平稳时间序列分析

合集下载

数学建模(平稳时间序列分析)

数学建模(平稳时间序列分析)

















模型 识别
参数 估计


N
模型
Y型

检验




计算样本相关系数
样本自相关系数 样本偏自相关系数
nk
(xt x)( xtk x)
ˆk t1 n
(xt x)2
t 1
ˆkk

Dˆ k Dˆ
ˆk
模型识别
基本原则
拖尾 q阶截尾
均值
Ext

1 1
0 p
协方差


(k
)


2
GiGik
i0
自相关系数

(k) (k) (0)

G jG jk
j0

G
2 j
j0
ARMA模型的相关性
自相关系数拖尾 偏自相关系数拖尾
例2.7:考察ARMA模型的相关性
拟合模型ARMA(1,1): xt 0.5xt1 t 0.8t 并直观地考察该模型自相关系数和偏自 相关系数的性质。
例2.5— (1)xt 0.8xt1 t
自相关系数按复指数单调收敛到零
例2.5:— (2)xt 0.8xt1 t
例2.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例2.5:— (4)xt xt1 0.5xt2 t
Exs t 0,s t
特别当0 0 时,称为中心化 AR( p)模型

时间序列分析平稳性自相关与移动平均的计算公式

时间序列分析平稳性自相关与移动平均的计算公式

时间序列分析平稳性自相关与移动平均的计算公式时间序列分析是一种用于研究时间上观察到的数据模式、趋势和周期性的统计方法。

其中,平稳性、自相关和移动平均是时间序列分析中的重要概念和计算公式。

本文将对这些概念进行详细介绍并给出相应的计算公式。

1. 平稳性平稳性是指时间序列在统计特性上的稳定性,即均值和方差不随时间变化。

平稳序列有利于预测和建模。

时间序列通过一阶差分可以检验平稳性,即将序列中的每个元素与其前一个元素相减,若差分后的序列是平稳序列,则原序列为平稳序列。

2. 自相关自相关是指序列中的一个观测值与其之前的观测值之间的相关性。

自相关函数(ACF)是一种表示自相关程度的函数,可以用来衡量序列的相关性。

自相关函数的计算公式如下:\[ACF(h) = \frac{Cov(X_t, X_{t-h})}{Var(X_t)}\]其中,\(X_t\)表示序列的观测值,\(X_{t-h}\)表示观测值在时刻\(t-h\)的值,\(Cov(X_t, X_{t-h})\)表示两者的协方差,\(Var(X_t)\)表示序列的方差。

3. 移动平均移动平均是一种平滑序列的方法,可以消除随机噪声,突出序列的趋势。

移动平均的计算公式如下:\[MA_t = \frac{1}{k}\sum_{i=t-k+1}^{t}X_i\]其中,\(MA_t\)表示移动平均值,\(X_i\)表示时间序列中的观测值,\(k\)表示移动窗口的大小。

综上所述,时间序列分析中的平稳性、自相关和移动平均是在研究序列特性、趋势和周期性时经常用到的概念和计算公式。

熟练运用这些公式可以帮助我们理解和预测时间序列的行为,对于数据分析、经济预测等领域具有重要的应用价值。

注:本文所给出的计算公式仅为一般情况下的理论表达,实际应用中可能会根据具体问题的需要进行适当的调整和改进。

在实际操作中,可以借助计算机软件和编程语言来计算和分析时间序列数据。

平稳时间序列的判断条件

平稳时间序列的判断条件

平稳时间序列的判断条件平稳时间序列是指在时间维度上具有平稳性的序列,即其统计特性不随时间的推移而发生变化。

平稳时间序列的判断条件包括以下几个方面:1. 均值平稳:时间序列的均值不随时间的推移而发生变化。

2. 方差平稳:时间序列的方差不随时间的推移而发生变化。

3. 自相关函数平稳:时间序列的自相关函数只与时间间隔有关,而与时间的起点无关。

4. 偏自相关函数平稳:时间序列的偏自相关函数只与时间间隔有关,而与时间的起点无关。

如果一个时间序列满足以上四个条件,则可以认为它是平稳时间序列。

在实际应用中,可以通过计算时间序列的均值、方差、自相关函数和偏自相关函数来判断其是否平稳。

如果一个时间序列不满足平稳条件,可以考虑以下几种处理方法:1. 差分法:对时间序列进行差分处理,即计算相邻两个时间点之间的差值。

通过多次差分,可以将非平稳时间序列转化为平稳时间序列。

例如,对于一个非平稳的时间序列 $X_t$,可以计算其一阶差分 $D(X_t) = X_t - X_{t-1}$,如果一阶差分仍然不平稳,可以继续计算二阶差分、三阶差分等,直到得到一个平稳的时间序列。

2. 季节性调整:如果时间序列存在季节性波动,可以使用季节性调整方法将季节性因素去除,从而使时间序列变得平稳。

季节性调整方法包括季节性指数平滑法、季节性差分法等。

3. 单位根检验:可以使用单位根检验来判断时间序列是否存在单位根。

如果时间序列存在单位根,则说明它是非平稳的;如果不存在单位根,则说明它是平稳的。

常用的单位根检验方法包括ADF 检验、PP 检验等。

4. 模型拟合:如果时间序列不满足平稳条件,可以尝试使用非平稳时间序列模型进行拟合,如自回归求和移动平均(ARIMA)模型、广义自回归条件异方差(GARCH)模型等。

这些模型可以捕捉时间序列的非平稳特征,从而更好地描述时间序列的变化规律。

需要根据具体情况选择合适的处理方法,以便更好地分析和预测时间序列。

第2章 平稳时间序列分析

第2章 平稳时间序列分析

zt
(c1
c2t
cd t d1)1t
cd
t
1 d
1
cptp
复根场合
zt
rt (c1eit
c2eit
) c3t3
c
t
pp
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解zt
zt a1 zt1 a2 zt2 a p zt p h(t)
推导出
0
1 1 p
Green函数定义
设零均值平稳序列 {xt , t 0, 1, 2,...} 能够表示为
xt Gjt j t : WN (0, 2 ) j0
则称上式为平稳序列 {xt } 的传递形式,式中的加权系数 G j
称为Green函数,其中 G0 1 。
Green函数的含义
几个例题
0.8 0.6 0.4 0.2 0.0
2 4 6 8 10 12 14 16 18 20
2.2 2.0 1.8 1.6 1.4 1.2 1.0
2 4 6 8 10 12 14 16 18 20
几个例题
(5) yt 1.6yt1 0.9yt2 (6) yt 1.6yt1 1.1yt2
有关。
2.时间序列的协方差函数与自相关函数
协方差函数:
(t, s) E( Xt t ) X s s
(x t ) y s dFt,s (x, y) 其中,Ft,s (x, y) 为 ( X t , X s )的二维联合分布。
自相关函数:
(t, s) (t, s) / (t,t) (s, s)
特征根判别
AR(p)模型平稳的充要条件是它的p个特征根都在单 位圆内

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。

所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。

目前对平稳序列最常用的预测方法是线性最小方差预测。

线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。

在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。

二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

线性平稳时间序列分析

线性平稳时间序列分析

线性平稳时间序列分析线性平稳时间序列分析是一种重要的时间序列分析方法,用于研究随时间变化的数据。

它基于一个核心假设,即数据的均值和方差在随时间推移的过程中保持不变。

线性平稳时间序列可以用数学模型来描述,通常使用自回归(AR)模型、滑动平均(MA)模型或自回归滑动平均(ARMA)模型。

这些模型基于该系列在某一时间点的值与该系列在过去时间点的值之间的线性关系。

为了进行线性平稳时间序列分析,首先需要检验数据是否满足平稳性的假设。

常用的检验方法包括ADF检验和单位根检验。

若数据不满足平稳性的假设,则需要通过差分操作将其转化为平稳时间序列。

在得到平稳的时间序列后,可以使用最小二乘法对时间序列进行模型拟合。

通过对数据进行模型拟合,我们可以得到模型的系数以及误差项的信息。

利用这些信息,可以进行时间序列的预测和分析。

在预测方面,线性平稳时间序列分析可以利用过去的观测值来预测未来的值。

预测方法包括简单的移动平均法和指数平滑法,以及更复杂的AR、MA和ARMA模型。

在分析时间序列方面,线性平稳时间序列分析可以通过模型的系数和误差项的信息来揭示数据的特征和规律。

例如,可以用模型的系数来检验是否存在滞后效应,用误差项的信息来检验模型的拟合程度。

总之,线性平稳时间序列分析是一种重要的时间序列分析方法,可以帮助我们研究随时间变化的数据。

通过对数据进行模型拟合、预测和分析,我们可以揭示数据的特征和规律,从而提供决策支持和预测能力。

线性平稳时间序列分析是一种重要的时间序列分析方法,它广泛应用于经济学、金融学、工程学等领域。

该方法基于数据的均值和方差在时间推移过程中保持不变的假设,旨在研究随时间变化的数据及其内在规律,以便进行预测、决策支持和其他分析。

在线性平稳时间序列分析中,首先需要检验数据是否符合平稳性的假设。

平稳性是指数据的均值和方差不随时间变化而发生显著变化。

为了检验平稳性,在实际应用中常常使用单位根检验或ADF检验等方法。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。

它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。

时间序列分析模型可以分为统计模型和机器学习模型两类。

一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。

常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。

-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。

它将序列的当前值作为过去值的线性组合来预测未来值。

ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。

-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。

ARIMA(p,d,q)模型中,d表示差分的次数。

-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。

SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。

2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。

常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。

-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。

-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。

二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。

在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。

1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。

具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。

此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。

2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。

常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。

3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。

趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。

4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。

常见的处理方法有差分法、对数变换等。

差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。

5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。

- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。

- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。

平稳时间序列分析

平稳时间序列分析

0
varX t
(1
2 1
2 q
)
2
1
cov( X t , X t1 )
(1
1 2
2 3
q
1
q
)
2
q 1
cov( X t ,
X t q1 )
( q1
1
q
)
2
q
cov( X t , X tq )
q
2
当滞后期不小于q时,Xt旳自协方差系数为0。
所以:有限阶移动平均模型总是平稳旳。
3、ARMA(p,q)模型旳平稳性
• 有时,虽然能估计出一种较为满意旳因果关系回归方程, 但因为对某些解释变量将来值旳预测本身就非常困难,甚 至比预测被解释变量旳将来值更困难,这时因果关系旳回 归模型及其预测技术就不合用了。
在这些情况下,我们采用另一条预测途径:经过时间 序列旳历史数据,得出有关其过去行为旳有关结论,进而 对时间序列将来行为进行推断。
0
2 X
2
12
在稳定条件下,该方差是一非负旳常数,从而有 ||<1。
而AR(1)旳特征方程
(z) 1 z 0
旳根为
z=1/
AR(1)稳定,即 || <1,意味着特征根不小于1。
例 AR(2)模型旳平稳性。 对AR(2)模型
X t 1 X t1 2 X t2 t
方程两边同乘以Xt,再取期望得:
所使用旳工具主要是时间序列旳自有关函数 (autocorrelation function,ACF)及偏自有关函 数(partial autocorrelation function, PACF )。
1、AR(p)过程
(1)自有关函数ACF 1阶自回归模型AR(1)

平稳时间序列分析-ARMA模型

平稳时间序列分析-ARMA模型

1 0 1 2
所以,平稳AR(2)模型的协方差函数递推公式为
0
1 2 (1 2 )(1 1 2 )(1 1
2
)
2
1
1 0 1 2
k
1 k1 2 k2,k
2
4、自相关系数
(1)自相关系数的定义:
k
k 0
特别
0 1
(2)平稳AR(P)模型的自相关系数递推公式:
k 1k 1 2 k 2 p k p
例3.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例3.5:— (4)xt xt1 0.5xt2 t
自相关系数不规则衰减
6、偏自相关函数
自相关函数ACF(k)给出了Xt与Xt-k的总体 相关性,但总体相关性可能掩盖了变量间完全 不同的相关关系。
例如,在AR(1) 中,Xt与Xt-2间有相关性可 能主要是由于它们各自与Xt-1间的相关性带来 的:
对于非中心化序列
xt 0 1xt1 2 xt2
p xt p t
作变换
1 1
0
p
yt xt
则原序列即化为中心化序列
yt 1 yt1 2 yt2 p yt p t
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示
令 (B) 11B 2B2 p B p
则 AR( p) 模型可表示为
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
(1B)i t
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(1)模型的方差为
Var(xt )
G2jVar(t )
j0

平稳时间序列分析

平稳时间序列分析

t Pp t tt t t x B x x B x Bxx ===---M221第3章 平稳时间序列分析一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。

方法性工具 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x 记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t px ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇ 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。

记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B4.n t t nx x B-=5.)!(!!,)1()1(0i n i n CB C B i niinni in-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分ARMA 模型的性质 AR 模型定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t πΛ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφεAR(p)模型有三个限制条件: 条件一:0≠pφ。

这个限制条件保证了模型的最高阶数为p 。

条件二:t s E Var E t s t t ≠===,0)(,)(,0)(2εεσεεε。

(时间管理)第章平稳时间序列分析

(时间管理)第章平稳时间序列分析

(时间管理)第章平稳时间序列分析第3章平稳时间序列分析本章教学内容和要求:了解时间序列分析的方法性工具;理解且掌握ARMA模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模和预测。

本章教学重点和难点:利用软件进行模型的识别、参数的估计以及序列的建模和预测。

计划课时:21(讲授16课时,上机3课时、习题3课时)教学方法和手段:课堂讲授和上机操作§3.1方法性工具壹个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是壹个蕴含着关联信息的平稳序列。

于统计上,我么通常是建立壹个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。

ARMA(autoregressionmovingaverage)模型是目前最常用的壹个平稳序列拟合模型。

时间序列分析中壹些常用的方法性工具能够使我们的模型表达和序列分析更加简洁、方便。

壹、差分运算(壹)p阶差分相距壹期的俩个序列值之间的减法运算称为1阶差分运算。

记▽为的1阶差分:▽对1阶差分后的序列再进行壹次1阶差分运算称为2阶差分,记▽2为的2阶差分:▽2=▽-▽以此类推,对p-1阶差分厚序列再进行壹次1阶差分运算称为p阶差分。

记▽p为的p阶差分:▽p=▽p-1-▽p-1(二)k步差分相距k期的俩个序列值之间的减法运算称为k步差分运算。

记▽k为的k步差分:▽k=例:简单的序列::6,9,15,43,8,17,20,38,4,10,1阶差分:▽▽……▽,即1阶差分序列▽:3,6,28,-35,9,3,18,-34,6,2阶差分:▽2=▽-▽=3▽2=▽-▽=22……▽2=▽-▽=-40即2阶差分序列▽2:3,22,-63,-54,-6,16,-52,-40,2步差分:▽2▽2……▽2即2步差分序列:9,34,-7,-26,12,21,-16,-28二、延迟算子(滞后算子)(壹)定义延迟算子类似于壹个时间指针,当前序列值乘以壹个延迟算子,就相当于把当前序列值的时间向过去拨去了壹个时刻。

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验时间序列分析是统计学中重要的研究领域,它用于研究随时间变化的数据,并预测未来的趋势。

平稳性检验是时间序列分析的关键步骤之一,它用于确定时间序列数据是否具有平稳性。

本文将介绍时间序列分析中的平稳性检验的基本概念、方法和应用。

一、平稳性的概念在时间序列分析中,平稳性是指时间序列数据的统计特性在不同时间段内保持不变。

具体而言,平稳性要求时间序列的均值、方差和自相关函数在时间上不发生显著的变化。

如果时间序列数据具有平稳性,那么我们可以利用历史数据对未来进行可靠的预测。

二、平稳性检验的方法为了检验时间序列数据的平稳性,常用的方法包括观察法、单位根检验和ADF检验。

1. 观察法观察法是最简单的平稳性检验方法,它通过观察时间序列数据的图表和统计指标来判断数据是否具有平稳性。

如果时间序列数据的均值和方差在不同时间段内保持相对稳定,且自相关函数衰减较快,那么可以初步认为数据具有平稳性。

2. 单位根检验单位根检验是一种常用的平稳性检验方法,它基于时间序列数据是否具有单位根来判断数据的平稳性。

常用的单位根检验方法包括ADF检验、PP检验和KPSS 检验。

其中,ADF检验是最常用的单位根检验方法之一。

3. ADF检验ADF检验(Augmented Dickey-Fuller test)是一种常用的单位根检验方法,它基于Dickey-Fuller回归模型来判断时间序列数据是否具有单位根。

ADF检验的原假设是时间序列数据具有单位根,即非平稳性;备择假设是时间序列数据不具有单位根,即平稳性。

ADF检验的关键统计量是ADF统计量,它的值与临界值进行比较来判断数据的平稳性。

如果ADF统计量的值小于临界值,那么可以拒绝原假设,认为数据具有平稳性;如果ADF统计量的值大于临界值,那么接受原假设,认为数据不具有平稳性。

三、平稳性检验的应用平稳性检验在时间序列分析中具有广泛的应用。

首先,平稳性检验是进行时间序列建模的前提条件,只有具有平稳性的数据才能进行可靠的建模和预测。

第三章 线性平稳时间序列分析

第三章 线性平稳时间序列分析
上海财经大学 统计与管理学院 5
λ + α1λ
p 1
+ + α p = 0
特征根 λ1 , λ2 ,… , λ p 为互不相同的实根 这时齐次线性差分方程的解为 t zt = c1λ1t + + c p λ p 特征根 λ1 , λ2 ,… , λ p 中有相同实根 这时齐次线性差分方程的解为 特征根 λ1 , λ2 ,… , λ p 中有复根 这时齐次线性差分方程的解为
j
j k
根据 Cauchy 不等式,我们可以得到
G j G j k ≤ ∑ G 2 ∑ G 2k ∑ j j j =∞ j =∞ j =∞
∞ ∞ ∞
12
<∞
所以级数
j =∞
∑GG
j∞Leabharlann j k收敛,故 { X t } 为平稳序列.
上海财经大学 统计与管理学院
10
,
3.1.2 线性过程的因果性和可逆性
1 j =1
(3.8)
其中
1 G 1 ( B ) = I ( B) = 1 ∑ I j B j j =1 ∞
(3.9)
称将 X t 变换为 ε t 的线性算子:
I ( B ) = ∑ I j B j , I 0 = 1
j =0

为逆函数 逆函数,称(3.8)为 X t 的逆转形式 逆转形式,也称为无穷阶自回归. 逆函数 逆转形式
j =0 ∞
便于使用的条件是: 便于使用的条件是:
∑ Gj < ∞

j =0
(3.7)
上海财经大学 统计与管理学院 13
在理论研究和实际问题的处理时, 通常还需要用 t 时刻及 t 时刻以前的 X t j ( j = 0,1, ) 来表示白噪声 ε t ,即

第3章平稳时间序列分析

第3章平稳时间序列分析

时间序列分析
(1) X t = X t −1 − 0.5 X t − 2 + at
• 自相关函数呈现出“伪周期”性
• 理论偏自相关函数
⎧2 ,k =1 ⎪3 ⎪ φkk = ⎨−0.5 , k = 2 ⎪0 ,k ≥ 3 ⎪ ⎩
• 样本偏自相关图
时间序列分析
(2) X t = − X t −1 − 0.5 X t − 2 + at
由于格林函数描述了系统的动态性,那么在随 机扰动序列已知的情况下,格林函数就完全 能够确定系统的行为,从而根据已知的扰动 序列和格林函数便可确定系统的响应 拟合AR(p)模型的过程也就是使相关序列独立 化的过程.
时间序列分析
• 平稳性的Green函数判别法
欲使序列平稳,则格林函数应满足
当j → ∞时,有G j → 0
ρ k 减小,且以指数速度减小,越来越与0接近,
这种现象称为拖尾.
时间序列分析
4、AR(1)的PACF (1) PACF的求解
AR (1)的 PACF 按照 PACF的递推公式有:
ρ 2 − ρ1φ11 φ12 − φ12 φ11 = ρ1; φ 22 = = =0 2 1 − ρ1φ11 1 − φ1 φ21 = φ11 − φ 22φ11 = φ1 ρ 3 − ρ 2φ 21 − ρ1φ 22 φ13 − φ12φ1 − 0 = =0 φ33 = 2 1 − ρ1φ 21 − ρ 2φ 22 1 − φ1 − 0
时间序列分析
(三)AR(1)的统计特征
1、 AR(1)的方差:
• 平稳AR(1)模型的传递形式为
∞ ∞ at i Xt = = ∑ (φ1 B) at = ∑ φ1i at −i 1 − φ1 B i =0 i =0

线性平稳时间序列分析

线性平稳时间序列分析

线性平稳时间序列分析线性平稳时间序列分析是统计学中一个重要的研究领域,在经济学、金融学、统计学等领域中具有广泛的应用。

本文将从概念、特征、建模和预测四个方面展开,详细介绍线性平稳时间序列分析的基本内容。

一、概念时间序列是按照时间顺序排列的一组数据观测值的集合,线性平稳时间序列是指其均值、方差和自相关函数在时间上保持不变。

线性平稳时间序列可以用公式表示为:Yt = μ + εt其中,Yt是时间t的观测值,μ是时间序列的均值,εt是时间t的随机波动项。

二、特征线性平稳时间序列具有以下几个重要特征:1. 均值不变性:时间序列的均值在时间上保持不变,即E(Yt) = μ。

2. 方差不变性:时间序列的方差在时间上保持不变,即Var(Yt) = σ^2。

3. 自相关性:时间序列中观测值之间存在相关性,即时间序列的自相关函数具有一定的模式。

4. 白噪声:时间序列中的随机波动项εt是一个均值为零、方差为常数的随机变量。

三、建模线性平稳时间序列的建模是对时间序列数据进行拟合,以寻找其内在的规律和趋势。

常用的线性平稳时间序列模型主要有AR(自回归模型)、MA(移动平均模型)和ARMA(自回归移动平均模型)等。

1. AR模型:自回归模型是基于时间序列在当前时刻与其过去时刻之间存在相关性的假设。

AR模型的阶数p表示过去p个时刻的观测值对当前观测值的影响。

2. MA模型:移动平均模型是基于时间序列在当前时刻与其过去时刻的随机波动项之间存在相关性的假设。

MA模型的阶数q表示过去q个时刻的随机波动项对当前观测值的影响。

3. ARMA模型:自回归移动平均模型是结合了AR模型和MA 模型的特点,既考虑了时间序列观测值的自相关性,又考虑了时间序列随机波动项的相关性。

四、预测线性平稳时间序列的预测是利用已有的时间序列数据预测未来的观测值。

常用的线性平稳时间序列预测模型主要有AR、MA和ARMA等。

1. AR模型:通过对过去p个时刻的观测值进行线性组合,预测当前观测值。

平稳时间序列分析

平稳时间序列分析

平稳时间序列分析平稳时间序列分析是一种常用的时间序列分析方法,它旨在研究时间序列在均值和方差上的稳定性,并将其用于预测未来的数据走势。

本文将详细介绍平稳时间序列分析的基本概念、建模方法和预测技术。

首先,让我们来了解什么是时间序列。

时间序列是按照一定的时间间隔收集到的一系列数据点的有序集合,它可以是连续的或离散的。

时间序列分析的目的是通过对过去的数据进行统计分析,揭示出时间序列中的内在规律和趋势,并预测未来的数据走势。

平稳时间序列是指在统计意义上具有稳定性的时间序列,即其均值和方差保持恒定不变。

平稳时间序列具有以下特点:1)均值是常数,不随时间变化;2)方差是常数,不随时间变化;3)协方差只与时间间隔有关,与具体的时间点无关。

为了实现平稳时间序列分析,我们需要进行以下几个步骤:1. 数据准备:收集所需的时间序列数据,并将其整理成适合分析的格式。

通常,我们会绘制时间序列图以直观地查看数据的趋势和模式。

2. 时间序列分解:时间序列通常包含趋势、季节性和随机成分。

我们需要对时间序列进行分解,将其分解为这些组成部分。

常用的分解方法有经典的加性模型和乘性模型。

3. 平稳性检验:对于时间序列分析,我们需要确保数据是平稳的。

平稳性检验的目的是判断时间序列的均值和方差是否是稳定的。

常用的平稳性检验方法有ADF检验、KPSS检验等。

4. 模型建立:如果时间序列被证实是平稳的,我们可以根据数据的模式和趋势选择适当的模型。

常用的模型包括自回归滑动平均模型(ARMA模型)、自回归积分滑动平均模型(ARIMA模型)等。

5. 模型识别与估计:在模型建立的基础上,我们需要对模型进行识别和估计。

模型识别的目的是选择最适合数据的模型阶数,常用的方法有自相关函数(ACF)和偏自相关函数(PACF)的分析。

模型的估计通常使用最大似然估计方法。

6. 模型检验:建立模型后,我们需要对模型进行检验,验证其拟合程度和预测准确度。

常用的模型检验方法有残差分析、DW检验、Ljung-Box检验等。

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析轴表示序列取值。

时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。

根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。

如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。

从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。

procarimadata=e某ample3_1;identifyvar=某nlag=8;run;图一图二样本自相关图图三样本逆自相关图2图四样本偏自相关图图五纯随机检验图实验结果分析:(1)由图一我们可以知道序列样本的序列均值为-0.06595,标准差为1.561613,观察值个数为84个。

(2)根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。

我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向0.03衰减的速度非常快,延迟5阶之后自相关系数即在0.03值附近波动。

这是一个短期相关的样本自相关图。

所以根据样本自相关图的相关性质,可以认为该序列平稳。

(3)根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列样本属于非白噪声序列。

procarimadata=e某ample3_1;identifyvar=某nlag=8minicp=(0:5)q=(0:5);run;IDENTIFY命令输出的最小信息量结果3某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。

建模的基本步骤如下:A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

平稳时间序列分析

平稳时间序列分析

t Pp t tt t t x B x x B x Bxx ===---221第3章 平稳时间序列分析一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。

3.1 方法性工具 3.1.1 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x 记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t px ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇ 3.1.2 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。

记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B4.n t t nx x B-=5.)!(!!,)1()1(0i n i n C B C B i n i i n ni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分3.2 ARMA 模型的性质 3.2.1 AR 模型定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε(3.4)AR(p)模型有三个限制条件: 条件一:0≠pφ。

这个限制条件保证了模型的最高阶数为p 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9 章
平稳时间序列分析
平稳时间序列分析
9.1 时间序列的概念 9.2 时间序列模型
9.2.1 白噪声序列 9.2.2 自回归模型 9.2.3 移动平均模型 9.2.4 自回归模型转化为移动平均模型 9.3.1 自回归模型的平稳性 9.3.2 自回归模型的自相关函数
9.3 自回归模型的平稳性和相关函数
T { y } 称 t t 1 为宽平稳(wide-sense stationary)时
间序列。宽平稳也称为协方差平稳或意一组随机变量的 联合分布不随时间发生变化,即对任意一 组时间点 t1 t2 tn 和时间间隔 s , { yt , yt ,, yt } 的联合分布与 { yt , yt ,, yt } T { y } 的联合分布相同,称 t t 1 严平稳。

k
c yt t 1 t 1 1k 1 t k 1 1
(2L3 5L2 3L 2) yt
9.2 时间序列模型
9.2.1 白噪声序列 9.2.2 自回归模型 9.2.3 移动平均模型 9.2.4 自回归模型转化为移动平均模型
9.2 时间序列模型
9.2.1 白噪声序列
定义2(白噪声):如果时间序列 { t , t 1,,T} 满足: (1)E(t ) 0 , Var(t ) 2 t 和 s 不相关,即 E( t s ) 0 (2)对任意 s t , 称 { t , t 1,,T} 为白噪声序列,简称白噪声 (white noise)。
是平稳时间序列的极端例子。
9.2 时间序列模型
9.2.2 自回归模型
一阶自回归模型AR(1)
{ t } 为白噪声 yt c 1 yt 1 t , t ~ N (0, 2 ) | 1 | 1,
除了常数项以外,y 在 t 时刻的值由前定项 1 yt 1和与前期值不 (predetermined term) t 组成。 相关的新息(innovation) k 阶自回归模型AR(k) yt c 1 yt 1 2 yt 2 ... p yt k t , t ~ N (0,2 )
9.2 时间序列模型
9.2.3 移动平均模型
对一阶自回归模型进行递推:
yt c 1 yt 1 t c 1 (c 1 yt 2 t 1 ) c 1c 12 yt 2 1 t 1 t c(1 1 12 1k 1 ) t 1 t 1 1k 1 t k 1k yt k
1 T 1
2 分别是 、 和 (k ) 的一致估计。
9.1 时间序列的概念
• yt k 表示 yt 的 k 阶滞后,用滞后算符 L 表示 为
Lk yt yt k , k 0,1,2,
例如 2 yt 3 5 yt 2 3 yt 1 2 yt 用滞后算符多项式表示为:
| 1 2 ... k | 1
9.2 时间序列模型
9.2.2 自回归模型 t ~ N (0,1) 模型 yt 1.5 0.7 yt 1 t ,
150个样本的时序图:
9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 一阶自回归时序图
1 2 n 1 s 2 s ns
• 二阶矩存在的严平稳时间序列一定宽平稳, 宽平稳的时间序列不一定严平稳,本书只 讨论宽平稳,将宽平稳时间序列简称为平 稳时间序列。
9.1 时间序列的概念
T { y } • 若 t t 1 为平稳时间序列,则:
(1) (k ) ( s, s k ) 2 2 T { y } (2) t t 1 满足大数定律,因此
9.1 时间序列的概念
• 设时点 t 1,2,,T 处的观测为随机变量 y1, y2 ,, yT , T { y } 这些随机变量形成一个时间序列,记为 t t 1 y1 , y2 ,, yT 的一组具体取 或者 {yt , t 1,2,,T} , 值称为时间序列的实现值(realization)。 • 自相关函数(ACF:AutoCorrelation function )
平稳时间序列分析
9.4 自回归模型定阶和估计
9.4.1 自回归模型定阶 9.4.2 自回归模型估计 9.4.3 自回归模型再定阶—信息准则 9.5.1 自回归分布滞后模型 9.5.2 格兰杰因果关系检验 9.6.1 ARCH模型的定义 9.6.2 ARCH模型估计
9.5 自回归分布滞后模型 9.6 ARCH模型 重要概念
ˆ
1 T
cov( ys , ys k )
C (k )
(k )
ˆ t 1 yt y,
T 2
1 T
2 ( y y ) t 1 t T
ˆ (k )
T k
1
T t 1
( yt y )( yt k y )
2 ( y y ) t t 1 T
cov(ys , yt ) (s, t ) (s, s k ),其中k t s Var ( ys ) Var ( yt )
9.1 时间序列的概念
定义1(平稳性):如果时间序列 {yt , t 1,2,,T} 的数学期望、方差和协方差不随时间变化, 即
E( yt ) , Var ( yt ) 2 , Cov( yt , yt k ) C (k ), t 1,2,,T ; k 1,2,T
相关文档
最新文档