第一章气体的pVT关系

合集下载

第一章气体的PVT关系

第一章气体的PVT关系

§1.2 理想气体混合物
1. 混合物的组成
(1)摩尔分数x或y
xB(或yB) nB nA
A
本书中气体混合物的摩尔分数一般用 y 表示,液体混合物的摩 尔分数一般用 x 表示。
(2)质量分数 ω B
ωB mB
mA
A
(3) 体积分数 B
B
xBVm*B, (
xAVm*A, )
V
* m,
A
A
:一定压力、温度下纯物质A的摩尔体积。
临界温度下的饱和蒸汽压为临界压力,pc 是在临界温度下使气体液化做需要的
最低压力
临界摩尔体积Vm,c:在Tc, pc下物质的摩尔体积
Tc, pc , Vm,c:临界参数
§1.3 气体的液化及临界参数
液体的饱和蒸汽压 临界参数
真实气体的p-Vm图及气体的液化
3.真实气体的p-Vm图及气体的液化
等温线的三种类型: T>Tc(不可液化) T<Tc(加压可液化) T=Tc
V VB*
B
VnR /p T ( nB)R/T p
B
(nB p R)T BV B *
VB* nBRT/ p
理想气体混合物中物质B的分体积等于纯气体B在混合 物温度及总压条件下所占有的体积。
理想气体混合物的体积具有一定的加和性。在相同 的温度和压力下,混合后的总体积等于混合前各组 分的体积之和。
由pVT数据拟合得到Z~p关系.
3. 对应状态原理
对比参数反映了气体所处状态偏离临界点 的倍数。 各种不同气体,只要两个对比参数相同, 第三个参数必相同,这就是对应状态原理。 此时的气体处于相同的对应状态。
3. 普遍化压缩因子图
将对比状态参数的表达式引入到压缩因子 定义式中,得到:

第一章气体的p-v-T关系

第一章气体的p-v-T关系

第一章 气体的pVT 性质无论物质是哪一种聚集状态,都有许多宏观性质,如压力p 、体积V 、温度T 、密度ρ、内能U 、熵S 等.在重多的宏观性质中,p 、V 、T 三者是物理意义非常明确、又易于直接测定的基本性质.当物质的量n 一定后,其pVT 性质不可能同时独立取值,而存在如下关系:0),,(=T V p f该函数称为状态方程.若考虑到物质的量n,则可表示为: 0),,,(=T V p n f鉴于液、固体的可压缩性一般甚小,即等温压缩率(系数) T T pVV )(1∂∂-=κ和体膨胀系数p V TVV a )(1∂∂=均较小,故在通常的物理化学计算中,常将其体积随压力和温度的变化忽略.与凝聚态相比,气体具有较大的等温压缩系数T κ和体膨胀系数V a ,其体积随温度和压力的变化较大,故一般只研究气体的pVT 性质.1.1 理想气体状态方程1.理想气体状态方程波义尔定律: 常数=pV (n,T 恒定)盖.吕萨克定律 常数=T V / (n,p 恒定)阿伏加德罗定律 常数=n V / (p,T 恒定)这三个定律都客观地反映了低压下气体服从的pVT 简单关系.将其结合可整理得到状态方程: nRT pV =此即理想气体状态方程.式中,R 是摩尔气体常数.其值经精确测定,为:11314510.8--⋅⋅=K mol J R .因摩尔体积n V V m /=,故理想气体状态方程又可写成:RT pV m = 因M m n =,Vm =ρ,故理想气体状态方程又可写成:RT Mm pV =或RT pM ρ=例: 试由上列三定律导出理想气体状态方程.解: 因任意体系均满足:0),,,(=n T V p f ,可改写成:),,(n T p f V =该式取全微分得:dn nVdT T V dp p V dV T p n p n T ,,,)()()(∂∂+∂∂+∂∂= 由波义尔定律得: 0=+Vdp pdV (T,n 恒定)此即: pV p V n T -=∂∂,)( 同理,由盖.吕萨克定律和阿伏加得罗定律可得: T V T V n p =∂∂,)(和 nV n V T p =∂∂,)( 代入全微分式得:dn nVdT T V dp p V dV ++-=)(此式即: ndn T dT p dp V dV +=+ 或 )ln()ln(nT d pV d =亦即: 0)ln(=nT pV d ,积分可得: 常数=nTpV又据阿伏加德罗定律知,当气体的p,V 一定时,体系的(V/n )为与气体各类无关的常数,故上式中的常数对任何气体都应具有相同的值,如用R 表示,则上式变为: nRT pV =这就是理想气体状态方程.2.理想气体凡在任何温度、压力下均服从方程nRT pV =的气体称理想气体. 按照上述定义,理想气体必须具备下列两个微观特征: (1).气体分子本身不占有体积,是没有大小的质点.因在T 恒定时,常数=m pV ,当0→p 时,必有0→m V (2).分子间无相互作用力.分子可近似被看作是没有体积的质点。

7-32第一章 气体的pVT关系

7-32第一章 气体的pVT关系

第一章 气体的pVT 关系物质的聚集状态一般可分为三种,即气体、液体和固体。

气体与液体均可流动,统称为流体;液体和固体又统称为凝聚态。

三种状态中,固体虽然结构较复杂,但粒子排步的规律性较强,对它的研究已有了较大的进展;液体的结构最复杂,人们对其认识还很不充分;气体则最为简单,最容易用分子模型进行研究,故对它的研究最多,也最为透彻。

无论物质处于哪一种聚集状态,都有许多宏观性质,如压力p ,体积V ,温度T ,密度ρ,热力学能U 等等。

众多宏观性质中,p , V , T 三者是物理意义非常明确、又易于直接测量的基本性质。

对于一定量的纯物质,只要p , V , T 中任意两个量确定后,第三个量即随之确定,此时就说物质处于一定的状态。

处于一定状态的物质,各种宏观性质都有确定的值和确定的关系①。

联系p , V , T 之间关系的方程称为状态方程。

状态方程的建立常成为研究物质其它性质的基础。

液体和固体两种凝态,其体积随压力和温度的变化均较小,即等温压缩率T T p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ和体膨胀系数pV T V V ⎪⎭⎫ ⎝⎛∂∂=1α都较小,故在通常的物理化学计算中常忽略其体积随压力和温度的变化。

与凝聚态相比,气体具有较大的等温压缩率κT 和体膨胀系数αV ,在改变压力和温度时,体积变化较大。

因此一般的物理化学中只讨论气体的状态方程。

根据讨论的p , T 范围及使用精度的要求,通常把气体分为理想气体和真实气体分别讨论。

§1.1 理想气体状态方程1.理想气体状态方程从17世纪中期,人们开始研究低压下(p <1 MPa )气体的p VT 关系发现了三个对各种气体均适用的经验定律:(1)波义尔(Boyle R)定律 在物质的量和温度恒定的条件下,气体的体积与压力成反比,即p V =常数 (n ,T 一定)(2)盖-吕萨克(Gay J -Lussac J )定律 在物质的量与压力恒定的条件下,气体的体积与热力学温度成正比,即V/T =常数 (n , p 一定)(3)阿伏加德罗(Avogadro A )定律 在相同的温度、压力下,1mol 任何气体占有相同体积,即V / n =常数 (T ,p 一定)将上述三个经验定律相结合,整理可得到如下的状态方程:p V = n RT (1 .1 .1a )上式称为理想气体状态方程。

第一章 气体的pVT性质

第一章 气体的pVT性质

30.31× 10−3 kg.mol −1 × 0.201 = 6.29 ≈ 6 1× 10−3 kg.mol −1 ∴ C2 H 6
3. 在生产中 用电石 CaC2 CaC2 分析碳酸氢氨产品中水分的含量 = C2H2 g +Ca OH
2
其反应式如下
s + 2H2O l
现称取 2.000g 碳酸氢氨样品与过量的电石完全作用 在 27 50.0cm3 解 试计算碳酸氢氨样品中水分的质量分数为多少
VB = yBV
VB =
nB RT p
压缩因子的定义
Z=
5 范德华方程
pV nRT

Z=
pVm RT
a p + 2 (Vm − b ) = RT Vm 二. 本章练习
(一) 选择题
n2a 或 p + 2 (V − nb ) = nRT V
1 对于实际气体,处于下列哪种情况时,其行为与理想气体相近
n=
2 pV p2V p2V = + RT1 RT1 RT2 2 p1T2 = 57900 Pa = 57.9kPa T2 + T1
p2 =
6. 298.15K 时 在一抽空的烧瓶中充入 2.00g 的 A 气体 此时瓶中压力为 1.00 105Pa 今若再充入 3.00g 的 B 气体 解 发现压力上升为 1.50 105Pa 试求两物质 A B 的摩尔量之比
充入气体质量为
0.3897g 时 解
试计算混合气体中乙烷和丁烷的摩尔分数与分压力
M = y1M 1 + y2 M 2 = =
mRT pV
0.3897 g × 8.314 J .K −1.mol −1 × 293.15 K = 46.87 g .mol −1 −4 3 101.325kPa × 2.00 ×10 m M 1 = 30 g / mol M 2 = 58 g / mol

第一章气体的pVT关系

第一章气体的pVT关系

世纪末,人们开始普遍地使用现行的理想气体状
态方程:
pV = nRT
2.理想气体模型(model)
(1)分子间力 -兰纳德-琼斯理论(Lennard-Jones theory)
E
Eattra
Erepul
A r6
B r12
E
0
r0 r
(2) 理想气体模型 ①分子之间无相互作用力,E = 0
pV=nRT
➢临界压力 pc ——临界温度下使气体液化所需要
的最低压力,即为临界压力
➢临界摩尔体积Vm,c ——临界温度和临界压力下气
体的摩尔体积,即为临界摩尔体积
➢临界参数——物质临界状态下的Tc、 pc 、Vm,c
统称为物质的临界参数,是物质的特性参数
➢临界点——物质具有Tc、 pc 、Vm,c临 界参数
的临界状态点,称为物质的临界点
p Vm
Tc
0
2 p Vm2
Tc
0
➢超临界流体SCF——
§1 .4 真实气体的状态方程

范德华方程 (Van der Waals equation)


维里方程 (Kammerlingh - Onnes

equation)
的 状
R-K 方程 (Redlich – Kwong equation)
p
a Vm2
0
2 p Vm2
Tc
0
p Vm
Tc
RTc (Vm b)2
2a Vm3
0
2 p Vm2
Tc
2RTc (Vm b)3
6a Vm4
0
V m,c 3b
8a Tc 27Rb
pc

第一章气体的pVT关系

第一章气体的pVT关系

mB wB mA
def A
1.2.2
其量纲为 1, wB = 1
(3)体积分数 B ,定义为混合前纯B的体积与各纯组分
体积总和之比
B
def
x V
A
* xBVm ,B * A m, A
1.2.3
(量纲为1) B = 1
2. 理想气体状态方程对理想气体混合物的应用
因理想气体分子间没有相互作用,分子本身又不占 体积,所以理想气体的 pVT 性质与气体的种类无关,因 而一种理想气体的部分分子被另一种理想气体分子置换, 形成的混合理想气体,其 pVT 性质并不改变,只是理想 气体状态方程中的 n 此时为总的物质的量。
以上三式结合 pV = nRT 单位:
理想气体状态方程
p Pa; V m3; T K; n mol ; R 摩尔气体常数 8.3145 10 J mol-1 K-1 理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)。
第一章
低压气体定律:
气体的 pVT 关系
1. 理想气体状态方程
(1)波义尔定律:在物质的量和温度恒定的条件下, 气体的体积与压力成正比,即 pV = 常数 ( n ,T 一定) (2)盖.吕萨克定律:当物质的量和压力恒定时, 气体的体积与热力学温度成正比,即 V / T = 常数 (n , p 一定) (3)阿伏加德罗定律:在相同的温度,压力下,1mol 任何气体占有相同体积,即 V / n = 常数 (T, p 一定)
饱和蒸气压首先由物质的本性决定。对于同一种物质, 它是温度的函数,随温度升高而增大。
饱和蒸气压 = 外压时,液体沸腾,此时的的温度称为 沸点。饱和蒸气压 = 1个大气压时的沸点称为正常沸点。 在沸腾时,液体表面及内部分子同时汽化。

气体的pVT关系及其应用

气体的pVT关系及其应用

水蒸气的分压 pD 2.670kPa 。
nA / nB 0.89 / 0.02
nA /(nA nB ) 0.89 /(0.89 0.02) 0.89 / 0.91
pA pB p pD (101.325 2.670)kPa 98.655kPa
对于混合混合压力之比等于物质的量之比,故
Vm p
TB
在T

TB
下,当压力趋于零时,上式中的

Vm p
TB

0 ,故必然存在
由上式可得
RTB Vm b

RTBVm (Vm b)2
a Vm2
0
a RTBVm RTB Vm2 (Vm b)2 Vm b
1.15 试由波意耳温度 TB 的定义式,证明范德华气体的 TB 可表示为 TB a / bR
式中 a,b 为范德华常数。
证:当T TB 时任一真实气体有
范德华方程可表示为
lim{
p0
(
pVm
)
/
p}TB
0
pVm RTVm (Vm b) a /Vm
上式在 T TB 下对 p 微分可得
解: CO2 (g) 的范德华常数 a 0.3640Pa m6 mol2 ;
b 0.4267 104 m3 mol1
( p a /Vm2 )(Vm b) RT
p RT /(Vm b) aVm2 {8.3145 313.15 /(0.381103 0.4267 104 ) 0.3640 /(0.381103)2}Pa 5187.7kPa
先将范德华方程整理成
p (RT /Vm ){1/(1 b /Vm )} a /Vm2

第1章气体的pVt关系

第1章气体的pVt关系

1.4.1 Van der Waals 方程 2 n ( p a 2 )(V nb) nRT V
b为1mol气体分子自身体积的影响。 分子间吸引力正比于(n/V)2 内压力 p′=a(n/V)2 pideal=preal+a(n/V)2 Van der Waals方 1 ( p a )( V b ) RT m 2 种的另一种形式 V
p1 p2 189 186 100% 1.61% p2 186 ’ 3 V 2.00dm3 p1 1.89103 kPa p’ 1 . 59 10 kPa 2
’ ’ 3 p1 p2 (1.89 1.59) 10 100% 18.9% ’ 3 p2 1.59 10
a (p )(Vm b) RT 2 TVm
22
1.5压缩因子与普遍化压缩因子图
1.5.1真实气体的pVm-p图及波义尔温度
pVm/[pVm] C B A pVm/[pVm]
TB
p/[p]
图1.5.1不同气体在同一温度
下的pVm-p等温线
p/[p]
图1.5.2同一种气体在不同温度 下的pVm-p等温线
第1章 气体的p-T-V关系
1.1理想气体状态方程
低压下气体的三个经验定律: 1)Boyle定律:
pV=常数 V/T=常数 V/n=常数
(n、T一定) (n、p一定) (T、p一定) pV= nRT
R—通用气体常数
2)Gay-Lussac定律: 3)Avogadro定律:
精确值:R=(8.314510±0.000070)J· mol-1· K-1
mB wB def mA
A
nB xB (或yB ) def nA

气体的pVT关系

气体的pVT关系

临界温度 Tc 时的饱和蒸气压称为临界压力。 临界压力 pc : 在临界温度下使气体液化所需的最低压力。 临界摩尔体积Vm,c:在Tc,pc下物质的摩尔体积。
Tc,pc,Vc 统称为物质的临界参数。
3. 真实气体的 p-Vm 图及气体的液化
三个区域: T > Tc T < Tc T = Tc
图1.3.2 真实气体 p-Vm等温线示意图
E排斥 1/r n
兰纳德-琼斯(Lennard-Jones)理论: n = 12
E总
A B E 吸引+E 排斥=- 6 12 r r
式中:A 吸引常数;B 排斥常数。
图1.1.1 兰纳德-琼斯势能 曲线示意图
(2) 理想气体模型 分子间无相互作用力; 分子本身不占有体积 (低压气体)p 0 理想气体
第一章 气体的pVT关系
气体 物质的聚集状态 液体 固体
V 受 T,p 的影响很大
V 受 T,p的影响较小
联系 p,V,T 之间关系的方程称为状态方程 对于由纯物质组成的均相流体 n 确定: f ( p, V, T ) = 0 n不确定: f ( p, V, T, n ) = 0 物理化学中主要讨论气体的状态方程
分子间相互作用减弱了分子对器壁的碰撞,所以:
p = p理-p内 (p为气体的实际压力) p内= a / Vm2 p理= p + p内= p + a / Vm2
由于分子本身占有体积 1 mol 真实气体的自由空间=Vm-b
式中:b 1 mol 分子自身所占体积。
将修正后的压力和体积项引入理想气体状态方程:
在压力趋于0的极限条件下,各种气体的行为均服从pVm=RT的定量关 系,所以: R 是一个对各种气体都适用的常数。

01气体的pVT关系

01气体的pVT关系

第二个容器中,组分2的压力 混合后,第三个容器中,混合组分的压力
n1 RT p1 V n2 RT p2 V ( n1 n2 ) RT p p1 p2 V

二.道尔顿分压定律
1、道尔顿分压定律
理想气体混合物的总压力等于各种气体单独存在,且具有 混合物温度和体积时的压力之和。
p pB
m ( H 2 ) n H 2 M ( H 2 ) (4.01 106 ) ( 2.016 10 3 )kg 8.08 103 kg
【例】某化工车间一反应器操作压力为 106.4kPa,温度为723K,每小时送入该反应器 的气体为4.00×104m3(STP),试计算每小时 实际通过反应器的气体体积(即体积流量)。
气体液化的必要条件: T<TC 气体液化的充分条件: p>p*
l2
C
673.2K
l3
g3 g2
496.3K 304.2K 293.2K
液体+气体
286.3K
Vm • 实际气体p - Vm等温线的一般规律
物质处于临界点时的特点:

物质气-液相间的差别消失,两相的摩尔体积相等 ,密度等物理性质相同,处于气液不分的混沌状 态。
盖-吕萨克(Gay J—Lussac J)定律 V / T C(n, p一定)
阿伏加德罗(Avogadro A)定律
V / n C(T , p一定)
气体p、V、T、n四个量中两个量不变时, 另外两个量的变化具有一定规律。

三. 理想气体(perfect gas)状态方程
整理以上三个定律,可得如下状态方程
§1.1 低压气体的P-V-T关系

一. 压力、体积和温度

第1章气体的PVT关系要点

第1章气体的PVT关系要点
B
•气体混合物中某组分的分压力(partial pressure):
p p B pB y B p
B
nB RT pB V
pBV nB RT
•道尔顿(Dalton)分压定律:理想气体混合物中某组分 分压,为该组分单独存在于混合气体温度及总体积时 所具有的压力;混合气体总压等于各气体分压之和。
g
③ 临界摩尔体积(Vm,c): •Tc ,pc下物质的摩尔体积。
Vm 真实气体 p –Vm 等温线示意图
3、真实气体的临界状态
临界点的特征
•气液界面消失,气液性质完全 相同,气液不分; •数学中的拐点:
l´ 1 l´ 2
T1<T2<Tc<T3<T4
p
c
l2 l1 g2 g1
T4 T3 Tc T2 T1 g ´ 2
g´ 1
p 0 Vm Tc
2 p V 2 0 m Tc
l
g
Vm 真实气体 p –Vm 等温线示意图
超临界流体 (Super-critical Fluid)
•温度和压力略高于临界点的状态; •超临界流体兼具气液双重特性,高密度,扩散系 数大,具有很好的溶解性能; •超临界流体技术: ① 超临界萃取(extraction) ② 超临界流体干燥
1、理想气体( perfect gas )
分子间力(intermolecular force) •吸引力- 分子相距较远时,有范德华引力; •排斥力 分子相距较近时,电子云及核产生排斥作用。 Lennard-Jones 理论:
A B E E吸引+E 排斥 6 12 r r E : 分子间相互作用总势能 A, B:吸引和排斥常数 r:分子间距

第一章气体pVT关系

第一章气体pVT关系

第一章 气体的pVT 关系§1.1 理想气体状态方程(1)状态方程状态方程:处于一定聚集态(气体、液体或固体)的物质都有一些可以直接测量的物理量,如p 、V 、T 等,这些物理量之间存在一定的函数关系,用来描述物质状态各物理量之间的函数关系的数学表达式称物质的状态方程(也称物态方程)。

气体的状态方程可写为:0f p V T n =(,,,)p - 压力V - 体积T - 热力学温度(绝对温度)n - 气体的物质的量(2)理想气体状态方程1、波义尔定律(Boyle )波义尔定律:在恒温条件下,一定量任何气体的体积与其压力成反比,即:1V p∝,或 .pV cont = 2、盖-吕萨克定律(Gay-Lussac )盖-吕萨克定律:在恒压条件下,一定量任何气体的体积均与其绝对温度成正比,即:T V ∝,或.V cont T = 3、阿伏加德罗定律(A. Avogadro ,1811)V / n =cont (T, p 一定)4、理想气体状态方程理想气体状态方程:pV nRT =或:m pV RT =,m V V n =(摩尔体积)R - 摩尔气体常数(或气体常数)。

R =8.314J.K -1.mol -1。

理想气体的特点:①分子自身无体积;②分子间无相互作用力。

精确实验证明,只有在压力趋近于零的极限情况下,各种气体才严格服从理想气体的状态方程。

理想气体状态方程的推导:已知气体的状态方程可写为:0n T V P f =),,,( 化为:),,(n T P f V =有: dn n V dT T V dP P V dV TP n P n T ,,,⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 根据波义尔定律:.cont PV = 得:P V P C P V 2nT -=-=⎪⎭⎫ ⎝⎛∂∂, 根据盖-吕萨克定律:.cont T V =,即 'C TV = 有:T V 'C T V n,P ==⎪⎭⎫ ⎝⎛∂∂ 对于一定量气体(dn = 0),有:dT TV dP P V dV +-= 化为:TdT P dP V dV +-= 积分得:lnV +lnP =lnT +cont.,即 .cont T PV ⋅=若气体为 1 mol ,则常数写为R ,有 RT PV m =对于 n mol 气体,有 nRT PV =§1.2 理想气体混合物(1)道尔顿(Dalton )分压定律气体能以任意比例相互混合,而液体、固体一般不能。

01-1气体的pVT关系

01-1气体的pVT关系

1
液体的饱和蒸气压
饱和蒸汽压是描述物质气—液平衡关系的一种性 质,是指一定条件下能与液体平衡共存的蒸汽的压力。 p*

• 在一定温度下,某物质 的气体与液体共存并达 到平衡的状态称为气液 平衡。
• 气液平衡时:气体称为 饱和蒸气;液体称为饱和 液体;压力称为饱和蒸气 压。

1 液体的饱和蒸气压
饱和蒸气压是温度的函数
g1l1线上,气液共存
l1
l2
C
g2
g1
T=Tc时,l-g线变 为拐点C
Vm / [Vm]
3 真实气体的p – Vm图及气体的液化
3) T = Tc
临界点处气、液两相摩尔体积及其它 性质完全相同,气态、液态无法区分,此时:
p 0 , V m Tc
进一步分析:
2 p 0 2 V m Tc
pV nRT ( nB ) RT
B
m pV RT M mix
混合物的摩尔质量定义为
Mmix yB MB
B
Mmix m / n mB / nB
B B
3.道尔顿分压定律(Daldon’s law of partial pressure)
对于任何气体混合物,分压为
pB yB p
物理化学
第一章
气体的pVT关系
P,V and T Relation of Gases
学习要求:
掌握理想气体(包括混合物)状态方程式
的灵活应用,明确实际气体液化条件、临
界状态及临界量的表述。
熟悉范德华方程的应用条件,并了解其他
实际气体状态方程式的类型与特点。
理解对比态、对比状态原理、压缩因子图

第一章 气体的PVT关系PPT精品文档56页

第一章  气体的PVT关系PPT精品文档56页
2020/1/7
第一章 气体的PVT关系
§1.1 理想气体状态方程 §1.2 理想气体混合物 §1.3 真实气体的液化及临界参数 §1.4 真实气体状态方程 §1.5 对应状态原理及普遍化压缩因子图
§1.2 理想气体混合物
1. 混合物的组成
(1)摩尔分数x或y
xB(或yB) nB nA
A
E吸引 1/r 6 E排斥 1/r n 兰纳德-琼斯(Lennard-Jones)理论:
n = 12 E 总 E 吸 引 + E 排 斥 = - r A 6 r B 1 2
式中:A 吸引常数;B 排斥常数。
图1.1.1 兰纳德-琼斯势能 曲线示意图
2020/1/7
(2) 理想气体模型
pVnRT(nB)RT
B
pV m RT Mmix
Mmix yBMB B
m m B n B M B ny B M B n M m ix
B
B
B
M m ixmn m B nB
B
B
3. 道尔顿定律
分压力
pB yBp
yB 1
p pB
B
B
pV( nB)RT
第一章 气体的PVT关系
物质的聚集状态可以分为三种
流体
气体 液体 固体
V 受 T,p 的影响很大
凝聚态
V 受 T,p的影响较小
在众多宏观性质中,p,V,T三者物理意义非常明确,又易 于直接测量,对于纯物质只要p,V,T中任意两个量确定, 第三个量就随之确定,此时即认为物质处于一定的状态。
联系 p,V,T 之间关系的方程称为状态方程
)R/T p
B
(nB p R)T BV B *

气体的PVT关系专业知识

气体的PVT关系专业知识
3.普遍化压缩因子图
压力—临界压力(pc), pc(CO2)=7.38MPa 体积—临界摩尔体积(Vm,c),Vm,c(CO2)=94×10-6m3·mol-1
Tc , pc , Vm,c 统称临界参量。某些物质旳临界参量见表1.2。
表1.2 某些物质旳临界参量
物质
He H2 N2 O2 H2O CH4 C2H 4 C6H6 C2H5 OH
第一章 气体旳PVT关系 1.1 理想气体旳状态方程及微观模型
1.理想气体旳状态方程
PV=nRT
PVm=RT PV=mRT/M
R=8.3145J.K-1.mol-1
对于混合气体旳摩尔质量 Mmix=∑yBMB
例如
空气 y(O2)=0.21 y(N2)=0.79
则 M(空气)= y(O2) ×MO2+ y(N2) ×MN2=0.21×32+0.79×28
a=27R2Tc2/64pc, b=RTC/8Pc
3.维里方程
pVm
RT (1 B Vm
C Vm2
D Vm3
)
pVm RT (1 Bp Cp2 Dp3 )
4.其他主要方程举例
1.5 相应状态原理及普遍化压缩因子图
1.压缩因子
pV ZnRT或pVm ZRT
Z pV pVm nRT RT
以温度T1为例,曲线分为三段:
T1T2Tc T3
加压
{p} c
g(气体) 体积缩小 a(饱和气体)
l
定压
a(饱和气体)体积明显缩小 b(饱和液体)
b
a g
加压 b(饱和液体) 体积缩小(较小) l(液体)
{Vm,c} 图1-3 CO2 定温p-Vm,c 图

第一章 气体的PVT关系

第一章 气体的PVT关系

27R 2TC2 RTC a ,b 64 pC 8 pC
4.维里方程

维里方程是卡末林-昂尼斯于20世纪初作为纯经验方程提 出的,有两种形式:
B C D pVm RT 1 V V 2 V 3 ..... m m m pVm RT 1 B ' p C ' p 2 D ' p 3 .....
a,b分别为范德华常数,只与气体的种类有关,与温度条 件无关。
3.范德华常数与临界参数的关系

临界点是拐点,临界点处的一阶、二阶导数为零
p V m 2P 0, V 2 m TC 0 TC
a 27 b 2
Vm ,C
8a 3b, TC , pC 27 Rb
对理想气体,在任何温度、压力下Z值恒为1,当Z<1时, 说明真实气体比理想气体易于压缩;当Z>1时,说明真实气 体比理想气体难于压缩;
将压缩因子概念应用于临界点,可得出临界压缩因子ZC
ZC
pCVm,C RTC
2.对应状态原理

对比压力:pr=p/pc 对比温度:Tr=T/TC 对比体积:Vr=Vm/Vm,C 对应状态原理:各种不同得气体,只要有两个对比参 数相同,则第三个对比参数必定相同。
临界状态: 压力—临界压力(pc), pc(CO2)=7.38MPa 体积—临界摩尔体积(Vm,c),Vm,c(CO2)=94×10-6m3· mol-1 Tc , pc , Vm,c 统称临界参量。一些物质的临界参量见表1.2。
表1.2 一些物质的临界参量 物 He 质 Tc/K 5.26 pc/MPa 0.229 Vm,c/10-6m3· mol-1 58

物理化学主要公式及使用条件

物理化学主要公式及使用条件

物理化学第一章气体的pVT 关系1.理想气体状态方程式nRTRT M m pV ==)/(或RTn V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为气体的摩尔体积,其单位为m 3·mol -1。

R =8.314510J ·mol -1·K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2.混合物(1)组成摩尔分数y B (或x B )=∑AAB /nn 体积分数/y B m,B B ∗=V ϕ∑∗AVy Am,A式中∑AAn为混合气体总的物质的量。

Am,∗V表示在一定T ,p 下纯气体A 的摩尔体积。

∑∗AA m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2)摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M 式中∑=BBmm 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3)V V p p n n y ///BB B B ∗===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

∗B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

2.道尔顿定律p B =y B p ,∑=BBpp 上式适用于任意气体。

对于理想气体VRT n p /B B =3.阿马加分体积定律V RT n V /B B =∗此式只适用于理想气体。

4.范德华方程RT b V V a p =−+))(/(m 2m nRTnb V V an p =−+))(/(22式中a 的单位为Pa ·m 6·mol -2,b 的单位为m 3·mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。

此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。

物理化学-第一章气体的PVT关系-138

物理化学-第一章气体的PVT关系-138
3. 阿伏加德罗定律 Avogadro’s principle: 同温同压同体积气体,所含分子数相同。
2020/9/7
气体的pVT关系
3
将三个经验定律综合起来,即得理想气体状态方程:
pV nRT
SI单位: Pa m3 mol K
(No.1)
R = NA·k = 8.3145 J·K-1·mol-1,称为摩尔气体常数 molar gas constant;n 为物质的量 amount-of-substance。
当饱和蒸气压与外压相等时,液体沸腾(液体内部分子和表 面分子同时气化),此时的温度即液体的沸点 boiling point
外压为标准大气压(101.325 kPa)时的沸点即正常沸点
2020/9/7
气体的pVT关系
14
沸点与外压和物质的本性有关:外压越大,沸点越高 (如水的沸点在高山顶上低于100℃,在高压锅内高于100℃); 挥发性强(蒸气压大)的物质,沸点较低。
2020/9/7
气体的pVT关系
19
超临界流体的应用:
从植物及其种子中萃取有用成分
用于食品、药物、保健品、化妆品、饮料和其他精细化学品的萃取
(1)从咖啡中萃取咖啡因(已大规模生产) (2)从啤酒花中萃取软性树脂类物质 (3)从种子中萃取食用油(已大规模生产)
无压榨损失和有机溶剂分离、残留问题
(4)从植物中萃取香精、调味品和药用产品
流体 fluid
结构最简单 结构最复杂
凝聚体 condensing
另有等离子态 plasma、超固态、中子态等。
状态方程 state equation:物质 p(pressure)、V (volume)、T(temperature)之间的关系方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 气体的pVT 关系
主要内容
1.理想气体和理想气体状态方程
(1)理想气体
凡在任何温度、压力下均服从B V 的气体称为理想气体。

理想气体具有两个特征:
(Ⅰ)分子本身不占有体积。

(Ⅱ)分子间无相互作用力。

(2)理想气体状态方程
nRT pV = RT pV =m
理想气体状态方程适用于理想气体和低压条件下的实际气体。

2.道尔顿分压定律和阿马格分体积定律
(1)分压力
分压力定义为:在总压力为p 的混合气体中,任一组分B 的分压力B p 等于它的物质的量分数B y 与混合气体中压力p 之积。

即 p y p B B = p p =∑B B
此二式适用于理想气体混合物和非理想气体混合物。

对于理想气体有
V RT n p B B =
(2)道尔顿定律 道尔顿定律:混合气体的总压力等于各组分单独存在于混合气体的,T V 条件下所产生压力的总和。

即 V
RT n p /)(B B ∑=
此定律适用于混合理想气体和低压混合气体。

(3)分体积
分体积B V 是所含n B 的B 单独存在于混合气体的,T P 条件下占有的体积。

)/(B B p RT n V = V y V B B =
两式适用于理想气体和低压条件下的混合气体。

(4)阿马格定律
阿马格定律:混合气体各组分的分体积之和与总体积相等,即
p RT n V V V
/)(,B B B B ∑∑==
3.实际气体的PVT 性质
(1)实际气体的PVT 性质
RT pV nRT pV Z /)/( def m =
理想气体状态方程与实际气体状态方程有偏差,偏差值为修正因子,称压缩因子Z 。

Z 的数值直接表示出实际气体对理想气体的偏差程度。

(2)范德华方程与维里方程
①范德华方程
气体物质的量为1mol 的范德华方程:()m 2m a p b V RT V ⎛
⎫+-= ⎪⎝⎭
a 、范氏方程只适用中压范围。

b 、当p →0时,范氏方程可还原为理想气体方程。

②维里方程
+++=+⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛'+'=2211Cp Bp A V C V B A pV
4.实际气体的液化与临界性质
(1)饱和蒸气压与沸点
在一定温度下,当液(或固)体与其蒸气达成液(或固)、气两相平衡时,此时气相的压力则称为该液(或固)体在该温度下的饱和蒸气压,简称蒸气压。

沸点:当液体饱和蒸气压与外压相等时,液体沸腾,此时相应的温度称为液体的沸点。

正常沸点:101.325KPa 外压下的沸点。

水是373.15K 。

(2)实际气体的液化
气体加压所允许的最高温度称为临界温度,以T c 表示;
气体在临界温度时发生液化所需的最小压力称为临界压力,以p c 表示;
物质在临界温度、临界压力的摩尔体积成为临界摩尔体积,以V m,c 表示。

T c 、p c 、V m,c 称为物质的临界参数。

它是物质固有的一种特性参数。

物质处在临界温度、临界压力下的状态称为临界状态。

5.对比参数、对应状态原理
(1)对比参数
r c r m,c m r c T T T V V V p p p ===
p r 、T r 、V r :分别称对比压力、对比温度、对比体积,又统称为气体的对比参数。

对比参数反映了气体所处状态偏离临界点的倍数。

(2)对应状态原理:各种不同的气体,只要有两个对比参数相同,则第三个对比参数必定(大致)相同。

()0,,r r r =T V p f
具有相同对比参数的气体称为处于相同的对应状态。

由于各种气体的Z C 近似相同,如果它们处于对应状态,必有相同的压缩因子。

()r r ,T p f Z =
重要公式
1.n PV RT = RT pV =m
2.y B B P P = B B P
P =∑
3.B B V V =∑ n /B B V RT P ⎛⎫= ⎪⎝⎭

()m 2m a 4.b P V RT V ⎛⎫+-= ⎪⎝
⎭ 5.n PV Z RT =。

相关文档
最新文档