三年级不规则图形求面积分析

合集下载

三年级数学上册第五单元《面积》教案2沪教版五四制

三年级数学上册第五单元《面积》教案2沪教版五四制

三年级数学上册第五单元《面积》教案2沪教版五四制
教学目标:
1. 通过操作,认识“面积”概念,知道平面图形的大小就是它们的面积。

2. 会用方格的多少表示面积。

3. 发展解决问题的能力。

教学重点难点:
会用方格的多少表示面积;不规则图形的面积的计数。

教具准备:
透明方格纸
教学过程:
一、情境导入
小丁丁搬新家了,我们一起去参观一下吧!这是小丁丁家的平面图,你知道每个房间占几格吗?
(1)选择两个房间说一说。

(2)汇报:你是怎么知道的?
(3)小结:通过数方格,我们知道了每个房间的大小。

二、探究数法
1. 下面的这些图形没有格子,请你用方格纸放一放,数一数这些图形各占几格?
[出示图:]
2. 独立思考
3. 小胖画了一个轴对称图形,你知道这个图形有多大吗?
(1)数一数
(2)汇报:遇到不是整格的,他是怎么办的呢?
小结:我们可以把不满整格的拼成一格。

4. 揭题:我们今天研究的这些图形的大小就是它们的面积。

[板书]
三、拓展
1. 这是老师画的一个图形,我想知道这个图形的大小是多少,你能帮帮我吗?同桌合作、交流。

2. 总结。

三年级面积教案及反思

三年级面积教案及反思

三年级面积教案及反思教材介绍“认识面积”是新人教版三年级下册第五单元内容,面积的认识是在学生已经掌握了长方形和正方形的特征,并会计算长方形和正方形周长的基础上进行的。

小学生从学习长度到学习面积,是空间形式认识发展上的一次飞跃。

面积概念是贯穿于整个单元的核心内容,是学习其他相关内容的重要基础。

教材在编排上借助生活中熟悉的物体,让学生充分感知面积的大小。

注重概念认识的直观性、层次性、全面性,强化与周长的比较和辨析。

前置作业教学过程(一)情境导入师:我们今天要学习的“面积”。

看到这两个字,你有哪些疑问?生:面积是什么?有什么用?怎么算?······(二)初步感知,理解面积。

汇报前置作业1:阅读课本第61-62页,说一说下面图形的周长和面积分别指什么?用不同颜色的笔画出来。

1.指一指每个图形的周长,摸一摸它的面积。

2.对比“角”的答案,讨论有没有周长和面积。

小结:有周长就存在面积,没有周长就没有面积,封闭的平面图形就一定存在周长和面积。

3.师:指一指,摸一摸,说一说哪里有面积?学生边摸边说。

(桌面、数学书封面、黑板面······)出示圆柱体杯子:这里有面积吗?摸一摸,说一说。

(上底面拓在黑板上,讨论侧面是否有面积,唤醒已有经验“化曲为直”到“化曲为平”,生动手操作积累活动经验。

)出示桔子:它有面积吗?摸一摸,说一说。

(做一做:剥桔子皮,铺平,画下来。

)说一说:通过刚才的活动说一说你对面积的理解。

【设计意图:了解学生对面积和周长概念的理解,明确不封闭图形不存在周长和面积,体会面在体上,不规则图形、曲面等都有面积,扩大学生的已有认知。

培养学生自主学习、动手实践、语文表达能力。

】(三)深入辨析,理解面积。

1.一个长方形变换位置,周长和面积有没有变化?2.两个完全一样的长方形,如下图剪去相同的小长方形后,剩下图形的面积和周长相等吗?为什么?【设计意图:通过面积与周长的比较辨析,进一步理解面积的含义、守恒性。

三年级数学下学期面积拓展题难度升级例题 +练习解析

三年级数学下学期面积拓展题难度升级例题 +练习解析

【例1】一根铁丝正好能围成一个边长为4分米的正方形,如果用这根铁丝围成一个长为5分米的长方形,这个长方形的面积是多少平方分米?周长相等,求出正方形周长就是长方形周长。

关键是求出长方形的宽。

周长:4×4=16(分米)长+宽:16÷2=8(分米)宽:8-5=3(分米)面积:5×3=15(平方分米)答:这个长方形的面积是15平方分米。

【练习】1、一个长方形和正方形周长相等。

长方形的长是33厘米,宽是17厘米。

正方形的面积是多少平方厘米?原来长方形周长和现在长方形周长相等。

长方形周长:(33+17)×2=10(厘米)正方形边长:100÷4=25(厘米)正方形面积25×25=625(平方厘米)答;正方形面积625平方厘米2、一个由铁丝围成的长方形,面积是56平方厘米,长是8厘米,现把这根铁丝重新围成宽是4厘米的长方形,这个新围成的长方形面积是多少平方厘米?宽:56÷8=7(厘米)长方形周长(8+7)×2=30(厘米)现在长方形的长30÷2-4=11(厘米)现在面积:4×11=44(平方厘米)答:新长方形的面积是44平方厘米。

【例2】把一张长18厘米、宽6厘米的长方形纸,剪成边长为3厘米的小正方形纸,能剪成多少个这样的小正方形纸?长边:18÷3=6(个)宽边:6÷3=2(个)总个数:6×2=12(个)答:能剪成12个这样的小正方形纸。

长方形被分成若干个小正方形题型:1.求长有几个正方形边长,2.求宽有几个正方形边长。

3.长有几个,宽有几个的乘积就是小正方形的数量。

【练习】1、把一个长20厘米、宽16厘米的长方形分割成边长为4厘米的小正方形,最多能分割成多少个这样的小正方形?长边:20÷4=5(厘米)宽边:16÷4=4(个)一共:4×5=20(个)答:最多可以分割20个这样的小正方形。

三年级秋季班第14讲-面积计算-教师版

三年级秋季班第14讲-面积计算-教师版

三年级秋季班第14讲-⾯积计算-教师版⾯积计算【教学⽬标】1、在教师指导下,通过探索(在这⾥是先观察,再动⼿⽐较)所给出的图形(在平⾯上,由线段围成的封闭图形)的⼤⼩,初步体会到这种图形的⼤⼩就是它们的⾯积。

2、学会⽤⽅格的多少来表⽰⾯积。

3、认识⾯积单位,平⽅⽶(2m );会⽤平⽅⽶来表⽰较⼤图形的⾯积。

4、探索与掌握长⽅形与正⽅形的⾯积计算公式;会⽤厘⽶⽅格来表⽰图形的⾯积。

5、认识⾯积单位平⽅厘⽶(2cm )。

初步建⽴1平⽅厘⽶的⾯积概念.【教学重点】1、⽤⽅格的多少表⽰⾯积。

2、认识⾯积的单位:平⽅⽶,初步建⽴1平⽅⽶的量感。

3、长⽅形、正⽅形的⾯积计算公式。

4、长⽅形、正⽅形的⾯积计算公式的含义。

【教学难点】1、通过数⽅格,得出不规则图形的⾯积。

2、长⽅形、正⽅形⾯积公式的应⽤。

3、长⽅形、正⽅形的⾯积计算公式的含义。

【复习巩固】1、⼝算:(1)760?=42 (2)5409÷=60 (3)8005?=4000 (4)40050÷=8(5)100080-=920 (6)1258?=1000 (7)1437373-+=143(8)83790??=0 (9)13443?-?=40 (10)1375446-+=1292、分拆计算:(1)5285?=2640 (2)4687÷=666鬃鬃鬃50052500205100854052852640?=?=?=?= 420760487664687666÷=÷=÷=3、竖式计算(打※的要验算):(1)60256?=36150 (2)30455÷=609 (3)62143÷=※2071160256 361506095304530 45 45 0621 21 4 3 1207136213621316214?=+=验算:4、递等式计算,能简便计算的要简便计算:(1)182569318++(2)4564443+÷解:()182318569=++ 解:()4563331113=++÷5005691069=+=456333311134561113756737604=+÷+÷=++=+=【教学过程】⼀、填空题:1、⾯积为1平⽅厘⽶的正⽅形,它的边长是( 1厘⽶)。

数学《什么是面积》教学设计

数学《什么是面积》教学设计

数学《什么是面积》教学设计数学《什么是面积》教学设计1一、设计思路(一)、教材分析《什么是面积》是三年级数学下册第五单元的起始课,在这之前学生已经认识了长方形、正方形等平面图形,也认识了正方体、长方体等立体图形,了解了它们的特征,也学习了计算长方形、正方形的周长,这一单元将让孩子们继续探究、了解什么是面积、面积单位、探究如何计算长方形和正方形的面积以及面积单位的换算,到五年级时,他们还将学习不规则图形面积的估计。

因此这节课至关重要。

(二)、设计理念这节课的设计我紧紧围绕新的教学理念,本着“以人为本”,充分体现学生的学习主体性,最大限度的给孩子创设轻松愉悦的学习氛围,给孩子搭建锻炼、探究、展示的平台,除了注重基础知识、基本技能的同时注重基本思想方法和基本技能的训练,培养学生的空间观念和探索精神,体会方法的多样性,感受合作学习的乐趣。

(三)、教学目标1、结合具体情境,通过观察、操作等活动体验面积的含义,初步学会比较物体表面和封闭图形面积的大小。

2、通过比较两个图形面积大小的过程,让学生体会解决问题策略的多样性,培养学生动手操作的能力,同时发展学生的空间观念。

3、创设有目的的活动,让学生经历知识形成的过程,培养学生主动探索与团结协作的意识和能力,使学生体会数学与生活的密切联系,激发学生的学习兴趣。

(四)、教学重点理解建构面积的含义,体验比较策略的多样性。

(五)、教学难点理解面积含义,比较两个图形面积的大小。

二、教学准备多媒体课件、学具袋(正方形与长方形每生各一个,剪刀、边长为1厘米的正方形小纸片、尺子)三、教学过程(一)、创设情境导入课题,认识什么是面积1、感知物体表面的大小(1)、出示人民币100元、10元、1元(2)、学生回答是什么?钱、人民币(3)、每张人民币都有几个面?两个面的大小怎样?(演示:摸人民币的表面)(4)、现在我们来做一个游戏“闭眼猜钱”①、请同学们闭上眼睛,根据老师的描述,猜猜看这张人民币的面值是多少?②、从上摸到下、从左摸到右,面最小的是?面最大的是?不大也不小的是?(刚才通过闭眼猜钱的游戏我们了解了原来不同面值的人民币表面大小不同。

几何图形综合(三年级培优)教师版

几何图形综合(三年级培优)教师版

长方形与正方形的面积计算下图面积。

(每个小正方形面积是1)【图片来自于2013年秋季四年级讲义】难度等级:A知识点:直接计数法,即先数出每个图形中有几个完整的方格,不足一格的仔细观察后看看哪几个能拼成一个完整的方格,如果不能拼成一格,看看此格比半格多,还是比半格少。

小于半格的舍去。

如果是轴对称图形,只需要数以对称轴为中心的一半,然后将数出的格子数乘2即可。

解:11、12、12.5求下列图形的面积。

【来自于三年级优等生数学】33483843难度等级:A知识点:不规则图形多边形的面积,可以通过分割的方法,将多边形分割成几个正方形或长方形,从而求出图形的面积。

解:(1)面积:233384=⨯-⨯。

(2)面积:413384=⨯+⨯。

张大伯家用篱笆围上两个羊圈,都看成正方形,如下图所示。

【来自于2013年春季三年级】(1)第一个篱笆长48米,羊圈占地面积是多少平方米?(2)第二个篱笆长48米,这个羊圈占地面积是多少平方米?难度等级:B知识点:正方形周长公式及面积公式解:(1)48÷4=12(米);12×12=144(平方米)(2)48÷3=16(米);16×16=256(平方米)某饭店准备在一块长方形的地面上增修一座大楼(如图),这个长方形的周长是260米,长是90米,已知大楼的地基是正方形,其余空地修喷水池。

喷水池的面积是多少?【来自于2013年春季三年级】解析:由长方形的周长和长可求出喷水池的宽,也就是大楼的边长,求出大楼的边长也就可以求出喷水池的长。

喷水池的面积代入公式即可求出。

大楼喷水池难度等级:B知识点:长方形周长及面积公式解:长方形的宽:40902260=-÷(米)喷水池的长:504090=-(米)喷水池面积:20005040=⨯(平方米)下图是一个等腰直角三角形,请求出它的面积。

【来自于2013年春季三年级】14 cm14 cm难度等级:C知识点:正方形平均分成4个等要直角三角形 解:4941414=÷⨯(平方厘米)。

三年级 不规则图形面积的计算

三年级   不规则图形面积的计算

第十讲:面积的实际应用知识梳理【知识要点】1、周长:封闭图形一周的长度,是它的周长。

长方形的周长 =(长+宽)×2正方形的周长 = 边长×42、面积:物体的表面或封闭图形的大小就是它们的面积。

边长是1厘米的正方形的面积是1平方厘米。

边长是1分米的正方形的面积是1平方分米边长是1米的正方形的面积是1平方米长方形的面积 = 长×宽正方形的面积 = 边长×边长3、一个图形剪掉一部分,面积一定会减少,但周长不一定会减少。

4、掌握换算的方法(1)高级单位化成低级单位:高级单位的数×进率大单位化小单位添0,如2平方米=(200)平方分米(想:平方米大,所以是大化小添0,因为1平方米=100平方分米,应该在2后面添两个0.)(2)低级单位聚成高级单位:低级单位的数÷进率小单位化大单位去0,如20000平方米=(2)公顷,(想:平方米小,所以是小化大去0,因为1公顷=10000平方米,应该去掉2后面的四个0.)5、周长相等的两个长方形,面积不一定相等。

面积相等的两个长方形,周长也不一定相等。

6、长方形和正方形的面积相等时,正方形的周长小。

7、长方形和正方形的周长相等时,正方形的面积大。

(如用同样长的绳子围成的正方形面积比长方形的面积大)面积单位换算1平方千米 = 100公顷 1公顷=10000 平方米 1平方米=100 平方分米 1平方分米=100平方厘米【例题一】小林要从左边的纸上剪下一个最大的正方形。

剩下部分是什么图形?它的面积是多少平方厘米?【拓展训练】一个长方形,长16分米,宽12分米,在这个长方形上尽可能剪下一个正方形,正方形的面积是多少?剩下图形的面积是多少?【例题二】求下列图形的周长。

12厘米 15厘米 15厘米12厘米 12厘米 9米10米 3米4米【拓展训练】(单位:cm )【例题三】李奶奶家房子东面有一块长方形菜地,菜地一边紧挨着墙壁(如右图),少先队员们要给李奶奶的菜地围上篱笆,需要准备多长的篱笆?这块菜地的面积是多少平方米?【拓展训练】李大爷靠东墙围了一个羊圈,算出这个羊圈的占地面积?如果要砌上围墙,围墙的长度应该是多少米?【例题四】一块面积有72平方分米的长方形台布,长9分米,它的宽是多少?57 522 18米 3米 墙18 25米东墙【拓展训练】一块正方形的喷水池的周长是20米,它的边长是多少米?面积是多少平方米?【例题五】3平方米=()平方分米 5平方分米=()平方厘米700平方厘米=()平方分米600平方分米=()平方厘米30平方分米=()平方厘米 8000平方分米=()平方米【拓展训练】1、教室地面的面积大约是60(),也就是6000()。

三年级下册数学教案1.23面积的估测1平方分米沪教版

三年级下册数学教案1.23面积的估测1平方分米沪教版

面积的估测(1)教学内容:九年义务教育课本三年级数学第二学期第4页面积的估测(1)教学目标:1、能用数方格的方法估测出不规则平面图形的面积。

2、初步体会“四舍五入”的思想方法。

重点、难点:会用“四舍五入”的思想方法来估测出不规则平面图形的面积。

教学准备:树叶实物、透明方格纸等。

教学过程:一、导入新知(出示小胖、小巧在公园里捡树叶图)1、说说图上的小朋友在干什么?2、师:(出示树叶实物)老师这里也有一片树叶,这片树叶的面积有多大呢?这就是我们今天这节课要探究的新本领。

(出示课题:树叶的面积)二、探究新知1、师:想一想,怎样来计算树叶的面积?生小组讨论,交流。

2、师:小朋友真聪明,想到了好多的方法。

但在用这些方法计算树叶的面积时,肯定会出现好多不同的结果,所以,我们的好朋友小丁丁想出了一个好办法,将树叶放在透明方格纸下进行测量,这样测量的结果就会很接近,比较科学。

(出示投影)3、指导学生像小丁丁那样把树叶放在透明方格纸下进行测量。

4、讨论交流:不满一格的怎么办?5、师统一测量方法:大于等于半格的算一格,小于半格的舍去。

归纳,完成填空:整格 31格大于等于半格 17格树叶的面积大约为 48个格树叶的面积大约为 48平方厘米三、巩固练习1、计算“脚印”的面积。

2、生完成练习册第2页,后交流。

四、课堂总结今天我们学习了什么新本领?你有什么收获?平方分米教学内容:P5平方分米教学目标:1.认识面积单位dm2,建立1dm2的直观表象,知道它的写法。

2.知道dm2与它相邻的两个面积单位之间的进率,并会进行简单的单位换算。

教学重点和难点:重点:认识面积单位dm2,知道dm2与它相邻的两个面积单位之间的进率难点:会进行dm2与它相邻的两个面积单位之间的单位换算。

教学过程:一、旧知引新知1.回顾:上学期我们学习了有关“面积”的知识,什么是面积?已经学过的面积单位有哪些?它们之间的进率是多少?(生口答,师板书):2. 师:今天我们继续来学习有关“面积”的知识。

沪教版三年级上册数学第五单元《面积》(教案)

沪教版三年级上册数学第五单元《面积》(教案)

面积【教学内容】P60【教学目标】1.结合具体实例和画图活动,理解认识图形面积的含义。

2.通过目测、重叠、数方格的方法来理解面积的大小。

3.培养学生的抽象概括能力,感知计算图形的面积是有趣的和有用的,建立初步的空间概念。

【教学重点】通过探究多种方法比较图形面积大小的过程,学会用方格的多少表示面积的大小。

【教学难点】灵活、准确地计数方格(初步接触凑整的思想)。

【教学资源】垫板、小正方形纸片、圆形纸片、剪刀、方格纸、练习纸【教学过程】教学环节师生活动设计说明/评价关注点创设情境激发兴趣1、情境引入:同学们做好了上课的准备了吗?看看,你们的桌面上有些什么?师:摸一摸课本、练习本、橡皮这些物体的表面。

2、认识生活中物体的表面问:你能再找一找、摸一摸身边其它物体的表面吗?3、感知平面图形的面师:这4个平面图形中,哪个图形的面最大?你们是不是直接用眼睛观察出来的?小结:用眼睛直接观察,比较面的大小的方法叫做观察法。

【板书】观察法4、揭示课题——面积小结:通过刚才的学习,我们知道了物体的表面是有大小的,平面图形的表面也是有大小的。

我们把平面图形的大小称作为他们的面积。

以谈话的形式,以亲身的感官体验进入本节课的学习,激发学生的学习兴趣,感知物体的面有大有小,逐步理解面积的含义,为“面积”概念的引入创造了条件,直观地让学生理解面积的含义。

/初步理解面积的概念。

【板书】平面图形的大小就是他们的面积。

自主探究比较大小1、比较哪个图形面积最小师:那哪一个面积最小呢?(拿出这两个平面图形)谁有什么好方法来帮我比一比?生动手操作,上台演示。

师:我们通过把两个图形重叠在一起比较出了圆形最小。

你能给这种方法取个名字吗?【板书】重叠法2、出示小胖搬家的情境,比较房间面积的大小师:老师把房间的平面图剪了下来,放在你们的信封里,并为你们提供了几种工具,请你们四人一小组,选择一样你喜欢的工具,来试一试。

(出示工具:垫板、小正方形纸片、圆形纸片、剪刀)预设学生活动:方法一:用剪刀剪后拼凑。

学而思三年级奥数第九讲长方形与正方形

学而思三年级奥数第九讲长方形与正方形

学而思三年级奥数第九讲长方形与正方形知识点:长方形的面积=长×宽正方形的面积=边长×边长不规则图形面积的计算方法与技巧合理平移、分析、转化等,即转化为标准的图形来进行面积计算。

例1 有一长方形草坪,长31米,宽26米,草坪中间留了1米的路,路把草坪分成4块(如图),求草坪的实有面积是多少?例2如下图,求出阴影部分的面积。

(四角是边长为10厘米的正方形)例3 如图,在一个正方形的水池周围,围绕着宽5米的小花园,小花园的面积为300平方米,水池的面积是多少平方米?例4 如图,求出阴影部分的面积。

(单位:厘米)例5 如图,图中大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形的面积多96平方厘米,大正方形和小正方形的面积各是多少?例6如图,大正方形的面积比小正方形的面积大32平方厘米,求这两个正方形的面积。

(单位:厘米)例7 如图,正方形中套着一个长方形,正方形的边长是12分米,长方形的四个角的顶点恰好把正方形的四条边都分成两段,其中长的一段是短的一段的3倍,这个长方形的面积是多少?例8 用同样大小的长方形小纸片,摆成了如下图的形状,已知小纸片的宽度是12厘米,求阴影部分面积的和。

同步练习1、用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2、如图,有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是花圃,花圃的面积是多少平方米?(单位:米)3、下图是由6个相等的三角形拼成的图形,求这个图形的面积?4、有两个相同的长方形,长13厘米,宽5厘米,如果把它们按如下图叠放在一起,这个图形的面积是多少?5、有一块菜地长16米,宽8米,如下图菜地中间留了2条宽2米的路,把菜地平均分成四块,每一块地的面积是多少?6、一个正方形,如果边长增加2厘米,它的面积增加16平方厘米,求原正方形面积?7、个周长为60分米的长方形,把它的长缩短6分米后,再把它的宽增加6分米,得到的新长方形面积比原来多24平方分米。

不规则几何图形面积计算方法[技巧]

不规则几何图形面积计算方法[技巧]

不规则几何图形面积计算方法有一次坐车,曾与一位大学一年级的学生坐邻座。

问她现在还学不学数学,她说正学呢,学微积分。

问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。

我将手拍在我们前面座椅的靠背上,问:“用你高中以前的知识,你怎么求我的手掌印的面积?”她马上说:“这没有办法求。

我们求面积都是求的规则图形的面积。

这个没有办法求。

”她没有用过新课程下的数学教材。

对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。

新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。

对于感兴趣的学生,教师还可以引导他们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。

根据经验,学生还可能认识到方格分得越细,不足近似值和过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。

[1]”大方格不能上文说“根据经验,学生还可能认识到……”,似乎是编写者“一厢情愿”的猜度。

我们看到下面的材料,想来你会体会到编写者这样设计的意义和价值。

这是一位教师在上课中的实录节选。

例2[2] 求一块不规则图形的面积.这与数学中的常规问题是不同的,我们在数学中面对的一般都是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢?我们把它交给学生,竟然得到了如下一些成果:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”.[1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社,[2]试谈以人为本的三维课堂教学,/jy zx/Print.asp方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近.方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P足够大时,统计落入不规则图形中的点数A,则图形的面积与正方形面积的比约为.方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是.我们欣赏一下学生的思路,你会发现,这里的每一种方法都有极其深刻的背景。

三年级下册数学求阴影部分的面积题

三年级下册数学求阴影部分的面积题

三年级下册数学求阴影部分的面积题例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。

常用的基本方法有:一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。

一句话:先求出正方形面积再减去里面圆的面积即可.三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.例如:下图,求阴影部分的面积。

一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积。

估测不规则图形的面积

估测不规则图形的面积

估测不规则图形的面积教学内容:青岛版小学数学三年级下册第54页 6。

7.8题.教学目标1。

进一步感知面积单位平方厘米、平方分米、平方米的大小,能自选单位正确估计不规则的2.经历观察、估计、测量图形的面积的过程,进一步发展学生的空间观念。

3.能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养图形面积的大小,能用数方格的方法计算一些不规则图形的面积。

初步的估算意识和估算习惯,体验估算的必要性和重要作用.4。

在估测图形的面积的过程中,体会数学与现实生活的密切联系,感受数学的应用价值。

教学重难点过程中,体会数学与现实生活的密切联系,感受数学的应用价值。

教学重点:自选位估测图形的面积.教学难点:估测图形面积的方法.教具、学具多媒体课件、方格纸、1平方厘米和1平方分米纸片。

教学过程一、创设情境,提出问题1。

复习铺垫:同学们,上节课我们学习了面积和面积单位,谁来说一说常用的面积单位有哪些?(平方米、平方分米、平方厘米)谁举例说明1平方米、1平方分米、1平方厘米有多大?学生举例(通过举例,学生会进一步加深对面积单位平方厘米、平方分米、平方米的大小的感知,为估测图形的面积做好了准备)2.根据对1平方厘米,1平方分米,1平方米的感知,你能估计出黑板的面积吗? 用哪个单位估计比较合适?学生感知到用1平方米来估计,黑板有四块,一块是1平方米,一共是4平方米.提问:估计黑板的面积就是估计什么形的面积?(长方形)3.创设情境:星期天,老师去爬山的时候,看到地上有一片树叶非常漂亮,就带了回来。

出示树叶图片。

看到这片树叶,你们想知道什么?预设:学生可能会说:这是什么树的树叶?它有多大?它的面积大约是多少?……3。

导入新课:这片树叶的面积大约是多少呢?先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。

树叶的形状是我们学过的长方形或其它图形吗?(不是)像这种图形叫不规则图形,今天我们就来学习怎样估测不规则图形的面积。

人教版数学三年级下册《面积的认识》评课稿

人教版数学三年级下册《面积的认识》评课稿

面积的认识评课稿人教版小学数学三年级下册一、引导学生学习所采用的主要方式方法:谢老师教态亲切自然,使用儿童化的语言,遵循知识来源于生活又服务于生活的原则,从学生已有的生活经验出发,联系实际,注意通过直观帮助学生获得感性认识,根据学生实际和教材内容,选用的主要教学方式方法是直观演示为主,引导学生亲自操作、观察思维、自学讨论、自主探索、合作交流等多种方法有机配合使用。

二、教学过程:(一)探索研究,引入概念。

重视创设情景。

数学知识的学习有时是枯燥的,特别对低年级的学生来说,课的开始就吸引每一位学生的眼球,抓住每一个学生的心往往对整节课的成功与否起到十分重要的作用。

在本节课中,吴老师从学生身边常见的平面图形入手,接着创设了问题情境,驱动了学生饶有兴趣地投入到新课的学习中来。

谢老师的这节课学生兴趣高涨,进行了充分的活动,并且在通过摸一摸、涂一涂、比一比等方法,让学生自主探索,在充分的体验中,感悟到了面积的实际含义。

教学过程比较好地体现了新课标的“让学生经历知识形成的全过程”这一理念。

具体说有以下几个方面的优点。

1、在丰富的生活背景上学习数学,建立概念。

首先利用学生学生身边的桌面、数学书面、文具盒面、手掌面等图形以及比较它们的面积,让学生感受比较面积大小的方法的同时,又激发了学生学习的欲望;紧接着教师创设了第二个教学环节,说一说什么是面积,由学生总结出面积的意义。

接着通过涂正方形和长方形的颜色,感受它们面积。

活动是儿童感知世界、认识世界的主要方式,也是儿童社会交往的最初方式。

切实有效的数学活动能培养学生的各种能力。

为了确实达到培养学生的探究能力,老师组织学生经历了一个理解图形面积的含义,探索一般图形比较面积方法的过程。

设计了许多活动,比如“直观感知”层面上的说一说、摸一摸;比如比较正方形和长方形的面积的活动,这个活动有明确的目的,同时给学生提供了足够的时间和空间,让学生动手实践、自主探究,体会了解决问题的方法的多样性,也为下节课求长方形、正方形的面积做好准备。

常州某学校苏教版三年级数学下册《面积的含义》教案(市级公开课)

常州某学校苏教版三年级数学下册《面积的含义》教案(市级公开课)

什么是面积?教学课题:苏教版小学数学三年级下册第六单元第一课时《面积的含义》。

教材分析:本课内容是让学生在观察、操作和比较的基础上,帮助学生认识面积的含义,并学会用不同的方法比较物体表面或平面图形的大小。

例1主要让学生掌握面积的概念,1、比较黑板面和课本封面的大小,引出生活中物体面积的含义;2、尝试用观察的方法比较它们的面积大小;3、掌握平面图形面积的大小。

例2主要教学两个长方形面积的大小比较。

掌握用观察、重叠和数方格的方法比较大小,体会用相同的单位面积直接计量这种计量面积最为基本的方法。

学情分析:本课内容是在学生掌握了长方形和正方形的特征以及学会计算长方形和正方形周长的基础上安排的教学内容。

教学目标:1、知识与技能方面:让学生在观察、比较、操作和交流的过程中,认识和理解面积的两重含义;2、过程与方法方面:经历用不同方法比较图形面积大小的过程,体验不同的比较策略,培养学生的空间观念,发展空间推理能力;3、情感态度价值观方面:在小组合作交流中,体会数学与生活的密切联系,感受小组合作的价值,激发学生探索的乐趣和欲望。

教学重点:掌握生活中物体面积和平面图形面积的含义。

教学难点:学会灵活运用不同的方法比较图形面积的大小。

设计思路和理念:课前我充分研读课标,审慎思考:1、“面积”的概念如何渗透给学生?2、生活中哪些实物可以帮助学生感受“面积”的大小?3、“比较两个图形面积的大小”的着重点应该放在哪里?是方法策略的多样性还是体会用单位面积度量面积大小?在多次的磨课和试讲中,我理清思路,设计了如下的教学:第一部分,用手掌画来解开“面积”的面纱,感受面积的大小;第二部分分为三大板块。

第一板块,在找一找、摸一摸、说一说和比一比中体会物体表面和地图表面的大小;第二板块,在辨析中掌握图形的面积大小;第三板块,在小组合作、动手操作中感受用面积的度量,体会比较面积大小的不同方法(观察法、重叠法和数方格法);第三部分,练习中层层递进,先利用判断不同图形的面积大小,接着画出面积是10的图形,之后利用已有的度量经验估计面积大小,最后引入面积单位,为后续学习做准备。

三年级下册数学期末复习专题讲义(知识点归纳+典例讲解+同步测试)-5.面积人教版(含解析)

三年级下册数学期末复习专题讲义(知识点归纳+典例讲解+同步测试)-5.面积人教版(含解析)

三年级下册数学期末复习专题讲义-5.面积【知识点归纳】1.面积的意义:物体的表面或封闭图形的大小,就是他们的面积。

2.长度单位与面积单位的区别:用长度单位表示物体的长短或封闭图形一周的长度,用面积单位表示物体表面或封闭图形的大小。

注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位。

3.比较两个图形面积的大小,要用统一的面积单位来测量和比较。

4.常用的面积单位有:平方厘米(cm2);平方分米(dm2);平方米(m2)。

边长1厘米的正方形面积是1平方厘米。

□ 1平方厘米=100平方毫米边长1分米的正方形面积是1平方分米。

□ 1平方分米=100平方厘米边长1米的正方形面积是1平方米。

□ 1平方米 = 100平方分米边长100米的正方形面积是1公顷□ 1公顷 = 10000平方米边长1千米的正方形面积是1平方千米。

□ 1平方千米=100公顷5.测量土地的面积时常常要用到更大的面积单位:公顷、平方千米。

6.面积单位间的换算关系:大单位化成小单位,用大单位前面的数乘进率;小单位化成大单位,用小单位前面的数除以进率。

1平方千米= 100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米.7.使用面积单位时.:①比较小的土地面积,如:公园、体育场馆、超市、果园、广场等一般情况下填“公顷”;②比较大的土地面积,如:某城市的占地面积、国家的面积、江河湖海的面积等一般情况下填“平方千米”。

8.长方形的面积=长×宽;长 = 面积÷宽;宽 = 面积÷长9.正方形的面积=边长×边长10.长方形的周长=(长+宽)×2 ;宽 = 周长÷2—长;长 = 周长÷2—宽11.正方形的周长=边长×4 ;正方形的边长=周长÷412.铺地砖问题:①先算出所铺地面的总面积;②计算出每块地砖的面积;③将这两个面积统一成相同的面积单位;④地砖的总块数=所铺地面的总面积÷每块地砖的面积.13.计算格点图形不规则图形的面积时,将不够一个单位的面积拼凑成几个单位的面积;再加上所有整个单位面积就是整个图形的面积.注意:面积相等的两个图形,它们周长不一定相等。

三年级下册平方厘米的讲解

三年级下册平方厘米的讲解

三年级下册平方厘米的讲解平方厘米是一个用来测量面积的单位,表示一个正方形的边长为1厘米的面积。

首先,我们先来了解一下什么是面积。

面积是一个平面图形所占据的总空间大小。

比如说,如果我们有一个正方形,每边长为1厘米,那么这个正方形的面积就是1平方厘米。

同样地,如果我们有一个长方形,长为3厘米,宽为2厘米,那么这个长方形的面积就是6平方厘米。

在三年级下册中,我们开始学习计算平方厘米的面积。

在这里,我们主要会遇到一些简单的图形,比如正方形、长方形和矩形。

下面,我们就来逐一讲解这些图形的面积计算方法。

首先是正方形。

正方形的边长相等,所以我们只需要知道正方形的一边长度,就可以计算出它的面积。

如果一个正方形的边长是2厘米,那么它的面积就是2厘米乘以2厘米,即4平方厘米。

同理,如果一个正方形的边长是5厘米,那么它的面积就是5平方厘米。

接下来是长方形和矩形。

长方形和矩形的面积计算方法相同,都是将长度乘以宽度即可。

比如说,如果一个长方形的长是3厘米,宽是2厘米,那么它的面积就是3厘米乘以2厘米,即6平方厘米。

同样地,如果一个矩形的长是6厘米,宽是4厘米,那么它的面积就是6厘米乘以4厘米,即24平方厘米。

在接下来的学习中,我们还会遇到一些特殊的图形,比如三角形和梯形。

三角形的面积计算方法是将底边乘以高,然后除以2。

举个例子,如果一个三角形的底边是4厘米,高是6厘米,那么它的面积就是4厘米乘以6厘米,得到24平方厘米,然后再除以2,最后得到12平方厘米。

梯形的面积计算方法稍微复杂一些。

首先,我们需要找到梯形的上底和下底的长度,然后将它们相加,再除以2,得到梯形的平均底长。

最后,将平均底长乘以梯形的高,就可以计算出梯形的面积。

比如说,如果一个梯形的上底是5厘米,下底是8厘米,高是4厘米,那么它的平均底长就是(5厘米+8厘米)/2=6.5厘米。

然后将6.5厘米乘以4厘米,得到26平方厘米,即梯形的面积。

除了以上介绍的几种图形外,还会有一些其他的图形,比如圆形和正方形的组合图形。

北师大版小学数学三年级上册第四单元教材解读

北师大版小学数学三年级上册第四单元教材解读

北师大版小学数学三年级下册第四单元《什么是面积》教材解读一、教材前后联系《什么是面积》是北师大版小学数学三年级下册第四单元《面积》的第一个教学内容,本单元主要是培养和发展学生的空间观念,认识面积单位,长方形和正方形的面积计算方法,运用已学知识解决实际问题的意识和能力。

其前后联系如下:已学的相关内容本单元的主要内容后续的相关内容一年级下册●认识厘米、米●简单的估测和测量二年级下册●认识分米、毫米与千米三年级上册●认识周长●计算长方形和正方形的周长●认识面积与面积单位●计算长方形和正方形的面积●解决相关的简单实际问题四年级下册●平行四边形、三角形、梯形的认识五年级上册●平行四边形、三角形、梯形面积的计算●组合图形面积的计算、不规则图形面积的估计二、目标要求1、结合具体实例和图画活动,认识图形面积的含义。

2、经历比较两个图形面积大小的过程,体验比较策略的多样性。

三、教材编写特点。

为了直观认识面积的含义,教材安排的内容有三个层次。

1.结合四个比大小的具体实例抽象出面积的概念的,初步感知面积的含义。

2、进行比较两个图形面积大小的实践操作,体验比较面积大小策略的多样性,尤其是可以借助工具进行比较的策略。

在比较面积大小的活动中,通过:“你觉得哪种方法更好些呢”的问题,让学生初步感知用正方形进行测量,比较的优点,从而为后面学习面积单位做好铺垫。

3、通过在方格纸上画图的活动,进一步认识面积的含义,并体验一个数学事实,即面积相同的图形,可以有不同的形状。

四、教材呈现及设计意图。

教材按照:“看一看-----比一比 -------画一画——练一练“的体系进行编排。

(一)、看一看首先:通过观察数学教科书的封面、一元和一角的硬币、手掌,结合比较物体表面大小和平面图形大小的活动,让学生获得对面积的感性认识,从而抽象出面积的概念:物体的表面或封闭图形的大小就是它们的面积。

(二)比一比教材呈现“哪个图形的面积大?”教材附页2中图6剪下,怎么比呢?教材直观地呈现了四种方法:1、我可以剪一剪,拼一拼。

三年级下册数学求不规则图形的面积

三年级下册数学求不规则图形的面积

1、你有什么好的方法计算所给图形的面积呢?(单位:厘米)
方法一:采用分割法,可给原图分成两个长方形(图1或图2),两个长方形的总面积就是所求的面积.
图1面积是:4×(9+3)+9×3=75(平方厘米)
图2面积是:(9+4)×3+9×4=75(平方厘米)
方法二:采用补图法,如果补上一个边长是9厘米的正方形(图3),就成了一个大长方形.因此用这个长方形的面积减去所补正方
形的面积,就是要求的图形面积
图3面积是:
(4+9)×(9+3)-9×9=75(平方厘米)
2、如图是学校操场一角,请计算它的面积(单位:米)
【解析】可以在图中添上一条辅助线,把多边形切割成上下两个长方形或左右两个长方形;也可以把多边形补充完整,成为一个长方形;
方法一:
30×40+20×(30+40)=2600(平方米)
方法二:
20×30+40×(20+30)=2600(平方米)
方法三:
(40+30)×(20+30)-30×30=2600(平方米)。

北京版数学三年级上册《长方形和正方形的周长》课例点评

北京版数学三年级上册《长方形和正方形的周长》课例点评

北京版数学三年级上册《长方形和正方形的周长》课例点评《长方形和正方形的周长》是小学数学第5册几何的教学内容,整堂课充分表达出课改中关注学生学习过程的理念和新基础把课堂还给学生的教育理念,不失为一节好课。

然而除了姜老师良好的教学差不多功和数学素养给我留下深刻的印象之外,学生的表现更加引起了我的关注,整堂课中学生围绕老师的提问积极烈火地开展讨论,大胆发表自己的见解,对运算长方形的周长有各自的方法,同时在和同学的不同观点比对之后,能判定选择出更优的运算方法,同时运用知识的迁移自己得出如何运算正方形的周长。

下面就选取学生突出表现的三点做个点评:学生良好的倾听适应。

整节课中,老师设计了许多的问题,频率较高,面较广,学生关于老师提出的问题都能作出及时准确地回答,没有重复发言和言不答题的,而且当一个学生的回答有错误时,其他的学生能及时地判定和修改,关于表达不完善的发言,更能加以补充说明。

例,师:求长方形台布花边的长度事实上是在求什么生1:求花边的长度确实是求周长。

赶忙有同学举手表示异意,生2:求花边的长度事实上在求长方形台布的周长。

听是学生摸索和作出回答的前提条件,只有学生进行认确实倾听才能有良好的发言,从而使教学的过程更加流畅,使课堂讨论的气氛更加烈火,学生的思维得以更好的激发.学生良好的数学语言的表达。

整节数学课中,学生的回答充分表达出数学的特点,语言的表达科学,简练。

那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?例在第一环节探究长方形的周长环节中,学生展现出3种不同的算式,9+9+8+8=34dm,92+82=34dm,(9+8)2=34d m,师:每个算式的意义是什么生1:把长方形4条边的长都加起来确实是长方形台布的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档