中考数学知识点:整式的乘法_考前复习
初中整式乘除知识点总结
初中整式乘除知识点总结一、整式的定义整式是由字母和数字(称为系数)以及加法、减法、乘法运算符号组成的,满足代数性质的式子。
其中,整式可以是单项式、多项式或者是已知系数的表达式。
1. 单项式单项式是只有一个项的代数式,如3x、-5y、2a²b等。
2. 多项式多项式是由若干个单项式相加(减)而成的代数式,或者说多项式是由多个单项式通过加法和减法连接得到的表达式,例如3x²+2x-5、-4a³-6a²b+8ab²-2b³等。
3. 已知系数的表达式已知系数的表达式可以像一般的多项式一样运算,只不过它们代表的是系数是有限个数且确定的。
二、整式的加减运算整式的加减运算是指将同类项进行相加或相减。
同类项是指: 同一变量的幂相同的几项。
1. 加法a. 直接相加: 将各同类项的系数累加,而变量和幂不变。
b. 化简: 当几个整式相加时,将同类项相加,并按照数字的大小规则化简。
2. 减法a. 减法等于加法的逆运算: 减去一个数a等价于加上一个数-a。
b. 减法的性质: 同类项相减的结果等于同类项的系数相减,变量和幂不变。
三、整式的乘法运算1. 单项式与单项式的乘法两个单项式相乘,直接将它们的系数相乘,变量相乘后写成原来变量的乘方。
2. 单项式与多项式的乘法将单项式的每一项与多项式相乘,再将所得的各项相加。
3. 多项式的乘法多项式的乘法可以看做一种按分配律的运算。
先将多项式乘数的各项与被乘数的各项分别相乘,再将乘积相加。
四、整式的除法运算1. 同一或者不等式除: 当含有同一变量的各同类项可以整除时,将它们的系数分别相除,再将变量合并。
2. 非同类项之间的除法在含有多项式的各项中,当各项不能整除时,可以将它有理地展开,再进行系数相除,变量幂相减。
所以,非同类项之间的除法基本是按高斯位别定理——整除法则。
以上是关于初中整式乘除的知识点总结,希望能对同学们的学习起到一定的帮助。
整式的乘除与因式分解知识点复习
整式的乘除与因式分解知识点复习乘除与因式分解是数学中非常重要的知识点,广泛应用于各个领域。
在高中阶段,学习乘除与因式分解是为了更好地理解并解决数学问题,为后续学习提供基础。
本文将对乘除与因式分解的相关知识进行复习,以期加深对这一知识点的理解。
1.整式的乘法整式是由常数项和各种变量及其指数的积或和的形式构成的代数式。
整式的乘法是指两个整式之间的乘法运算。
在整式的乘法中,需要注意以下几个知识点:(1)同底数幂的乘法:当两个幂的底数相同时,可以将底数保持不变,指数相加。
例如,5^2*5^3=5^(2+3)=5^5(2)不同底数幂的乘法:当两个幂的底数不同时,将两个底数乘在一起,指数保持不变。
例如,2^3*3^2=2^3*3^2=6^2(3)乘法分配律:乘法分配律是指整式乘法中,对于两个整式a、b和一个整式c,有(a+b)*c=a*c+b*c例如,(2x+3)(4x+5)=2x*4x+2x*5+3*4x+3*5=8x^2+10x+12x+15=8x^2+22x+152.整式的除法整式的除法是指将一个整式除以另一个整式,得到商和余数的运算过程。
在整式的除法中,需要注意以下几个知识点:(1)除法算法:整式的除法运算过程与约分的思想类似。
首先找出被除式中最高次项和除式中最高次项的幂次差,然后将被除式中的每一项与除式的最高次项相乘得到临时商,再将临时商乘以除式,得到临时商与被除式的差,重复之前的步骤,直到无法再继续相除为止。
例如,(2x^3+3x^2-5x+7)/(x-2)=2x^2+7x+9余数为23(2)因式定理:如果整式f(x)除以(x-a)的余数为0,则x-a是f(x)的一个因式。
例如,f(x)=x^2-3x+2,将f(x)除以(x-2),得到(x^2-3x+2)/(x-2)=x-1余数为0,所以x-2是f(x)的一个因式。
3.因式分解因式分解是将一个整式分解成几个乘积的形式,其中每个乘积因式都尽可能简单。
中考数学总复习专题基础知识回顾一整式的乘除
中考数学总复习 专题基础知识回顾---整式的乘除一、 知识点总结:1、 单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、 多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、 整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、 同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:235()()()a b a b a b ++=+5、 幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a)()(==如:23326)4()4(4==6、 积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、 同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、 零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。
pp a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
专题05整式的乘法(3个知识点6种题型3种中考考法)(原卷版)
专题05整式的乘法(3个知识点6种题型3种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1:单项式与单项式相乘知识点2:单项式与多项式相乘知识点3:多项式与多项式相乘【方法二】实例探索法题型1:单项式与单项式相乘题型2:单项式与单项式相乘的综合应用题型3:单项式与多项式相乘题型4:单项式与多项式相乘的综合应用题型5:多项式与多项式相乘题型6:多项式与多项式相乘的综合应用【方法三】仿真实战法考法1:单项式与单项式相乘考法2:单项式与多项式相乘考法3:多项式与多项式相乘【方法四】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1:单项式与单项式相乘单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按“先乘方、再乘法”的顺序进行.例如:()()()22224245234312xy x y x y x y x y⋅-=⋅-=-.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数 的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指 数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则.知识点2:单项式与多项式相乘单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.知识点3:多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.【方法二】实例探索法题型1:单项式与单项式相乘1.(2022秋•嘉定区期中)计算:﹣3ab •4b 2= .2.(2022秋•杨浦区期中)计算:(﹣xy)2•x5=.3.(2022秋•奉贤区期中)计算:ab2•(﹣4a2 b4)=.题型2:单项式与单项式相乘的综合应用4.(2022秋•嘉定区期中)计算:(﹣2x3)•(﹣2x)3+(x3)2﹣x2•x4.5.(2022秋•黄浦区期中)计算:(﹣3a2b)3﹣(﹣2a3b)2•(﹣3b).题型3:单项式与多项式相乘6.(2022秋•杨浦区期中)计算:6ab(2a﹣0.5b)﹣ab(﹣a+b).7.(2022秋•嘉定区期中)计算:2x•(x2﹣x+3).8.(2022秋•闵行区校级期中)计算:(﹣2xy)•(x2+xy﹣y2).9.(2022秋•长宁区校级期中)若A=3x﹣2,B=1﹣2x,C=﹣6x,则C•B+A•C=.10.(2022秋•奉贤区期中)计算:(x2﹣3xy+y2)(﹣2x)2.题型5:多项式与多项式相乘11.(2022秋•黄浦区期中)计算:(3x﹣2)(x+2)=.12.(2022秋•杨浦区期中)计算:(x+2y)(y﹣2)+(2y﹣4x)(y+1).13.(2022秋•长宁区校级期中)2(x+2)(2x+3)﹣3(1﹣x)(x+6).14.(2022秋•长宁区校级期中)计算:x(2x﹣3)+(3﹣x)(1﹣5x).15.(2022秋•宝山区校级月考)计算:.16.(2022秋•闵行区期中)若多项式x﹣1与多项式x2+ax﹣b相乘,乘积不含一次项以及二次项,那么a,b的值分别是()A.1,1B.1,﹣1C.﹣1,﹣1D.﹣1,117.(2022秋•浦东新区期中)已知(mx+n)(x2﹣3x+4)展开式中不含x2项,且x3的系数为2,则n m的值为.18.(2022秋•长宁区校级期中)如果(x﹣2)(x+m)=x2+x+n,那么m=,n=.19.(2022秋•虹口区校级期中)有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片张,B类卡片张,C类卡片张,请你在右下角的大矩形中画出一种拼法.(标上卡片名称)20.(2022秋•虹口区校级期中)已知多项式x2+ax+1与2x+b的乘积中含x2项的系数为4,含x项的系数为2,求a+b的值.21.(2022秋•浦东新区期中)甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.求(a﹣b)(﹣2a ﹣b)的值.22.(2022秋•长宁区校级期中)若关于x 的多项式2x +a 与x 2﹣bx ﹣2的乘积展开式中没有二次项,且常数项为10,求a 、b 的值.【方法三】 仿真实战法考法1:单项式与单项式相乘1.(2020•上海)计算:2a •(3ab )= .考法2:单项式与多项式相乘2.(2023•吉林)计算:a (b +3)= .考法3:多项式与多项式相乘3.(2019•南京)计算(x +y )(x 2﹣xy +y 2)【方法四】成功评定法一、单选题1.(2021秋·上海·七年级上海市西延安中学校考期中)下列计算正确的是( ) A .3x 2y +5yx 2=8x 2y B .2x •3x =6xC .(3x 3)3=9x 9D .(﹣x )3•(﹣3x )=﹣3x 42.(2021秋·上海黄浦·七年级统考期末)若x 2+px +q =(x ﹣3)(x +5),则p 的值为( ) A .﹣15B .﹣2C .2D .83.(2022秋·上海普陀·七年级统考期末)如果2(5﹣a )(6+a )=100,那么a 2+a +1的值为( ) A .19B .﹣19C .69D .﹣694.(2022秋·上海闵行·七年级校考阶段练习)下列运算正确的是( ) A .325426x x x ⋅=B .236326x x x ⋅=C .()()25293212x x x -⋅-=-D .()312319()x x x x -⋅--=-5.(2022秋·上海嘉定·七年级校考期中)如果A 、B 都是关于x 的单项式,且A B ⋅是一个八次单项式,A B +是一个六次多项式,那么A B -的次数( ) A .一定是八次 B .一定是六次 C .一定是四次D .无法确定6.(2023秋·上海浦东新·七年级校考期中)如果()()253x m x x x k +-=-+,那么k 、m 的值分别是( ).A .10k =,2m =B .10k =,2m =-C .10k =-,2m =D .10k =-,2m =-二、填空题)213x y ⎛⎫- ⎝⎪⎭3⎫=⎪⎭.的结果是 )()32m n -三、解答题22241x y y y x y(a +b )2=a 2+2ab +b 2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a +b )5展开式的系数和是 ;(a +b )n 展开式的系数和是 .(2)当a =2时,(a +b )5展开式的系数和是 ;(a +b )n 展开式的系数和是 .24.(2022秋·上海静安·七年级上海市风华初级中学校考期中)7张如图1的长为a ,宽为b ()0b >的小长方形纸片,按如图2、3的方式不重叠地放在长方形ABCD 内;未被覆盖的部分(两个长方形)用阴影表示.(1)如图2,点E 、Q 、P 在同一直线上,点F 、Q 、G 在同一直线上,右下角与左上角的阴影部分的面积的差为____________(用含,a b 的代数式表示),长方形ABCD 的面积为____________(用含,a b 的代数式表示)(2)如图3,点F 、H 、Q 、G 在同一直线上,设右下角与左上角的阴影部分的面积的差为S ,CP x =. ①用含,,a b x 的代数式表示AE ;②当BC 的长度变化时,按照同样的放置方式,要使S 始终保持不变,那么,a b 必须满足什么条件?25.(2022秋·上海静安·七年级上海市风华初级中学校考期中)已知关于x 的一次二项式ax b +与231x x -+的积不含二次项,一次项的系数是4. 求:(1)系数a 与b 的值;(2)二项式ax b +与231x x -+的积.26.(2022秋·上海闵行·七年级校考周测)阅读材料,回答下列问题.阅读材料,回答下列问题. 多项式相乘的计算法则为用多项式中的每一项与另一个多项式的每一项相乘,再把结果加起来,例如()()()()a b c d a c d b c d ++=+++(乘法分配律)ac ad bc bd =+++()()()()()2x y x y x y x x y y x y +=++=+++22x xy yx y =+++(合并同类项) 222x xy y =++则ac ad bc bd +++叫做()()a b c d ++的展开式,222x xy y ++叫做()2x y +的展开式. (1)计算()21x +的展开式;(2)请指出()2x y +是几次几项式,并计算()3x y +的展开式(按照x 进行降幂排列),指出这个展开式是几次几项式,并推测()nx y +是几次几项式(用n 表示,其中n 为正整数);(3)推测()nx y +的展开式中各项系数之和,并证明你的结论(用n 表示,其中n 为正整数).27.(2022秋·上海·七年级专题练习)请阅读以下材料:[材料]若1234912346x =⨯,1234812347y =⨯,试比较x ,y 的大小.解:设12348a =,那么()()2122x a a a a =+-=--,()21y a a a a =-=-. 因为()()22220x y a a a a -=----=-<,所以x y <. 我们把这种方法叫做换元法.请仿照例题比较下列两数大小:997657997655x =⨯,997653997659y =⨯.28.(2021秋·上海·七年级统考期末)如图,已知正方形ABCD 与正方形CEFG ,点G 在边CD 上,已知正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,且a b >.用a 、b 表示下列图形的面积.(1)DFG 的面积.(2)BEF △的面积.(3)BDF 的面积.。
中考重点整式的加减乘除
中考重点整式的加减乘除整式是代数中常见的一种形式,由一些代数式通过加减乘除运算符连接而成。
整式的加减乘除是中考数学中的重点内容之一,本文将重点探讨整式的加减乘除运算。
一、整式的加法整式的加法指的是同类项的加法。
所谓同类项,是指指数相同的项。
例如,3x和2x就是同类项,而3x和2y就不是同类项。
整式的加法运算步骤如下:1. 将相同类型的项按照相同变量的幂次从高到低排列。
2. 对相同类型的项,将它们的系数相加,并保持变量的幂次不变。
例如,将3x² + 5x + 2 和 6x² + 3x - 1相加,步骤如下:排列:6x² + 3x - 1 + 3x² + 5x + 2合并同类项:(6x² + 3x²) + (3x + 5x) + (-1 + 2)计算:9x² + 8x + 1二、整式的减法整式的减法也是同类项的减法。
整式的减法可以通过将减数中的每一项取相反数,然后与被减数相加的方式实现。
例如,将3x² + 5x + 2 减去 6x² + 3x - 1,步骤如下:将减数的每一项取相反数:-6x² - 3x + 1相加:(3x² + 5x + 2) + (-6x² - 3x + 1)合并同类项:(3x² - 6x²) + (5x - 3x) + (2 + 1)计算:-3x² + 2x + 3三、整式的乘法整式的乘法指的是多项式之间的乘法,乘法的结果是一个新的整式。
整式的乘法可以通过分配律和同类项相加的方式实现。
例如,将(2x + 3)乘以(4x - 5),步骤如下:分配律:2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)计算:8x² - 10x + 12x - 15合并同类项:8x² + 2x - 15四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式的过程。
整式的乘法知识点总结
八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:()()()2443][-a a a a -+-••例题二、计算:3222132213⎪⎭⎫ ⎝⎛-•⎪⎭⎫ ⎝⎛-+xy y y x例题三、计算:()()()()y x y x y x y x 4333223+--++【知识点二】利用幂的运算法则解决问题例题一、已知510=a ,610=b ,求b a 3210+的值。
例题二、解方程:486331222=-++x x例题三、已知0352=-+y x ,求y x 324•的值。
【知识点三】整式除法的运用例题一、已知()p n y mx y x y x 72323212--=⎪⎭⎫ ⎝⎛-÷,求n,m,p 的值。
例题二、已知一个多项式与单项式457-y x 的积为()2234775272821y x y y x y x +-,求这个多项式【知识点四】整式化简求值例题一、先化简,再求值:()()()x x x x x x x x -+-----321589622,其中61-=x例题二、先化简,再求值:()()()⎪⎭⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .【知识点五】开放探求题例题一、若多项式()()4322+-++xxnmxx展开后不含有3x项和2x项,试求m,n的值。
例题二、甲乙二人共同计算一道整式乘法:()()bxax++32,由于甲抄错了第一个多项式中a的符号,得到的结果为101162-+xx;由于乙漏抄了第二个多项式中x的系数,得到的结果为10922+-xx。
(1)你能知道式子中b a,的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。
例题三、若x是整数,求证121223+-+--x x xxx是整数。
【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)(2)若能,则该正方体贮水池的棱长_________dm;(3)若不能,你能说出理由吗?(不要求作答)π3R,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。
整式的乘法和因式分解知识点汇总
整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. 例: (-a 5)53.()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例:(-a 2b )3 练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
全】初中数学整式的乘法与因式分解知识点总结
全】初中数学整式的乘法与因式分解知识点总结整式的乘法与因式分解第一节:整式的乘法1.同底数幂的乘法同底数幂相乘,底数不变,指数相加。
这是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:①幂的底数相同而且是相乘时,底数可以是一个具体的数字式字母,也可以是一个单项或多项式。
②指数是1时,不要误以为没有指数。
③不要将同底数幂的乘法与整式的加法相混淆。
对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加。
④当三个或三个以上同底数幂相乘时,法则可推广为。
⑤公式还可以逆用。
2.幂的乘方幂的乘方,底数不变,指数相乘。
该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:当底数有负号时,运算时要注意。
底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3.底数有时形式不同,但可以化成相同。
要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
3.积的乘方法则积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4.整式的乘法1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆。
②相同字母相乘,运用同底数的乘法法则。
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。
④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加。
即单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
单项式与多项式相乘时要注意以下几点:将被除数的每一项分别除以除数,得到商的每一项,再将这些项相加,得到商式。
初中数学整式的乘除与因式分解知识点考点梳理
初中数学整式的乘除与因式分解知识点考点梳理一、整式的乘法整式的乘法是指对两个或多个整式进行乘法运算。
整式乘法主要包括常数与整式相乘、整式与整式相乘和整式与多项式相乘。
1.常数与整式相乘:用一个常数乘以一个整式,只要将该整式的每一项乘以该常数即可。
2.整式与整式相乘:对于两个整式相乘,可以使用分配律和合并同类项的方法来进行乘法。
3.整式与多项式相乘:整式与多项式相乘时,要将整式中的每一项分别与多项式相乘,然后将所得的乘积合并同类项。
二、整式的除法整式的除法是指对一个整式除以另一个整式的操作。
整式的除法主要涉及到多项式的除法和多项式的带余除法。
1.多项式的除法:多项式的除法要求被除式和除式都是多项式。
多项式的除法可以使用长除法的方法,将被除式从左到右每一项与除式进行相除,然后将所得商依次写下。
2.多项式的带余除法:多项式的带余除法是对多项式进行除法运算时同时求出商和余数。
在多项式的带余除法中,我们要先根据需要进行合并同类项或补零操作,然后按正常的多项式除法进行运算。
三、因式分解的基本概念因式分解是将一个整式写成多个整式的乘积的过程,这些被乘积的整式称为因式。
因式分解是整式运算中的重要部分,它在解决实际问题和简化计算中起到了重要的作用。
四、因式分解的常用方法1.提取公因式:提取公因式是指将多项式中多个项的公共因子提取出来。
提取公因式的方法是将多项式中每一项的各个因子进行相应的整理,找出它们的最大公因式。
2.公式法:公式法是指将一些特定的整式的乘积进行因式分解。
例如,平方差公式、差平方公式和完全平方公式等,都是常用的公式法。
3.组合因式法:组合因式法是根据多项式的特点,将多项式进行适当的组合,然后找出其因式。
组合因式法是一个灵活运用的方法,可以根据需要进行不同形式的组合。
五、因式分解的应用因式分解在数学中有广泛的应用。
它可以帮助我们解决实际问题、简化计算和求解方程等。
1.解决实际问题:通过因式分解,我们可以将实际问题转化为求解因式的问题,从而帮助我们更好地理解和解决实际问题。
中考数学专题复习2整式的运算(解析版)
整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
2020年中考数学复习 第14章 整式的乘法与因式分解(专题复习讲义)
第十四章整式的乘法与因式分解知识点1 整式乘法单项式×单项式单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式乘法易错点:典例1 计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】分析:直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.标准解答:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.典例2 如果单项式-22x2m y3与23x4y n+1的差是一个单项式,则这两个单项式的积是______. 【答案】-32x8y6【标准解答】由题意可得,解得m=2,n=2,则这两个单项式的积为:-22x4y3×23x4y3=-32x8y6.故答案为-32x8y6.【点睛】本题考查了同类项和同底数幂的乘法,解此题的关键在于根据题意得到两个单项式为同类项,则相应字母的指数相等,求得指数的值,再根据同底数幂的乘法法则求解即可.典例3 有理数a,b,满足,=________;【答案】6【标准解答】∵|a-b-2|+(2a+2b-8)2=0,∴a-b-2=0,2a+2b-8=0,解得:a=3,b=1,则(-ab)•(-b3)•(2ab)=a2b5=×9×1=6.故答案为:6典例4 如果x n y4与2xy m相乘的结果是2x5y7,那么mn=_____.【答案】12【解析】,∴n+1=5,m+4=7,解得:m=3,n=4,∴mn=12.故答案为:12.单项式×多项式单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加【单项式乘以多项式注意事项】1.单项式乘多项式的结果是多项式,积的项数与原多项式的项数相同。
2.单项式分别与多项式的每一项相乘时,要注意积的各项符号。
(同号相乘得正,异号相乘得负)3.不要出现漏乘现象,运算要有顺序。
《整式的乘法复习》课件
学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04
习
基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。
中考数学知识点:整式的乘法
中考数学知识点:整式的乘法单项式乘法法那么:单项式相乘,把它们的系数、相反字母区分相乘,关于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
更多整式的乘法如下:中考数学知识点:整式的乘法整式的乘法1. 单项式乘法法那么:单项式相乘,把它们的系数、相反字母区分相乘,关于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法那么在运用时要留意以下几点:①积的系数等于各因式系数积,先确定符号,再计算相对值。
这时容易出现的错误的选项是,将系数相乘与指数相加混杂;②相反字母相乘,运用同底数的乘法法那么;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法那么关于三个以上的单项式相乘异样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是经过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要留意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相反;②运算时要留意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要留意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要留意以下几点:①多项式与多项式相乘要防止漏项,反省的方法是:在没有兼并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应留意兼并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
关于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以失掉整式的乘法试题及答案↗(人教版. 整式的乘法与因式分解. 第14章.2分)1.计算(2a 2)3?a 正确的结果是( )A . 3a 7B 4a 7C a 7D . 4a 6考点:单项式乘单项式;幂的乘方与积的乘方.专题:计算题.剖析:依据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法那么停止计算即可.↗(人教版. 整式的乘法与因式分解. 第14章.2分)2.假定□×3xy =3x 2y ,那么□内应填的单项式是( )A . xyB .3xyC .xD . 3x考点:单项式乘单项式.专题:计算题.剖析:依据题意列出算式,计算即可失掉结果.↗(人教版. 整式的乘法与因式分解. 第14章.2分)3.假定2x 3﹣ax 2﹣5x +5=(2x 2+ax ﹣1)(x ﹣b )+3,其中a 、b 为整数,那么a +b 之值为何?( )A . ﹣4B .﹣2C .0D . 4考点:多项式乘多项式.专题:计算题.剖析:先把等式左边整理,在依据对应相等得出a ,b 的值,代入即可. 解答:解:∵2x 3﹣ax 2﹣5x +5=(2x 2+ax ﹣1)(x ﹣b )+3,∴2x 3﹣ax 2﹣5x +5=2x 3+(a ﹣2b )x 2﹣(ab +1)x +b +3,∴﹣a =a ﹣2b ,ab +1=5,b +3=5,↗(人教版. 整式的乘法与因式分解. 第14章.2分)4.以下运算正确的选项是( )A . (a 2)3=a 5B .(a ﹣b )2=a 2﹣b 2C .﹣=3D . =﹣3。
整式的乘除与因式分解知识点全面
整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
乘法的结果称为“积”。
-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。
除法的结果称为“商”和“余数”。
-除法的除数不能为0,即被除式不能为0。
-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。
次数为0的项称为常数项,次数最高的项称为最高次项。
4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。
-除法规则:除法运算时,可以通过因式分解的方法进行计算。
5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。
-两个正整数相乘,结果为正数。
-两个负整数相乘,结果为正数。
-一个正整数与一个负整数相乘,结果为负数。
二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。
可以通过提取公因式、配方法等方式进行因式分解。
2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。
3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。
4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。
例如:a^2-b^2=(a+b)(a-b)。
5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。
例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。
7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。
整式的乘除知识点及题型复习
整式的乘除知识点及题型复习整式的乘除是初中数学中的重要内容,它不仅是后续学习分式、二次根式等知识的基础,也在实际生活中有着广泛的应用。
接下来,我们将对整式的乘除相关知识点及常见题型进行详细的复习。
一、整式乘法的知识点1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。
即:$a^m×a^n =a^{m+n}$($m$、$n$都是正整数)例如:$2^3×2^4 = 2^{3+4} = 2^7$2、幂的乘方幂的乘方,底数不变,指数相乘。
即:$(a^m)^n = a^{mn}$($m$、$n$都是正整数)例如:$(2^3)^4 = 2^{3×4} = 2^{12}$3、积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:$(ab)^n = a^n b^n$($n$为正整数)例如:$(2×3)^4 = 2^4×3^4$4、单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:$3x^2y×(-2xy^3) = 3×(-2)×(x^2×x)×(y×y^3) =-6x^3y^4$5、单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 5x + 1) = 2x×3x^2 2x×5x + 2x×1 = 6x^3 10x^2 + 2x$6、多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x + x×(-3) + 2×x + 2×(-3) =x^2 3x + 2x 6 = x^2 x 6$二、整式除法的知识点1、同底数幂的除法同底数幂相除,底数不变,指数相减。
整式的乘法知识点汇总
整式的乘法知识点汇总&练习1. 同底数幂相乘,底数不变,指数相加。
a n.a m =a m+n (m,n 是正整数).底数可以是数字或字母,可以是单项式,也可以是多项式,若是多项式,应该把多项式看做一个整体。
幂之间是乘法关系,指数之间是相加关系。
2. 幂的乘方,底数不变,指数相乘。
(a n )m =a mn (m,n 是正整数)。
注意负数的奇数次幂为负,负数的偶数次幂为正。
3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n =a n b n (n 是正整数)。
底数必须是积的形式,当底数中有多个因式时,切勿漏掉系数因式的乘方。
当底数中有“-”时,应将视为-1,作为系数因式进行乘方。
4. 单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
积的系数等于各单项式系数的积,应先确定积的符号,在计算积的绝对值。
相同字母的指数相加。
有乘方的先算乘方,再算乘法。
5. 单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a (m+n )=am+an 。
单项式乘以多项式的每一项,注意符号变化,能合并同类项的要合并同类项。
6. 多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b )(m+n )=am+an+bm+bn 。
7. 平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b )(a -b )=a 2-b 2有一组符号相同,有一组符号相反,用相同数的平方减去相反数的平方。
每一组数的绝对值都相同。
8. 完全平方公式,即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。
(a+b )2=a 2+2ab+b 2,(a -b )2=a 2-2ab+b 2首平方,尾平方,积的两倍在中央。
9. 公式的灵活变形:(a+b )2+(a -b )2=2a 2+2b 2,(a+b )2-(a -b )2=4ab ,a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a -b )2+2ab ,(a+b )2=(a -b )2+4ab,(a -b )2=(a+b )2-4ab=====-=-=+-+-=--+-=+•=-•=++=+=-+=++=÷===••-+n m n m n m a a a a a a x y y x x y y x b a a bc a ab x x y x b a b a a a b b b a a a a a ,,8,2)()2())(())((2)2(3)4)(5()3()2)(2()2)(32()2()(85222584233253求已知)(因式分解知识点&练习1.把一个多项式表示成若干个多项式的乘积的形式,称为把这个多项式因式分解。
整式的乘除知识点及题型复习
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
整式的乘法与因式分解知识点
整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。
本文将详细介绍整式的乘法和因式分解的定义、性质和方法。
一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。
整式的乘法是指将两个或多个整式相乘的运算。
1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。
例如,a^m*a^n=a^(m+n)。
-不同底数幂相乘,指数相乘。
例如,a^m*b^n=a^m*b^n。
- 系数相乘。
例如,k * t = kt。
2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。
例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。
这个过程通常称为“分配律”。
二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。
因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。
1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。
这个过程是因式分解中最基本的方法。
根据此原理,我们可以使用提公因式法因式分解更复杂的整式。
2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。
例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。
例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。
整式乘法及因式分解知识点总结
整式的乘除与因式分解一、整式的乘除1、整式的乘法:同底数幂的乘法:同底数幂相乘,底数不变,指数相加。
),(都是正整数n m a a a n m n m +=•幂的乘方:幂的乘方,底数不变,指数相乘。
),(都是正整数)(n m a a m n n m =积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
)()(都是正整数n b a ab n n n =单项式乘以单项式:把它们的系数、同底数幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a ++=+2222)(b ab a b a +-=-2、整式的除法:同底数幂的除法:同底数幂相除,底数不变,指数相减。
)0,,(≠=÷-a n m a a a n m n m 都是正整数单项式相除:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的上相加。
注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学知识点:整式的乘法_考前复习
单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
更多整式的乘法如下:中考数学知识点:整式的乘法
整式的乘法
1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
整式的乘法试题及答案
↗(人教版. 整式的乘法与因式分解. 第14章.2分)1.计算(2a 2)3•a 正确的结果是( )
A . 3a 7
B 4a 7
C a 7
D . 4a 6
考点:单项式乘单项式;幂的乘方与积的乘方.
专题:计算题.
分析:根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.↗(人教版. 整式的乘法与因式分解. 第14章.2分)2.若□×3xy =3x 2y ,则□内应填的单项式是( )
A . xy
B .3xy
C .x
D . 3x
考点:单项式乘单项式.
专题:计算题.
分析:根据题意列出算式,计算即可得到结果.
↗(人教版. 整式的乘法与因式分解. 第14章.2分)3.若2x 3﹣ax 2﹣5x +5=(2x 2+ax ﹣1)(x ﹣b )+3,其中a 、b 为整数,则a +b 之值为何?( )
A . ﹣4
B .﹣2
C .0
D . 4
考点:多项式乘多项式.
专题:计算题.
分析:先把等式右边整理,在根据对应相等得出a ,b 的值,代入即可. 解答:解:∵2x 3﹣ax 2﹣5x +5=(2x 2+ax ﹣1)(x ﹣b )+3,
∵2x 3﹣ax 2﹣5x +5=2x 3+(a ﹣2b )x 2﹣(ab +1)x +b +3,
∵﹣a =a ﹣2b ,ab +1=5,b +3=5,
↗(人教版. 整式的乘法与因式分解. 第14章.2分)4.下列运算正确的是( )
A . (a 2)3=a 5
B .(a ﹣b )2=a 2﹣b 2
C .﹣=3
D . =﹣3。