柱体、锥体、台体的体积
柱、锥、台体积
重 5.8 kg . 已知底面六边形边 长 是 12 mm ,高是10 mm,内孔 直径是 10 mm.那么约有毛坯 多少个? 铁的比重是7.8 g / cm 3
图1 2 18
分层训练 必做题
1、正三棱锥的底面边长为2,侧面均为直角三角形, 则这个三棱锥的体积为( )
2 4 2 ( A)2 2; ( B) 2 ; (C ) ; ( D) 3 3
h
S
S
图1 3 14
类似地, 底面积相等、高也相等 的两个锥体它们的体积 , 也相等图1 3 14.由于底面积为 , 高为h 的圆锥的体积 S 1 1 为V圆锥 Sh, 所以 V锥体 Sh . 3
3
x S` h S S S`
图1 3 15
台体 棱台、圆台 的体积可以转化为锥体 的体 积来计算 图1 3 15 .如果台体的上、下底面 积分别为 S `, S , 高是 h , 可以推得它的体积是
学习目标
理解并掌握柱、锥、台体积计算公式及 其简单应用.
自学指导
1、柱、锥、台的体积计算公式是什么? 2、柱、锥、台的体积公式之间有什么关系?
h
h
S
S
S
图1 3 13
柱体 棱柱、圆柱 的体积等于它的底面积 S和高h的 积, 即 V柱体 S h .
思考:三棱锥与同底等高的三棱柱体积之间的关系.
2、用一张长12cm,宽8cm的矩形铁皮围成圆柱形 的侧面,这个圆柱的体积是-------
选做题
一个正四棱台形油槽可以装煤油190升,假如它的 上下底面边长分别等于60cm和40cm,求它个几何体的三视图如图 (1)试画它的直观图;(2)并求出该几何体 的体积
人教版高中数学必修2第一章第3节《柱体、椎体、台体的体积》ppt参考课件
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/8/11
最新中小学教学课件
14
谢谢欣赏!
2019/8/11
最新中小学教学课件
15
棱锥体积
探究:棱锥与同底等高的棱柱体积之间的关系.
三棱锥与同底等高的三棱柱的关系
锥体体积
经过探究得知,棱锥也是同底等高的棱柱体积
的 1.即棱锥的体积: 3
V 1 Sh(其中S为底面面积,h为高) 3
由此可知,棱柱与圆柱的体积公式类似,都是底面 面积乘高;棱锥与圆锥的体积公式类似,都是等于
底面面积乘高的 1. 3
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、 语文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面 的内容,以免顾此失彼。来自:学习方法网
棱台(圆台)的体积公式
V 1 (S SS S)h 3
其中 S , S 分别为上、下底面面积,h为圆台
高中数学 《 柱体、锥体、台体的体积》
台体
柱、锥、台的体积公式
体积
说明
V 柱体=Sh
S 为柱体的底面积, h 为柱体的高
1
V 锥体=3Sh
S 为锥体的底面积, h 为锥体的高
V 台体=1
3
(S 上+S 下
S 上,S 下分别为台体
的上、下底面面积,
+ S上·S下)h
h 为台体的高
2.柱体和锥体可以看作是由台体变化得到 的.柱体可以看作是上、下底面全等的台体,锥体 可以看作是上底面退化成一点的台体,因此很容易 得出它们之间的体积关系:
1.一个几何体的三视图如图所示, 则这个几何体的体积为______.
2.如图,长方体的长、宽、高分别 为3、2、4,将长方体沿相邻三个 面的对角线截出一个棱锥, 求剩下的几何体的体积.
的体积是
()
A.28π
B.6+2 2
C.20π
D.6π
1.对于多面体的体积问题往往将已知条件归结到 一个直角三角形中求解,因此在解此类问题时,要注意 直角三角形的应用.
2.有关旋转体的体积计算要充分利用其轴截面, 将已知条件尽量归结到轴截面中求解,分析题中给出的 数据,列出关系式后求出有关的量,再根据几何体的体 积公式进行运算、解答.
解析:设圆锥的高为h,底面半径为r,其轴截面如图: ∵△ ABC为等边三角形 ∴ h= 3r 又12×2r×h= 3
又12×2r×h= 3
∴ r· 3r= 3
∴ r=1
h= 3
∴ V=13πr2h
=13×π×1× 3= 33π
答案:
3 3π
例3: 圆台的上、下底面半径分别是2,4,高为 3,则该圆台
上底扩大
上底缩小
柱体、锥体、台体的体积教案
柱体、锥体、台体的体积教案二时柱体、锥体、台体的体积(一)教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系(3)培养学生空间想象能力和思维能力2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系(2)通过相关几何体的联系,寻找已知条的相互转化,解决一些特殊几何体体积的计算3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识(二)教学重点、难点重点:柱体、锥体、台体的体积计算难点:简单组合体的体积计算(三)教学方法讲练结合教学环节教学内容师生互动设计意图新导入1.复习柱体、锥体、台体表面积求法及相互关系教师设问,学生回忆师:今天我们共同学习柱体、锥体、台体的另一个重要的量:体积复习巩固点出主题探索新知柱体、锥体、台体的体积1.柱体、锥体、台体的体积公式:V柱体= Sh (S是底面积,h为柱体高)V锥体= (S是底面积,h为锥体高)V台体= (S′,S分别为上、下底面面积,h为台体的高)2.柱体、锥体、台体的体积公式之间的关系师:我们已经学习了正方体,长方体以及圆柱的体积公式,它们的体积公式是什么?生:V = Sh (S为底面面积,h为高)师:这个公式推广到一般柱体也成立,即一般柱体体积公式:V = Sh (S为底面面积,h为高)师:锥体包括圆锥和棱锥,锥体的高是指从顶点向底面作垂线,顶点与垂足之间的距离(投影或作出) 锥体的体积公式都是V = (S为底面面积,h为高)师:现在请对照柱体、锥体体积公式你发现有什么结论生:锥体体积同底等高的柱体体积的师:台体的结构特征是什么?生:台体是用平行于锥体底面的平面去截锥体,截得两平行平面间的部分师:台体的体积大家可以怎样求?生:台体的体积应该等于两个锥体体积的差师:利用这个原理我们可以得到台体的体积公式V =其中S′、S分别为上、下底面面积,Q为台体的高(即两底面之间的距离)师:现在大家计论思考一下台体体积公式与柱体、锥体的体积公式有什么关系?生:令S′=0,得到锥体体积公式令S′=S,得到柱体体积公式柱体、锥体、台体的体积公式只要求了解,故采用讲授式效率会更高因台体的体积公式的推导需要用到后面知识,故此处不予证明,只要学生了解公式及公式的推导思路培养探索意识,加深对空间几何体的了解和掌握典例分析例 1 有一堆规格相同的铁制(铁的密度是78g/3)六角螺帽(如图)共重8g,已知底面是正六边形,边长为12,内孔直径为10,高为10,问这堆螺帽大约有多少个( 取314,可用计算器)?解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即≈296 (3) = 296(3)所以螺帽的个数为8×1000÷(78×296)≈ 22(个)答:这堆螺帽大约有22个师:六角螺帽表示的几何体的结构特征是什么?你准备怎样计算它的体积?生:六角螺帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积学生分析,教师板书过程师:求组合体的表面积和体积时,要注意组合体的结构特征,避免重叠和交叉等空间组合体的体积计算关键在于弄清它的结构特征典例分析例2 已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积【解析】如图,设等边圆柱的底面半径为r,则高h = 2r,∵S = S侧+ 2S底= 2 + ,∴∴内接正四棱柱的底面边长a=2r sin4°=∴V = S底•h == 4• ,即圆柱的内接正四棱柱的体积为教师投影例2并读题师:要解决此题首先要画出合适的轴截面图帮助我们思考,要求内接正四棱柱的体积,只需求出等边圆柱的底面圆半径r,根据已知条可以用S表示它大家想想,这个轴截面最好选择什么位置生:取内接正四棱柱的对角面师:有什么好处?生:这个截面即包括圆柱的有关量,也包括正四棱柱的有关量学生分析,教师板书过程师:本题是正四棱柱与圆柱的相接问题解决这类问题的关键是找到相接几何体之间的联系,如本例中正四棱柱的底面对角线的长与圆柱的底面直径相等,正四棱柱的高与圆柱的母线长相等,通过这些关系可以实现已知条的相互转化旋转体类组合体体积计算关键在于找好截面,找到这个截面,就能迅速搭好已知和未知的桥梁随堂练习1.下图是一个几何体的三视图(单位:),画出它的直观图,并求出它的表面积和体积答案:232 22.正方体中,H、G、F分别是棱AB、AD、AA1的中点,现在沿三角形GFH所在平面锯掉正方体的一个角,问锯掉的这块体积是原正方体体积的几分之几?答案:学生独立完成培养学生理解能力,空间想象能力归纳总结1.柱体、锥体、台体的体积公式及关系2.简单组合体体积的计算3.等积变换学生归纳,教师补充完善巩固所学,提高自我整合知识能力后作业13 第二时习案学生独立完成固化知识提升能力备用例题例1:三棱柱AB – A1B11中,若E、F分别为AB、A的中点,平面EB11F将三棱柱分成体积为V1、V2的两部分,那么V1:V2 = 7: 【分析】不妨设V1对应的几何体AEF – A1B11是一个棱台,一个底面的面积与棱柱的底面积相等,另一个底面的面积等于棱柱底面的;V2对应的是一个不规则的几何体,显然这一部分的体积无法直接表示,可以考虑间接的办法,用三棱柱的体积减去V1表示【解析】设三棱柱的高为h,底面的面积为S,体积为V,则V = V1 + V2 = Sh∵E、F分别为AB、A的中点∴∴V1:V2 = 7:【评析】本题求不规则的几何体1B1—EBF的体积时,是通过计算棱柱AB—A1B11和棱台AEF—A1B11的体积的差求得的例2:一个底面直径为20的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6,高为20的一个圆锥形铅锤,当铅锤从中取出后,杯里的水将下降几厘米?( =314)【解析】因为圆锥形铅锤的体积为(3)设水面下降的高底为x,则小圆柱的体积为(20÷2)2x = 100 x (3) 所以有60 =100 x,解此方程得x = 06 ()答:铅锤取出后,杯中水面下降了06。
棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积
思考交流
柱体、锥体、台h
S 0 V 1 (S
3
SS S)h S S
V 1 Sh 3
S为底面面积, S分别为上、下底面
S为底面面积,
h为锥体高
面积,h 为台体高
h为柱体高
例1 埃及胡夫金字塔大约建于公元前2580 年,其形状为正四棱锥,金字塔高146.6m, 底面边长230.4m.问:这座金字塔的侧面积 和体积各是多少?
A
B ﹒C
例2 已知一正四棱台的上底边长为4cm,下底 边长为8cm,高为3cm.求其体积。
O
O′
课后作业 习题1—7 A组 第3、8题
知识小结
柱体、锥体、台体的体积
柱体 V Sh
S S'
台体 V 1 (S SS S)h 3
S' 0
锥体 V 1 Sh 3
1
V锥体
Sh 3
其中,S为锥体的底面积,h为锥体的高.
定理:等底等高锥体的体积相等
三、棱台和圆台
我们知道,用一个平行于底面的平面去 截棱锥,底面和截面之间的部分叫做棱台, 所以,棱台的体积可用两个棱锥的体积的差 来计算。实际上,圆台的体积也可以这样计 算。计算公式如下:
V台体 13(S上+S下+ S上 S下)h.
棱柱、棱锥、棱台和圆柱、 圆锥、圆台的体积
一、棱柱和圆柱
我们知道,长方体的体积等于它的底面 即乘高,类似地,棱柱和远处的体积和等于 它的底面即乘高.即
V柱体=Sh
其中,S为柱体的底面积,h为柱体的高.
等底等高柱体的体积相等吗?
定理:等底等高柱体的体积相等
柱体、锥体、台体的表面积和体积
柱体的体积公式
柱体的体积可以通过以下公式计算:
体积 = 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h 是高度。
锥体的定义和特征
• 锥体由一个圆锥面和一个尖顶组成。 • 锥体的高度是尖顶到底面的垂直距离。
锥体的表面积公式
柱体、锥体、台体的表面 积和体积
通过学习柱体、锥体和台体的表面积和体积公式,你将能够理解它们的定义、 特征以及在日常生活和建筑中的应用。
柱体的定义和特征
• 柱体由两个平行的圆面以及它们之间的侧面组成。 • 柱体的高度是两个平行圆面之间的垂直距离。
柱体的表面积公式
柱体的表面积可以通过以下公式计算:
锥体的表面积可以通过以下公式计算: 总表面积 = πr² + πrl 其中,r 是底面半径,l 是斜高。
锥体的体积公式
锥体的体积可以通过以下公式计算:
体积 = 1/3 × 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h由两个平行的圆面和它们之间的侧面组成。 • 底面和顶面是平行的,而侧面是梯形形状。
1[2].3.2_柱体、锥体、台体的体积
S′
C′
B′
h
S
D
V = VP − ABCD − VP − A′B′C ′D′
A
1 = ( S ′ + S ′S + S )h B 3 其中S ′, S 分别为上、下底面面积, h为圆台(棱台)高.
C
知识小结
柱体、锥体、 柱体、锥体、台体的体积
柱体 V = Sh
S = S'
1 台体 V = (S′ + S′S + S)h 3
C
). B.2 : 3
A1
C1
C.3 : 4
D.4 : 5
B1
1 F 解 : 设S∆ABC = S , 则S∆A1B1C1 = S , A C 4 E 1 1 1 7 VA1B1C1 − ABC = ( S + S ⋅ S + S )h = Sh, B 3 4 4 12 1 1 VA1B1C1 −CEF = Sh,∴VAB1 − ABEF = VA1B1C1 − ABC − VA1B1C1 −CEF = Sh. 4 3 ∴VA1B1C1 −CEF : VAB1 − ABEF = 3 : 4.
一般棱柱体积也是: 一般棱柱体积也是:
V = Sh
其中S为底面面积, 为棱柱的高 为棱柱的高. 其中 为底面面积,h为棱柱的高. 为底面面积
祖暅原理 祖暅原理:夹在两平行平面之间的两个几何 原理:
体 , 被平行于这连个平面的任一平面所截 , 被平行于这连个平面的任一平面所截, 如果截面的面积都相等, 如果截面的面积都相等 , 则两个几何体的体 积相等。 积相等。
解 : (1)如果方案一.仓库的底面直径变成16m.则仓库的体积 1 1 16 2 256 V1 = Sh = × π × ( ) × 4 = π (m3 ). 3 3 2 3 如果按方案二.仓库的高变成8m.则仓库的体积 1 1 12 2 288 V2 = Sh = × π × ( ) × 8 = π (m3 ). 3 3 2 3
柱体台体锥体的面积与体积公式
柱体台体锥体的面积与体积公式柱体、台体和锥体是几何学中的常见立体图形,它们具有不同的形状和特点。
在几何学中,我们经常需要计算柱体、台体和锥体的面积和体积,以便解决各种实际问题。
下面将分别介绍柱体、台体和锥体的面积和体积公式。
一、柱体的面积和体积公式柱体是一种由两个平行且相等的圆面和一个侧面组成的立体图形。
柱体的底面是一个圆,侧面是一个矩形,顶面也是一个圆。
柱体的面积包括底面积、侧面积和全面积,而体积则是底面积乘以柱体的高。
1. 柱体的底面积公式柱体的底面积公式很简单,即底面的面积公式,也就是圆的面积公式。
设柱体的底面半径为r,则柱体的底面积为πr²,其中π是一个常数,约等于3.14。
2. 柱体的侧面积公式柱体的侧面积是一个矩形的面积,可以通过计算矩形的周长乘以柱体的高得到。
设柱体的底面半径为r,柱体的高为h,则柱体的侧面积为2πrh。
柱体的全面积包括底面积和侧面积,可以通过将底面积和侧面积相加得到。
柱体的全面积公式为2πr² + 2πrh。
4. 柱体的体积公式柱体的体积是底面积乘以柱体的高,可以通过将底面积乘以柱体的高得到。
柱体的体积公式为πr²h。
二、台体的面积和体积公式台体是一种由两个平行且相等的椭圆面、一个矩形面和两个梯形面组成的立体图形。
台体的底面和顶面都是椭圆,侧面是一个矩形,而底面和顶面之间的面是两个梯形。
台体的面积包括底面积、顶面积、侧面积和全面积,而体积则是底面积乘以台体的高。
1. 台体的底面积公式台体的底面积是一个椭圆的面积,可以通过计算椭圆的面积公式得到。
设台体的底面长轴为a,短轴为b,则台体的底面积为πab。
2. 台体的顶面积公式台体的顶面积也是一个椭圆的面积,可以通过计算椭圆的面积公式得到。
设台体的顶面长轴为A,短轴为B,则台体的顶面积为πAB。
台体的侧面积是一个矩形和两个梯形的面积之和,可以通过计算矩形和梯形的面积公式得到。
设台体的底面长轴为a,顶面长轴为A,底面短轴为b,顶面短轴为B,台体的高为h,则台体的侧面积为2(a+b)h。
第1章 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积
7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学习目标 1.掌握柱体、锥体、台体的体积计算公式,会利用它们求有关几何体的体积.2.掌握求几何体体积的基本技巧.知识点一 柱、锥、台体的体积公式知识点二 柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .1.锥体的体积等于底面面积与高之积.( × ) 2.台体的体积可转化为两个锥体的体积之差.( √ )类型一 多面体的体积例1 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值. (1)证明 由题知四边形PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,QA 平面PDAQ , 所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD , 则PQ ⊥QD .又DC ∩QD =D ,DC ,QD 平面DCQ , 所以PQ ⊥平面DCQ .(2)解 设AB =a .由题设知AQ 为棱锥Q -ABCD 的高, 所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高. 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1. 反思与感悟 求几何体体积的四种常用方法 (1)公式法:规则几何体直接代入公式求解.(2)等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. (3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱、三棱柱补成四棱柱等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.跟踪训练1 如图,在三棱柱111ABC A B C -中,若E ,F 分别为AB ,AC 的中点,平面11EB C F 将三棱柱分成体积为l 2V V ,的两部分,那么12:V V =________.答案 7∶5解析 设三棱柱的高为h ,底面的面积为S ,体积为V ,则V =V 1+V 2=Sh . 因为E ,F 分别为AB ,AC 的中点,所以AEFS =14S , 1V =13h ⎝⎛⎭⎫S +14S +S ·S 4=712Sh , 2V =Sh -1V =512Sh ,故12:7:5V V =.类型二 旋转体的体积例2 体积为52 cm 3的圆台,一个底面面积是另一个底面面积的9倍,求截得这个圆台的圆锥的体积.解 由底面面积之比为1∶9知,体积之比为1∶27. 截得的小圆锥与圆台体积比为1∶26, ∴小圆锥的体积为2 cm 3, 故原来圆锥的体积为54 cm 3.反思与感悟 要充分利用旋转体的轴截面,将已知条件尽量归结到轴截面中求解,分析题中给出的数据,列出关系式后求出有关的量,再根据几何体的体积公式进行运算、解答. (1)求台体的体积,其关键在于求高,在圆台中,一般把高放在等腰梯形中求解.(2)“还台为锥”是求解台体的体积问题的重要思想,作出截面图,将空间问题平面化,是解决此类问题的关键.跟踪训练2 设圆台的高为3,如图,在轴截面中母线AA 1与底面直径AB 的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体积为________.考点 题点答案 21π解析 设上,下底面半径,母线长分别为r ,R ,l .作A 1D ⊥AB 于点D ,则A 1D =3,∠A 1AB =60°, 又∠BA 1A =90°, ∴∠BA 1D =60°, ∴AD =A 1Dtan 60°=3, ∴R -r = 3.BD =A 1D ·tan 60°=33,∴R +r =3 3.∴ R =23,r =3,而h =3.∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2]=21π.∴圆台的体积为21π. 类型三 几何体体积的求法 命题角度1 等体积法例3 如图,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E 为AA 1的中点,F 为CC 1上一点,求三棱锥A 1-D 1EF 的体积.考点 柱体、锥体、台体的体积 题点 锥体的体积解 1111A D EF F A D E V V --=,锥锥三棱三棱由1121111124A D E S EA A D a ∆⋅==, 又三棱锥F -A 1D 1E 的高为CD =a ,11231113412F A D E V a a a ∴⨯⨯-==,锥三棱 1131.12A D EF V a ∴-=三棱锥反思与感悟 (1)三棱锥的每一个面都可当作底面来处理. (2)利用等体积法可求点到面的距离.跟踪训练3 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,在三棱锥A 1-ABD 中,求A 到平面A 1BD 的距离d .考点 题点解 在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=1,A 1B =BD =A 1D = 2.∵13×12×12×1=13×12×2×32×2×d , ∴d =33. 命题角度2 割补法例4 如图,在多面体ABCDEF 中,已知面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 与平面AC 的距离为3,求该多面体的体积.考点 题点解 如图,连接EB ,EC ,AC .四棱锥E -ABCD 的体积V E -ABCD =13×42×3=16.因为AB =2EF ,EF ∥AB ,所以S △EAB =2S △BEF .所以V F -EBC =V C -EFB =12V C -ABE =12V E -ABC=12×12V E -ABCD =4. 所以该多面体的体积V =V E -ABCD +V F -EBC =16+4=20.反思与感悟 通过“割补法”解决空间几何体的体积问题,需要思路灵活,有充分的空间想象力,什么时候“割”,什么时候“补”,“割”时割成几个图形,割成什么图形,“补”时补上什么图形,都需要灵活的选择.跟踪训练4 如图所示,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.考点 题点解 用一个完全相同的几何体把题中几何体补成一个圆柱,如图所示,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34考点 柱体、锥体、台体的体积 题点 锥体的体积答案 D解析 V =13Sh =13×34×3=34.2.圆锥的轴截面是等腰直角三角形,侧面积是162π,则圆锥的体积是( ) A.128π3 B.64π3 C .64π D .1282π考点 柱体、锥体、台体的体积 题点 锥体的体积 答案 B解析 设圆锥的底面半径为r ,母线长为l , 由题意知2r =l 2+l 2,即l =2r ,∴S 侧=πrl =2πr 2=162π, 解得r =4.∴l =42,圆锥的高h =l 2-r 2=4,∴圆锥的体积为V =13Sh =13π×42×4=64π3.3.棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是( ) A .18+6 2 B .6+2 2 C .24 D .18考点 题点 答案 B解析 V =13(2+4+2×4)×3=6+2 2.4.已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是________. 考点题点 台体的体积 答案73π3解析 设圆台的上、下底面半径分别为r 和R ,母线长为l ,高为h ,则S 上=πr 2=π,S 下=πR 2=4π.∴r =1,R =2,S 侧=π(r +R )l =6π.∴l =2,∴h =3,∴V =13π(12+22+1×2)×3=73π3.5.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降__________cm.考点 题点 答案 0.6解析 将铅锤取出后,水面下降部分实际是圆锥的体积. 设水面下降的高度为x cm ,则π×⎝⎛⎭⎫2022x =13π×⎝⎛⎭⎫622×20, 得x =0.6 cm.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.一、选择题1.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34考点 题点 答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′,∴V C -AA ′B ′B =23V ABC -A ′B ′C ′=23.2.如图,已知正三棱锥S -ABC ,D ,E 分别为底面边AB ,AC 的中点,则四棱锥S -BCED 与三棱锥S -ABC 的体积之比为( )A .1∶2B .2∶3C .3∶4D .4∶3答案 C解析 两锥体高相等,因此V 四棱锥S -BCED ∶V 三棱锥S -ABC =S 四边形BCED ∶S △ABC =3∶4. 3.已知圆锥的母线长为8,底面圆的周长为6π,则它的体积是( ) A .955π B .955 C .355π D .355 考点 题点 答案 C解析 设圆锥的底面圆的半径为r ,高为h ,则2πr =6π,∴r =3. ∴h =64-32=55,∴V =13π·r 2·h =355π.4.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.53πB.43πC.23π D .2π 考点 组合几何体的表面积与体积题点 柱、锥、台、球切割的几何体的表面积与体积 答案 A解析 由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为( ) A .2 B .2 2 C. 2 D. 3 考点 题点 答案 A解析 如图所示,设等边三角形ABC 为圆锥的轴截面,由题意知圆锥的母线长即为△ABC 的边长,且S △ABC =34AB 2,∴3=34AB 2,∴AB =2.6.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥D 1-ACD 的体积是( )A.16B.13C.12D .1答案 A 解析 三棱锥D 1-ADC 的体积V =13S △ADC ×D 1D =13×12×AD ×DC ×D 1D =13×12=16. 7.将若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面高度为6 cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面高度为( )A .6 3 cmB .6 cmC .2318 cmD .3312 cm 考点 柱体、锥体、台体的体积题点 锥体的体积答案 B解析 设圆锥中水的底面半径为r cm ,由题意知13πr 2×3r =π22×6, 得r =23,∴水面的高度是3×23=6 cm.8.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( )A .1 B.32 C .3 D.32考点题点答案 A解析 在正△ABC 中,D 为BC 中点,则有AD =32AB =3,11DB C S =12×2×3= 3. 又∵平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD 平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴1111DB C A B DC V S 三棱-=锥·AD =13×3×3=1. 二、填空题9.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 考点题点答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 10.如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.考点题点答案 96解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.11.如图,在三棱柱A 1B 1C 1-ABC 中,已知D ,E ,F 分别为AB ,AC ,AA 1的中点,设三棱锥A -FED 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2的值为______.考点 柱体、锥体、台体的表面积与体积题点 其他求体积、表面积问题答案 124解析 设三棱柱的高为h ,∵F 是AA 1的中点,∴三棱锥F -ADE 的高为h 2, ∵D ,E 分别是AB ,AC 的中点,∴S △ADE =14S △ABC , ∵V 1=13S △ADE ·h 2,V 2=S △ABC ·h , ∴V 1V 2=16S △ADE ·h S △ABC ·h =124. 三、解答题12.在四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,求所得旋转体的体积.解 如图为所得旋转体,由一个圆锥和一个圆台组成.∵C (2,1),D (0,3),∴圆锥的底面半径r =2,高h =2.∴V 圆锥=13πr 2h =13π×22×2 =83π.∵B (1,0),C (2,1), ∴圆台的两个底面半径R =2,R ′=1,高h ′=1.∴V 圆台=13πh ′(R 2+R ′2+RR ′) =13π×1×(22+12+2×1)=73π, ∴V =V 圆锥+V 圆台=5π.13.如图所示是一个边长为5+2的正方形,剪去阴影部分得到圆锥的侧面和底面展开图,求该圆锥的体积.考点题点解 设圆锥的底面半径为r ,母线长为l ,高为h ,则依题意有14·2πl =2πr , ∴l =4r .又∵AC =OC +OA =2r +r +l =(2+5)r ,且AC =2×(2+5),∴(2+5)r =(2+5)×2,∴r =2,∴l =42,∴h =l 2-r 2=30,∴V 圆锥=13πr 2h =13π(2)2×30=2303π.故该圆锥的体积为2303π. 四、探究与拓展14.若正三棱台A 1B 1C 1-ABC 的两底面边长分别为2,8,侧棱长等于6,则此三棱台的体积V =________.答案 42 2解析 如图,设D 1,D 分别为A 1B 1,AB 的中点,O 1,O 为上、下两底面的中心,则O 1O 为棱台的高h ,O 1C 1=233,OC =833,作C 1H ⊥OC 于点H ,则C 1H =h ,且CH =23,故h =C 1H =36-12=2 6. ∵111A B C S =3,S △ABC =163,∴V =(3+43+163)×263=42 2. 15.在三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,则三棱锥A 1-ABC ,B -A 1B 1C ,C -A 1B 1C 1的体积之比是多少?考点题点解 设棱台的高为h ,S △ABC =S ,则1114.A B C S S ∆= ∴1A ABC V -=13S △ABC ·h =13Sh , 1111114·.3C ABC A B C V S h Sh ∆-==又V 台=13h (S +4S +2S )=73Sh , ∴11B A B C V -=V 台-1111A ABC C ABC V V ---=73Sh -13Sh -43Sh =23Sh . ∴1A ABC V -∶11B A B C V -∶111C A B C V -=1∶2∶4.。
柱体、锥体与台体的体积
小结: (1)柱体、锥体、台体的体积公式;
(2)柱体、锥体、台体的体积公式的 比较;
作业: 书本P30 1,2,3 不抄题目。
下 课
leiyuanjie@
• 教学后记:
1 V ( S S S S )h 3
奇 妙 吗
◎
请大家观察一下柱体,锥体,台体的 体积公式,你有什么发现? 柱体的体积公式:V=Sh
S’= S
台体的体积公式
1 V ( S S S S )h 3
S’= 0 锥体的表面积公式 V
1 Sh 3
实际应用
例:有一堆规格相同的铁制(铁的密度 是7.8g/cm3)六角螺帽共5.8kg,已知底面 是正六边形,边长为12mm,内孔直径 为10mm,高为10mm,问这堆螺帽大 约有多少个(π取3.14)
锥体的体积
1 圆锥的体积公式为: V Sh 3
(S是底面面积,h为高)
棱锥的体积公式为:V 1 Sh (S是底面面积,h为高)
总结:棱锥与圆锥的体积公式都是 底面面积乘高的三分之一.
3
台体的体积
由于以圆(棱)台是由圆(棱)锥截成的 因此可以利用两个锥体的体积差, 得到圆(棱)台的体积公式为 其中S’,S分别为上、下底面面积, h为圆(棱)台的高.
• 教学目标:了解柱体、锥体与台体 的体积计算公式,并能应用公式解 决一些实际问题; • 教学重点:柱体、锥体与台体的体 积计算公式;
• 教学难点:台体公式的推导;柱体、 锥体与台体的体积公式的比较;
柱体的体积
温故:正方体、长方体,以及圆柱 体积公式统一为:V=Sh (S是底面面积,h为高)
柱体锥体台体的表面积与体积
侧面积表面积03表面积01平截面02斜截面平截面$n\pi r^{2}h$斜截面$\frac{1}{3}\pi rh^{2}$体积$n\pi r^{2}h + \frac{2}{3}\pi rh^{2}$底面积侧面积表面积侧面积表面积底面积1 2 3体积公式适用范围注意事项体积公式01适用范围02注意事项03圆台表面积计算公式$S$$r$$l$圆台的表面积圆锥台表面积计算公式$S=1/2l(r₁+r₂)+πr ₁r₂$圆锥台表面积圆锥台母线长度圆锥台底面半径圆锥台顶面半径$S$$r₁$$r₂$$l$圆锥台的表面积$V$:圆台体积$r ₂$:圆台底面半径圆台体积计算公式:²+r ₂²)$$:圆台顶面半径010203040506圆台的体积圆锥台体积计算公式$V$$h$$r$ $r₁$ $l$圆锥台的体积圆柱的表面积圆柱的侧面积加上上下底面的面积,公式为$2\p i r h+2\p i r^{2}$,其中$r$为底面半径,$h$为高。
体积为底面积乘高,公式为$\pi r^{2}h$。
圆锥的表面积圆锥的侧面积加上底面的面积,公式为$\pi rl + \pi r^{2}$,其中$r$为底面半径,$l$为母线长。
体积为$\frac{1}{3}\pi r^{2}h$,其中$h$为高。
圆台的表面积圆台的侧面积加上两个圆底面的面积,公式为$\pi(r_{1}+r_{2})l +\pi r_{1}^{2} + \pi r_{2}^{2}$,其中$r_{1}$、$r_{2}$分别为圆台的上下底面半径,$l$为圆台的母线长。
体积为$\frac{1}{3}\pih(r_{1}^{2}+r_{2}^{2}+r_{1}r_{2})$,其中$h$为高。
旋转体的表面积与体积平行投影柱体锥体台体的表面积与体积平行投影柱体的表面积平行投影台体的表面积组合体的表面积组合体的体积组合体的表面积与体积面积和体积的计算有助于了解其特性。
柱,锥,台的体积及球的表面积和体积
[例2] 如图,圆柱的底面直径与高
都等于球的直径.
求证:(1) 球的
体积等于圆柱体积
的 2;
O
3
(2) 球] 如图,圆柱的底面直径与高
都等于球的直径.
***补例*** 1. 若圆台的高是3,一个底面半径
是另一个底面半径的2倍,母线与下底 面所成的角是45°,求这个圆台的侧 面积.
***补例***
2. 如图,一块正方形薄铁片的边长
为22cm,以它的一 个顶点为圆心,一
22cm
边长为半径画弧.沿
弧剪下一扇形,围
成一锥筒.求它的侧面积和体积.
1
V锥 3 sh V台 3 h(s s' ss')
1 V锥 3 sh
s'=0
1 V台体 3 h(s s' ss')
V柱 sh
s'=s
V圆锥
1 3
R2h
r=0
V圆台
1 3
h(r 2
R
R2
)
V圆柱 R2h
r=R
三、 球的表面积、体积公式
S球表 4R2
V球
4 R3
3
典型例题 [例1] 有一堆规格相同的铁制六角
1、多面体的表面积公式是什么?
S多面体表 底面面积 侧面面积
2、圆柱体的表面积公式是什么?
S圆柱表 2 r(r l)
3、圆锥体的表面积公式是什么?
S圆锥表 r(r l)
4、圆台的表面积公式是什么?
S圆台表(r'2 r2 r'l rl)
柱体锥体台体的公式大全
柱体锥体台体的公式大全
一、柱体:
柱体是一个由两个平行的、相等的圆形底面和连接两个底面的侧面组成的几何体。
柱体的体积和表面积的公式如下:
1.柱体的体积公式:
V=πr²h
2.柱体的表面积公式:
S=2πr²+2πrh
其中,S代表柱体的表面积,r代表柱体的底面半径,h代表柱体的高度。
二、锥体:
锥体是一个由一个圆形底面和连接底面和顶点的侧面组成的几何体。
锥体的体积和表面积的公式如下:
1.锥体的体积公式:
V=(1/3)πr²h
2.锥体的表面积公式:
S=πr(r+l)
其中,S代表锥体的表面积,r代表锥体的底面半径,l代表锥体的斜高(从顶点到底边的距离)。
三、台体:
台体是一个由两个平行、相等的圆形底面和连接两个底面的侧面以及一个横截面为矩形的侧面组成的几何体。
1.台体的体积公式:
V=(1/3)π(r₁²+r₂²+r₁r₂)h
2.台体的表面积公式:
S=π(r₁+r₂)l+πr₁²+πr₂²
其中,S代表台体的表面积,r₁和r₂分别代表台体的上底半径和下底半径,l代表侧面的斜高。
需要注意的是,以上公式的单位应保持一致,如使用米,则体积的单位为立方米,表面积的单位为平方米。
柱体、锥体、台体体积计算
柱体、锥体、台体体积计算1. 引言在几何学中,我们经常遇到需要计算不同几何体的体积的情况。
柱体、锥体和台体都是常见的几何体,其体积的计算可以通过简单的公式得出。
本文将介绍柱体、锥体和台体的定义以及如何计算它们的体积。
2. 柱体的体积计算柱体是由两个平行的并且具有相同形状的底面所包围的几何体。
其体积可以通过以下公式计算:V = 底面积 × 高度其中,V表示柱体的体积,底面积指的是底面的面积,高度指的是柱体的高度。
通过测量底面的长度和宽度,我们可以得到底面积,并通过测量柱体的高度,我们也可以得到柱体的体积。
3. 锥体的体积计算锥体是由一个面为底面的三角形和以该面上的所有点为顶点的直线所围成的几何体。
其体积可以通过以下公式计算:V = (底面积 × 高度) / 3其中,V表示锥体的体积,底面积指的是底面的面积,高度指的是锥体的高度。
与柱体类似,我们可以通过测量底面的长度和宽度得到底面积,并通过测量锥体的高度得到锥体的体积。
4. 台体的体积计算台体是由两个平行并且具有相同形状的底面以及连接两个底面的面组成的几何体。
其体积可以通过以下公式计算:V = (上底面积 + 下底面积 + 根号(上底面积 × 下底面积)) × 高度 / 3其中,V表示台体的体积,上底面积指的是上底面的面积,下底面积指的是下底面的面积,高度指的是台体的高度。
与柱体和锥体类似,我们可以通过测量底面的长度和宽度得到底面积,并通过测量台体的高度得到台体的体积。
5. 示例假设我们有一个柱体,其底面的长度为4cm,宽度为2cm,高度为6cm。
根据柱体的体积计算公式,我们可以计算出柱体的体积:V = 4cm × 2cm × 6cm = 48cm^3同样地,如果我们有一个锥体,其底面的长度为4cm,宽度为2cm,高度为6cm,根据锥体的体积计算公式,我们可以计算出锥体的体积:V = (4cm × 2cm × 6cm) / 3 = 16cm^3最后,如果我们有一个台体,其上底面的长度为4cm,宽度为2cm,下底面的长度为6cm,宽度为3cm,高度为8cm,根据台体的体积计算公式,我们可以计算出台体的体积:V = (4cm × 2cm + 6cm × 3cm + √(4cm × 2cm × 6cm × 3cm)) × 8cm / 3 = 64cm^36. 结论通过本文我们了解了柱体、锥体和台体的定义,并掌握了计算它们体积的公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柱体、锥体、台体的体积
第二时柱体、锥体、台体的体积
(一)教学目标
1.知识与技能
(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式(不要求记忆公式)
(2)熟悉台体与柱体和锥体之间体积的转换关系
(3)培养学生空间想象能力和思维能力
2.过程与方法
(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系(2)通过相关几何体的联系,寻找已知条的相互转化,解决一些特殊几何体体积的计算
3.情感、态度与价值观
通过柱体、锥体、台体体积公式之间的关系培养学生探索意识(二)教学重点、难点
重点:柱体、锥体、台体的体积计算
难点:简单组合体的体积计算
(三)教学方法
讲练结合
教学环节教学内容师生互动设计意图
新导入1.复习柱体、锥体、台体表面积求法及相互关系教师设问,学生回忆
师:今天我们共同学习柱体、锥体、台体的另一个重要的量:体积复习巩固
点出主题
探索新知柱体、锥体、台体的体积
1.柱体、锥体、台体的体积公式:
V柱体= Sh (S是底面积,h为柱体高)
V锥体= (S是底面积,h为锥体高)
V台体= (S′,S分别为上、下底面面积,h为台体的高)
2.柱体、锥体、台体的体积公式之间的关系
师:我们已经学习了正方体,长方体以及圆柱的体积公式,它们的体积公式是什么?
生:V = Sh (S为底面面积,h为高)
师:这个公式推广到一般柱体也成立,即一般柱体体积公式:V = Sh (S为底面面积,h为高)
师:锥体包括圆锥和棱锥,锥体的高是指从顶点向底面作垂线,顶点与垂足之间的距离(投影或作出) 锥体的体积公式都是V = (S为底面面积,h为高)
师:现在请对照柱体、锥体体积公式你发现有什么结论
生:锥体体积同底等高的柱体体积的
师:台体的结构特征是什么?
生:台体是用平行于锥体底面的平面去截锥体,截得两平行平面间的部分
师:台体的体积大家可以怎样求?
生:台体的体积应该等于两个锥体体积的差
师:利用这个原理我们可以得到台体的体积公式
V =
其中S′、S分别为上、下底面面积,Q为台体的高(即两底面之间的距离)
师:现在大家计论思考一下台体体积公式与柱体、锥体的体积公式有什么关系?
生:令S′=0,得到锥体体积公式
令S′=S,得到柱体体积公式柱体、锥体、台体的体积公式只要求了解,故采用讲授式效率会更高
因台体的体积公式的推导需要用到后面知识,故此处不予证明,只要学生了解公式及公式的推导思路
培养探索意识,加深对空间几何体的了解和掌握
典例分析例 1 有一堆规格相同的铁制(铁的密度是78g/3)六角螺帽(如图)共重8g,已知底面是正六边形,边长为12,内孔直径为10,高为10,问这堆螺帽大约有多少个( 取314,可用计算器)?
解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即
≈296 (3) = 296(3)
所以螺帽的个数为
8×1000÷(78×296)≈ 22(个)
答:这堆螺帽大约有22个师:六角螺帽表示的几何体的结构特征是什么?你准备怎样计算它的体积?
生:六角螺帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积
学生分析,教师板书过程
师:求组合体的表面积和体积时,要注意组合体的结构特征,避免重叠和交叉等空间组合体的体积计算关键在于弄清它的结构特征
典例分析例2 已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积
【解析】如图,设等边圆柱的底面半径为r,则高h = 2r,
∵S = S侧+ 2S底= 2 + ,∴
∴内接正四棱柱的底面边长a=2r sin4°=
∴V = S底•h =
= 4• ,
即圆柱的内接正四棱柱的体积为教师投影例2并读题
师:要解决此题首先要画出合适的轴截面图帮助我们思考,要求内接正四棱柱的体积,只需求出等边圆柱的底面圆半径r,根据已知条可以用S表示它大家想想,这个轴截面最好选择什么位置
生:取内接正四棱柱的对角面
师:有什么好处?
生:这个截面即包括圆柱的有关量,也包括正四棱柱的有关量
学生分析,教师板书过程
师:本题是正四棱柱与圆柱的相接问题解决这类问题的关键是找到相接几何体之间的联系,如本例中正四棱柱的底面对角线的长与圆柱的底面直径相等,正四棱柱的高与圆柱的母线长相等,通过这些关系可以实现已知条的相互转化旋转体类组合体体积计算关键在于找好截面,找到这个截面,就能迅速搭好已知和未知的桥梁
随堂练习1.下图是一个几何体的三视图(单位:),画出它的直观图,并求出它的表面积和体积答案:232 2
2.正方体中,H、G、F分别是棱AB、AD、AA1的中点,现在沿三角形GFH所在平面锯掉正方体的一个角,问锯掉的这块体积是原正方体体积的几分之几?
答案:学生独立完成培养学生理解能力,空间想象能力
归纳总结1.柱体、锥体、台体的体积公式及关系
2.简单组合体体积的计算
3.等积变换学生归纳,教师补充完善巩固所学,提高自我整合知识能力
后作业13 第二时习案学生独立完成固化知识
提升能力
备用例题
例1:三棱柱AB – A1B11中,若E、F分别为AB、A的中点,平面EB11F将三棱柱分成体积为V1、V2的两部分,那么V1:V2 = 7: 【分析】不妨设V1对应的几何体AEF – A1B11是一个棱台,一个底面的面积与棱柱的底面积相等,另一个底面的面积等于棱柱底面的;V2对应的是一个不规则的几何体,显然这一部分的体积无法直接表示,可以考虑间接的办法,用三棱柱的体积减去V1表示
【解析】设三棱柱的高为h,底面的面积为S,体积为V,则V = V1 + V2 = Sh
∵E、F分别为AB、A的中点
∴
∴V1:V2 = 7:
【评析】本题求不规则的几何体1B1—EBF的体积时,是通过计算棱柱AB—A1B11和棱台AEF—A1B11的体积的差求得的
例2:一个底面直径为20的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6,高为20的一个圆锥形铅锤,当铅锤从中取出后,杯里的水将下降几厘米?( =314)
【解析】因为圆锥形铅锤的体积为
(3)
设水面下降的高底为x,则小圆柱的体积为(20÷2)2x = 100 x (3) 所以有60 =100 x,解此方程得x = 06 ()
答:铅锤取出后,杯中水面下降了06。