =5a =2;②如图2中,当∠AB ′F =90°时,连接AD ,作EH ⊥AB ′交AB ′的延长线于H.∵AD =AD ,CD =DB ′,∴Rt △ADC ≌Rt △ADB ′(HL ),∴AC =AB ′=6,∵将△BDE 沿直线DE 翻折,∴∠B =∠DB 'E ,∵AB '⊥DB ',EH ⊥AH ,∴DB '∥EH ,∴∠DB 'E =∠B 'EH ,∴∠B =∠B 'EH ,∴sin ∠B =sin ∠B 'EH ,设BE =x ,则B 'H =35x ,EH =45x ,在Rt △AEH 中,AH 2+EH 2=AE 2,∴22234(6)()(10)55x x x ++=-,解得x =4017,∴BE =4017.则BE 的长为2或4017.方法二:过点E 作EG ⊥BD 于点G ,设EG =3a ,BG =4a ,BE =5a ,∴DG =EG ×32=92a ,∵DG +GB =DB ,∴9442a a +=,∴a =817,∴BE =4017.故答案为:2或4017.【点评】本题考查了翻折变换、勾股定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题.11.(2020秋•松江区期末)如图,已知矩形纸片ABCD ,点E 在边AB 上,且BE =1,将△CBE 沿直线CE 翻折,使点B 落在对角线AC 上的点F 处,联结DF ,如果点D 、F 、E 在同一直线上,则线段AE 的长为152+.【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】根据矩形的性质得到AD =BC ,∠ADC =∠B =∠DAE =90°,根据折叠的性质得到CF =BC ,∠CFE =∠B =90°,EF =BE =1,DC =DE ,证明△AEF ∽△DEA ,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠ADC =∠B =∠DAE =90°,∵把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,∴CF =BC ,∠CFE =∠B =90°,EF =BE =1,∠CEB =∠CEF ,∵矩形ABCD 中,DC ∥AB ,∴∠DCE =∠CEB ,∴∠CEF =∠DCE ,∴DC =DE ,设AE=x,则AB=CD=DE=x+1,∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AF DEEF AE=,∴11x xx+=,解得x=152+或x=152(舍去),∴AE=12.故答案为:15 2.【点评】本题考查了翻折变换(折叠问题),平行线的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.12.(2020秋•普陀区期末)如图,在▱ABCD中,点E在边BC上,将△ABE沿着直线AE翻折得到△AFE,点B的对应点F恰好落在线段DE上,线段AF的延长线交边CD于点G,如果BE:EC=3:2,那么AF:FG的值等于214.【考点】相似三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;平移、旋转与对称;图形的相似;推理能力.【分析】延长BC,AG交于点H,设BE=3x,EC=2x,由平行四边形的性质可得AD=BC=5x,AD∥BC,由折叠的性质可得∠AEB=∠AEF,BE=EF=3x,通过证明△ADF∽△HEF,△ADG∽△HCG,可求AF=425y,FG=AG﹣AF=85y,即可求解.【解答】解:如图,延长BC,AG交于点H,∵BE:EC=3:2,∴设BE=3x,EC=2x,∵四边形ABCD是平行四边形,∴AD=BC=5x,AD∥BC,∴∠DAE=∠AEB,∵将△ABE沿着直线AE翻折得到△AFE,∴∠AEB=∠AEF,BE=EF=3x,∴∠DAE=∠AED,∴AD=DE=5x,∴DF=2x,∵AD∥BC,∴△ADF∽△HEF,∴AD DF AFEH EF FH==,∴523x AFEH FH==,∴EH=152x,AF=23FH,∴CH=EH﹣EC =x,∵AD∥BC,∴△ADG∽△HCG,∴AD AGCH GH=,∴51011112x AGGHx==,∴设AG=10y,GH=11y,∴AH=21y,∴AF=215y×2=425y,∴FG=AG﹣AF=85y,∴AF:FG=21:4=21 4,故答案为21 4.【点评】本题考查了相似三角形的判定和性质,折叠的性质,平行四边形的性质,灵活运用这些性质进行推理是解题的关键.13.(2019秋•虹口区期末)如图,在等腰梯形ABCD中,AD∥BC,sin C=45,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为24 7.【考点】相似三角形的判定与性质;解直角三角形;等腰梯形的性质;翻折变换(折叠问题).【专题】图形的相似;解直角三角形及其应用;应用意识.【分析】解直角三角形求出BF,AF,再利用相似三角形的性质求解即可.【解答】解:如图,∵FB′⊥AB,∴∠BAF=90°,∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∴sin∠ABC=sin∠C=AFBF=45,设AF=4k,BF=5k,则AB=9=3k,∴k=3,∴AF=12,BF=15,∵AD∥BF,∴△APD∽△FPB,∴PA AD62=== PF BF155,∴PA=27AF=247,故答案为24 7.【点评】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.(2019秋•青浦区期末)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是532cm.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=32BN532到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =32BN∴EF≥EN时,点A恰好落在线段EF上,即AD∴边AD的长至少是【点评】本题考查了翻折变换(折叠问题),矩形的性质,直角三角形的性质,正确的识别图形是解题的关键.15.(2019秋•闵行区期末)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为1.【考点】翻折变换(折叠问题);等腰三角形的性质;勾股定理.【专题】平移、旋转与对称;推理能力.【分析】只要证明△ABD∽△MBE,得AB BDBM BE=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴CA CDCB AC=,∴464CD=,∴CD=83,BD=BC﹣CD=103,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴AD DMBD DA=,即8310833DM=,∴DM=3215,MB=BD﹣DM=65,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴AB BD BM BE,∴BE=BD BMAB=1.故答案为:1.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难.16.(2019秋•杨浦区期末)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=4或【考点】翻折变换(折叠问题);勾股定理;三角形中位线定理.【专题】平移、旋转与对称;推理能力.【分析】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,根据对称的性质和平行线可得:A1C=A1E=4,根据直角三角形斜边中线的性质得:BC=2A1B=8,最后利用勾股定理可得AB的长;②当∠A1FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,∵△A1BC与△ABC关于BC所在直线对称,∴A1C=AC=4,∠ACB=∠A1CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A1EF,∴AC∥A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为或4;故答案为:4;【点评】本题考查了翻折变换(折叠问题),三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.17.(2019秋•崇明区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=5或5.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用.【分析】分两种情形分别求解,作DF⊥AB于F,连接AA′.想办法求出AE,利用等腰直角三角形的性质求出AA′即可.【解答】解:如图,作DF⊥AB于F,连接AA′.在Rt△ACB中,BC=6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴DF AD AFBC AB AC==,∴46108DF AF==,∴DF=125,AF=165,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=125,∴AE=A′E=125+165=285,∴AA′=2825,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=165﹣125=45,AA AE=425.故答案为2825或425.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.18.(2019秋•静安区期末)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为1 7.【考点】翻折变换(折叠问题);解直角三角形;等边三角形的判定与性质;菱形的性质.【专题】矩形菱形正方形;解直角三角形及其应用.【分析】如图,连接BD .设BC =2a .在Rt △BEF 中,求出EF ,BF 即可解决问题.【解答】解:如图,连接BD .设BC =2a.∵四边形ABC 都是菱形,∴AB =BC =CD =AD =2a ,∠A =∠C =60°,∴△BDC 是等边三角形,∵DE =EC =a ,∴BE ⊥CD ,∴BE 22-3BC EC =a ,∵AB ∥CD ,BE ⊥CD ,∴BE ⊥AB ,∴∠EBF =90°,设AF =EF =x ,在Rt △EFB 中,则有x 2=(2a ﹣x )2+3a )2,∴x =74a ,∴AF =EF =74a ,BF =AB ﹣AF =4a ,∴cos ∠EFB =14774a BF a EF ==,故答案为17.【点评】本题考查菱形的性质,解翻折变换,直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
上海各区初三中考一模压轴题(学生版)
1.已知在平面直角坐标系xOy 中,抛物线c bx ax y ++=2(a >0)与x 轴相交于A(-1,0),B(3,0)两点,对称轴MN 与x 轴相交于点C ,顶点为点D ,且∠ADC 的正切值为21。
(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若∠FAC=∠ADC ,求F 点的坐标.2.在矩形ABCD 中,AB=4,BC=3,E 是AB 边上一点,EF ⊥CE 交AD 于点F ,过点E 作∠AEH=∠BEC ,交射线FD 于点H ,交射线CD 于点N.(1)如图a ,当点H 与点F 重合时,求BE 的长;(2)如图b ,当点H 在线段FD 上时,设BE=x ,DN=y ,求y 与x 之间的函数关系式,并写出它的定义域;(3)联结AC ,当△FHE 与△AEC 相似时,求线段DN 的长.3.如图,△AOB 的顶点A 、B 在二次函数23312++-=bx x y 的图像上,又点A 、B 分别在y 轴和x 轴上,tan ∠ABO=1.⑴求此二次函数的解析式;(4分)⑵过点A 作AC ∥BO 交上述函数图象于点C ,点P 在上述函数图象上,当△POC 与△ABO 相似时,求点P 得坐标.(8分)4.如图a ,在Rt △ABC 中,∠ACB=90°,CE 是斜边AB 上的中线,AB=10,tanA=34,点P 是CE 延长线上的一动点,过点P 作PQ ⊥CB ,交CB 延长线于点Q ,设EP=x ,BQ=y.⑴求y 关于x 的函数关系式及定义域;(4分)⑵联结PB ,当PB 平分∠CPQ 时,求PE 的长;(4分)⑶过点B 作BF ⊥AB 交PQ 于F ,当△BEF 和△QBF 相似时,求x 的值.(6分)5.如图,梯形OABC ,BC ∥OA ,边OA 在x 轴正半轴上,边OC 在y 轴正半轴上,点B (3,4),AB=5.(1)求∠BAO 的正切值;(2)如果二次函数c bx x y ++=294的图像经过O 、A 两点,求这个二次函数的解析式并求图像顶点M 的坐标;(3)点Q 在x 轴上,以点Q 、点O 及(2)中的点M 位顶点的三角形与△ABO 相似,求点Q的坐标.6.把两块边长为4的等边三角板ABC 和DEF 先如图a 放置,使三角板DEF 的顶点D 与三角板ABC 的AC 边的中点重合,DF 经过点B ,射线DE 与射线AB 相交于点M ,接着把三角形版ABC 固定不动,将三角形板DEF 由图11-1所示的位置绕点D 按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF 与线段BC 相交于点N (如图b 所示).(1)当0°<α<60°时,求AM·CN 的值.(2)当0°<α<60°时,设AM=x ,两块三角形板重叠部分的面积为y ,求y 与x 的函数解析式并求定义域.(3)当BM=2时,求两块三角形板重叠部分的面积.7.如图,已知点A (1,0)、B (3,0)、C (0,1).(1)若二次函数图像经过点A 、C 和点D (2,31)三点,求这个二次函数的解析式.(2)求∠ACB 的正切值(3)若点E 在线段BC 上,且△ABE 与△ABC 相似,求出点E 的坐标.8.已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B 作BD⊥CP,垂足为点D.(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不与A、B重合),点P的速度是5厘米/秒.设点P运动的时间为t秒,△BCD的面积为S平方厘米,求出S关于t的函数解析式,并写出它的定义域.(3)在第(2)小题的条件下,如果△PBC是以CP为腰的等腰三角形,求△BCD的面积.9.如图1,已知等边△ABC 的边长为6,点D 是边BC 上的一个动点,折叠△ABC ,使得点A 恰好与边BC 上的点D 重合,折痕为EF (点E 、F 分别在边AB 、AC 上).(1)当AE :AF=5:4时,求BD 的长;(2)当ED ⊥BC 时,求EFEB的值;(3)当以B 、E 、D 为顶点的三角形与△DEF 相似时,求BE 的长.10如图,在矩形ABCD 中,AB=4,AD=6,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E.(1)判断△EAP 与△PDC 一定相似吗?请证明你的结论;(2)设PD=x ,AE=y ,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,使△EAP 周长等于△PDC 的周长的2倍?若存在,请求出PD 的长;若不存在,请简要说明理由。
2023年上海市15区物理中考一模分类汇编专题2-压强压轴计算题含答案
图62023年上海中考一模各区分类汇编(学生版)专题02压强计算题1.(2023宝山一模)一个底面积为1×10-2米2的足够高轻质薄壁圆柱形容器放在水平地面上,内盛有0.1米深的水,求:①容器中水的质量m 水。
②水对容器底部的压强p 。
③继续加入一定量的水,容器对桌面的压强为p1。
再将一个物体A 放入水中,当物体A 静止时,水对容器底部的压强变为p2,容器对桌面的压强为p3。
Ⅰ.若物体A 漂浮在水面上,试计算说明物体A 的密度ρA<ρ水。
Ⅱ.若物体A 浸没在水中,试求物体A 的密度ρA (请用p1、p2、p3、ρ水表示)。
2.(2023崇明一模)如图6所示,体积为33310-⨯米、密度为33210/⨯千克米的均匀实心正方体甲和底面积为22210-⨯米、高为0.3米的薄壁圆柱形容器乙置于水平桌面上,乙容器内盛有0.2米深的水.试求:(1)甲的质量m 甲;(2)水对乙容器底部的压强p 水;(3)现将物体甲浸没在乙容器内的水中,计算出水对乙容器底部压强增加量p 水△.3.(2023奉贤一模)如图10所示,实心均匀正方体甲和实心均匀圆柱体乙置于水平地面上,已知甲的密度为2×103千克/米3,边长为0.1米。
①求甲对地面的压强p 甲。
②若乙的底面积是甲的底面积的一半,且甲、乙对地面的压强相等,现将乙放置于甲的上方,求甲对水平地面的压强p 甲′。
图10甲乙4.(2023虹口一模)底面积为2×10-2m2的薄壁圆柱形容器中装满水,水对容器底部的压强p 水为1960帕。
①求水的深度h 水;②求水对容器底部的压力F 水;③将物体甲浸没在水中,分别记录放入甲前后容器对水平桌面的压强p1、p1′;然后将水换为某种液体并装满容器,分别记录放入甲前后容器对水平桌面的压强p2、p2′,如下表所示:(a )小明根据上述信息,求出了容器重力G 客,过程如下:明的计算是否确?若正确说由,若不正确求容;的密度ρ甲。
2023年上海各区数学中考一模压轴题分类汇编
2023年上海各区数学中考一模压轴题分类汇
编
一、整数与有理数
1. 下列说法中与负数有理数有关的是()
A.偶数是自然数,也是有理数
B.奇数是整数,也是有理数
C.零是整数,也是有理数
D.所有的整数都是有理数
2. 结果为有理数的是()
A.3-3√2
B.√2+√3
C.√5-2√5
D.1+2√3
二、代数式与方程
3. 如果代数式3x-7的值在3和6之间,则x的范围是()
A.3<x<6
B.3≤x≤6
C.3≤x<6
D.3<x≤6
4. 已知代数式2x-a的值在-5和3之间,则实数a的范围是()
A.-8≤a≤1
B.-1≤a≤8
C.-8<a≤1
D.-1<a≤8
三、图形与几何
5. 在坐标平面直角坐标系中,若点P的坐标是(3,-4),则点P 所在的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6. 平面内的点集合最可能是()
四、函数与不等式
7. 在函数图象上,若x增大时y不断减小,则该函数是()
A.单调递增函数
B.单调递减函数
8. 若|2x-5|<7,则x的取值范围是()
A.-1<x<6
B.-6<x<1
C.1<x<6
D.-1≤x≤6
以上就是2023年上海各区数学中考一模压轴题的分类汇编,希望同学们认真复习,提前了解考点,为考试做好充分准备。
祝各位同学顺利通过考试!。
2022年上海各区中考数学一模试卷分类汇编 专题11 几何综合(解答25题压轴题)
2022年上海市15区中考数学一模考点分类汇编专题11 几何综合一.解答题(共15小题)1.(普陀区)如图,在△ABC中,边BC上的高AD=2,tan B=2,直线l平行于BC,分别交线段AB,AC,AD于点E、F、G,直线l与直线BC之间的距离为m.(1)当EF=CD=3时,求m的值;(2)将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,延长EP交线段CD于点Q.①当点P恰好为△ABC的重心时,求此时CQ的长;②联结BP,在∠CBP>∠BAD的条件下,如果△BPQ与△AEF相似,试用m的代数式表示线段CD的长.2.(嘉定区)在平行四边形ABCD中,对角线AC与边CD垂直,,四边形ABCD的周长是16,点E是在AD延长线上的一点,点F是在射线AB上的一点,∠CED=∠CDF.(2)如图2,点F在边AB上的一点.设AE=x,BF=y,求y关于x的函数关系式并写出它的定义域;(3)如果BF:FA=1:2,求△CDE的面积.3.(金山区)已知:如图,AD⊥直线MN,垂足为D,AD=8,点B是射线DM上的一个动点,∠BAC=90°,边AC交射线DN于点C,∠ABC的平分线分别与AD、AC相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y关于x的函数关系式;(3)联结DF,如果以点D、E、F为顶点的三角形与△BCF相似,求AE的长.4.(静安区)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.5.(杨浦区)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.6.(浦东新区)在△ABC中,∠ABC=90°,AB=4,BC=3,点O是边AC上的一个动点,过O 作OD⊥AB,D为垂足,在线段AC上取OE=OD,联结ED,作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)如图1所示,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出定义域;(3)当BF=1时,求线段AP的长.7.(奉贤区)如图1,已知锐角△ABC的高AD、BE相交于点F,延长AD至G,使DG=FD,联结BG,CG.(1)求证:BD•AC=AD•BG;(2)如果BC=10,设tan∠ABC=m.①如图2,当∠ABG=90°时,用含m的代数式表示△BFG的面积;②当AB=8,且四边形BGCE是梯形时,求m的值.8.(松江区)如图,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.9.(青浦区)在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.(1)求线段BC的长;(2)当FB=FE时,求线段BF的长;(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.10.(徐汇区)如图,在△ABC中,∠C=90°,cot A=,点D为边AC上的一个动点,以点D 为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD•BF=BC•DE;(3)当DE:EF=3:1时,求AE:EB.11.(长宁区)已知,在△ABC中,AB=AC=5,BC=8,点E是射线CA上的动点,点O是边BC 上的动点,且OC=OE,射线OE交射线BA于点D.(1)如图,如果OC=2,求的值;(2)联结AO,如果△AEO是以AE为腰的等腰三角形,求线段OC的长;(3)当点E在边AC上时,联结BE、CD,∠DBE=∠CDO,求线段OC的长.12.(崇明区)已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将△ADE绕点D逆时针旋转90°,E点落在F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.(1)当AE=时,求tan∠EDB的值;(2)当点E在线段AB上,如果AE=x,FM=y,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当BG=时,求AE的值.13.(黄浦区)如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC•BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,联结DF.(1)求证:AE=AC;(2)设BC=x,=y,求y关于x的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.14.(宝山区)如图,已知正方形ABCD,将边AD绕点A逆时针方向旋转n°(0<n<90)到AP 的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果=,求∠ABP的正切值;(3)联结AF,如果AF=AB,求n的值.15.(虹口区)已知:如图,在△ABC中,∠ACB=90°,AB=10,tan B=,点D是边BC延长线上的点,在射线AB上取一点E,使得∠ADE=∠ABC.过点A作AF⊥DE于点F.(1)当点E在线段AB上时,求证:=;(2)在(1)题的条件下,设CD=x,DE=y,求y关于x的函数关系式,并写出x的取值范围;(3)记DE交射线AC于点G,当△AEF∽△AGF时,求CD的长.2022年上海市15区中考数学一模考点分类汇编专题11 几何综合一.解答题(共15小题)1.(普陀区)如图,在△ABC中,边BC上的高AD=2,tan B=2,直线l平行于BC,分别交线段AB,AC,AD于点E、F、G,直线l与直线BC之间的距离为m.(1)当EF=CD=3时,求m的值;(2)将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,延长EP交线段CD于点Q.①当点P恰好为△ABC的重心时,求此时CQ的长;②联结BP,在∠CBP>∠BAD的条件下,如果△BPQ与△AEF相似,试用m的代数式表示线段CD的长.【分析】(1)根据=tan B=2,可得:BD=1,再由EF=CD=3,DG=m,可得:BC=4,AG =2﹣m,利用EF∥BC,可得=,建立方程求解即可;(2)①由翻折可得:BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,进而得出:AG =,推出DP=GP,再由EF∥BC,可得出EG=,利用ASA证明△PQD≌△PEG,即可求得答案;②分两种情况:Ⅰ.当△BPQ∽△FAE时,由△FAE∽△CAB,推出△BPQ∽△CAB,建立方程求解即可;Ⅱ.当△BPQ∽△AFE时,由△AFE∽△ACB,推出△BPQ∽△ACB,建立方程求解即可.【解答】解:(1)如图1,在△ABC中,边BC上的高AD=2,tan B=2,∴=tan B=2,∴BD=1,∵EF=CD=3,DG=m,∴BC=BD+CD=4,AG=AD﹣DG=2﹣m,∵EF∥BC,∴=,即=,解得:m=,∴m的值为;(2)①如图2,∵将△AEF沿着EF翻折,点A落在△ABC的重心点P处,∴BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,∴AG=GP=AP=,∴DP=GP,∵EF∥BC,∴∠PGE=∠PDQ=90°,△AEG∽△ABD,∴=,即=,∴EG=,在△PQD和△PEG中,,∴△PQD≌△PEG(ASA),∴DQ=EG=,∴CQ=CD﹣DQ=1﹣=,∴此时CQ的长为;②在Rt△ABD中,AB==,∵将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,∴∠PBQ<∠ABD,∵EF∥BC,∴∠AEF=∠ABD,∴∠PBQ<∠AEF,∵∠CBP>∠BAD,∴∠BAD<∠PBQ<∠AEF,∵GP=AG=2﹣m,DG=m,∴DP=DG﹣GP=m﹣(2﹣m)=2m﹣2,∴m>1,∴1<m<2,∵∠AEF=∠ABD,∴=tan∠AEF=tan∠ABD=2,∴=2,∴EG=,∵EF∥BC,∴△PEG∽△PQD,∴=,即=,∴DQ=m﹣1,∴BQ=BD+DQ=m,∵∠AEF=∠PEG=∠BQP,∠PBQ<∠AEF,∴△BPQ与△AEF相似,则△BPQ∽△FAE或△BPQ∽△AFE,Ⅰ.当△BPQ∽△FAE时,∵△FAE∽△CAB,∴△BPQ∽△CAB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=;Ⅱ.当△BPQ∽△AFE时,∵△AFE∽△ACB,∴△BPQ∽△ACB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=,综上,线段CD的长为或.【点评】本题考查了全等三角形判定和性质,相似三角形的判定和性质,勾股定理,三角函数,翻转变换的性质等,熟练掌握全等三角形判定和性质、相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想思考解决问题是解题关键.2.(嘉定区)在平行四边形ABCD中,对角线AC与边CD垂直,,四边形ABCD的周长是16,点E是在AD延长线上的一点,点F是在射线AB上的一点,∠CED=∠CDF.(1)如图1,如果点F与点B重合,求∠AFD的余切值;(2)如图2,点F在边AB上的一点.设AE=x,BF=y,求y关于x的函数关系式并写出它的定义域;(3)如果BF:FA=1:2,求△CDE的面积.【分析】(1)设AB=3k,则AC=4k,由勾股定理求出BC==5k,由四边形ABCD 的周长求出k=1,求出AM的长,则可得出答案;(2)证明△CDE∽△DAF,由相似三角形的性质得出,得出AD=BC=5,DE=x﹣5,DC =AB=3,AF=3﹣y,由比例线段可得出答案;(3)分两种情况:①当点F在边AB上,②当点F在AB的延长线上,求出AF的长,由相似三角形的性质及三角形面积公式可得出答案.【解答】解:(1)如果点F与点B重合,设DF与AC交于点M,∵AC⊥CD,∴∠DCA=90°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠DCA=90°,在Rt△CAB中,设AB=3k,∵,∴AC=4k,∴BC==5k,∵四边形ABCD的周长是16,∴2(AB+BC)=16,即 2(3k+5k)=16,∴k=1,∴AB=3,BC=5,AC=4,∵四边形ABCD是平行四边形,∴AM=CM=AC=2,∴cot∠AFD=;(2)解:∵CD∥AB,∴∠EDC=∠FAD,∠CDF=∠AFD,∵∠CED=∠CDF,∴∠CED=∠AFD,∴△CDE∽△DAF,∴,由题意,得AD=BC=5,DE=x﹣5,DC=AB=3,AF=3﹣y,∴,∴y=﹣,定义域是:5<x≤.(3)解:点F在射线AB上都能得到:△CDE∽△DAF,∴,①当点F在边AB上,∵BF:FA=1:2,AB=3,∴AF=2,由题意,得S△DAF=AF•AC,∵AC=4,∴S△DAF=×2×4=4,∴,∴S△CDE=,②当点F在AB的延长线上,∵BF:FA=1:2,AB=3,∴AF=6,由题意,得S△DAF=AF•AC,∴S△DAF=AF•AC=12,∴,∴S△CDE=.综上所述,△CDE的面积是或.【点评】本题是四边形综合题,考查了平行四边形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定与性质.3.(金山区)已知:如图,AD⊥直线MN,垂足为D,AD=8,点B是射线DM上的一个动点,∠BAC =90°,边AC交射线DN于点C,∠ABC的平分线分别与AD、AC相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y关于x的函数关系式;(3)联结DF,如果以点D、E、F为顶点的三角形与△BCF相似,求AE的长.【分析】(1)根据同角的余角相等得到∠BAD=∠BCF,根据角平分线的定义得到∠ABE=∠CBF,根据相似三角形的判定定理证明△ABE∽△CBF;(2)作FH⊥BC于点H,根据相似三角形的性质、补角的概念得到∠AEF=∠CFE,得到AE=AF =x,根据平行线分线段成比例定理列出比例式,代入计算即可;(3)分∠BAE=∠FDE、∠BAE=∠DFE两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵AD⊥直线MN,∠BAC=90°,∴∠BAD+∠ABD=90°,∠BCF+∠ABD=90°,∴∠BAD=∠BCF,∵BF平分∠ABC,∴∠ABE=∠CBF,∴△ABE∽△CBF;(2)解:作FH⊥BC,垂足为点H.∵△ABE∽△CBF,∴∠AEB=∠CFB,∵∠AEB+∠AEF=180°,∠CFB+∠CFE=180°,∴∠AEF=∠CFE,∴AE=AF=x,∵BF平分∠ABC,FH⊥BC,∠BAC=90°,∴AF=FH=x.∵FH⊥BC,AD⊥直线MN,∴FH∥AD,∴=,即=,解得:y=(4<x<8);(3)解:设AE=x,∵△ABE∽△CBF,∴如果以点D、E、F为顶点的三角形与△BCF相似时,以点D、E、F为顶点的三角形与△ABE相似.∵∠AEB=∠DEF,∴∠BAE=∠FDE或∠BAE=∠DFE,当∠BAE=∠FDE时,DF∥AB,∴∠ABE=∠DFE,∵∠ABE=∠DBE,∴∠DBE=∠DFE,∴BD=DF,∵DF∥AB,∴∠DFC=∠BAC=90°,∴∠DFC=∠ABD=90°,∵∠BAD=∠BCF,∴△ABD≌△CDF(AAS),∴CF=AD=8,即=8,解得:x1=﹣4+4,x2=﹣4﹣4(舍去),∴AE=﹣4+4;当∠BAE=∠DFE,=时,∵∠ABF=∠BED,∴△AEF∽△BED,∴∠AFE=∠BDE,因为∠AFE是锐角,∠BDE是直角,所以这种情况不成立,综上所述,如果以点D、E、F为顶点的三角形与△BCF相似,AE的长为﹣4+4.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、函数解析式的确定,掌握相似三角形的判定定理和性质定理是解题的关键.4.(静安区)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.【分析】(1)先证明△ABE∽△AED,可得∠AEB=∠ADE,再由平行线性质可推出∠ADE=∠DCE,进而证得△ADE∽△ECD,根据相似三角形性质可证得结论;(2)如图2,过点B作BG⊥AE,运用等腰三角形性质可得G为AE的中点,进而可证得△ADE≌△ECD(SAS),再求得S△ABE=×AE×BG=18,根据△ABE∽△AED且相似比为3:2,可求得S=S△CDE=8,由S四边形ABCD=S△ABE+S△AED+S△CDE可求得答案;△AED(3)由△ABE∽△AED,可求得:DE=x,进而得出DC=x2,再利用△ADE∽△ECD,可得:CE=x,再利用DC∥AE,可得△AEF∽△DCF,进而求得:CF=EF,再结合题意得出答案.【解答】(1)证明:如图1,∵AE平分∠BAD,∴∠BAE=∠DAE,∵AE2=AB•AD,∴=,∴△ABE∽△AED,∴∠AEB=∠ADE,∵DC∥AE,∴∠AEB=∠DCE,∠AED=∠CDE,∴∠ADE=∠DCE,∴△ADE∽△ECD,∴=,∴DE2=AE•DC;(2)解:如图2,过点B作BG⊥AE,∵BE=9=AB,∴△ABE是等腰三角形,∴G为AE的中点,由(1)可得△ADE、△ECD也是等腰三角形,∵AE2=AB•AD,AB=BE=9,AE=6,∴AD=4,DE=6,CE=4,AG=3,∴△ADE≌△ECD(SAS),在Rt△ABG中,BG===6,∴S△ABE=×AE×BG=×6×6=18,∵△ABE∽△AED且相似比为3:2,∴S△ABE:S△AED=9:4,∴S△AED=S△CDE=8,∴S四边形ABCD=S△ABE+S△AED+S△CDE=18+8+8=34;(3)解:如图3,由(1)知:△ABE∽△AED,∴=,∵BE=x,AB=9,AE=6,AE2=AB•AD,AD=4,∴=,∴DE=x,由(1)知:DE2=AE•DC,∴DC=x2,∵△ADE∽△ECD,∴==,∴CE=x,∵DC∥AE,∴△AEF∽△DCF,∴==,∴CF=EF,∴===,∴y=EF=CE=×x=,∵即,∴3<x<9,∴y关于x的函数解析式为y=,定义域为3<x<9.【点评】本题是相似三角形综合题,考查了角平分线定义,平行线的性质,勾股定理,相似三角形的判定和性质,等腰三角形的性质,三角形面积等知识,熟练掌握相似三角形的判定和性质是解题关键.5.(杨浦区)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF =∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣x)2+x2=50,解得:x=1或x=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.6.(浦东新区)在△ABC中,∠ABC=90°,AB=4,BC=3,点O是边AC上的一个动点,过O作OD ⊥AB,D为垂足,在线段AC上取OE=OD,联结ED,作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)如图1所示,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出定义域;(3)当BF=1时,求线段AP的长.【分析】(1)利用等腰三角形的性质可证∠ADE=∠AEP,且∠A=∠A,可证结论成立;(2)由OD∥BC,得,可知AD=,DO=EO=,由(1)知△ADE∽△AEP,得AE2=AD•AP,有(x+)2=,变形即可得出答案;(3)当点P在线段AB上时,由△PBF∽△PED,得,由△ADE∽△AEP,得,则,代入解方程即可;当点P在AB的延长线上时,首先通过导角得出∠CEF=∠CFE,得EC=FC=2,过点E作EG⊥CF于点G,由相似得,则EG=,CG=,再利用EG∥BP,得,从而解决问题.【解答】(1)证明:∵OE=OD,∴∠ODE=∠OED,∵OD⊥AB,EP⊥ED,∴∠ADO=∠PED,∴∠ADO+∠ODE=∠PED+∠OED,∴∠ADE=∠AEP,∵∠A=∠A,∴△ADE∽△AEP;(2)解:∵OD⊥AP,BC⊥AB,∴OD∥BC,∴,∴AD=,DO=EO=,由(1)知△ADE∽△AEP,∴∴AE2=AD•AP,∴(x+)2=,∴y=;(3)解:①当点P在线段AB上时,如图1,BP=4﹣y=4﹣,∵△PBF∽△PED,∴,∴△ADE∽△AEP,∴,∴,∴,∴x=,∴AP=2,②当点P在AB的延长线上时,如图2,∵∠CFE=∠PFB=∠PDE,∠CEF+∠DEO=∠PDE+∠EDO,∴∠CEF=∠CFE,∴EC=FC=2,过点E作EG⊥CF于点G,∴,∴EG=,CG=,∴EG∥BP,∴,∴PB=2,∴AP=2+4=6,综上所述,AP=2或6.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,平行线分线段成比例等知识,运用分类讨论思想是正确解题的关键.7.(奉贤区)如图1,已知锐角△ABC的高AD、BE相交于点F,延长AD至G,使DG=FD,联结BG,CG.(1)求证:BD•AC=AD•BG;(2)如果BC=10,设tan∠ABC=m.①如图2,当∠ABG=90°时,用含m的代数式表示△BFG的面积;②当AB=8,且四边形BGCE是梯形时,求m的值.【分析】(1)利用同角的余角相等可证∠BGF=∠ACD,且∠BDG=∠ADC=90°,则△BDG∽△ADC,可证明结论;(2)①通过导角可利用ASA证△ADB≌△ADC,得BD=CD=BC=5,再通过tan∠BGD=m,可得GD=,则GF=2GD=,代入三角形的面积公式即可;②分两种情形,当BG∥AC或BE∥CG,分别通过导角发现数量关系,从而解决问题.【解答】(1)证明:∵△ABC的高AD、BE相交于点F,∴∠AEB=∠ADC=90°,又∵∠EAF=∠DAC,∴∠AFE=∠ACD,∵∠BFD=∠AFE,∴∠BFD=∠ACD,∵BD⊥FG,DF=DG,∴BD垂直平分GF,∴BG=BF,∴∠BGF=∠BFG,∴∠BGF=∠ACD,又∵∠BDG=∠ADC=90°,∴△BDG∽△ADC,∴,∴BD•AC=AD•BG;(2)解:①∵∠ABG=90°,∴∠ABD+∠GBC=90°,∵∠GBD+∠BGD=90°,∴∠ABD=∠BGD,同理∠GBD=∠BAD,由(1)知△BDG∽△ADC,∴∠GBD=∠DAC,∴∠BAD=∠CAD,又∵AD=AD,∠ADB=∠ADC,∴△ADB≌△ADC(ASA),∴BD=CD=BC=5,∵tan∠ABC=m.∴tan∠BGD=m,∴GD=,∴GF=2GD=,∴S△BFG=×FG×BD==;②当BG∥AC时,∴∠ACB=∠GBC,∵∠GBC=∠CAD,∴∠ACB=∠CAD=45°,设CD=AD=x,则BD=10﹣x,由勾股定理得,x2+(10﹣x)2=82,解得x=5±,当x=5+时,BD=10﹣x=5﹣,此时m=,当x=5﹣时,BD=10﹣x=5+,此时m=;当BE∥CG时,∴∠EBC=∠BCG,则∠CBG=∠BCG,∴BG=CG,∴BD=CD=5,由勾股定理得AD=,∴m=,综上,m=或或.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行线的性质,三角函数等知识,综合性较强,熟练掌握角之间的转化发现解题思想是关键.8.(松江区)如图,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.【分析】(1)证明△DCE≌△DBE(ASA),可得CE=BE=2,根据=tan∠B=,即可求得答案;(2)分两种情况:①当△CEF∽△ABC时,可证得∠CDB=90°,再根据DE平分∠CDB,可得∠CDE=45°,再由特殊角的三角函数值即可求得答案;②当△CEF∽△BAC时,则∠ECF=∠ABC,得出DC=DB,再由DE平分∠CDB,可得DE⊥BC,推出∠CDE=∠BAC,利用三角函数定义即可求得答案;(3)如图,过点E作EG⊥AB于点G,根据角平分线性质可得出EF=EG,推出DF=DG,再由△BDE的面积是△DEF面积的2倍,可得出BD=2DF,进而推出DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,BD=2BG=x,DG=DF=BG=x,AD=AB﹣BD=6﹣x,根据△CDE∽CBD,得出==,建立方程求解即可.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=6,BC=4,∴AC===2,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE⊥BC,∴∠DEC=∠DEB=90°,在△DCE和△DBE中,,∴△DCE≌△DBE(ASA),∴CE=BE,∵CE+BE=BC=4,∴CE=BE=2,∵=tan∠B=,∴=,∴DE=;(2)∵EF⊥CD,∴∠CFE=90°=∠ACB,∵△CEF与△ABC相似,∴△CEF∽△ABC或△CEF∽△BAC,①当△CEF∽△ABC时,则∠ECF=∠BAC,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠ECF+∠ABC=90°,∴∠CDB=90°,∵DE平分∠CDB,∴∠CDE=∠CDB=×90°=45°,∴tan∠CDE=tan45°=1;②当△CEF∽△BAC时,则∠ECF=∠ABC,∴DC=DB,∵DE平分∠CDB,∴DE⊥BC,∴∠CDE+∠ECF=90°,∵∠BAC+∠ABC=90°,∴∠CDE=∠BAC,∴tan∠CDE=tan∠BAC===,综上所述,∠CDE的正切值为1或;(3)如图,过点E作EG⊥AB于点G,∵DE平分∠CDB,EF⊥CD,EG⊥AB,∴EF=EG,∵DE=DE,∴Rt△DEF≌Rt△DEG(HL),∴DF=DG,∵△BDE的面积是△DEF面积的2倍,∴BD=2DF,∴DG=BG,∵EG⊥BD,∴DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,∴BD=2BG=x,DG=DF=BG=x,∴AD=AB﹣BD=6﹣x,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE=BE,∴∠BDE=∠B,∴∠CDE=∠B,∵∠DCE=∠BCD,∴△CDE∽CBD,∴==,即==,解得:CD=3,x=,∴AD=6﹣x=6﹣×=,故这时AD的长为.【点评】本题是几何综合题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形的判定和性质,角平分线性质,三角形面积,三角函数等知识,解题关键是熟练掌握相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想解决问题.9.(青浦区)在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.(1)求线段BC的长;(2)当FB=FE时,求线段BF的长;(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.根据矩形的性质得到AD=HG=2,AH=DG,解直角三角形即可得到结论;(2)如图1,过点E作EM⊥BC,垂足为点M,根据矩形的性质得到EM=AH=2,解直角三角形即可得到结论;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.根据平行四边形的性质得到DE=CN,∠DCB=∠ENB,根据相似三角形的性质得到BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,根据矩形的性质得到EQ=DG=2,根据勾股定理即可得到结论.【解答】解:(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.∴AH∥DG,∵AD∥BC,∴四边形AHGD是矩形,∴AD=HG=2,AH=DG,在Rt△ABH中,tan∠ABC=2,AB=,∴=2,∴AH=2BH,∵AH2+BH2=AB2,∴(2BH)2+BH2=()2,∴BH=1,∴AH=2,∴DG=2,在Rt△DGC中,DC=,∴CG===4,∴BC=BH+HG+GC=1+2+4=7;(2)如图1,过点E作EM⊥BC,垂足为点M,∴AH∥EM,∵AD∥BC,∴四边形AHME是矩形,∴EM=AH=2,在Rt△DGC中,DG=2,CG=4,∴tan∠DCB==,∵FB=FE,∴∠FEB=∠FBE.∵∠FEB=∠DCB,∴∠FBE=∠DCB,∴tan∠FBE=.∴=,∴BM=4,在Rt△EFM中,FM2+EM2=FE2,∴(4﹣FB)2+22=FB2,∴BF=;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.∵DE∥CN,∴四边形DCNE是平行四边形,∴DE=CN,∠DCB=∠ENB,∵∠FEB=∠DCB,∴∠FEB=∠ENB,又∵∠EBF=∠NBE,∴△BEF∽△BNE,∴=,∴BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,则四边形DGQE是矩形,∴EQ=DG=2,∴BQ=x+3.∴BE2=QE2+BQ2=(x+3)2+22=x2+6x+13,∴y(7+x)=x2+6x+13.∴.【点评】本题考查了四边形综合题,梯形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.10.(徐汇区)如图,在△ABC中,∠C=90°,cot A=,点D为边AC上的一个动点,以点D为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD•BF=BC•DE;(3)当DE:EF=3:1时,求AE:EB.【分析】(1)过点D作DG⊥AB于G,设AC=a,BC=a,由勾股定理得AB的长,在△ABD中,利用面积法可表示出DG的长,再利用勾股定理得出AG的长,从而解决问题;(2)首先利用两个角相等可证明△ADB∽△DEB,得,再证明△ACB∽△DFB,得,从而证明结论;(3)设DE=x,EF=3x,得DF=4x,由cot,可表示出BF的长,再利用勾股定理得出BE、BD的长,由(2)可知,△ADB∽△DEB,得,可表示出AB的长,从而解决问题.【解答】(1)解:如图,过点D作DG⊥AB于G,在Rt△ABC中,cot A=,设AC=a,BC=a,∵∠ACB=90°,∴AB===a,∵D是AC的中点,∴AD=,∵S,∴DG=,在Rt△ADG中,AG===,∴BG=AB﹣AG=a﹣=,在Rt△GDB中,tan;(2)证明:∵∠BDE=∠A,∠DBE=∠ABD,∴△ADB∽△DEB,∴,∵∠F=∠C=90°,∠A=∠BDE,∴△ACB∽△DFB,∴,∴,∴AD•BF=BC•DE;(3)解:∵,∴设DE=x,EF=3x,∴DF=4x,∵∠A=∠BDE,∴cot A=cot∠BDE=,在 Rt△BDF中,cot,∴BF=x,在Rt△BEF中,BE===x,在Rt△BDF中,DB===2x,由(2)可知,△ADB∽△DEB,∴,∴,∴AB=x,∴AE=AB﹣BE=x﹣x=x,∴,即AE:EB=7:17.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,三角函数,勾股定理,三角形的面积等知识,利用代数方法解决几何问题是解题的关键.11.(长宁区)已知,在△ABC中,AB=AC=5,BC=8,点E是射线CA上的动点,点O是边BC上的动点,且OC=OE,射线OE交射线BA于点D.(1)如图,如果OC=2,求的值;(2)联结AO,如果△AEO是以AE为腰的等腰三角形,求线段OC的长;(3)当点E在边AC上时,联结BE、CD,∠DBE=∠CDO,求线段OC的长.【分析】(1)通过证明△ABC∽△OEC,可求EC的长,AE的长,通过证明△ADE∽△ODB,可求解;(2)分两种情况讨论,利用相似三角形的性质可求解;(3)通过证明△CDA∽△BEO,可得,通过证明△ABE∽△ODC,可得,列出等式可求解.【解答】解:(1)∵AB=AC=5,OE=OC=2,∴∠B=∠C,∠C=∠OEC,∴∠B=∠OEC=∠AED,又∵∠C=∠C,∴△ABC∽△OEC,∴,∴=,∴EC=,∴AE=,∵∠ADE=∠ADE,∠AED=∠B,∴△ADE∽△ODB,∴=()2=()2=;(2)如图1,当点E在AC上时,∵∠AEO>90°,△AEO是等腰三角形,∴AE=EO,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=AE+EC=OC+OC=5,∴OC=;当点E在线段CA的延长线上时,如图2,∵∠EAO>90°,△AEO是等腰三角形,∴AE=AO,∴∠E=∠AOE,∵∠B=∠C=∠OEC,∴∠B=∠AOE,∴△ABC∽△AOE,∴,∴,∴AE=OC,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=EC﹣AE=5,∴OC﹣OC=5,∴OC=,综上所述:线段OC的长为或;(3)如图3,当点E在线段AC上时,∵∠ABE=∠CDO,∠ABC=∠OEC,∴∠ABC﹣∠ABE=∠OEC﹣∠ODC,∴∠EBO=∠DCA,∵∠DAC=∠ABC+∠ACB=2∠ACB,∠BOE=∠ACB+∠OEC=2∠ACB,∴∠DAC=∠BOE,∴△CDA∽△BEO,∴,∵∠ABE=∠ODC,∠BAC=∠DOC,∴△ABE∽△ODC,∴,∴,∴,∴OC=8﹣或OC=8+(不合题意舍去),∴OC=8﹣.【点评】本题是三角形综合题,考查了等腰三角形的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.12.(崇明区)已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将△ADE绕点D逆时针旋转90°,E点落在F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.(1)当AE=时,求tan∠EDB的值;(2)当点E在线段AB上,如果AE=x,FM=y,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当BG=时,求AE的值.【分析】(1)如图1中,过点E作ER⊥BD于点R.解直角三角形求出ER,DR即可;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.证明===,构建关系式,可得结论;(3)分两种情形:如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.分别求解即可.【解答】解:(1)如图1中,过点E作ER⊥BD于点R.∵四边形ABCD是正方形,∴AB=AD=BC=CD=1,∠A=90°,∠BD=90°,∴BD===,∵ER⊥BD,∴∠EBR=∠BER=45°,∵AE=,∵BE=,∴ER=BR=,∴DR=﹣=,∴tan∠EDB===;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DA=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF=x,在Rt△ADE中,DE==,∵DE=DF,∠EDF=90°,∴EF=DE=,∵∠EBM=∠FBM=45°,MP⊥BE,MQ⊥BF,∴MP=MQ,∴===,∴=,∴y=﹣x(0≤x≤1);(3)如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=1﹣x﹣=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=﹣(x﹣1)=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=,综上所述,满足条件的AE的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.13.(黄浦区)如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC•BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,联结DF.(1)求证:AE=AC;(2)设BC=x,=y,求y关于x的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.【分析】(1)将AB2=BC•BD转化为,进而根据勾股定理和比例性质推出,进而△ABC∽△DAB,进一步证明△BAE≌△BAC,从而命题得证;(2)作AG∥BE交BC的延长线于G,作GH⊥AB,推出△FBE∽△FGA和cos∠ABC=,再根据比例性质求得结果;(3)两种情形:△ACB∽△DEF和△ACB∽△FED,当△ACB∽△DEF时,由y=1求得结果,当△ACB∽△FED时,推出DF∥AB,从而=,根据△ABE∽△DBA,推出BD=,进而可求得结果.【解答】(1)证明:∵AB2=BC•BD,∴,∴=,∴=,即:=,∴,∵∠C=∠BAD=90°,∴△ABC∽△DAB,∴∠ADB=∠BAC,∵∠BAD=90°,∴∠ADB+∠ABD=90°,∵AE⊥BD,∴∠AEB=90°,∴∠EAB+∠ABD=90°,∴∠BAE=∠ADB,∴∠BAE=∠BAC,∵∠AEB=∠C,AB=AB∴△BAE≌△BAC(AAS),∴AE=AC;(2)如图1,作AG∥BE交BC的延长线于G,作GH⊥AB,∴△FBE∽△FGA,∠ABE=∠BAG,∴,由(1)得,∠EAB=∠BAC,∵∠AEB=∠ACB=90°,∴∠ABE=∠ABC,∴∠ABC=∠BAG,∴AG=BG,∴BH=AH=AB=,∵cos∠ABC=,∴,∴BG=,∴AG=,∴,∴,∴,∴=,∴y=(0<x<);(3)如图2,当△ACB∽△DEF时,∠EDF=∠BAC,∴∠EDF=∠ADE,∵∠DEF=∠DEA,DE=DE,∴△DEF≌△DEA(ASA),∴EF=AE,∴y=1,∴=1,∴x1=,x2=﹣(舍去),∴BC=,如图3,当△ACB∽△FED时,∠BAC=∠DFE,∵∠BAE=∠BAC,∴∠DFE=∠BAE,∴DF∥AB,。
2023年上海市15区物理中考一模分类汇编专题5 电学压轴计算题含答案
2023年上海中考一模各区分类汇编(学生版)专题05电学压轴计算题1.(2023宝山一模)在图9(a)电路中,电源电压6伏且保持不变,电阻R 1的阻值为20欧,滑动变阻器R 2上标有“50Ω 1.8A”字样。
闭合开关S,电路正常工作。
①求电流表A 1的示数I 1。
②若在电路中再串联一只电流表A,其示数如图9(b)所示,求此时滑动变阻器连入电路的阻值R 2。
2.(2023崇明一模)在图7所示的电路中,电源电压为24伏保持不变,电阻R 1的阻值为10欧,滑动变阻器R 2上标有“50Ω1.5A ”字样.闭合电键S 后,电流表A 的示数为1安.试求:(1)求电阻R 1两端的电压U 1;(2)求此时滑动变阻器R 2的阻值;(3)在电路安全工作的情况下,移动变阻器R 2的滑片,请你通过计算求出电流表示数的最大变化量I 最大△.3.(2023奉贤一模)在图11(a )所示,电源电压为12伏保持不变,电阻R 1的阻值为12欧,滑动变阻器R 2上标有“50欧2安”字样,闭合开关S ,电流表A 1的示数如图11(b )所示。
求:①通过电阻R 1的电流I 1。
②滑动变阻器连入电路的阻值R 2。
③当移动滑动变阻器滑片P 在某位置时,两电表示数偏转角度恰好相同,求此时电路中的总电阻R 。
4.(2023虹口一模)在图9所示的电路中,电源电压保持不变,电阻R1的阻值为20欧,滑动变阻器R2上标有“20Ω1A”字样。
仅闭合开关S ,电流表A 和A1的示数分别为0.7安、0.3安。
①求电源电压U ;②求此时变阻器R2连入电路的阻值;③移动变阻器滑片P 可以使电流表A 示数变化,求电流表A 示数的最大变化量ΔImax 。
5.(2023黄埔一模)在图9所示的电路中,电源电压保持不变,电阻R 1的阻值为10欧,闭合开关S ,电流表的示数为0.9安。
①求电源电压U 。
②在电路中再接入一个电阻R 2,电阻R 2接入前后电流表示数变化了0.3安,求R 2的阻值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(宝山)18. 如图,Rt △ABC 中,90ACB ∠=︒,4AC =,5BC =,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C 落在C '处,连接AC ',若AC '∥BC ,那么CP 的长为24. 如图,已知,二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C ,OCA ∠的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ',若ABP BCP S S''=,求m 的值.25. 如图,已知,梯形ABCD 中,90ABC ∠=︒,45A ∠=︒,AB ∥DC ,3DC =,5AB =,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若AP =DE 的长;(2)联结CP ,若CP EP =,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值,若不相似,请说明理由.(崇明)18. 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD 中,点M 在边CD 上,连结AM 、BM ,90AMB ∠=,则点M 为直角点.若点E 、F 分别为矩形ABCD 边AB 、CD 上的直角点,且5,6AB BC ==,则线段EF 的长为____________.24、如图,在平面直角坐标系xOy 中,二次函数26y ax bx =++(,a b 都是常数,且0a <)的图像与x 轴交于点()2,0A -()6,0B ,顶点为点C . (1)求这个二次函数的解析式及点C 的坐标;(2)过点B 的直线132y x =-+交抛物线的对称轴于点D ,联结BC ,求CBD ∠的余切值; (3)点P 为抛物线上一个动点,当PBA CBD ∠=∠时,求点P 的坐标.25、如图,在ABC 中,5AB AC ==,6BC =,AD BC ⊥,垂足为D ,点P 是边AB 上的一个动点,过点P 作//PF AC 交线段BD 于点F ,作PG AB ⊥交AD 于点E ,交线段CD 于点G ,设BP x=.(1)用含x的代数式表示线段DG的长;(2)设DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.(奉贤)18.如图5,在ABC中,35,sin5AB AC C===,将ABC绕点A逆时针旋转得到ADE,点B、C分别与点D、E对应,AD与边BC交于点F,如果//AE BC,那么BF的长是____________.(图5)24. (本题满分12分,每小题6分)如图10,在平面直角坐标系xOy 中,直线AB 与抛物线2y ax bx =+交于点()6,0A 和点()1,5B -.(1)求这条抛物线的表达式和直线AB 的表达式; (2)如果点C 在直线AB 上,且BOC ∠的正切值是32,求点C 的坐标.25. (本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知梯形ABCD 中,//,90,4,26AB CD DAB AD AB CD ∠====,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G .BC(1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求DFG 的面积;(用含m 的代数式表示) (3)当AFD ∽ADG 时,求DAG ∠的余弦值.(黄浦)18.如图,在矩形ABCD 中,点E 是边AD 上的点, EF BE ⊥,交边CD 于点F ,联结CE 、BF ,如果3tan 4ABE ∠=,那么GAFDC BEADBAD EF:CE BF = _ .24.(本题满分12分)在平面直角坐标系中,已知抛物线()20y ax bx c a =++>与x 轴交于()1,0A -、B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为点D ,对称轴为直线1x =,交x 轴于点E ,1tan 2BDE ∠=.(1)求抛物线的表达式;(2)若点P 是对称轴上一点,且DCP BDE ∠=∠,求点P 的坐标.25.(本题满分14分)在ABC ∆中,90ACB ∠=︒,3BC =,4AC =,点O 是AB 的中点,点D 是边AC 上一点,DE BD ⊥,交BC 的延长线于点E ,OD DF ⊥,交BC 边于点F ,过点E 作EG AB ⊥,垂足为点O yx(第24题图)G ,EG 分别交BD 、DF 、DC 于点M 、N 、H .(1)求证:DE NEDB OB=; (2)设CD x =,NE y =,求y 关于x 的函数关系式及其定义域;(3)当DEF ∆是以DE 为腰的等腰三角形时,求线段CD 的长.(嘉定)18.在△ABC 中,︒=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,︒=∠45CDE (如图3),△DCE 沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan _ .ABCDO EF HGM N(第25题图)24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B , 与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC的面积; (3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项.图7O 1 1-1 -1(1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.(金山)18.如图,在ABC Rt ∆中,o 90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O 为旋转中心,把ABC ∆逆时针旋转 90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是 _ .A 图8B M E D CN A 备用图BD CME N A 图9BD C24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ).(1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r .(1)求证:四边形ACDF 是矩形.第24题yxO(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).(静安)18. 如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BD AE的值是____________.A B C D EF G O HM第25题图第25题备用图 AB CD E FO24. (本题满分12分,第(1)题4分,第(2)题3分,第(3)题5分)在平面直角坐标系xOy 中(如图10),已知抛物线()20y ax bx c a =++≠的图像经过点()4,0B 、()5,3D ,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD 的面积是3. (1)求该抛物线的表达式; (2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE 与ABD 相似时,求点P 的坐标.25. (本题满分14分,第(1)题4分,第(2)题5分,第(3)题5分)已知:如图11,在ABC 中,6,9,tan AB AC ABC ==∠=B 作//BM AC ,动点P 在射线BM 上(点P 不与B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC 的面积;(2)设,BP x AQ y ==,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC 是直角三角形,求BP 的长.(闵行)18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE= .A24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y a x b x =+经过点A (5,0)、B (-3,4),抛物线的对称轴与x 轴相交于点D . (1)求抛物线的表达式;(2)联结OB 、BD .求∠BDO 的余切值; (3)如果点P 在线段BO 的延长线上,且∠P AO=∠BAO ,求点P 的坐标.25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=. xyO (第24题图)(1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.(浦东)18. 将矩形纸片ABCD 沿直线AP 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果AED ∠的余弦值为35,那么ABBC=____________.ABCDEFG(第25题图)ABCD(备用图)24、如图9,在平面直角坐标系xOy 中,直线12y x b =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线244y ax ax =-+经过点A 和点B ,并与x 轴相交于另一点C ,对称轴与x 轴相交于点D . (1)求抛物线的表达式; (2)求证:BODAOB ;(3)如果点P 在线段AB 上,且BCP DBO ∠=∠,求点P 的坐标.25、将大小两把含30角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D 、E 分别在大三角尺的直角边AC 、BC 上,此时小三角尺的斜边DE 恰好经过大三角尺的重心G .已知30A CDE ∠=∠=,12AB =. (1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D 第一次落在大三角尺的边AB 上时(如图10-2),求点B、E之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线De经过点A时,求BAE∠的正弦值.(普陀)18.如图5,ABC中,3 8,cos4AB AC B===,点D在边BC上,将ABD沿直线AD 翻折得到AED,点B的对应点为点E,AE与边BC相交于点F,如果2BD=,那么EF= ____________.24. (本题满分12分)如图10,在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠与x 轴交于点()1,0A -和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D . (1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.25. (本题满分14分)如图11,点O 在线段AB 上,22,60AO OB a BOP ==∠=,点C 是射线OP 上的一个动点.(1)如图11①,当90,2ACB OC ∠==,求a 的值;(2)如图11②,当AC AB =时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作//AQ BC ,并使QOC B ∠=∠,求:AQ OQ 的值.(松江)18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++-=221经过点A (﹣2,0),点B (0,4).(1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.(第18题图) x y C BO A (第24题图)y xOBA25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.(备用图2)ABCD(备用图1)ABCD(第25题图)ABPC D E(徐汇)18. 在梯形ABCD 中,//AB DC ,390,6,2,tan 4B BC CD A ∠====.点E 为BC 上一点,过点E 作//EF AD 交边AB 于点F .将BEF 沿直线EF 翻折得到GEF ,当EG 过点D 时,BE 的长为____________.24、如图,在平面直角坐标系中,顶点为M 的抛物线1:C 2y ax bx =+(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=. (1)求该抛物线的表达式; (2)联结AM ,求AOMS;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E 、F (点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.25、已知在梯形ABCD 中,//AD BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长;(2)设EC y =,求y 关于x 的函数解析式,并直接写出定义域; (3)当DFC 是等腰三角形时,求AD 的长.(杨浦)18. Rt ABC 中,90,3,2C AC BC ∠===,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为____________.24、在平面直角坐标系中,抛物线2y ax bx c =++(0a ≠)与y 轴交于点()0,2C ,它的顶点为()1,D m ,且1tan 3COD ∠=.(1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA OB =,若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且45APB ∠=,求点P 的坐标.25、已知在梯形ABCD 中,//AD BC ,AB BC ⊥,3AD =,6AB =,DF DC ⊥分别交射线AB 、射线CB于点E、F.(1)当点E为边AB的中点时(如图1),求BC的长;∠的大小是否确定?若确定,请求出(2)当点E在边AB上时(如图2),联结CE,试问:DCE∠的正切值为y,请求出y关于x的函数解析=,DCE∠的正切值;若不确定,则设AE xDCE式,并写出定义域;(3)当AEF的面积为3时,求DCE的面积.(长宁)18.如图,点P在平行四边形ABCD的边BC上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD , 34tan =B ,那么BP 的长为 _ .24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,︒=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内. (1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN∆的面积的2倍,求NCMN 的值.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部,AD第18题图第24题图xO A By备用图xO A By且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.(虹口)如图 2BF EC N DA MB FC E N AD M如图 1备用图BC NAM。