(完整word版)初一数学大题专题训练(提高训练)

合集下载

第1章有理数单元同步提升训练(一)2021-2022学年七年级数学人教版上册(word版 无答案)

第1章有理数单元同步提升训练(一)2021-2022学年七年级数学人教版上册(word版 无答案)

【有理数】单元同步提升训练(一)一.选择题1.(﹣1)2021等于()A.1B.﹣2021C.2021D.﹣12.镭是一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣1620年,镭的质量由32a变为4a,它所需要的时间是()A.3240年B.4860年C.6480 年D.12960 年3.丁丁做了4道计算题:①(﹣1)2018=2018;②0﹣(﹣1)=﹣1;③;④.请你帮他检查一下,他一共做对了()A.1道B.2道C.3道D.4道4.若实数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为()A.6B.7C.6或8D.6或75.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣36.计算下列各式,值最小的是()A.1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)7.已知43×47=2021,则(﹣43)的值为()A.2021B.﹣2021C.D.﹣8.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④9.若m,n是正整数,那么(m+n)2﹣(m﹣n)2的值不可能是()A.正数B.负数C.非负数D.4的倍数10.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x﹣1)※x的结果为()A.x2B.x2﹣1C.x2+1D.x2﹣2x+1二.填空题11.在数轴上表示数a的点与表示数3的点之间的距离记为|a﹣3|.若|a+3|+|a﹣1|=7,则a =.12.定义:a*b=a2﹣4b2,例如3*2=32﹣4×22=﹣7,请你计算:5*1.5=.13.若a<b<0,则1、1﹣a2、1﹣b三个数之间的大小关系为(用“<”连接).14.“⊗”定义新运算:对于任意的有理数a和b,都有a⊗b=b2+1.例如:9⊗5=52+1=26.当m为有理数时,则m⊗(m⊗3)等于.15.若M=101×2020×2029,N=2028×2021×101,则M﹣N=.三.解答题16.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2);(3);(4)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].17.下面是圆圆同学计算一道题的过程:2÷(﹣+)×(﹣3)=[2÷(﹣)+2÷]×(﹣3)=2×(﹣3)×(﹣3)+2×4×(﹣3)=18﹣24=6.圆圆同学这样算正确吗?如果正确请解释理由;如果不正确,请你写出正确的计算过程.18.哈达水果批发市场到合作的苹果生产基地收购苹果,去年该苹果基地出产20吨苹果,收购价为每千克1.40元,今年苹果产量提高了25%,收购价降低了.(1)该苹果基地今年的总收入比去年提高了多少元?(2)从产地到哈达水果批发市场的距离是600千米,现有甲、乙两种车型供选择,每辆车的运载能力和运费如表所示:(假设每辆车均可以满载,且只能选一种车型)车型甲乙汽车运载量(吨/辆)810汽车运费(元/辆•千米) 2.53如果甲车型每辆车的装车费为150元,且甲车型每辆的装车费与乙车型每辆的装车费的比为3:4,选哪种车型来运输水果,运费最低?说明理由.(3)在(2)的条件下,如果在运输及销售过程中的水果损耗为10%,那么哈达水果批发市场要实现8%的利润率,此时哈达苹果的批发价是每千克多少元?(结果保留两位小数)19.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,使得两数差的结果最小;(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,可以带括号,使运算结果等于没选的那个数.20.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.。

数学七年级提高试卷【含答案】

数学七年级提高试卷【含答案】

数学七年级提高试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 若一个三角形的两边长分别是8cm和10cm,那么第三边的长度可能是多少?A. 3cmB. 5cmC. 12cmD. 18cm3. 有理数a, b, c满足a < b < c,那么下列哪个选项一定成立?A. a + c > bB. a c < bC. ac > bcD. a/c < b/c4. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 31C. 33D. 355. 若x^2 5x + 6 = 0,则x的值可能是多少?A. 2B. 3C. 4D. 5二、判断题(每题1分,共5分)1. 任何一个大于1的自然数,要么是质数,要么可以分解成几个质数的乘积。

()2. 在直角三角形中,斜边最长。

()3. 如果a > b,那么a c > b c。

()4. 两个负数相乘的结果一定是正数。

()5. 方程x^2 + 6x + 9 = 0的解是x = -3。

()三、填空题(每题1分,共5分)1. 一个等差数列的第5项是17,第9项是31,那么这个数列的公差是______。

2. 若一个数的平方根是9,那么这个数是______。

3. 一个正方形的边长是6cm,那么它的面积是______平方厘米。

4. 若|a| = 5,那么a可能的值是______或______。

5. 方程2x + 5 = 15的解是x = ______。

四、简答题(每题2分,共10分)1. 解释什么是算术平方根,并给出一个例子。

2. 简述等差数列的定义和通项公式。

3. 解释有理数的乘法法则。

4. 什么是直角三角形?它有哪些特性?5. 解释一元二次方程的解的意义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。

初中数学综合提高训练试题(3)附答案

初中数学综合提高训练试题(3)附答案

初中数学综合提高训练试题(3)附答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.72.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A.20° B.30°C.40° D.50°3.如果三角形的两边长分别为3和5,则周长L的取值范围是( ) A.6<L<15 B.6<L<16C.11<L<13 D.10<L<164.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.∠B=∠D=90°5.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( )A.0.2 m B.0.3 m C.0.4 m D.0.5 m6.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.6 B.8 C.10 D.127.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.5 5 B.10 5 C.10 3 D.15 38.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A.13 B.2- 1 C .2- 3 D.149.如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.5410.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .1211.如图,点E ,点F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H.若AF DF =2,则HFBG的值为( )A.23B.712C.12D.512 12.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B点落在点P 处,折痕为EC ,连接AP 并延长AP 交CD 于F 点,连接CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ; ③△FPC 为等腰三角形; ④△APB≌△EPC.其中正确结论的个数为( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5个小题,每小题4分,共20分)13.下列命题是真命题的序号为______.①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③任意多边形的内角和为360°;④三角形的中位线平行于第三边,并且等于第三边的一半.14.如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A,B间的距离为__________________米(结果保留根号).15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.16.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为________.17.如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n-1,用S1,S2,S3,…,S n-1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n-1P n-2P n-1的面积,则S1+S2+S3+…+S n-1=________.三、解答题(本大题共7个小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)18.(本题满分7分)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.19.(本题满分7分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EA F=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AFAG的值.20.(本题满分8分)随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻.如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:2≈1.414,3≈1.732,结果精确到1海里).21.(本题满分9分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.22.(本题满分10分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.23.(本题满分11分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图1,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图2,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.24.(本题满分12分)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE 的值为________;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H.若AG =6,GH =22,则BC =________.参考答案1.C2.C3.D4.C5.C6.C7.B8.A9.B 10.D 11.B 12.B13.④ 14.100+100 3 15.6017 16.65或317.14-14n18.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF ,∴AC=DF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS). (2)解:由(1)可知∠F=∠ACB. ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F =∠ACB=37°.19.(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC =90°. ∵∠EAF=∠GAC,∴∠AED=∠ACB. ∵∠EAD=∠CAB,∴△ADE∽△ABC.(2)解:由(1)可知△ADE∽△ABC,∴AD AB =AE AC =35.∵∠AFE=∠AGC=90°,∠EAF=∠GAC, ∴△EAF∽△CAG,∴AF AG =AE AC ,∴AF AG =35.20.解:在△APC 中,∠ACP=90°,∠APC=45°,则AC =PC. ∵AP=400海里,∴由勾股定理知AP 2=AC 2+PC 2=2PC 2,即4002=2PC 2, ∴PC=2002海里.又∵在直角△BPC 中,∠PCB=90°,∠BPC=60°, ∴PB=PCcos 60°=2PC =4002≈566(海里).答:此时巡逻舰与观测点P 的距离PB 约为566海里. 21.(1)证明:∵四边形ABCD 是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°. ∵BE=DF ,∴△AEB≌△AFD, ∴AB=AD ,∴四边形ABCD 是菱形. (2)解:如图,连接BD 交AC 于点O.∵四边形ABCD 是菱形,AC =6,∴AC⊥BD,AO =OC =12AC =12×6=3.∵AB=5,AO =3,∴BO=AB 2-AO 2=52-32=4, ∴BD=2BO =8,∴S 平行四边形ABCD =12AC·BD=24.22.解:(1)在Rt△ABC 中,∠BAC=90°,∠BCA =60°,AB =60米, 则AC =AB tan 60°=603=203(米).答:坡底C 点到大楼距离AC 的值是203米. (2)如图,过点D 作DF⊥AB 于点F.设CD =2x ,则DE =x ,CE =3x. 在Rt△BDF 中,∵∠BDF=45°,∴BF=DF ,∴60-x =203+3x ,∴x=403-60,∴CD 的长为(803-120)米.23.(1)①证明:∵CF⊥CD,∴∠FCD=90°.∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE.∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED.∵AC=EC,∴△AFC≌△EDC,∴FA=DE.②解:DE+AD=2CH.(2)解:AD+DE=23CH.理由如下:如图,连接CD,作∠FCD=∠ACB,交BA延长线于点F. ∵∠FCA+∠ACD=∠ACD+∠BCD,∴∠FCA=∠BCD.∵∠EDA=60°,∴∠EDB=120°.∵∠FAC=120°+∠B,∠DEC=120°+∠B,∴∠FAC=∠DEC.∵AC=EC,∴△FAC≌△DEC,∴AF=DE,FC=DC.∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°.在Rt△CHD中,tan 60°=DHCH,∴DH=3CH.∵AD+DE=AD+AF=2DH=23CH,即AD+DE=23CH.24.(1)①证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC,GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.②解: 2提示:由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=2,GE∥AB,∴AG BE =CGCE= 2. (2)解:AG =2BE.理由如下: 如图,连接CG ,由旋转性质知∠BCE=∠ACG=α. 在Rt△CEG 和Rt△CBA 中,CE CG =cos 45°=22,CB CA =cos 45°=22, ∴CG CE =CACB =2,∴△ACG∽△BCE, ∴AG BE =CACB=2, ∴线段AG 与BE 之间的数量关系为AG =2BE. (3)解:3 5提示:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°.∵△ACG∽△BCE,∴∠AGC=∠BEC =135°, ∴∠AGH=∠CAH=45°.∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AG AC =GH AH =AH CH. 设BC =CD =AD =a ,则AC =2a , 则由AG AC =GH AH 得62a =22AH ,∴AH=23a ,则DH =AD -AH =13a ,CH =CD 2+DH 2=103a ,∴AG AC =AH CH 得62a =23a 103a , 解得a =35,即BC =3 5.。

七年级下数学提高题

七年级下数学提高题

1有理数的运算(1)1、 计算: ⑴533031232325.0311********--++-- ⑵32534.14315175.05.2⨯⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯÷- ⑶51413121--- ⑷35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯⑸1263842421729348622431⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ ⑹12816413211618141211+++++++⑺201032313131311+++++⑻5121171617815413211+++++⑼201054321++++++ ⑽2010200987654321-++-+-+-+-⑾2010200987654321+++--++--+ ⑿201020091431321211⨯++⨯+⨯+⨯ ⒀201120091751531311⨯++⨯+⨯+⨯ ⒁7218561742163015201412136121+++++++⒂7217561542133011209127311+-+-+-+ ⒃20332231223213111++++++++⒄20343221241224312114111++++++++++ ⒅ ⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++98979839816563614341212、2010减去它的21,再减去余下的31,再减去余下的41,……,依次类推,一直到减去余下的20101,那么最后剩下的数是多少?3、2010加上它的21得到一个数,再加上所得数的31,又得到一个数,再加上这次得数的41又得到一个数,……,依次类推,一直加到上一次得数的20101,那么最后得到的数是多少?4、小明进行珠算练习时,用 +++++54321,当加到某个数时和是1000,在验算时发现重复加了一个数,求这个数?2 数轴1、 在数轴上表示数 a 的点到原点的距离为5,则 3 – a =2、 数轴上有两点A 、B ,如果点 A 对应的数是 – 5,且A 、B 两点的距离为4,则点B 对应的数是3、 有理数a 、b 、c 在数轴上的位置如图所示,则化简=----+-+c c a b b a 11第5题第4题第3题DC B A10c b aA B4、 如图:在工作流水线上,A 、B 、C 、D 处各有1名工人,且AB=BC=CD=2 ,现在工作流水线上放一个工具箱,使4个工人到工具箱的距离之和最短,则工具箱应放的位置为5、 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d , 且d -2a = 10 ,那么数轴的原点应是 点6、 如图:数轴上有6个点 ,且AB=BC=CD=DE=EF ,则点E 表示的数最接近的整数是第6题13- 4A BCD EF7、 在数轴上,点 A 、B 分别表示21-和61,则线段AB 的中点所表示的数是8、 数轴上有两点A 、B ,如果点 A 与原点的距离为3,且A 、B 两点的距离为4,则满足条件的点B 与原点的距离的和 9、3 绝对值1、b a --9 有最 值,其值为2、 3++b a 有最 值,其值为3、若033=-+-x x , 则 x 的取值范围为4、若()()01=+-x x x , 则 x 的取值范围为5、若a a -= ,则=---a a 216、若2- x ,则=+-x 117、若3- x ,则=+-+x 1238、若03=+b a ,则=-+-21ab ba9、若0 abc ,0=++c b a ,则=+++++cba b a c a c b10、若0≠abc ,则c cb b a a ++= ;=+++abcabc c c b b a a 11、若5=x ,3=y ,且x y y x -=- ,则()=++yx y x12、计算:=-++-+-12120081200912009120101 13、若b a b a -=+ ,则=ab 14、若 b a b a +=-,则a 、b 应满足的关系是 15、若a 、b 、c 分别是一个三位数的百位、十位、个位上的数字, 且c b a ≥≥ ,则a c c b b a -+-+-取得的最大值为16、若 9≤-b a ,16≤-d c ,且25=+--d c b a ,则=---c d a b 17、若1-x 与2+y 互为相反数,化简()=+2010y x18、求满足 1=+-ab b a 的非负整数对()b a ,19、若 a 、b 、c 为整数,且1201019=-+-ac b a 求a c c b b a -+-+-20若0201021201021=-+-+-x x x 求20102009432222222x x x x x x+-----4 用字母表示数1、已知 n 为正整数,则“任意正奇数”为2、表示 a 与 b 的差的平方的代数式是3、5个连续的奇数中,第一个数为 a ,最后一个数为 b ,则中间一个数用 a、b 的代数式表示为4、两个数的和为 m ,其中一个因数为2 ,则另一个因数为5、一个三位数的百位、十位个位上的数字分别为1、a 、b ,则这个三位数为6、一件工作甲做 a 天完成,乙做 b 天完成,则两人合做天完成7、某人从甲到乙的速度为 a km/h ,从乙到甲的速度为 b km/h ,则此人来回的平均速度为8、甲、乙、丙、丁四个数的平均数为 a ,甲、乙、丁的平均数为 b ,则丙数为9、一次考试,按成绩排名,前10名的平均数为 a ,前8名的平均数为 b ,第9名一比第10多 c分,则第10名的成绩为分11、把一个两位数的个位数字与十位数字交换后得到一个新数,它与原来的两位数的和恰好是某个自然数的平方,则这个自然数的平方为12、若 m+n 人完成一项工程需要 m天,则 n个人完成这项工程需要天13、求三位数与其数字之和的比值的最大值和最小值5 整式的运算1、代数式x ba xy y z xy x y x ,2,2,51,4,16222-++-+-+中,不是整式的有 个 2、化简 222222323321b a ab b a ab b a --+-+并按字母 a 的降幂排列为 3、若 832+-y x b a 的y x y b a -324 和是单项式,则=+y x 4、12-n xba 与mba 223- 是同类项 ,则()=-xn m 25、单项式 c b y x 25.0 与单项式 121125.0---n m y x 的和是 m n y ax 625.0,则 =abc6、若0=++c b a ,则()()()=++++abc a c c b b a7、若5,3,2=--=-=-d c c b b a ,则 ()()()=-÷--d a d b c a 8、已知3=+-b a b a ,则 ()()()=+---+b a b a b a b a 342 9、若0223=---x x x ,则=-+-+122234x x x x 10、若0132=+++x x x ,则=+++++2010321xx x x11、若 012=-+m m ,则 =-+2010223m m12、已知多项式137+++cx bx ax 当2-=x 时,值为2010,则当2=x 时,这个多项式的值为13、已知等式 ()()()111122+++++=++x c x b x ax x x 是关于 x 的恒等式,则a= ,b= ,c= 14、如果 1322-+x x 与()()c x b x a +-+-112是同一个多项式,则cba += 15、已知()0122101011111212621a x a x a x a x a x a x x ++++++=+-则=++++12210a a a a , =++++12321a a a a ,=++++12420a a a a ,=-++-+-129101112a a a a a a16、同时都含有字母 a 、b 、c ,且系数为1 的6次单项式共有 个17、若a 、b 、 c 、d 是整数, b 是正整数,且满足 a d c d c b c b a =+=+=+,, ,则d c b a +++ 的最大值是18、已知0=+++d c b a ,则()()()()()()=+++++++++++333333d c d a d b c b c a b a19、已知等式()()121222=--+-+z k k y k x k 与k 值无关,则=x ;=y ;=z6 一元一次方程1、解下列方程: ⑴ 103.02.017.07.0=--x x ⑵16110312=+-+x x⑶03433221=-+++++x x x ⑷2362132432⎪⎭⎫ ⎝⎛+--=+--x x x x x ⑸ 0533321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x ⑹526513121=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---x x x x⑺200920102009433221=⨯++⨯+⨯+⨯x x x x ⑻()20102009111216121=+++++n n2、解下列关于x 的方程:⑴ x ax +=1 ⑵ ()()m x n x m+=+413⑶ ()132-=-x x k ⑷ ()()111-=+-k x k k ⑸3=--+--+--b a c x a c b x c b a x ⑹ cb a xb ac x a c b x c b a x ++=+-++-++-33、8=x 是方程a x x 2433+=- 的解,又是方程 ()[]b x b x x x +=⎥⎦⎤⎢⎣⎡---913131的解,求 b4、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x , 请你求出原来方程的解5、已知关于x 的方程 ()1233+=-x a x 无解,求 a6、已知关于x 的方程()x x k 2124=-+ 无解,求 k7、已知关于x 的方程()0232=+++b ax x b a 有唯一的解,求这个方程的解8、已知关于x 的方程()()b x a x a 3512+-=- 无穷多解,求 a 、b9、已知关于x 的方程 ()()x n x m 121232+=-+无穷多解,求m 、n10、已知关于 x 的方程b x ax -=+23有两个不同的解,求()2010b a +11、已知关于 x 的方程 ()31562-+=+m x x x m 至少有两个解,求 m12、不论k 为何值时,1-=x 总是关于x 的方程1322=--+bkx a kx 的解,求a 、b13、不论 k 为何值时,1=x 总是关于x 的方程6232bkx a kx -+=+ 的解,求a 、b14、关于 x 的方程52-=-x k kx 的解为整数,求整数k15、关于 x 的方程()()11433--=-x m x m 的解为正整数,求整数m16、关于x 的方程 ()x x k 5165-=+-的解为整数,求正整数k17、关于 x 的方程1439+=-kx x 的解为整数,求整数k18、关于x 的方程14285225+=-x a x 有一个正整数解,求最小正整数a19、已知:关于x 的方程()183-=-b x b a 仅有正整数解,并且和关于x 的方程()183-=-a x a b 是同解方程,若 0,022≠+≥b a a ,求这个方程的解7 一次方程的应用(1)1、飞机从甲地飞往乙地,飞机的速度为180km/h ,当飞过路程的一半又120 km后,改为160km/h 的速度飞完全程,所用时间以200 飞完全程所用时间多1小时,求两地距离2、一游泳者沿河逆游而上,在A 处将携带的漂浮物品遗失,在继续游了 20分钟后,发现物品遗失,立即返回顺游,在距 A处2 千米的 B处追到遗失的物品,问水速3、一客轮逆流行驶,船上一乘客掉了一件物品浮在水面上,等到乘客发现后,轮船立即掉头去追所掉的物品,已知轮船从掉头到追上这件物品用了5分钟,问乘客是几分钟后发现所掉的物品的?4、甲骑车从A 到B ,乙骑车从B 到A ,甲每小时比乙多走2千米,两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求 A、B两地的距离5、甲地某厂共有80人,现全体员工到40千米处的乙地去,但该厂只有一部可乘40人的汽车,若汽车每小时行36千米,人步行每小时5千米,为了尽快到达乙地,可以让40人现步行,40人乘车,汽车开出一段后让车上的人下车步行,让车掉头来接先步行的人开往乙地,若这些人同时到达乙地,问每人乘车多少千米?6、甲、乙两列客车的长分别为150米和200米,他们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他的窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他的窗口外经过的时间是多少?7、铁路旁的一条平行小路上有一行人与一骑车人同时向东行使,行人速度为 3.6km/h ,骑车人速度为10.8km/h ,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车身长为多少米?8、某出租汽车停车站已停有10辆出租车。

七年级数学绝对值(提高版)答案与试题解析

七年级数学绝对值(提高版)答案与试题解析

数学绝对值(提高版)试题1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤13.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<15.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.10.解方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1 (2)|x﹣1|+|x﹣5|=4.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?14.讨论方程||x+3|﹣2|=k的解的情况.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.数学绝对值(提高版)试题答案与试题解析1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a解:∵ac<0∴a,c异号∴a<0,c>0又∵a<b<c,以及|c|<|b|<|a|∴a<b<﹣c<0<c|x﹣a|+|x﹣b|+|x+c|表示到a,b,﹣c三点的距离的和.当x在表示b点的数的位置时距离最小,即|x﹣a|+|x﹣b|+|x+c|最小,最小值是a与﹣c之间的距离,即﹣c﹣a.故选:D.2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0 D.ab≤1解:当a、b异号或a、b中有一个为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.3.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个解:当x<﹣1时,方程化简为2﹣x﹣x﹣1=3,解得x=﹣1(不符合题意的解要舍去),当﹣1≤x<2时,2﹣x+x+1=3,x有无数个;当x≥2时,方程化简为x﹣2+x+1=3,解得x=2,综上所述:x有无数个,故选:D.4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<1解:选:B.5.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为﹣3.解:∵(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9=3×3,∴﹣1≤x≤2,﹣2≤y≤1,∴x﹣2y的最小值为﹣1﹣2×1=﹣1﹣2=﹣3.故答案为:﹣3.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是﹣2或5.解:答案为:﹣2或5.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是2≤x≤3.x的取值范围是2≤x≤3.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是m<18.实数m的取值范围是m<18.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.解:∵||2x﹣1|﹣x|=2,∴|2x﹣1|﹣x=2或﹣2,∴|2x﹣1|=x+2或|2x﹣1|=x ﹣2,当2x﹣1≥0时,2x﹣1=x+2,解得x=3;当2x﹣1<0时,2x﹣1=﹣x﹣2,解得x=﹣;或当2x﹣1≥0时,2x﹣1=x﹣2,解得x=﹣1(舍去);当2x﹣1<0时,2x﹣1=﹣x+2,解得x=1(舍去);∴a=3,b=﹣,∴===×=.故答案为.10.解下列方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.解:(1)|3x﹣5|+4=8,∴|3x﹣5|=4,∴3x﹣5=4或3x﹣5=﹣4,移项化系数为1得:x=3或x=;(2)|4x﹣3|﹣2=3x+4,∴|4x﹣3|=3x+6,∴3x+6≥0即x≥﹣2,∴4x﹣3=3x+6或4x﹣3=﹣(3x+6),移项化系数为1解得:x=9或x=﹣;(3)|x﹣|2x+1||=3,∴x﹣|2x+1|=3或x﹣|2x+1|=﹣3,由x﹣|2x+1|=3知x>3,解得:x=﹣4(舍去);由x﹣|2x+1|=﹣3,移项得:|2x+1|=x+3≥0,∴x≥﹣3,2x+1=x+3或﹣(2x+1)=x+3,解得:x=2或x=;(4)当x<﹣1时,原方程可化为:1﹣2x﹣x+2=﹣x﹣1,x=2不符合题意;当﹣1≤x<时,原方程可化为:﹣2x+1﹣x+2=x+1,x=不符合题意;当≤x≤2时,原方程可化为:2x﹣1﹣x+2=x+1恒成立,说明凡是满足≤x≤2的x值都是方程的解;当x>2时,原方程可化为:2x﹣1+x﹣2=x+1,x=2不符合题意.故原方程的解为:≤x≤2.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1(2)|x﹣1|+|x﹣5|=4.解:(1)①当x≥1时,原方程可化为:x+3﹣(x﹣1)=x+1,解得:x=3;②当x<﹣3时,原方程可化为:﹣x﹣3﹣(1﹣x)=x+1,解得:x=﹣5;③当﹣3≤x<1时,原方程可化为:x+3+x﹣1=x+1,解得:x=﹣1.综上可得:方程的解为:x=3或x=﹣5或x=﹣1;(2)方程可理解为一个点到1和5两点的距离和,由此可得方程的解为:1≤x ≤5.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.解:(1)当x≤﹣时,原方程可化为:﹣3﹣2x+x﹣1=4x﹣3∴5x=﹣1,解得:x=﹣,与x≤﹣不符;(2)当x≥1时,原方程可化为:2x+3﹣x+1=4x﹣3∴3x=7.∴x=;(3)当﹣<x<1时,原方程可化为:2x+3﹣1+x=4x﹣3∴x=5与﹣<x <1不相符;综上所述,方程的解为:x=.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?解:①x≥5时,x﹣2﹣(x﹣5)=x﹣2﹣x+5=3,当a=3时,有无数多解;当a≠3时,无论a取何值均无解;②x≤2时,2﹣x﹣(5﹣x)=2﹣x﹣5+x=﹣3,当a=﹣3时,有无数解;当a≠﹣3时,无解;③2<x<5时,x﹣2﹣(5﹣x)=x﹣2﹣5+x=2x﹣7,∴4<2x<10,∴4﹣7<2x﹣7<10﹣7即:﹣3<2x﹣7<3.所以当﹣3<a<3时,有一解;当a>3或a<﹣3时,无解.综上所述,当a=±3时,方程有无数个解,当a >3或a<﹣3时,无解;当﹣3<a<3时,有一解.14.讨论方程||x+3|﹣2|=k的解的情况.解:当k<0,原方程无解;当k=0时,原方程可化为:|x+3|﹣2=0,解得x=﹣1或x=﹣5;当0<k<2,此时原方程可化为:|x+3|=2±k,此时原方程有四解:x=﹣3±(2±k),即:x=k﹣1或x=﹣k﹣5或x=﹣k﹣1或x=k﹣5;当k=2时,原方程可化为:|x+3|=2±2,此时原方程有三解:x=1或x=﹣7或x =﹣3;当k>2时,原方程有两解:x+3=±(2±k),即:x=k﹣1或x=﹣k﹣5.故x=k﹣1或x=﹣k﹣1或x=﹣k﹣5或x=﹣5+k.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.解:由原方程得||x﹣2|﹣1|=a,∴|x﹣2|﹣1=±a,∵0<a<1,∴|x﹣2|=1±a,即x﹣2=±(1±a),∴x=2±(1±a),从而x1=3+a,x2=3﹣a,x3=1+a,x4=1﹣a,∴x1+x2+x3+x4=8,即原方程所有解的和为8.。

七年级数学提升训练

七年级数学提升训练

1、若,则代数式的值为.2、已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.3、已知+(b+3)2=0,则b a的值等于.4、计算:5、计算:.6、如图,OM、ON分别是∠BOC和∠AOC的平分线,且。

①当OC静止时,求∠MON的度数;②当OC在∠AOB内转动时,∠MON的值是否会变化,简单说明理由。

7、为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?8、(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC. 求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)参考答案一、填空题1、【解析】由得,所以2、 53、9二、计算题4、-25、解:原式.6、解:①因为OM、ON分别是∠BOC和∠AOC的平分线所以∠MOC=∠BOC,∠NOC=∠AOC所以∠MON=∠MOC+∠NOC=∠BOC+∠AOC=∠AOB=×84°=42°②当OC在∠AOB内转动时,∠MON的值是不会变化,∠MON=∠AOB==42°三、简答题7、【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8、(1)∵CO⊥AB,∴∠AOC=∠B OC=90°……………………1分∵OE平分∠AOC,∴∠EOC=∠AOC=×90°=45°;∵OF平分∠BOC,∴∠C OF=∠B OC=×90°=45°;……………………2分∠EOF=∠EOC+∠C OF=45°+45°=90°;……………………3分(2)∵OE平分∠AOD,∴∠EOD=∠A OD=×(80+β)=40+β;………………4分∵OF平分∠BOC,∴∠C OF=∠BOC=×(80+β)=40+β;……………………5分∠C OE=∠E OD-∠C OD=40+β-β=40-β;∠EOF=∠C OE+∠C OF=40-β+40+β=80°. ……………………6分(3)a±β (一个1分) ……………………8分。

七年级数学上册提高试卷

七年级数学上册提高试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 无理数2. 已知a > b,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 03. 若x² = 4,则x的值为()A. ±2B. ±4C. ±1D. ±84. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. A(2,-3)B. A(-2,3)C. A(-2,-3)D. A(2,6)5. 若一个等腰三角形的底边长为10,腰长为8,则该三角形的面积为()A. 40B. 48C. 50D. 606. 下列函数中,一次函数是()A. y = 2x³ + 3B. y = 3x - 2C. y = √x + 1D. y = 2/x7. 已知正方形的对角线长为10,则该正方形的面积为()A. 50B. 100C. 150D. 2008. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 29. 若sin∠A = 0.6,则∠A的度数是()A. 30°B. 45°C. 60°D. 90°10. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²二、填空题(每题5分,共20分)11. 若x² = 9,则x = _______。

12. 下列各数中,有理数是 _______。

13. 若sin∠A = 0.8,则∠A的度数是 _______。

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。

初一数学提高训练试题及答案

初一数学提高训练试题及答案

初一数学提高训练试题及答案一、选择题1、若的倒数与互为相反数,则等于( ) A . B . C . 3 D .﹣ 32、若代数式的值为8,则代数式的值为( ) A .1 B .2 C . 3 D . 43、若a >0>b >c ,c b a ,P b c a ,N a c b ,M c b a +=+=+==++1,M 、N 、P 之间的大小关系是( )A .M >N >PB .N >P >MC .P >M >ND . M >P >N4、某工厂今年计划产值为万元,比去年增长10%,如果今年实际产值可超过计划1%,那么实际产值将比去年增长( )A .11%B .10.1%C . 11.1%D . 10.01%5、某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人.三个区在一条直线上,位置如下图所示.公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在( )A .A 区B .B 区C . A 区D .D 区 6、,a b 是有理数,如果a b a b -=+,那么对于结论:①a 一定不是负数 ②b 可能是负数下列判断正确的是( )(A )只有①正确 (B )只有②正确 (C )①②都正确 (D )①②都不正确7、计算:-1-2+3+4-5-6+7+8+……+2003+2004-2005-2006+2007+2008=( )(A )-1 (B )3 (C )2007 (D )20088、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是………………………… ( )A 、1B 、2C 、3D 、49、122-+-++x x x 的最小值是………………… ( )A. 5B.4C.3D. 210、某动物园有老虎和狮子,老虎的数量是狮子的2倍。

每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… ……( )A 、625千克 B 、 725千克 C 、825千克 D 、925千克二、填空题11、一个盒子里装有不少于20且不多于200颗的糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以13颗的取出,那么正好取完,则盒子里共有( )颗糖。

(完整)初一数学综合练习题及答案(提高篇)

(完整)初一数学综合练习题及答案(提高篇)

初一练习——提升篇一、选择题:1.二元一次方程x3y10 的非负整数解共有()对A、1B、2C、3 D 、42. 如图 1 ,在锐角ABC 中, CD 、BE 分别是 AB 、AC 边上的高,且交于一点 P,若∠A=50 °,则∠BPC 的度数是()A.150 °B. 130 °C.120 °CD、BE 相D .100 °图 13.已知 :│m - n+2 │与(2m+ n+4) 2互为相反数 ,则 m+n的值是 ()A. -2B.0C.–1D. 14.以长为 13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,能够画出三角形的个数是()A. 1 个5. 已知a.bB. 2 个互为相反数,且| aC.3 个b | = 6 ,则 | bD.41|的值为(个)A. 2B.2或3C.4 D .2或46.若 2x+3y-z=0且x-2y+z=0,则x : z=()A、 1: 3 B 、-1 : 1 C 、 1 : 2 D 、 -1 : 77. 以下计算正确的有()①a m+1·a=a m+1②b n+1 ·b n-1 =③4x 2n+2·[-x n-2 ]=-3x 3n④[- (-a2 )]2 = -a4⑤(x4 )4=x 16⑥a5·a6÷(a5)2÷a=a⑦(- a)( -a)2 +a 3+2a 2·(-a)=0⑧(x5 )2 +x 2·x3+( -x2)5=x 5A、2 个B、3 个C、 4 个D、5 个8. 对于 x 的方程 2ax=(a+1)x+6的根是正数,则 a 的值为()A、a>0B、a≤0C、不确立 D 、a>1二、填空题:9.把 84623000 用科学计数法表示为;近似数 2.4 ×10 5有____ 个有效数字 ,它精准到___位10.如图 2,A 、O、 B 是同向来线上的三点, OC 、OD 、 OE 是从 O 点引出的三条射线,且∠ 1 ∶∠2∶∠3∶∠4 =1 ∶2 ∶3 ∶4 ,则∠5 =_________.CD321BAO 45A1x324B CE图 2图3图411.不等式的非负整数解是。

七年级下册数学期末大题能力提升训练带解析

七年级下册数学期末大题能力提升训练带解析

七年级下册数学期末大题能力提升训练姓名:__________________ 班级:______________ 得分:_________________一、解答题(本大题共30小题.解答时应写出文字说明、证明过程或演算步骤) 1.(2021春•汝南县期中)计算: (1)√9+√−83+4√14;(2)(﹣1)2+√643+|√5−3|+√(−2)2.2.(2021春•潮阳区校级月考)已知√2a −1=3,3a ﹣b +1的平方根是±4,c 是√113的整数部分,求a +b +2c 的平方根.3.(2021春•岷县月考)计算: (1)√. (2)√4+√225−√400. (3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273.4.(2021春•巴楚县月考)求下列各式中x 的值: (1)x 2﹣5=49; (2)3x 2﹣15=0; (3)2(x +1)2=128.5.(2021春•海珠区校级期中)在平面直角坐标系中:(1)若点M (m ﹣6,2m +3)到两坐标轴的距离相等,求M 的坐标; (2)若点M (m ﹣6,2m +3),点N (5,2),且MN ∥y 轴,求M 的坐标; (3)若点M (a ,b ),点N (5,2),且MN ∥x 轴,MN =3,求M 的坐标.6.(2021春•黄埔区期中)如图,三角形A ′B ′C ′是由三角形ABC 经过某种平移得到的,点A 与点A ′,点B 与点B ′,点C 与点C ′分别对应,观察点与点坐标之间的关系,解答下列问题.(1)直接写出点A 和点A ′的坐标,并说明三角形A ′B ′C ′是由三角形ABC 经过怎样的平移得到的. (2)若点M (a +2,4﹣b )是点N (2a ﹣3,2b ﹣5)通过(1)中的平移变换得到的,求(b ﹣a )2的值.7.(2020秋•兰州期末)解方程组 (1){2x −5y =−3−4x +y =−3;(2){4(x −y −1)=3(1−y)−2x 2+y 3=2;8.(2020春•高邮市期末)已知关于x 、y 的二元一次方程组{3x −5y =4m5x −3y =8(1)若方程组的解满足x ﹣y =6,求m 的值; (2)若方程组的解满足x <﹣y ,求m 的取值范围.9.(2020秋•长春期末)如图,∠ABC +∠ECB =180°,∠P =∠Q .求证:∠1=∠2. 在下列解答中,填空:证明:∵∠ABC +∠ECB =180°(已知), ∴AB ∥DE ( ). ∴∠ABC =∠BCD ( ). ∵∠P =∠Q (已知),∴PB ∥( )( ).∴∠PBC =( )(两直线平行,内错角相等).∵∠1=∠ABC ﹣( ),∠2=∠BCD ﹣( ), ∴∠1=∠2(等量代换).10.(2021春•湖北月考)李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x 轴、y 轴.只知道游乐园D 的坐标为(2,﹣2). (1)帮李老师在图中建立平面直角坐标系; (2)求出其他各景点的坐标.(3)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.11.(2021春•灌云县月考)解不等式(组): (1)并写出不等式的负整数解:7x ﹣2≤9x +3. (2)解不等式x+12−x 3<1.(3)解不等式组{3(x −2)≥4−2x ①2+2x <3x +3②.12.(2020春•江阴市校级期中)当m 、n 都是实数,且满足2m ﹣n =6时,我们就称(m ﹣1,n 2+1)为和谐数对.(1)请判断(2,﹣4)是否为和谐数对?(2)已知关于x 、y 的方程组{x +y =6x −y =2a ,当a 为何值时,以方程组的解为数对,即(x ,y )是否为和谐数对?请说明理由.13.(2020春•丹阳市校级期末)定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b .例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.14.(2020春•崇川区校级期中)已知关于x 的方程m +x =3的解满足{x −y =3−ax +2y =5a ,若﹣1<y <5,求实数m 的取值范围.15.(2021春•沙坪坝区期中)甲、乙两人解同一个关于x ,y 的方程组{ax +5y =15①4x −by =−2②,甲看错了方程①中的a ,得到方程组的解为{x =−3y =−1,乙看错了方程②中的b ,得到方程组的解为{x =5y =4.(1)求a 与b 的值; (2)求a2021+(−110b )2020的值. 16.(2021春•三元区校级月考)如图,在△AFD 和△CEB 中,点 A 、E 、F 、C 在同一条直线上,有下面四个选项:①AD =CB ;②AE =CF ;③DF =BE ;④AD ∥BC .请用其中三个作为条件,余下一个作为结论,编一道真命题.并写出证明过程. 条件为: (填序号). 结论为: (填序号).17.(2020秋•兰州期末)某体育器材店有A 、B 两种型号的篮球,已知购买3个A 型号篮球和2个B 型号篮球共需310元,购买2个A 型号篮球和5个B 型号篮球共需500元. (1)A 、B 型号篮球的价格各是多少元?(2)某学校在该店一次性购买A 、B 型号篮球共96个,总费用为5700元,这所学校购买了多少个B 型号篮球?18.(2020秋•普宁市期末)某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元? 19.(2021春•广州期中)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,则有∠AEC =∠A +∠DCE .【感知】证明:如图①,过点E 作EF ∥AB ,则有∠AEC =∠1+∠2=∠A +∠DCE . 【探究】当点E 在如图②的位置时,其他条件不变,试说明∠A +∠AEC +∠C =360°.【应用】如图③,在图②的条件下,延长线段AE 交直线CD 于点M ,已知∠A =130°,∠DCE =120°,则∠MEC 的度数为 .(请直接写出答案)20.(2020春•邳州市期末)(1)完成下面的推理说明: 已知:如图,BE ∥CF ,BE 、CF 分别平分∠ABC 和∠BCD . 求证:AB ∥CD .证明:∵BE 、CF 分别平分∠ABC 和∠BCD (已知), ∴∠1=12∠ ,∠2=12∠ ( ). ∵BE ∥CF ( ), ∴∠1=∠2( ). ∴12∠ABC =12∠BCD ( ).∴∠ABC =∠BCD (等式的性质). ∴AB ∥CD ( ).(2)说出(1)的推理中运用了哪两个互逆的真命题.21.(2020春•滨海县期中)某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件)质量(吨/件)A 两种型号 0.8 0.5B 两种型号21(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种: 按车收费:每辆车运输货物到目的地收费900元; 按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元?22.(2020春•江阴市期末)某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩6万个,N 95口罩2.2万个.乙车间每天生产普通口罩和N 95口罩共10万个,且每天生产的普通口罩比N 95口罩多6万个.(1)求乙车间每天生产普通口罩和N 95口罩各多少万个?(2)现接到市防疫指挥部要求:需要该公司提供至少156万个普通口罩和尽可能多的N 95口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用20天完成防疫指挥部下达的任务. 问:①该公司至少安排乙车间生产多少天? ②该公司最多能提供多少个N 95口罩?23.(2020春•宝应县期末)已知关于x ,y 的二元一次方程组{2x −3y =5x −2y =k .(1)若{x =3y =−2满足方程x ﹣2y =k ,请求出此时这个方程组的解;(2)若该方程组的解满足x >y ,求k 的取值范围.24.(2020春•江都区月考)如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P .(1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 .(2)如图3,当∠EPF=90°,FP平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=;②猜想∠EPF与∠EQF的数量关系,并说明理由.25.(2020春•绍兴期中)如图,AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.(1)若点B在点A的左侧,求∠ABC的度数;(用含n的代数式表示)(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.26.(2020春•拱墅区期末)某校为了解七年级女生的身高情况,随机抽取该年级若干名女生测量身高,并将测量结果绘制成如图所示的不完整的统计图(每组含前一个边界值,不含后一个边界值)(1)被抽取测量身高的女生有多少名?(2)通过计算,将频数直方图补充完整.(3)求扇形统计图中F部分的扇形的圆心角度数.(4)若该年级有240名女生,计算身高不低于160cm的人数.27.(2021•西湖区二模)为加强学生的交通安全意识,某校团委特举办交通安全知识竞赛,试题为100道选择题,满分100分,得分规则:答对一题得1分,不答或答错得0分.该校团委老师将全体参赛学生的成绩整理后绘制成如下不完整的统计图表(统计表中有两个数据被污损).组别分数段频数频率1 50≤x<60 30 0.12 60≤x<70 q3 70≤x<80 0.24 80≤x<90 m0.45 90≤x<100 45 0.15请根据以上信息,解答下列问题:(1)求q和m的值.(2)求第5组对应扇形的圆心角的度数.(3)小佳说:“我的成绩是79分,高于一半参赛同学的成绩.”你认为她的说法对吗?说明理由.28.(2021春•丽水月考)如图,已知方格纸的每一横行中从第二(从左往右)个数起的数都比它左边相邻的数大m,各竖列中从第二(从上往下)个数起的数都比它上边相邻的数大n.(1)若a=8,x=12,y=9,求m,n的值;(2)若w=0,求x与a的数量关系.29.(2020春•拱墅区期末)某店3月份采购A,B两种品牌的T恤衫,若购A款40件,B款60件需进价8400元;若购A款45件,B款50件需进价8050元.(1)商店3月份的进货金额只有10000元,能否同时购进A款和B款T恤衫各60件?(2)根据3月份的销售情况,商店决定4月份和5月份均只销售A款T恤衫,4月份每件的进价比3月份涨了a元,进价合计9800元;5月份每件的进价比4月份又涨了0.5a元,进价合计12240元,数量是4月份的1.2倍.这两批A款T恤衫开始都以每件150元的价格出售,到6月初,商店把剩下的30件打八折出售,很快便售完,问商店销售这两批A款T恤衫共获毛利润(销售收入减去进价总计)多少元?30.(2020•泰安二模)在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后.因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院.请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)解析一、解答题(本大题共30小题.解答时应写出文字说明、证明过程或演算步骤) 1.(2021春•汝南县期中)计算: (1)√9+√−83+4√14;(2)(﹣1)2+√643+|√5−3|+√(−2)2.【分析】(1)首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. (2)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解析】(1)√9+√−83+4√14=3﹣2+4×12=3﹣2+2 =3.(2)(﹣1)2+√643+|√5−3|+√(−2)2 =1+4+3−√5+2 =10−√5.2.(2021春•潮阳区校级月考)已知√=3,3a ﹣b +1的平方根是±4,c 是√的整数部分,求a +b +2c 的平方根.【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案. 【解析】∵√2a −1=3, ∴2a ﹣1=9, 解得:a =5,∵3a +b +1的平方根是±4, ∴15+b +1=16, 解得:b =0,∵√100<√113<√121, ∴10<√113<11, ∴c =10,∴a +b +2c =5+0+2×10=25,∴a +b +2c 的平方根为±√25=±5.3.(2021春•岷县月考)计算:(1)√−8×(−0.5).(2)√4+√225−√400.(3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解析】(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3 =12+12+(﹣7)+3=1﹣7+3=﹣3.4.(2021春•巴楚县月考)求下列各式中x 的值:(1)x 2﹣5=49;(2)3x 2﹣15=0;(3)2(x +1)2=128.【分析】(1)移项后合并同类项,再开方即可;(2)先移项,方程两边除以3,再开方即可;(3)方程两边除以2,再开方即可.【解析】(1)x2﹣5=4 9,x2=49 9,x=±√49 9,x1=73,x2=−73;(2)3x2﹣15=0,3x2=15,x2=5,x=±√5;(3)2(x+1)2=128,(x+1)2=64,x+1=±8,x1=﹣9;x2=7.5.(2021春•海珠区校级期中)在平面直角坐标系中:(1)若点M(m﹣6,2m+3)到两坐标轴的距离相等,求M的坐标;(2)若点M(m﹣6,2m+3),点N(5,2),且MN∥y轴,求M的坐标;(3)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求M的坐标.【分析】(1)由点M(m﹣6,2m+3)到两坐标轴的距离相等得|m﹣6|=|2m+3|.(2)MN∥y轴,则点M,N的横坐标相等.(3)由M,N纵坐标相等求出b,分类讨论点M在N的左右两侧.【解析】(1)∵点M(m﹣6,2m+3)到两坐标轴的距离相等,∴|m﹣6|=|2m+3|,当m≥6时,m﹣6=2m+3,解得m=﹣9(舍)当﹣1.5≤m<6时,6﹣m=2m+3,解得m=1,m﹣6=﹣5,2m+3=5,∴点M坐标为(﹣5,5).当m<﹣1.5时,6﹣m=﹣2m﹣3,解得m=﹣9,m﹣6=﹣15,∴点M坐标为(﹣15,﹣15).综上所述,M的坐标为(﹣5,5)或(﹣15,﹣15).(2)∵MN∥y轴,∴m﹣6=5,解得m=11,11﹣6=5,2×11+3=25,∴M的坐标(5,25).(3)∵MN∥x轴,∴b=2,当点M在点N左侧时,a=5﹣3=2,当点M在点N右侧时,a=5+3=8,∴点M坐标为(2,2)或(8,2).6.(2021春•黄埔区期中)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,观察点与点坐标之间的关系,解答下列问题.(1)直接写出点A和点A′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.【分析】(1)根据点A的平移规律解决问题即可.(2)利用平移规律,构建方程组解决问题即可.【解析】(1)由题意A(0,3),A′(﹣3,0),三角形A′B′C′是由三角形ABC向左平移3个单位,再向下平移3个单位得到.(2)由题意{2a −3−3=a +22b −5−3=4−b, 解得{a =8b =4, ∴(b ﹣a )2=16.7.(2020秋•兰州期末)解方程组(1){2x −5y =−3−4x +y =−3; (2){4(x −y −1)=3(1−y)−2x 2+y 3=2; 【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解析】(1){2x −5y =−3①−4x +y =−3②, ①×2+②得:﹣9y =﹣9,解得:y =1,把y =1代入②得:x =1,则方程组的解为{x =1y =1; (2)方程组整理得:{4x −y =5①3x +2y =12②, ①×2+②得:11x =22,解得:x =2,把x =2代入①得:y =3,则方程组的解为{x =2y =3. 8.(2020春•高邮市期末)已知关于x 、y 的二元一次方程组{3x −5y =4m 5x −3y =8(1)若方程组的解满足x ﹣y =6,求m 的值;(2)若方程组的解满足x <﹣y ,求m 的取值范围.【分析】(1)用加减消元法解出x 和y 的值,把x 和y 用含有m 的式子表示,代入x ﹣y =6,求出m 的值即可,(2)把x 和y 用含有m 的式子表示,代入x +y <0,得到关于m 的一元一次不等式,解之即可.【解析】(1){3x −5y =4m ①5x −3y =8②,①+②得:8x﹣8y=4m+8,即x﹣y=1+12m,代入x﹣y=6得:1+12m=6,解得:m=10,故m的值为10,(2)②﹣①得:2x+2y=8﹣4m,即x+y=4﹣2m,∵x<﹣y,∴x+y<0,∴4﹣2m<0,解得:m>2,故m的取值范围为:m>2.9.(2020秋•长春期末)如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).【分析】根据平行线的判定与性质即可完成证明过程.【解答】证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.10.(2021春•湖北月考)李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2).(1)帮李老师在图中建立平面直角坐标系;(2)求出其他各景点的坐标.(3)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.【分析】(1)先利用游乐园D的坐标画出直角坐标系,(2)写出其他各景点的坐标;(3)利用A、F在y轴上可直接写出它们之间的距离.【解析】(1)如图,坐标原点在F 点,(2)A (0,4)、B (﹣3,2)、C (﹣2,﹣1)、E (3,3);(3)AF =400米.11.(2021春•灌云县月考)解不等式(组):(1)并写出不等式的负整数解:7x ﹣2≤9x +3.(2)解不等式x+12−x 3<1.(3)解不等式组{3(x −2)≥4−2x ①2+2x <3x +3②. 【分析】(1)根据解一元一次不等式的方法,可以求得7x ﹣2≤9x +3的解集,然后即可写出它的负整数解;(2)根据解一元一次不等式的方法,可以求得该不等式的解集;(3)先求出各个不等式的解集,然后取它们的共公部分,即可得到不等式组的解集.【解析】(1)7x ﹣2≤9x +3,移项及合并同类项,得﹣2x ≤5,系数化为1,得x ≥−52,∴该不等式的负整数解是﹣2,﹣1;(2)x+12−x 3<1,去分母,得3(x +1)﹣2x <6,去括号,得3x +3﹣2x <6,移项及合并同类项,得x <3;(3){3(x −2)≥4−2x ①2+2x <3x +3②, 解不等式①,得x ≥2,解不等式②,得x >﹣1,故原不等式组的解集为x ≥2.12.(2020春•江阴市校级期中)当m 、n 都是实数,且满足2m ﹣n =6时,我们就称(m ﹣1,n 2+1)为和谐数对.(1)请判断(2,﹣4)是否为和谐数对?(2)已知关于x 、y 的方程组{x +y =6x −y =2a,当a 为何值时,以方程组的解为数对,即(x ,y )是否为和谐数对?请说明理由.【分析】(1)利用题中的新定义判断即可;(2)表示出方程组的解,根据题中的新定义判断即可.【解析】(1)根据题意得:{m −1=2n 2+1=−4, 解得:{m =3n =−10, 代入得:2m ﹣n =6+10=16≠6,则(2,﹣4)不是和谐数对;(2){x +y =6①x −y =2a②, ①+②得:2x =2a +6,解得:x =a +3,把x =a +3代入①得:y =3﹣a ,根据题意得:{m −1=a +3n 2+1=3−a ,解得:{m =a +4n =4−2a, 代入得:2m ﹣n =2a +8﹣4+2a =4a +4,当4a +4=6,即a =12时,满足2m ﹣n =6,即以方程组的解为数对即(x ,y )为和谐数对.13.(2020春•丹阳市校级期末)定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b .例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3= 7 ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 x ≥7 ;(3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.【分析】(1)根据公式计算可得;(2)结合公式知3x ﹣4≥2x +3,解之可得;(3)由题意可得{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7,分别求解可得; (4)先利用作差法判断出2x 2﹣2x +4>x 2+4x ﹣6,再根据公式计算(2x 2﹣2x +4)※(x 2+4x ﹣6)即可.【解析】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7,故答案为:﹣7;(2)∵(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),∴3x ﹣4≥2x +3,解得:x ≥7,故答案为:x ≥7.(3)由题意知{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7, 解得:3≤x <10或x <3,∴x <10.(4)∵2x 2﹣2x +4﹣(x 2+4x ﹣6)=x 2﹣6x +10=(x ﹣3)2+1>0∴2x 2﹣2x +4>x 2+4x ﹣6,原式=2(2x 2﹣2x +4)+(x 2+4x ﹣6)=4x 2﹣4x +8+x 2+4x ﹣6=5x 2+2;∴小明计算错误.14.(2020春•崇川区校级期中)已知关于x 的方程m +x =3的解满足{x −y =3−a x +2y =5a,若﹣1<y <5,求实数m 的取值范围.【分析】用加减消元法解出x 和y 的值,把x 和y 用含有m 的式子表示,代入﹣1<y <5列不等式求得m 的范围.【解析】{x −y =3−a ①x +2y =5a②, ②﹣①,得3y =6a ﹣3,解得y =2a ﹣1,把y =2a ﹣1代入①,得x ﹣2a +1=3﹣a ,解得x =a +2,∵关于x 的方程m +x =3的解满足{x −y =3−a x +2y =5a, ∴x =3﹣m ,∴y =2a ﹣1=2(a +2)﹣5=2x ﹣5=2(3﹣m )﹣5=1﹣2m ,又∵﹣1<y <5,∴﹣1<1﹣2m <5,解得﹣2<m <1.15.(2021春•沙坪坝区期中)甲、乙两人解同一个关于x ,y 的方程组{ax +5y =15①4x −by =−2②,甲看错了方程①中的a ,得到方程组的解为{x =−3y =−1,乙看错了方程②中的b ,得到方程组的解为{x =5y =4. (1)求a 与b 的值;(2)求a2021+(−110b )2020的值. 【分析】将{x =−3y =−1代入方程组的第②个方程,将{x =5y =4代入方程组的第①个方程,联立求出a 与b 的值,即可求出所求式子的值.【解析】(1)根据题意,将{x =−3y =−1代入②,得:﹣12+b =﹣2; 即b =10; 将{x =5y =4代入①得: 得:5a +20=15, 即a =﹣1;(2)a 2021+(−110b)2020=(−1)2021+(−110×10)2020=−1+1=0.16.(2021春•三元区校级月考)如图,在△AFD 和△CEB 中,点 A 、E 、F 、C 在同一条直线上,有下面四个选项:①AD =CB ;②AE =CF ;③DF =BE ;④AD ∥BC .请用其中三个作为条件,余下一个作为结论,编一道真命题.并写出证明过程. 条件为: ①②④ (填序号). 结论为: ③ (填序号).【分析】条件为:①②④,结论为:③;只需要证明△AFD ≌△CEB 即可. 【解析】条件为:①②④,结论为:③;(答案不唯一)已知:如图,在△AFD 和△CEB 中,点 A 、E 、F 、C 在同一条直线上,AD =CB ,AE =CF ,AD ∥BC .求证:DF =BE . 证明:∵AD ∥BC , ∴∠A =∠C , ∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE , ∴在△AFD 和△CEB 中,{AD =CB ∠A =∠C AF =CE, ∴△AFD ≌△CEB (SAS ), ∴DF =BE .故答案为:①②④;③17.(2020秋•兰州期末)某体育器材店有A 、B 两种型号的篮球,已知购买3个A 型号篮球和2个B 型号篮球共需310元,购买2个A 型号篮球和5个B 型号篮球共需500元. (1)A 、B 型号篮球的价格各是多少元?(2)某学校在该店一次性购买A 、B 型号篮球共96个,总费用为5700元,这所学校购买了多少个B 型号篮球?【分析】(1)设A 型号篮球的价格为x 元,B 型号的篮球的价格为y 元,根据“购买3个A 型号篮球和2个B 型号篮球共需310元,购买2个A 型号篮球和5个B 型号篮球共需500元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设这所学校买了m 个A 型号篮球,买了n 个B 型号篮球,根据该学校一次性购买A 、B 型号篮球共96个且共花费5700元,即可得出关于m ,n 的二元一次方程组,解之即可得出结论. 【解析】(1)设A 型号篮球的价格为x 元,B 型号的篮球的价格为y 元, 依题意得:{3x +2y =3102x +5y =500,解得:{x =50y =80.答:A 型号篮球的价格为50元、B 型号篮球的价格为80元. (2)设这所学校买了m 个A 型号篮球,买了n 个B 型号篮球, 依题意得:{m +n =9650m +80n =5700,解得:{m =66n =30.答:这所学校购买了30个B 型号篮球.18.(2020秋•普宁市期末)某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?【分析】(1)设打折前甲种商品每件x 元,乙种商品每件y 元,根据“打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据节省的钱数=打折前购买所需费用﹣打折后购买所需费用,即可求出结论. 【解析】(1)设打折前甲种商品每件x 元,乙种商品每件y 元, 依题意,得:{6x +3y =60050×0.8x +40×0.75y =5200,解得:{x =40y =120.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元). 答:打折后购买这些商品比不打折可节省3640元.19.(2021春•广州期中)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,则有∠AEC =∠A +∠DCE .【感知】证明:如图①,过点E 作EF ∥AB ,则有∠AEC =∠1+∠2=∠A +∠DCE . 【探究】当点E 在如图②的位置时,其他条件不变,试说明∠A +∠AEC +∠C =360°.【应用】如图③,在图②的条件下,延长线段AE 交直线CD 于点M ,已知∠A =130°,∠DCE =120°,则∠MEC 的度数为 70° .(请直接写出答案)【分析】【感知】过点E 作EF ∥AB ,由平行线的性质得出∠A =∠1,证出CD ∥EF ,由平行线的性质得出∠2=∠DCE ,即可得出结论;【探究】过点E 作EF ∥AB ,则EF ∥CD ,由平行线的性质得出∠A +∠AEF =180°,∠C +∠CEF =180°,即可得出结论;【应用】同【探究】得∠A +∠AEC +∠DCE =360°,得出∠AEC =110°,即可得出答案. 【解答】【感知】证明:如图①,过点E作EF∥AB,∴∠A=∠1,∵AB∥CD,∵EF∥AB,∴CD∥EF,∴∠2=∠DCE,∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),【探究】证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;【应用】解:同【探究】得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.20.(2020春•邳州市期末)(1)完成下面的推理说明: 已知:如图,BE ∥CF ,BE 、CF 分别平分∠ABC 和∠BCD . 求证:AB ∥CD .证明:∵BE 、CF 分别平分∠ABC 和∠BCD (已知),∴∠1=12∠ ABC ,∠2=12∠ BCD ( 角平分线的定义 ). ∵BE ∥CF ( 已知 ),∴∠1=∠2( 两直线平行,内错角相等 ). ∴12∠ABC =12∠BCD ( 等量代换 ).∴∠ABC =∠BCD (等式的性质).∴AB ∥CD ( 内错角相等,两直线平行 ). (2)说出(1)的推理中运用了哪两个互逆的真命题.【分析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC =∠BCD ,再根据平行线的判定,即可得出AB ∥CD ;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题. 【解析】(1)∵BE 、CF 分别平分∠ABC 和∠BCD (已知) ∴∠1=12∠ABC ,∠2=12∠BCD (角平分线的定义) ∵BE ∥CF (已知)∴∠1=∠2(两直线平行,内错角相等) ∴12∠ABC =12∠BCD (等量代换)∴∠ABC =∠BCD (等式的性质) ∴AB ∥CD (内错角相等,两直线平行)故答案为:ABC ;BCD ;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.21.(2020春•滨海县期中)某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件)质量(吨/件)A 两种型号 0.8 0.5B 两种型号21(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种: 按车收费:每辆车运输货物到目的地收费900元; 按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元?【分析】(1)设A 、B 两种型号商品各有x 件和y 件,根据体积一共是20m 3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案. 【解析】(1)设A 、B 两种型号商品各有x 件和y 件, 由题意得,{0.8x +2y =200.5x +y =10.5,解得:{x =5y =8,答:A 、B 两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆), 但车辆的容积为:6×3=18<20, 所以3辆车不够,需要4辆车, 此时运费为:4×900=3600元; ②按吨收费:300×10.5=3150元,③先用3辆车运送A 商品5件,B 商品7件,共18m 3,按车付费3×900=2700(元).剩余1件B 型产品,再运送,按吨付费300×1=300(元). 共需付2700+300=3000(元). ∵3000<3150<3600,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元.方法2:先按车收费,一辆车运送5件A ,1件B ,然后剩下7件B ,需要3辆车,按吨收费为2100元, 故总运费为:900+2100=3000(元).综上所述:先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元或1辆车运送5件A ,1件B ,其余3辆车按吨收费最低费用也是3000元.22.(2020春•江阴市期末)某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩6万个,N 95口罩2.2万个.乙车间每天生产普通口罩和N 95口罩共10万个,且每天生产的普通口罩比N 95口罩多6万个.(1)求乙车间每天生产普通口罩和N 95口罩各多少万个?(2)现接到市防疫指挥部要求:需要该公司提供至少156万个普通口罩和尽可能多的N 95口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用20天完成防疫指挥部下达的任务. 问:①该公司至少安排乙车间生产多少天? ②该公司最多能提供多少个N 95口罩?【分析】(1)设乙车间每天生产普通口罩x 万个,乙车间每天生产N 95口罩y 万个,根据题意列出方程组并解答;(2)①设安排乙车间生产m 天,则甲车间生产(20﹣m )天,根据题意列出不等式并解答; ②利用①的计算结果和生活实际取值.【解析】(1)设乙车间每天生产普通口罩x 万个,乙车间每天生产N 95口罩y 万个, 依题意得:{x +y =10x −y =6.解得{x =8y =2.答:乙车间每天生产普通口罩8万个,乙车间每天生产N 95口罩2万个;(2)①设安排乙车间生产m 天,则甲车间生产(20﹣m )天, 依题意得:8m +6(20﹣m )≥156.解得m ≥18.答:该公司至少安排乙车间生产18天.②由题意得,乙车间生产的天数可能是18,19或20天.即有三种生产方案: 方案一:乙车间生产18天,甲车间生产2天; 方案二:乙车间生产19天,甲车间生产1天; 方案三:乙车间生产20天,甲车间生产0天;则最多生产的N 95口罩=18×2+2×2.2=40.4(万个). 答:该公司最多能提供40.4万个N 95口罩.23.(2020春•宝应县期末)已知关于x ,y 的二元一次方程组{2x −3y =5x −2y =k .(1)若{x =3y =−2满足方程x ﹣2y =k ,请求出此时这个方程组的解;(2)若该方程组的解满足x >y ,求k 的取值范围.【分析】(1)把x 与y 的值代入已知方程求出k 的值,进而求出方程组的解即可; (2)表示出方程组的解,根据x >y ,求出k 的范围即可. 【解析】(1)把{x =3y =−2代入x ﹣2y =k 得:k =3+4=7,方程组为{2x −3y =5①x −2y =7②,①﹣②×2得:y =﹣9, 把y =﹣9代入①得:x =﹣11, 则方程组的解为{x =−11y =−9;(2){2x −3y =5①x −2y =k②,①﹣②得:x ﹣y =5﹣k , ∵x >y ,即x ﹣y >0, ∴5﹣k >0, 解得:k <5.24.(2020春•江都区月考)如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P .(1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ∠AEP +∠PFC =∠EPF ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ∠AEP +∠EPF +∠PFC =360° .。

(完整word)初一数学计算题专题训练

(完整word)初一数学计算题专题训练

1、写出以下单项式的系数和次数aa2bc3的系数是 ______,次数是 ______;的系数是 ______,次数是 ______;3x 2 y 3 的系数是 ______,次数是 ______ ;xy 2 z 3 的系数是 ______,次数是 ______;753 x 2 y 的系数是 ______ ,次数是 ______;x 2 的系数是 ______,次数是 ______;33、假如 2x b 1 是一个对于 x 的 3 次单项式,则b=________变式 1:若ab m 1是一个 4 次单项式,则 m=_____6变式 2:已知8x m y 2 是一个 6 次单项式,求 2m 10 的值。

4、写出一个三次单项式 ______________ ,它的系数是 ________,(答案不独一)变式 1、写一个系数为3,含有两个字母a ,b 的四次单项式 _______________5、依据题意列式,并写出所列式子的系数、次数(1)、每包书有12册, n 包书有 册;(2) 、底边长为 a ,高为 h 的三角形的面积是 ;(3) 、一个长方体的长和宽都是a ,高是 h ,它的体积 ________;(4) 、产量由 m 千克增添 10%,就达到 _______ 千克 ;(5)、一台电视机原价 a 元,现按原价的9折销售,这台电视机此刻的售价为元;(6)、一个长方形的长是0.9 ,宽是 a ,这个长方形面积是6、写出以下各个多项式的项几和次数x 2 yz 2xy 2 xz 1有__ 项,分别是: _______________________________ ;次数是 ___;x y;7 有___项,分别是: _______________________________ ;次数是 ___7x 2x 1有 ___项,分别是: _______________________________ ;次数是 __;22a 3b 2 3ab 2 7a 2 b 5 1 有 ___项,分别是: ____________________________ ;次数是 ___2、多项式 3 m( n 5) x 2是对于 x 的二次二项式,则 m=_____; n=______ ;x变式 1、已知对于 x 的多项式a 2 x 2ax 3 中 x 的一次项系数为 2,求这个多项式。

人教版初一数学下册提升训练(附答案)

人教版初一数学下册提升训练(附答案)
2.对*,y定义一种新运算T,规定:T〔*,y〕= 〔其中a、b均为非零常数〕,这里等式右边是通常的四则运算,例如:T〔0,1〕= =b.
〔1〕T〔1,-1〕=-2,T〔4,2〕=1.
①求a,b的值;
②假设关于m的不等式组 恰好有3个整数解,求实数p的取值范围;
〔2〕假设T〔*,y〕=T〔y,*〕对任意实数*,y都成立〔这里T〔*,y〕和T〔y,*〕均有意义〕,则a,b应满足怎样的关系式?
12."保护好环境,拒绝冒黑烟〞.*市公交公司将淘汰*一条线路上"冒黑烟〞较严重的公交车,方案购置A型和B型两种环保节能公交车共10辆,假设购置A型公交车1辆,B型公交车2辆,共需400万元;假设购置A型公交车2辆,B型公交车1辆,共需350万元.
〔1〕求购置A型和B型公交车每辆各需多少万元?
〔2〕 预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.假设该公司购置A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
试题解析:〔1〕①根据题意得:T〔1,-1〕= =-2,即a-b=-2;
T=〔4,2〕= =1,即2a+b=5,解得:a=1,b=3;
②根据题意得: ,由①得:m≥- ;由②得:m< ,
∴不等式组的解集为- ≤m< ,
∵不等式组恰好有3个整数解,即m=0,1,2,∴2< ≤3,解得:-2≤p<- ;
试题解析:〔1〕、假设人均年产值"1〞,则年产值"100〞,设分派到新生产线的人数为*人,由题意可知:
解得: ∴ ,且*为整数
∴*=13或14或15或16

人教版七年级上册数学1.1 正数和负数 课时提升训练20分钟(Word版,带答案)

人教版七年级上册数学1.1 正数和负数  课时提升训练20分钟(Word版,带答案)

人教版 第一章 正数和负数 课时提升训练一、选择题(共10题)1、 在-32、-|-2.5| 、-(-212)、-(-3)2 、(-3)2 中,负数的个数是( ) A .1 B .2 C .3 D .42、 实数a ,b 在数轴上的对应点的位置如图所示,把﹣a ,﹣b ,0按照从小到大的顺序排列,正确的是( )A .﹣a <0<﹣bB .0<﹣a <﹣bC .﹣b <0<﹣aD .0<﹣b <﹣a3、 在﹣2,+3.5,0,32-,﹣0.7,11中,负分数有( ) A .l 个 B .2个 C .3个 D .4个4、 .一种大米的质量标识为“50±0.25千克”,则下列大米中合格的有( )A .50.30千克B .49.70千克C .50.51千克D .49.80千克5、 水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2)6、规定向东为正,小明走了+5千米后,又继续走了-10千米,那么小明实际上( )A .向西走了15千米B .向东走了15千米C .向西走了5千米D .向东走了5千米7、 在下列选项中,具有相反意义的量是( )A 、向东行30米和向北行30米B 、6个老师和7个学生C 、走了100米的跑了100米D 、收入20元与支出30元8、 在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.非正数D.非负数9、 下列说法正确的个数是 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 410、 一次军事训练中,一架直升机“停”在离海面180 m 的低空,—艘潜水艇潜在水下150 m 处,设海平面的高度为0m ,用正负数表示该直升机和潜水艇的高度为 ( )A .+180m ,-150 mB .+180 m ,+150 mC .-180 m ,+150mD .-180m ,+150m二、填空题(共5题)11、 把下列各数填入相应的括号里:-2,21- , 5.2 , 0, 32 ,611 ,35- , 2005,﹣0.3 整数集合: () 正数集合: () 负分数集合:() 负数集合: ()12、 如图,两个圈分别表示负数集和整数集,请你从﹣3,9,0,﹣10%,3.14,72,1300这些数中,选择适当的数填在这两个圈的重叠部分.13、 甲.乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.14、 若把每月生300个零件记作0个,则二月份生产了340个零件记作_________个,四月份生产了280个零件记作_________个;15、下表是同一时刻4个城市的国际标准时间,那么北京与多伦多的时差为 h . 城市 伦敦 北京 东京 多伦多国际标准时间 0 +8 +9 -4三、解答题(共5题)16、 小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5 , -3, +10 ,-8, -6, +12, -10问:(1)小虫是否回到原点O ?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?17、 某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库) +23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是 (填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?18、 已知某种食品每袋的标准质量是11克,工作人员对一批这种食品进行抽查,在所抽查的10袋中,有两袋的质量超过标准质量的5克,有四袋的质量低于标准质量8克,有三袋标准质量,还有一袋的质量低于标准质量15克,求这10袋食品的总质量.19、 “十•一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期 1日 2日 3日 4日 5日 6日 7日 人数变化(单位:万人) +1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)若9月30日的游客人数记为a ,请用a 的代数式表示10月2日的游客 万人(2)请判断七天内游客人数最多的是 日;最少的是 日.它们相差 万人?(3)若9月30日的游客人数0.5万人,该景区在10月7号接待了多少游客?20、 某电动车厂计划一周生产电动车1200辆,计划平均每天生产200辆,但由于种种原因,实际每天生产量与计划生产量相比有出入.下表是某周(6天)的生产情况(超产记为正,减产记为负):星期一二三四五六增减+5 ﹣2 ﹣4 +13 ﹣10 +16(1)根据记录的数据可知,该厂星期四生产电动车辆;(2)根据记录的数据可知该厂本周实际生产自行车辆;(3)该厂实行每日计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?人教版 第一章 正数和负数 课时提升训练 答案一、选择题1-10 DCBDB CDDBA二、填空题11、1、 整数集合: (-2, 0, 2005 )正数集合: ( 5.2 ,32 ,611 , 2005 ) 负分数集合:( 21- ,35- ,﹣0.3 ) 负数集合: ( -2,21- , 35- ,﹣0.3 ) 12、 解:﹣3,9,0,﹣10%,3.14,72,1300中, 属于正数的有:9,3.14,72,1300; 属于整数的有:﹣3,9,0,1300.重叠的数是9,1300.13、 -32m ,8014、 40 、-2015、 12三、解答题16、 (1)小虫最后回到原点O(2)小虫离开出发点O 最远是10厘米(3)小虫共可得到54粒芝麻17、(1)减少了(2)5天前仓库里存有货品529吨(3)这5天一共要付548元装卸费18、 解:两袋记为+5g ,四袋记为﹣8g ,三袋记为0g ,一袋记为﹣15g ,这10袋食品的总质量是[5×2+(﹣8)×4+0×3+(﹣15)×1]+11×10=73(g )19、(1)a+1.6+0.8=a+2.4(万人)(2)3 7 2.220、 解:(1)星期四的产量是200+13=213(辆)(2)这一周超过计划的辆数是5﹣2﹣4+13﹣10+16=18(辆)实际生产的辆数是:6×200+18=1218(辆)(3)工资总额是:1200×50+18×15=60270(元)。

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)-

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)-

初一数学有理数难题与提高练习和培优综合题压轴题一.选择题1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米 D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数 B.偶数 C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5 D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127二.填空题13.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).14.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+...+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+...+3100=,仿照以上推理计算:1+5+52+53+ (52015)值是.15.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.16.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).17.符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.18.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.(只填序号,答案格式如:“①②③④”).19.若|x|=2,|y|=3,且<0,则x+y=.20.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题21.计算:++++…+.22.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.24.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.25.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.26.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x=时,|x+1|+|x﹣2|=5.27.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.28.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.29.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)30.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.31.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.32.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.33.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.34.计算:(1);(2);(3);(4);(5);(6)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).35.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.36.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米 D.3×10﹣5米【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数 B.偶数 C.5的倍数D.个位是5的数【分析】如果为整数,则(a﹣5)2为4的倍数,可确定a的取值.【解答】解:∵为整数,∴(a﹣5)2为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013•天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数的运算,理解十六进制的含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题的关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有3个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N或P (填入M、N、P、R中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2015•茂名)为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【分析】首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=﹣2009.【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确的规律是解答本题的关键.20.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b <0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1.【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合的思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.(2016•河北)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.30.(2015秋•古田县校级期末)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x=7或﹣3.。

七年级数学上册全册单元测试卷(提升篇)(Word版 含解析)

七年级数学上册全册单元测试卷(提升篇)(Word版 含解析)

七年级数学上册全册单元测试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.3.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.【答案】(1)100(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.综上所述:∠MON的度数恒为100°(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-(60°+n)=100°;解得:n=50°;②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.综上所述:n=50°或70°【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。

(完整word版)初一整式的加减所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(完整word版)初一整式的加减所有知识点总结和常考题提高难题压轴题练习(含答案解析)

第1页(共17页)初一整式的加减所有知识点总结和常考题知识点:1单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2 •单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数4. 多项式:几个单项式的和叫做多项式。

5•多项式的项与项数:多项式中每个单项式叫多项式的项;不含字母的项叫做常数项。

多项式里所含单项式的个数就是多项式的项数;6•多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.7.多项式的升幕排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幕排列。

多项式的降幕排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列。

(注意:多项式计算的最后结果一般应该进行升幕(或降幕)排列8•整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9•整式分类:整式/单项式. (注意:分母上含有字母的不是整式。

)i多项式10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。

12•去括号的法则:(原理:乘法分配侓)(1)括号前面是“ +”号,把括号和它前面的“ +”号去掉,括号里各项的符号都不变;(2)括号前面是“一”号,把括号和它前面的“一”号去掉,括号里各项的符号都要改变。

13.添括号的法则:(1)若括号前边是“ +”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号.14.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。

2020-2021七年级数学提高练习

2020-2021七年级数学提高练习

1、计算32a a ⋅得( ) (A )5a (B )6a (C )8a (D )9a2、计算()23x 的结果是( ) (A )9x (B )8x (C )6x (D )5x3、大于–3.5小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )34、如果a a =||,那么a 是( )(A )0 (B )0和1 (C )正数 (D )非负数 5、计算:()()4622-÷-=___________。

6、()642=7、计算: ()()1211-+-+…()20001+-=______。

8、已知()02|4|2=-++b a a ,则b a 2+=_________。

9、若0||=+a a ,则a 的取值范围是_____;若1||-=aa ,则a 的取值范围是_______。

10、若2>x ,则|2|-x =_________;若31<<x ,则|3||1|-+-x x =________。

11、若4||=a ,则a的值为___________;若3|2|=+a ,则a的值为_______;4|12|=-a ,则a的值为__________。

12、数2a 的最小值是_______;||a 的最小值是_____;22+a 的最小值是_____;32-a 的最小值是______;2||-a 的最小值是____;22+-a 有最____值是______。

13、若()0|2|22=++-b a ,则ab =_______;若()()034222=-++b a ,则ab =_____;若()02|2|2=-+-yxx,则yx=______。

14、不大于5的正整数是______________,不小于–2.6的负整数是_____________。

15、不小于–3的非正整数是___________,不大于5的非负整数是____________。

16、一个数等于它的相反数,则这个数是___;一个数等于它的倒数,则这个数是_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学大题专题训练
1.如图:AB∥CD,直线交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)
(1)当点N在射线FC上运动时,,说明理由?
(2)当点N在射线FD上运动时,与有什么关系?并说明理由.
2.如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?
3.造桥选址:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。


A
B
4. 如图,三角形ABC 中,A 、B 、C 三点坐标分别为(0,0)、(4,1)、(1,3),
⑴求三角形ABC 的面积;
⑵若B 、C 点坐标不变,A 点坐标变为(—1,—1),画出草图并求出三角形ABC 的面积
5. 如图,△ABC 中,点D 在AB 上,AD =31AB .点E 在BC 上,BE =4
1BC .点F 在AC 上,CF =5
1CA .已知阴影部分(即△DEF )的面积是25cm 2.则△ABC 的面积为_______ cm 2.(写出简要推理)
6. 已知甲、乙两人从相距36km 的两地同时出发,相向而行,1
45h 相遇,
如果甲比乙先走23
h ,那么在乙出发后3
2
h 两人相遇,求甲、乙两人的速度。

B
C
E
7. 小明和小亮两个人做加法,小明将其中一个加数后面多写了一个0,得和为1080,小亮
将同一个加数后面少写了一个0,所得和为90.求原来的两个加数.
8. 某工程由甲乙两队合做6天完成,厂家需付甲乙两队共8700元;乙丙两队合做10天完
成,厂家需付乙丙两队共9500元;甲丙两队合做5天完成全部工程的2
3
,厂家需付甲丙两队共5500元.
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若要求不超过15天完成全啊工程,问可由哪队单独完成此项工程花钱最少?
9. 二元一次方程组437
(1)3
x y kx k y +=⎧⎨
+-=⎩的解x ,y 的值相等,求k .
10. 已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少?
11. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
12. 已知方程组⎩⎨⎧-=++=+②①
m
y x m y x 12,312的解满足x +y <0,求m 的取值范围.
13. 当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.
14. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
15. 关于x 的不等式组⎩
⎨⎧->-≥-123,
0x a x 的整数解共有5个,求a 的取值范围.
16. 若不等式组⎩⎨
⎧-+n
m x n
m x φπ的解是53ππx -,求不等式0πn mx -的解集。

17. 根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A
-B >0,则A >B ;若A -B =0,则A =B ;若A -B <0,则A <B ,这种比较大小的方法称为“作差比较法”,试比较2x 2-2x 与x 2-2x 的大小.
18. 已知,x 满足⎪⎩
⎪⎨⎧-+-+
1411533φφx x x 化简 52++-x x
19. 某公司为了扩大经营,决定购进
6台机器用于生产某种活塞。

现有甲、乙两种机器供
选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。

经过预算,本次购买
机器所耗资金不能超过34万元。

(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?
20.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?
21.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若使总收入不低于15.6万,则最多只能安排多少人种甲种蔬菜?
22.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)若此车间每天所获利润为y(元),用x的代数式表示y.
(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?。

相关文档
最新文档