数值分析第六章数值积分

合集下载

数值分析原理习题答案

数值分析原理习题答案

数值分析原理习题答案数值分析原理习题答案【篇一:数值分析习题】学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为0.5?10,那么近似数0.003400有几位有效数字?(有效数字的计算)2 ??3.14159?具有4位有效数字的近似值是多少?(有效数字的计算)3 已知a?1.2031,b?0.978是经过四舍五入后得到的近似值,问a?b,a?b有几位有效数字?(有效数字的计算)4 设x?0,x的相对误差为?,求lnx的误差和相对误差?(误差的计算)**5测得某圆柱体高度h的值为h?20cm,底面半径r的值为r?5cm,已知5|h?h*|?0.2cm,|r?r*|?0.1cm,求圆柱体体积v??rh的绝对误差限与相对误差限。

(误差限的计算)6 设x的相对误差为a%,求y?xn的相对误差。

(函数误差的计算)7计算球的体积,为了使体积的相对误差限为1%,问度量半径r时允许的相对误差限为多大?(函数误差的计算)128 设in?e1nxx?edx,求证: 0(1)in?1?nin?1(n?0,1,2?)(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。

(计算方法的比较选择)第二章插值法姓名学号班级习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知f(?1)?2,f(1)?1,f(2)?1,求f(x)的拉氏插值多项式。

(拉格朗日插值)2 已知y?x,x0?4,x1?9,用线性插值求7的近似值。

(拉格朗日线性插值)3 若xj(j?0,1,...n)为互异节点,且有lj(x)?试证明(x?x0)(x?x1)?(x?xj?1)(x?xj?1)?(x?xn)(xj?x0)(xj?x1)?(xj?xj?1)(xj?xj?1)?(xj?xn)xlj?0nkjj(拉格朗日插值基函数的性质) (x)?xk(k?0,1,...n)。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析6-数值积分

数值分析6-数值积分

数值求积的基本思想
✓ 分别用 f (a),f (b) 和 f (a b) 2 近似 f () 可得
b
a f ( x)dx (b a) f (a)
b
a f ( x)dx (b a) f (b)
左矩形公式 右矩形公式
b f ( x)dx (b a) f a b
a
2
中矩形公式
求积公式的基本思想
( )( )
2 3
4 24 4
A 1
(x
1
1 )( x 4
3) 4
dx
1
0 ( 1 1 )( 1 3 )
3
2 42 4
考虑到对称性,显然有 A0 A2 ,于是有求积公式
1 f (x)dx 2 [ f (1) f ( 3)] 1 f (1)
0
3 4 4 32
由于原式含有 3 个节点,按定理 1 它至少有 2 阶精度。
精度。
例题4
试设计求积公式
b
a
f
(x)dx
A0
f
(a)
A1
f
(
a
2
b)
A2
f(b)
B2
f
'
(a)
B1
f
'
(
a
2
b
)
B2
f
'
(b)

引进变换 x
a
2
b
b
2
a
t
将 求 积 区 间 [a,b] 变 到
[0,1],则原式化为如下形式
1
1
f
(x)dx
A0
f
(1)
A1
f

数值积分(论文)

数值积分(论文)
if(err_T<=E)
break;
else
{
T0=T1;
T1=0;
add_T=0;
err_T=0;
}
}
在这个函数中我们将复化cotes公式和积分过程都用计算机语言表示出来。首先我们给出复化cotes公式,进行迭代,直到精确度达到设定要求,算出最后结果。
4.3 测试结果
用复化cotes有效数字四位求得的结果如下:
对区间[a,b],令h=b-a构造梯形值序列{T2K}。
T1=h[f(a)+f(b)]/2
把区间二等分,每个小区间长度为h/2=(b-a)/2,于是
T2 =T1/2+[h/22]f(a+h/2)
把区间四(22)等分,每个小区间长度为h/22 =(b-a)/4,于是
T4 =T2/2+[h/2][f(a+h/4)+f(a+3h/4).....................
数值积分 (一)
第一章 数值积分计算的重述
1.1引言
数值积分是积分计算的重要方法,是数值逼近的重要内容,是函数插值的最直接应用,也是工程技术计算中常常遇到的一个问题。在应用上,人们常要求算出具体数值,因此数值积分就成了数值分析的一个重要内容。在更为复杂的计算问题中,数值积分也常常是一个基本组成部分。
s_point=double(b)+double(a-b)/pow(2,i);
d_point=double(a-b)/pow(2,i-1);
for(j=1;j<=sum_num;j++)
{
add_T=add_T+f_x(s_point+(j-1)*d_point);

数值分析第6章积分

数值分析第6章积分

其中(-1,1).
b
ò f (x )dx
a
»
å j
n
=0
A j f (x j )
(6.1)
定理6.1 求积公式(6.1)为插值型求积公式的 充要条件是它的代数精度至少为n次. 证:先证必要性 设(6.1)是插值型的,则
b
R n [f ] =
ò
a
f
(x ) wn + 1 (x )dx (n + 1)!
顿-柯特斯(Newton-Cotes)求积公式. 下面推导N-C求积公式的求积系数公式.

根据求积系数计算公式(6.4)有
1 Aj = 蝌 l j ( x)dx = w¢ (x j ) a
b b a
wn+ 1 ( x) dx x- xj
令积分变换 x=a + t h, 则
wn+ 1 ( x) = h n+ 1t (t - 1) L (t - n),
òl
a
j
( x) dx
(j=0,1,2, L ,n)
(6.4)
若求积公式(6.1)中的求积系数具有(6.4)的形 式,则称(6.1)为插值型求积公式.
插值型求积公式(6.3)的截断误差为
b b
Rn [ f ] =
R ( x)dx = 蝌
n a a
f ( n+ 1) (x ) wn+ 1 ( x)dx (6.5) (n + 1)!
于是
Aj =
n- j n ¢ wn ( x ) = ( 1) j !( n j )! h , +1 j
(- 1) h t (t - 1) L (t - j + 1)(t - j - 1) L (t - n)dt ò j !(n - j )! 0

实验09 数值微积分与方程数值解(第6章)

实验09 数值微积分与方程数值解(第6章)

实验09 数值微积分与方程数值求解(第6章 MATLAB 数值计算)一、实验目的二、实验内容1. 求函数在指定点的数值导数232()123,1,2,3026x x x f x x xx x==2. 用数值方法求定积分(1) 210I π=⎰的近似值。

程序及运行结果:《数学软件》课内实验王平(2) 2221I dx x π=+⎰程序及运行结果:3. 分别用3种不同的数值方法解线性方程组6525494133422139211x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩ 程序及运行结果:4. 求非齐次线性方程组的通解1234123412342736352249472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩5. 求代数方程的数值解(1) 3x +sin x -e x =0在x 0=1.5附近的根。

程序及运行结果(提示:要用教材中的函数程序line_solution ):(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。

23sin ln 70321050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩6. 求函数在指定区间的极值(1) 3cos log ()xx x x xf x e ++=在(0,1)内的最小值。

(2) 33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。

7. 求微分方程的数值解,并绘制解的曲线2250(0)0'(0)0xd y dyy dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩程序及运行结果(注意:参数中不能取0,用足够小的正数代替):令y 2=y,y 1=y ',将二阶方程转化为一阶方程组:'112'211251(0)0,(0)0y y y x x y y y y ⎧=-⎪⎪=⎨⎪==⎪⎩8. 求微分方程组的数值解,并绘制解的曲线123213312123'''0.51(0)0,(0)1,(0)1y y y y y y y y y y y y =⎧⎪=-⎪⎨=-⎪⎪===⎩程序及运行结果:三、实验提示四、教程:第6章 MATLAB 数值计算(2/2)6.2 数值微积分 p155 6.2.1 数值微分1. 数值差分与差商对任意函数f(x),假设h>0。

ch06 数值积分.ppt

ch06 数值积分.ppt

❖ 求积系数: Ak
b
a lk ( x)dx
❖ 则数值积分公式为:
b
n
f ( x)dx
a
Ak f ( xk )
k 0
-15-
07:16
2。 插值型求积公式的代数精度与截断误差
1)截断误差:
b
b
R( f ) I ( f ) In ( f ) a f ( x)dx a Ln ( x)dx
lk (x)f(xk ) Rn ( x) f(xk )
k0
ik
(x ( xk
xi ) xi )
Rn
(
x
)
0in
-14-
07:16
故:
b
b
bn
f(x)dx
a
a Ln (x)dx
a
lk (x)f(xk )dx
k0
n
b
f(xk ) a lk ( x)dx
k0
n b
a lk ( x)dx f(xk ) k0
b
a ( f ( x) Ln ( x))dx
b f ( (n1) )
a (n 1)! wn1 ( x)dx
wn1 ( x x0 )( x x1 )...( x xn
2)代数精度:
❖ ∵:f (x)为任意次数小于等于n的多项式时,f(n+1)(x)=0 ❖ ∴:R(f)=0,即In(f)=I(f),求积公式精确成立 ❖ ∴:插值型求积公式至少具有n次代数精度
Ak,使得求积公式
b
a
f ( x )dx
n
Ak
f ( xk )
具有
至少 n 次代数精度
k 0
❖ 证明过程同于:前面充要条件的证明

数值分析-数值积分详解

数值分析-数值积分详解

xk
和 Ak 的代数问题.

b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。

1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n

b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:

数值分析-高斯求积分

数值分析-高斯求积分

p( x)ωn ( x)dx
Ak p( xk )ωn ( xk ) 0
a
k1
即ωn( x)与任意次数不超过n 1的多项式p( x)
在[a, b]上正交
充分性:如果w(x)与任意次数不超过n-1的多项式正 交,则其零点必为Gauss点
设f ( x)为任意次数不超过2n 1次的多项式,
用n ( x)除f ( x)得
3.6 高斯(Gauss)型求积公式
主要内容
• 具有(n+1)个求积节点的Newton-Cotes公式,
b
n
f ( x)dx
Ak f ( xk )
a
k1
至少具有n阶代数精度
•在确定求积公式求积系数Ak的过程中限定求积节点 为等分节点,简化了处理过程,但也降低了求积公 式的代数精度
去掉求积节点 为等分节点的限制条件,会有什么 结果??
1v( x)du(n 1)( x)
-1
1
1
u(n 1)( x)v ( x)d x
-1
v(1)u(n 1) (1) v(1)u(n 1) (1)
1
u(n 1) ( x)v ( x)d x
-1
v (1)u(n 2) (1)
1
u(n 2) ( x)v ( x)d x
-1
v(1)u(n 1) (1) v (1)u(n 2) (1)
a
证明: 必要性: 若x1, x2 ,, xn是高斯点,则求积公式
b
f ( x)dx
a
n
Ak f ( xk )具有2n 1次代数精度
k1
作多项式, ωn( x) ( x x1)( x x2 ) ( x xn ), 设p( x)为

数值分析之插值型数值积分

数值分析之插值型数值积分
图1
x1=b x
25
数值分析
梯形公式的余项和精度
梯形公式的余项为
R1
=
(b
− a)3 2
1 f ''( )t(t −1)dt, = (a + th) (a,b)
0
由第二积分中值定理得到 R1
= − (b − a)3 12
f
''(), (a,b)
注意到,此时的余项与代数精度保持一致。
26
数值分析
a j=0 xk − x j
n n t− j
(
h)dt
0 j=0 k − j
jk
jk
n
= h(
1
)
n
[
n
(t − j)]dt =
(−1)n−k h
nn
[ (t − j)]dt
j=0 k − j 0 j=0
k !(n − k )! 0 j=0
jk
jk
jk
= (b − a)ck(n) k = 0,1, , n
出定积分的近似值,即
b
b
a f ( x)dx a ( x)dx
6
数值分析
求积公式与代数精度
7
数值分析
6.1 求积公式及代数精度
数值求积公式的一般形式为
b
f (x)dx
a
n
k f (xk )
k =0
式 中 的 xk ( k= 0 , 1 , n称, 为) 求 积 节 点 并 且 有
a x0 x1 xn b,k (k = 0,1, , n) 称为求积系数,
28350 28350 28350 28350 28350 28350 28350 28350 28350

(完整版)数值分析重点公式

(完整版)数值分析重点公式

第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

数值分析智慧树知到课后章节答案2023年下湖南师范大学

数值分析智慧树知到课后章节答案2023年下湖南师范大学

数值分析智慧树知到课后章节答案2023年下湖南师范大学第一章测试1.在数值计算中因四舍五入产生的误差称为()A:观测误差 B:方法误差 C:舍入误差 D:模型误差答案:舍入误差2.当今科学活动的三大方法为()。

A:科学计算 B:实验C:数学建模 D:理论答案:科学计算;实验;理论3.计算过程中如果不注意误差分析,可能引起计算严重失真。

A:错 B:对答案:对4.算法设计时应注意算法的稳定性分析。

A:对 B:错答案:对5.在进行数值计算时,每一步计算所产生的误差都是可以准确追踪的。

A:错 B:对答案:错第二章测试1.A: B: C: D:答案:2.某函数过(0,1),(1,2)两点,则其关于这两点的一阶差商为A:3 B:0 C:2 D:1 答案:13.A: B: C: D:答案:4.下列说法不正确的是A:高次多项式插值不具有病态性质 B:分段线性插值逼近效果依赖于小区间的长度 C:分段线性插值的导数一般不连续D:分段线性插值的几何图形就是将插值点用折线段依次连接起来答案:分段线性插值的几何图形就是将插值点用折线段依次连接起来5.下列关于分段线性插值函数的说法,正确的是A:对于光滑性不好的函数优先用分段线性插值 B:对于光滑性较好的函数优先用分段线性插值 C:一次函数的分段线性插值函数是该一次函数本身 D:二次函数的分段线性插值函数是该二次函数本身答案:对于光滑性不好的函数优先用分段线性插值;一次函数的分段线性插值函数是该一次函数本身6.A: B: C:D:答案:;;7.同一个函数基于同一组插值节点的牛顿插值函数和拉格朗日插值函数等价。

A:错 B:对答案:对第三章测试1.A: B:C:D:答案:2.以下哪项是最佳平方逼近函数的平方误差A: B: C:D:答案:3.当区间为[-1,1],Legendre多项式族带权 ( ) 正交。

A: B: C: D:答案: 4.n次Chebyshev多项式在 (-1,1) 内互异实根的个数为A:n+1 B:n-1 C:nD:n+2 答案:n5.用正交函数族做最小二乘法有什么优点A:每当逼近次数增加1时,系数需要重新计算 B:得到的法方程非病态C:不用解线性方程组,系数可简单算出 D:每当逼近次数增加1时,之前得到的系数不需要重新计算答案:得到的法方程非病态;不用解线性方程组,系数可简单算出;每当逼近次数增加1时,之前得到的系数不需要重新计算6.用正交多项式作基求最佳平方逼近多项式,当n较大时,系数矩阵高度病态,舍入误差很大。

几种常用数值积分方法的比较讲解

几种常用数值积分方法的比较讲解

学科分类号110.3420本科毕业论文题目几种常用数值积分方法的比较姓名潘晓祥学号1006020540200院(系)数学与计算机科学学院专业数学与应用数学年级2010 级指导教师雍进军职称讲师二〇一四年五月贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本科毕业论文作者签名:年月日贵州师范学院本科毕业论文(设计)任务书毕业设计题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级所属学院数学与计算机科专业数学与应用数学班级四班指导教师签名雍进军讲师职称讲师开题日期2013年7月10日主要目标1.了解什么数值积分基本思想和一些常用的数值积分方法;2.对各种数值积分方法的误差以及代数精度进行分析;3.对各积分方法进行比较总结出优缺点。

主要要求通过对几种常用的数值积分方法进行了的分析,并用这几种方法对被积函数是普通函数做了数值积分,并在计算机上进行实验。

数值积分是计算方法或数值分析理论中非常重要的内容,数值积分方法也是解决实际计算问题的重要方法,对几种常用数值积分方法的分析很必要。

主要内容本文通过对复化求积公式, Newton—Cotes求积公式, Romberg求积公式,高斯型求积公式进行分析讨论并在计算机上积分实验,从代数精度,求积公式误差等角度对这些方法进行分析比较,并总结出每种求积分法的优缺点以及实用性。

贵州师范学院本科毕业论文(设计)开题报告书论文题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级数学与计算机所属学院专业数学与应用数学班级数本(4)班科学学院指导教师姓名雍进军职称讲师预计字数5000.00字题目性质应用研究日期2013年7月05 日选题的原由:研究意义:数值积分是数学上的重要课题之一,是数值分析中的重要内容之一,也是数学的研究重点.并在实际问题及应用中有着广泛的应用.常用于科学与工程的计算中,如涉及到积分方程,工程计算,计算机图形学,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有很重要的意义.数值积分是研究如何求出一个积分的数值.这一课题的起源可追溯到古代,其中一个突出的例子是希腊人用内接与外接正多边形推算出圆面积的方法.也正是此法使阿基米德得以求出π值得上界与下界,若干世纪以来,尤其是十六世纪后,已提出了多种数值积分方法,其中有矩形求积法,内插求积法,牛顿科特斯公式,复化求积公式,龙贝格求积公式,高斯型求积公式.但各种方法都有特点,在不同的情况下试用程度不同,我们将着重从求积公式的代数精度和余项等角度对这些方法进行分析比较. 研究动态:这些年来,有关数值积分的研究已经成为一个很活跃的研究领域,历史上,阿基米德,牛顿,欧拉,高斯,切比雪夫等人都对此有过贡献.研究出各种各样的数值求积公式,但一个好的数值求积公式应该满足:计算简单,误差小,代数精度高.我们将对矩形求积法,内插求积法,牛顿科特斯公式,化求积公式,贝格求积公式,斯型求积公式进行比较.对数值求积公式能有进一步的了解和学习.主要内容:1 数值积分方法的基本思想2 几类常用数值积分方法的基本分析2.1 Newton—Cotes求积公式2.2 复化求积公式2.3 Romberg求积公式2.4 高斯型求积公式3 几类数值积分方法的简单比较评述4利用MATLAB编程应用对几类求积算法的分析比较研究方法:本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton—Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较.完成期限和采取的主要措施:本论文计划用6个月的时间完成,阶段的任务如下:(1)7月份查阅相关书籍和文献;(2)8月份完成开题报告并交老师批阅;(3)9月份完成论文初稿并交老师批阅;(4)10月份完成论文二搞并交老师批阅;(5)11月份完成论文三搞;(6)12月份定稿.主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成主要参考文献及资料名称:[1] 关治. 陆金甫. 数学分析基础(第二版)[M]. 北京:等教育出版社.2010.7[2] 胡祖炽. 林源渠. 数值分析[M] 北京:等教育出版社.1986.3[3] 薛毅. 数学分析与实验[M] 北京:业大学出版社2005.3[4] 徐士良. 数值分析与算法[M]. 北京:械工业出版社2007.1[5] 王开荣. 杨大地. 应用数值分析[M] 北京:等教育出版社2010.7[6] 杨一都. 数值计算方法[M]. 北京:等教育出版社 . 2008.4[7] 韩明. 王家宝. 李林. 数学实验(MATLAB)版[M]. 上海:济大学出版社2012.1[8] 圣宝建. 关于数值积分若干问题的研究[J]. 南京信息工程大学. 2009.05.01. : 42[9] 刘绪军. 几种求积公式计算精确度的比较[J]. 南京职业技术学院. 2009.[10] 史万明.吴裕树.孙新.数值分析[M]. 北京理工大学出版社.2010.4.开题报告会纪要时间2013年8月26日地点宁静楼229教师办公室与会人员姓名职务(职称)姓名职务(职称)姓名职务(职称)雍进军导师(讲师)邓喜才副教授李晟副教授龙林林组长指导教师意见:签名:年月日会议记录摘要:指导小组针对课题《二次函数性质的应用》提问了以下问题以及报告人的回答:雍老师问:选择此题目的目的?潘晓祥答:随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。

数值积分概述

数值积分概述
2h
解 因为 求 积 公式 2h f (x) d x A1 f (h) A0 f (0) A1 f (h) 有
A1 , A0, A1, 3 个未知数,设求积公式对于 f (x) 1, x, x2 均准确成立,有
A1 A0 A1 4h hA1 hA1 0 h2 A1 h2 A1 (16 / 3)h3
0 l0 (x)dx
3 0
(x 1)(x (0 1)(0
2)(x 3) 2)(0 3)
dx
3 8

A1
A2
9 8
,
A3
3 8
(2)解关于 Ak 的线性方程组,将 f (x) 1, x, x2 , x3 代入 A0 A1 A2 A3 3 , A1 2 A2 3A3 9 / 2 , A1 4 A2 9 A3 9 ,
hf
(2h) ,其代数精度至少为
2
次。
将 f (x) x3 ,代入求积公式,左边= 81 h4 ,右边=18h4 ,
4
左边≠右边。求积公式只有 2 次代数精度。
例 在区间 [h, h] 上取节点,0,,确定 及求积系数,构造
代数精度尽可能高的求积公式,并确定其代数精度。
h
解 设求积公式为 f (x) d x Af () Bf (0) Cf ( ) ,因有 h
数 Ak , k 0,1, 代数精度。
,n
使求积公式 ab
f
( x)dx
n
Ak
f
(xk ) 至少有
n
次的
k 0
证明此时 Ak , k 0,1, , n 有唯一解即可。

令 f (x) 1, x, x2, , xn
ab
f
( x)dx

数值分析定积分计算与积分和式

数值分析定积分计算与积分和式
L 4
2
/2
0
2
a sin t b cos t dt
2 2 2 2
2 2 2 2
a sin t b cos t a 1 e cos t
其中
e c / a a 2 b2 / a
/2
0

L 4a
L 4a
1 e 2 cos2 t dt
/2
0
将积分区间[a,b] n 等分.取 h=(b-a)/n . xj=a+jh
n 1 j 0

b
a
f ( x )dx
x j 1
xj
h n 1 f ( x )dx [ f ( x j ) f ( x j 1 )] 2 j 0
n 1 h [ f (a ) f (b) 2 f ( x j )] 2 j 1 n1 h ba Tn [ f (a) f (b) 2 f (a jh)] h 2 n j 1 2 n 1 h1 h T2n [ f (a ) f (b) 2 f (a jh1 )] h1 2 2 j 1
对于n次Lagrange插值基函数,有恒等式
l j ( x) x x
j 0 k j
n
k

k A x x j dx j 0 k j b a
n
所以, R[xk] = 0, (k = 0,1,2,· · · ,n )
(n+1)点插值型求积公式代数精度至少为n阶.
例4 确定公式

3h

b
a
f ( x )dx A j f ( x j )
j 0
n
7/18
插值型求积公式的余项

数值分析简单习题

数值分析简单习题

重点考察内容第一章:基本概念第二章:Gauss消去法,Lu分解法第三章:题型:具体题+证明,误差分析三个主要迭代法,条件误差估计,范数的小证明第四章:掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数第五章:最小二乘法计算第六章:梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析高斯求积公式的构造第七章:几种常用的迭代格式构造,收敛性证明第九章:基本概念(收敛阶,收敛条件,收敛区域等)简单欧拉法第一章误差1. 科学计算中的误差来源有4个,分别是 _________ , ________ , ________ , ________ 。

2. 用Taylor 展开近似计算函数f (x ) :、f (x 0) f'(x 0)(x-x 0),这里产生是什么误差?3. 0.7499作3的近似值,是位有效数字,65.380是舍入得到的近似值,有 几4位有效数字,相对误差限为 _______ . 0.0032581是四舍五入得到的近似值,有 ________ 位有效数字.4. 改变下列表达式,使计算结果比较精确:(1) —|x|=1( 2) +J 1-丄,|x|=11 +2x 1 +x Y x Y x1「cosx(3), x=0,|x| 1. (4) sin : -sin :, 一—■x5. 采用下列各式计算(、、2-1)6时,哪个计算效果最好?并说明理由。

1 1(1) 6 ( 2) 99-70,2( 3) (3-2、月)6( 4) 3(V2+1)6(3 + 2问36. 已知近似数x *有4位有效数字,求其相对误差限。

上机实验题:kx匸 Xx1、 利用Taylor 展开公式计算 e,编一段小程序,上机用单精度计算 e 的函数k£k !值.分别取x =1, 5, 10, 20, -1,-5,-10,-15,-20,观察所得结果是否合理,如不合 理请分析原因并给出解决方法.1 n2、 已知定积分I n— dx,n =0,1,2,…,20,有如下的递推关系 ‘° x +6可建立两种等价的计算公式11(1) I n 61 nd ,取 I 。

数值计算06-数值积分与数值微分

数值计算06-数值积分与数值微分
y= 0.9661
用 inline 函数定义被积函数: >> f=inline('2/sqrt(pi)*exp(-x.^2)','x'); >> y=quad(f,0,1.5)
y= 0.9661
• 矩形区域上的二重积分的数值计算
I yM xM f (x, y)dxdy ym xm
格式: 矩形区域的双重积分: y=dblquad(Fun,xm,xM,ym,yM)
数值计算
第六章 数值积分与数值微分
1
§6.1 引 言
一、数值积分的必要性
讨论如下形式的一元函数积分
b
I ( f ) f (x)dx
a
在微积分里,按Newton-Leibniz公式求定积分
b
I ( f ) a f (x)dx F (b) F (a)
要求被积函数 F x
☞ 有解析表达式;
☞ f x的原函数 F x 为初等函数.
k 0
称为求积公式 余项(误差).
构造或确定一个求积公式,要解决的问题包括:
(i) 确定求积系数 Ak 和求积节点 xk;
(ii) 确定衡量求积公式好坏的标准; (iii) 求积公式的误差估计和收敛性分析.
数值积分的基本问题
针对某类函数,选择合适的求积结点和求积系数,使得求积 公式(1) 具有尽可能小的截断误差或尽可能高的代数精度。
2
若f ( x)在区间[a,b]上有四阶连续导数。则Simpson
公式的截断误差
R2
(b a)5
2880
f (4)( ) (a,b)
(6.3.8)
且具有三次代数精度。
Simpson3/8公式:

数值分析-第六章-数值积分

数值分析-第六章-数值积分

k 0
而对应的误差为
b
b f (n1) ( )
I In
(
a
f
(
x)

Ln
(
x))dx

a (n 1)! wn1(x)dx
Newton-Cotes公式
当节点为等距节点时,对应的插值型求积公式称为 Newton-Cotes 公式。
梯形公式:最简单的 Newton-Cotes 公式
a
2
梯形公式的误差
梯形公式的误差为:
b f ( )
E I T a 2 (x a)(x b)dx
注意到对任意的 x [a,b] ,有 (x a)(x b) 0,根据积分中值定理,
若 f "(x) C[a,b] ,有
E f ()
b
(x a)(x b)dx
第六章 数值积分
数值积分的基本概念 数值积分的基本思想 代数精度 插值型求积公式
Newton-Cotes 求积公式 梯形公式、辛普森公式、一般的 Newton-Cotes 公式 复化积分公式:复化梯形公式、复化辛普森公式 区间逐次分半法
Romberg(龙贝格)积分
高斯型求积公式
数值积分的基本概念
微积分中定积分的定义为:b Nhomakorabean
a
f
(x
)dx

lim
n m a xxk
k01
xk
f
k( ,)
n
b
n
可用 xk f (xk ) 作为原积分的近似: a f (x)dx xk f (xk ) 。
k 1
k 1
进一步推广得到更一般的公式:

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

数值积分方法课件

数值积分方法课件
热力学分析
通过数值积分方法,可以对物体的传热过程进行精确 分析。
在金融计算中的应用
01
股票价格预测
数值积分方法可以用于预测股票 价格的变动趋势,为投资决策提 供支持。
02
03
风险管理
精算学
在金融风险管理中,数值积分方 法可以用于评估投资组合的风险 水平。
在精算学中,数值积分方法可以 用于计算生命保险、养老保险等 保险产品的精算现值。
THANKS
感谢观看
按照被积函数的特征分类
可以分为有理函数的积分、无理函数的积分、超越函数的积分等。
02
常见数值积分方法
矩形法
总结词
简单、易理解、精度低
详细描述
矩形法是一种简单的数值积分方法,其基本思想是将积分区间划分为一系列小的矩形,然后用每个小 矩形的面积近似代替该区域的积分。该方法易于理解和实现,但精度较低。
分。
Gauss-Legendre积分法
03
精度高,计算量较大,适用于求解具有特定形状的积
分。
适用范围与场景
梯形法则
适用于简单的一维函数不定积分,如常数函 数、三角函数等。
Simpson法则
适用于具有对称性的积分,如奇函数或偶函数的积 分。
Gauss-Legendre积分法
适用于求解具有特定形状的积分,如圆环域 、球域等。
常见的数值积分公式包括梯形法则、辛普森法则 、高斯积分等。
数值积分的重要性
解决实际问题
数值积分被广泛应用于各种实际问题中,如物理学、工程学、经济学等。
理论计算基础
数值积分也是许多理论计算的基础,如微分方程、偏微分方程的求解等。
数值积分的分类
按照所使用的数值方法分类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Newton-Cotes公式
Newton-Cotes 公式误差公式:
n 为奇数 (节点个数为偶数)
f (n1) ( )
(n 1)!
bn
a (x xk )dx ,代数精度为 n ; k 0
n 为偶数 (节点个数为奇数)
f (n2) ( )
(n 2)!
bn
x
a
(x xk )dx ,代数精度为 n 1。
对应的求积公式为
b
ba
ab
f (x)dx ( f (a) 4 f ( ) f (b)) : S .
a
6
2
辛普森公式的误差
思考:辛普森公式的代数精度为 3 次?
例:利用辛普森公式求 bx3dx 。 a
解: S b a ( f (a) 4 f ( a b) f (b)) b4 a4 ,
称为
Cotes
系数。
注:
n 1 梯形公式 n 2 辛普森公式 n 3 第二辛普森公式 n 4 Cotes 公式
Newton-Cotes 公式性质:
1. 求积系数和为 (b a) ,Cotes 系数和为 1;
2. 系数是对称的;
3. 当 n 7 时,系数全部为正数;当 n 8 ,系数有正有负。

若求积系数全为正数,则| I I | (b a) ,公式是稳定的;
若求积系数有正有负,则| I I | 控制不住,公式不稳定。
因此,高次积分至多用到 7 次。
复化积分公式
高次积分是不稳定的,因此实际当中我们并不用基于等距节点的 高次 Newton-Cotes 积分公式。我们可以利用基于分片多项式插值的数 值积分,从而获得高精度。
b
n 1
f (x)dx
a k 0
xk 1 xk
h n1
f
(x)dx
2
k
(
0
f
( xk
)
f (xk 1)) .
复化梯形公式
复化梯形公式又可以写为:
h n1
h
n 1
Tn
(f 2 k0
(xk )
f
(xk 1))
( f (a) 2
f (b) 2
k 1
f
(xk ))
复化梯形公式误差:
ETn

A1
b a
l1(x)dx
1 2
(b
a)

对应的求积公式为
b
ba
f (x)dx ( f (a) f (b)) : T .
a
2
梯形公式的误差
梯形公式的误差为:
b f ( )
E I T a 2 (x a)(x b)dx
注意到对任意的 x [a,b] ,有 (x a)(x b) 0,根据积分中值定理,
类似地,在两相邻对角线值充分接近时,比如| S1 T1 | ,| C1 S1 | ,| R1 C1 | 充分
小时,即可停止加密过程。
高斯型求积公式
b
n
目标:求数值积分公式 (x) f (x)dx a
Ak f (xk ) ,其中 (x) 为给定的权函数。
k 0
给定插值节点 a x0 x1 xn b ,
12
I
T2n
f
"(2 ) (b a)( h)2
12
2
1 (I 4
Tn ) ,

I
T2n
1 3 (T2n
Tn )

可以用| T2n Tn | 作为迭代终止条件。
Romberg(龙贝格)积分
该递归算法法是由龙贝格最早发现的,因此以其命名。
从区间逐次分半法可以知道对梯形公式有
I
T2n
1 3
T1
T2
S1
T4
S2
C1
T8
S4
C2
R1
T16
S8
C4
R2
Romberg(龙贝格)算法
问题:什么时候终止加密?(注意:精确积分值 I 是未知的)
以复化梯形公式为例:
I
T2n
T2n Tn 3
.
因此当 |
T2n
Tn
| 充分小时即可停止加密,注意到 |
Sn
Tn
|
4 3
|
T2n
Tn
|

| Sn Tn | 可作为迭代终止条件。
6
2
4
而精确积分有
bx3dx
a
1 4
x4
|ba
1 4
(b4
a4 )

故辛普森公式有 3 次代数精度!
辛普森公式的误差
E b f (3) ( ) (x a)(x a b)(x b)dx
a 3!
2
b f [x, a, a b ,b](x a)(x a b)(x b)dx
a
2
2
Ak
b
alk (x)dx
bn
x xj
dx
(b
a)
1
a
j0 jk
xk
xj
n
n n t j
dt
0 j0 k j jk
记 Ck(n)
1
n
n n t j
dt
0 j0 k j jk
n
求积公式: In (b a)
C(n) k
f
(
xk
)
.
k 0
注:
Ak
称为求积系数,
C (n) k
dx
a
2
4
f (4) () b (x a)2 (x b)2 dx
4! a
4
(b a)5 f (4) ()
2880
一般的Newton-Cotes公式
h
ba n
, xk
x0
kh , k
0,1,
, n , f (x) Ln (x) Rn (x) 。
n
Ln (x) lk (x) f (xk ) , k 0
(T2n
Tn )
因此,我们可以将近似误差
1 3
(T2n
Tn
)
加到 T2n
以获得精度更高的公
式:
41 T2n 3 T2n 3 Tn .
问题:在剖分 P2n 上,T2n 与 Sn 什么关系?
可以证明:
Sn
T2n
4T2n Tn 4 1
Cn
S2n
42 S2n Sn 42 1
,对应的为复化
Cotes
公式;
注意:C2n
43C2n Cn 43 1
,并不是 n
8 所对应的复化
Newton-Cotes
公式。
记 Rn
: C2n
43C2n Cn 43 1
,称为龙贝格积分。
Romberg(龙贝格)算法
k 区间等分数N 2k 梯形序列 辛普森序列 柯特斯序列 龙贝格序列
0
20
1
21
2
22
3
23
4
24
k 0
Newton-Cotes公式
Newton-Cotes 公式的稳定性:
n
n
设 I Ak f (xk ) , I Ak ( f (xk ) k ) ,
k 0
k 0
n
n
n
则| I I || Ak k | | Ak ||
k 0
k 0
k|
|
k 0
Ak
| ,这里假设了 max k
|
k |
数值分析第六章数值积分
1
2020/11/26
数值积分的基本概念
数值积分的基本思想:
b
考察 f (x)dx ,若其原函数为 F(x) ,即 F '(x) f (x) ,则 a b
有 I : f (x)dx F (b) F (a) 。 a
困难:在可积函数中能够解析积分的函数相当少,而且即使可 以解析积分,让机器模拟人的思维也比较麻烦。借助于数值方法离 散化后计算积分的近似值,称为数值积分。
b
b
n
b
(x) f (x)dx
a
a
(
x)
Ln
(
x)dx
f (xk )
a
(
x)lk
(
x)dx
k 0
对应的求积公式为
b
n
b
(x) f (x)dx
a
Ak f (xk ) ,其中 Ak
aபைடு நூலகம்
(
x)lk
(
x)dx

k 0
而对应的误差为
b
n
(x) f (x)dx
a
Ak f (xk )
k 0
左矩形公式,具 0 次代数精度;
b
a f (x)dx (b a) f (b)
右矩形公式,具 0 次代数精度;
b f (x)dx (b a) f ( a b) 中矩形公式,具 1 次代数精度。
a
2
插值型求积公式
插值型求积公式:
想法:给定函数 f (x) ,若 f (x) g(x) ,且 g(x) 积分比较好算,
Sn
h5 2880
n 1 k 0
f
(4)
(k
)
h4 2880
b
n
a
n 1 k 0
f
(4)
(k
)
ba 2880
h4
f
(4)
( )
区间逐次分半法
我们首先来考虑复化梯形公式的递归算法:
具有 n 个子区间的复化梯形公式为
Tn
hn 2
(
相关文档
最新文档