ANSYS网格划分控制 - 单元尺寸 - 单元形状

合集下载

ANSYS网格划分

ANSYS网格划分

Plane stress---(平面应力) 平面应力) 平面应力 Axisymmetric--(轴对称) 轴对称) 轴对称 Plane strain---(平面应变) 平面应变) 平面应变 Plane strs w/thk---(带厚度的平面应力) 带厚度的平面应力) 带厚度的平面应力
5
2.3 定义实常数 Main Menu > Preprocessor >Real Constant >Add/Edit/Delete
拖拉
27
设置拖拉选项
MainMenu>Preprocessor>-ModelingOperate>Extrude>ElemExtOpts 拖拉后的单元 材料号, 号,材料号, 实行拖拉操作
MainMenu>Preprocessor>-ModelingOperate>Extrude>-Areas-By XYZ Offset
22
六面体网格
过渡网格
四面体网格
二次 到 二次 2020-节点六面体 1313-节点金字塔 1010-节点四面体
线性 到 二次 8-节点六面体 9-节点金字塔 10-节点四面体
23
3)扫掠网格划分Sweep )扫掠网格划分 要求几何体有一对 拓扑结构相同的源 面和目标面
24
在不可采用扫掠划分的体中生成四面体网格是一个十分有用的扫 掠选项. 掠选项
弹簧单元——刚度系数 刚度系数 弹簧单元 杆单元——面积 面积 杆单元 梁单元——面积、惯性矩、高度 面积、惯性矩、 梁单元 面积 平面应力单元——厚度 厚度 平面应力单元 板壳单元——厚度 板壳单元 厚度 三维实体单元——一般不输入实常数 一般不输入实常数 三维实体单元

ANSYSLS-DYNA网格划分

ANSYSLS-DYNA网格划分

ANSYSLS-DYNA网格划分ANSYS LS-DYNA结构冲击动力学分析专题培训学习心得——网格控制心得:本次培训最大的收获在于利用workbench进行模型的前处理方面,尤其是网格划分控制上,前期我们进行分析的主要网格划分方式多为系统自动划分,对于结构形式复杂的模型,很多时候都不太会对网格进行控制。

在三维网格划分方面主要有以下几个方式1. 四面体网格划分2. 扫略网格划分3. 多区网格划分4. 六面体为主网格划分5. 自动网格划分算法区别这些我们都有了解,而网格划分算法中的Patch Conforming 算法和Patch Independent 算法的区别却不太清楚,其主要差别在于Patch Independent 算法有较强的几何容忍度,小于某一给定尺寸的几何形状会被忽略,但同时也带来了计算精度有偏差的问题,如何均衡这两者的关系需要根据工程实例情况来进行区分。

对于单个模型的多次网格控制对于一个模型可以添加多个不冲突的网格控制,尺寸控制几乎可以跟任何一种划分方式合用,这样可以保证模型网格的规则性,也可以控制单元数量(因为在DYNA中,单元数量及最小单元尺寸与计算效率及计算精度关系非常密切)。

局部网格控制局部网格控制同样也是以尺寸控制为基础,用单元尺寸、线份数、影响球等手段来实现所关注的局部网格质量。

这个控制的合理应用可以提高计算的效率和精度。

在高级尺寸共功能上,打开调整曲率功能可以调整曲率法向角,细化转角处网格,还可以通过控制狭缝间的网格层数来对细微部分进行细化处理。

单元数量控制DANY的分析对单元数量很敏感,普通的双核CPU的计算机,计算400万单元的模型已经是极限,大型计算机的并行计算也需要进行合理的网格数量及尺寸的控制,另外不同的分析类型对网格质量的要求也不同。

运用DYNA进行碰撞模拟时多采用的是显示动力学分析的模式,这是因为一方面,计算收敛程度高,另一方面,计算结果更为精确,只是由于显式分析计算量大,对网格的质量要求就很高。

AnsysWorkbench划分网格

AnsysWorkbench划分网格

Ansys Workbench 划分网格(张栋zd0561@)1、对于三维几何体(对于三维几何体(3D 3D 3D))有几种不同的网格化分方法。

如图1下部所示。

图1网格划分的种类1.1、Automatic(自动划分法)1.2、Tetrahedron(四面体划分法)它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method(操作区上方)Meshcontrl——Method(左下角)Scope——GeometryMethod——Tetrahedrons(四面体网格)Algorithm——Patch Conforming(补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。

在没有载荷或命名选项的情况下,面和边无需考虑。

)图2四面体网格分两类图3四面体划分法的参数设置1.3、Hex Dominant(六面体主导法)1.4、Sweep(扫掠划分法)1.5、MultiZone(多区划分法)2、对于面体或者壳二维几何对于面体或壳二维(2D),A W有一下:Quad Dominant(四边形单元主导)Triangles(三角形单元)Uniform Quad/Tri(均匀四面体/三角形单元)Uniform Quad(均匀四边形单元)3、网格参数设置下图为缺省设置(Defaults)下的物理环境(Physics Preferance)图4网格参数设置图5Mechanical默认网格上图中的关键数据:物理优先项、关联中心缺省值、平滑度、过渡、跨越角中心、实体单元默认中节点。

图6缺省参数设置上图中,虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此介绍。

ANSYS_入门教程_网格划分控制

ANSYS_入门教程_网格划分控制

ANSYS_⼊门教程_⽹格划分控制ANSYS ⼊门教程(24) - ⽹格划分控制ANSYS 的资料2010-08-15 09:13:49 阅读12 评论0 字号:⼤中⼩订阅3.2 ⽹格划分控制在3.1 节中介绍了如何定义单元属性和怎样赋予⼏何图素这些性质,这⾥则介绍如何控制⽹格密度或⼤⼩、划分怎样的⽹格及如何实施划分⽹格等问题。

但是⽹格划分控制不是必须的,因为采⽤缺省的⽹格划分控制对多数模型都是合适的;如果不设置⽹格划分控制则ANSYS ⾃动采⽤缺省设置对⽹格进⾏划分。

⼀、单元形状控制及⽹格类型选择1. 单元形状控制命令:MSHAPE, KEY, DimensionKEY - 划分⽹格的单元形状参数,其值可取:KEY=0:如果Dimension=2D 则⽤四边形单元划分⽹格;如果Dimension=3D 则⽤六⾯体单元划分⽹格。

KEY=1:如果Dimension=2D 则⽤三⾓形单元划分⽹格;如果Dimension=3D 则⽤四⾯体单元划分⽹格。

在设置该命令的参数时,应考虑所定义的单元类型是否⽀持这种单元形状。

2. ⽹格类型选择命令:MSHKEY, KEY其中KEY 表⽰⽹格类型参数,其值可取:KEY=0(缺省):⾃由⽹格划分(free meshing)KEY=1:映射⽹格划分(mapped meshing)KEY=2:如果可能则采⽤映射⽹格划分,否则采⽤⾃由⽹格划分。

单元形状和⽹格划分类型的设置共同影响⽹格的⽣成,⼆者的组合不同,所⽣成的⽹格也不相同。

ANSYS⽀持的单元形状和⽹格划分类型组合没有指定单元形状和⽹格划分类型时将发⽣的情况3. 中间节点的位置控制命令:MSHMID, KEY其中KEY 为边中间节点位置控制参数,其值可取:KEY=0(缺省):边界区域单元边上的中间节点与区域线或⾯的曲率⼀致。

KEY=1:设置所有单元边上的中间节点使单元边为直的,允许沿曲线进⾏粗糙的⽹格划分。

KEY=2:不⽣成中间节点,即消除单元的中间节点。

ANSYS第3章网格划分技术及技巧(完全版)

ANSYS第3章网格划分技术及技巧(完全版)

ANSYS第3章⽹格划分技术及技巧(完全版)ANSYS ⼊门教程 (5) - ⽹格划分技术及技巧之⽹格划分技术及技巧、⽹格划分控制及⽹格划分⾼级技术第 3 章⽹格划分技术及技巧3.1 定义单元属性单元类型 / 实常数 / 材料属性 / 梁截⾯ / 设置⼏何模型的单元属性3.2 ⽹格划分控制单元形状控制及⽹格类型选择 / 单元尺⼨控制 / 部⽹格划分控制 / 划分⽹格3.3 ⽹格划分⾼级技术⾯映射⽹格划分 / 体映射⽹格划分 / 扫掠⽣成体⽹格 / 单元有效性检查 / ⽹格修改3.4 ⽹格划分实例基本模型的⽹格划分 / 复杂⾯模型的⽹格划分 / 复杂体模型的⽹格划分创建⼏何模型后,必须⽣成有限元模型才能分析计算,⽣成有限元模型的⽅法就是对⼏何模型进⾏⽹格划分,⽹格划分主要过程包括三个步骤:⑴定义单元属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截⾯号等。

⑵定义⽹格控制选项★对⼏何图素边界划分⽹格的⼤⼩和数⽬进⾏设置;★没有固定的⽹格密度可供参考;★可通过评估结果来评价⽹格的密度是否合理。

⑶⽣成⽹格★执⾏⽹格划分,⽣成有限元模型;★可清除已经⽣成的⽹格并重新划分;★局部进⾏细化。

3.1 定义单元属性⼀、定义单元类型1. 定义单元类型命令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR ITYPE - ⽤户定义的单元类型的参考号。

Ename - ANSYS 单元库中给定的单元名或编号,它由⼀个类别前缀和惟⼀的编号组成,类别前缀可以省略,⽽仅使⽤单元编号。

KOP1~KOP6 - 单元描述选项,此值在单元库中有明确的定义,可参考单元⼿册。

也可通过命令KEYOPT进⾏设置。

INOPR - 如果此值为 1 则不输出该类单元的所有结果。

例如:et,1,link8 ! 定义 LINK8 单元,其参考号为 1;也可⽤ ET,1,8定义et,3,beam4 ! 定义 BEAM4 单元,其参考号为 3;也可⽤ ET,3,4 定义2. 单元类型的 KEYOPT命令:KEYOPT, ITYPE, KNUM, VALUEITYPE - 由ET命令定义的单元类型参考号。

ansys如何划分网格

ansys如何划分网格

January 30, 2001 Inventory #001441 11-11
3.网格划分控制——指定网格划分类型
多媒体教程
ANSYS 划分网格专题讲座
对边必须划分相等的份数
棱柱边上必须划分相等的份数 面内边上必须划分相等的份数
所有对边必须划分相等的份数
January 30, 2001 Inventory #001441 11-12
January 30, 2001 Inventory #001441 11-2
1.网格类型
多媒体教程
ANSYS 划分网格专题讲座
自由网格
映射网格
January 30, 2001 Inventory #001441 11-3
2. 定义单元类型
多媒体教程
ANSYS 划分网格专题讲座
在有限元分析过程中,对于不同的问 题,需要应用不同特性的单元,单元选择 不当,直接影响到计算能否进行和结果的 精度。ANSYS的单元库中提供了200多种 单元类型,每个单元都有唯一的编号,如 LINK1、PLANE2、BEAM3和SOLID45 等,几乎能解决大部分常见问题。
January 30, 2001 Inventory #001441 11-7
3.网格划分控制——单元尺寸和形状的控制
多媒体教程
ANSYS 划分网格专题讲座
如图所示为网格划分工具提供的单元尺寸控 制选项,可以对面、线、层和关键点的单元大小 进行设置,还可以对全局单元尺寸进行设置。同 一个网格区域的面单元可以是三角形或四边形, 体单元可以是六面体或四面体形状。
January 30, 2001 Inventory #001441 11-13
划分网格实例1——2D问题

ANSYS网格划分PPT教程含扫掠网格划分

ANSYS网格划分PPT教程含扫掠网格划分

网格划分
...控制网格密度
• 如图所示为采用不同的SmartSize尺寸 级别进行四面体网格划分的例子.
• 高级的 SmartSize 控制, 如网格扩张和 过渡系数在SMRT 命令 (或 Preprocessor > -Meshing- Size Cntrls > SmartSize- Adv Opts...)中提供.
(若您在使用 MeshTool, 您可以跳过这一步,因为程序 将在执行第3步时提示您是否清除网格)
2. 指定新的或不同的网格控制.
3. 再次划分网格.
网格划分
...改变网格
• 另一个网格划分选项是在指定的区域 refine (细化)网格.
• 对所有的面单元和四面体体单元有效.
• 简易的方法是使用 MeshTool:
– 在网格划分前为实体模型指定属性 – 在网格划分前对MAT, TYPE,和REAL进行 “总体的” 设置 – 在网格划分后修改单元属性
• 如果没有为单元指定属性, ANSYS将MAT=1, TYPE=1, 和 REAL=1 作为模型中所有单元的缺省设置. 注意, 采用当前激活的TYPE, REAL, 和 MAT 进行网格操作.
类型 1 = 壳单元 类型 2 = 梁单元
材料 1 = 混凝土 材料 2 = 钢
实常数 1 = 3/8” 厚度 实常数 2 = 梁单元特性 实常数 3 = 1/8” 厚度
网格划分
...多种单元属性
• 只要您的模型中有多种单元类型(TYPEs), 实常数(REALs) 和 材料 (MATs), 就必须确保给每一种单元指定了合适的属性. 有以下3种 途径:
– 局部控制 • 关键点尺寸 • 线尺寸 • 面尺寸
网格划分

ansys workbench 15.0 网格划分

ansys workbench 15.0 网格划分

网格修补选项只有一个三角表 面网格划分器设置选项。对于三 角表面网格划分器,存在两个选 项:程序控制和高级前缘,程序 控制选项为默认选项。
-如果选择程序控制选项,则程序根据模型表面形状,来确定是否 使用三角剖分法(Delaunay)或高级前缘(advancing front)算 法;
-如果选择高级前缘算法,则程序优先使用高级前缘算法,如果网 格划分过程中失败,则自动转换为三角剖分算法。
-参数化:参数驱动系统,可以基于优化设计 模块,研究网格对求解精度的影响;
-稳定性:模型通过系统参数进行更新; -高度自动化:仅需要有限的输入信息即可完
成基本的分析类型; -灵活性:能够对结果网格添加控制和影响(
完全控制建模/分析); -物理相关:根据物理环境的不同,系统自动
建模和分析的物理系统; -自适应结果:适应用户程序的开发系统 ——CAD neutral meshing netral solver
3.网格控制-总体尺寸控制-高级尺寸函数
Proximity尺寸控制函数
-该函数基于模型边缘特征控制网格,主要作用于 模型中的所有边缘,该函数有6个控制参数: Proximity Accuracy-临近边缘精度参数; Num Cells Across Gap-间隙截面单元数量; Proximity Min Size-边缘最小尺寸; Max Face –面上最大尺寸; Max Size-总体最大尺寸; Growth Rate-网格生长率;
网格控制总体尺寸控制高级尺寸函数曲率尺寸函数网格划分算法基于五个参数控制网格密度单元以模型中的孔洞为起始处起始处的网格大小由曲率法向角度和最小尺寸共同控制并且最小尺寸占主导即当最小尺寸小于曲率法向角度的单元尺寸时单元大小由曲率法向决定否则由单元最小尺寸控制

ANSYS LS-DYNA 网格划分

ANSYS LS-DYNA 网格划分

ANSYS LS-DYNA结构冲击动力学分析专题培训学习心得——网格控制心得:本次培训最大的收获在于利用workbench进行模型的前处理方面,尤其是网格划分控制上,前期我们进行分析的主要网格划分方式多为系统自动划分,对于结构形式复杂的模型,很多时候都不太会对网格进行控制。

在三维网格划分方面主要有以下几个方式1. 四面体网格划分2. 扫略网格划分3. 多区网格划分4. 六面体为主网格划分5. 自动网格划分算法区别这些我们都有了解,而网格划分算法中的Patch Conforming 算法和Patch Independent 算法的区别却不太清楚,其主要差别在于Patch Independent 算法有较强的几何容忍度,小于某一给定尺寸的几何形状会被忽略,但同时也带来了计算精度有偏差的问题,如何均衡这两者的关系需要根据工程实例情况来进行区分。

对于单个模型的多次网格控制对于一个模型可以添加多个不冲突的网格控制,尺寸控制几乎可以跟任何一种划分方式合用,这样可以保证模型网格的规则性,也可以控制单元数量(因为在DYNA中,单元数量及最小单元尺寸与计算效率及计算精度关系非常密切)。

局部网格控制局部网格控制同样也是以尺寸控制为基础,用单元尺寸、线份数、影响球等手段来实现所关注的局部网格质量。

这个控制的合理应用可以提高计算的效率和精度。

在高级尺寸共功能上,打开调整曲率功能可以调整曲率法向角,细化转角处网格,还可以通过控制狭缝间的网格层数来对细微部分进行细化处理。

单元数量控制DANY的分析对单元数量很敏感,普通的双核CPU的计算机,计算400万单元的模型已经是极限,大型计算机的并行计算也需要进行合理的网格数量及尺寸的控制,另外不同的分析类型对网格质量的要求也不同。

运用DYNA进行碰撞模拟时多采用的是显示动力学分析的模式,这是因为一方面,计算收敛程度高,另一方面,计算结果更为精确,只是由于显式分析计算量大,对网格的质量要求就很高。

网格划分注意的问题

网格划分注意的问题

ansys划分网格需要注意的问题!网格划分的控制主要考虑以下三个因素:(1)单元形状(element shape)(2)中节点的设置(midside node placement)(3)单元尺寸(element size)现在分别加以说明:◎单元形状:对于2d的面的划分,可以采用三角形单元或者四边形单元。

对于3D的体的划分,要么采用六面体单元,要么采用四面体单元。

二者的混合使用一般不推荐使用。

若采用(transitional pyrmid element)过渡的金字塔单元,可以采用二者的混合使用。

◎中间节点设置的控制(controling placement of midside nodes)ANSYS默认情况下,将具有中节点的单元的中节点设置在边界线上或边界的面上。

◎单元尺寸的设置(1)对于采用free方式的smart elementsizing(smrtsize)方法:该方法具有如下优点:首先计算面或体中线的单元边的尺寸;其次,若采用四边形单元,所有边的划分为偶数。

smrtsize控制方法:basic,简单的设置划分等级(level),1(fine mesh)~10(coarsemesh)。

Advaced control,可以控制划分的质量,使网格尽可能的满足要求。

(2)对于采用mapped方式的默认的单元尺寸(default element size)通过命令:desize来修改采用mapped方式在每一条线上划分份数。

对于大型模型,首先查看模型的划分是很有必要的:例如Et,1,45Mshape,0Mshkey,1Lesize,allLplot改变单元尺寸:Desize…..Lesize,all,,,,,1Lplot(3)局部网格控制I.esize(整体尺寸控制),可以采用面或体中最短线之间的距离(一般划分2~3个单元),来控制整体单元尺寸II.kesize(指定点控制)III.lesize(指定线控制)。

ANSYS建模与划分网格指南

ANSYS建模与划分网格指南
按需选择。见§7.3 和§§7.4 对网格控制的论述)。 ·生成网格(在§7.5 中论述)。
第二步定义网格生成控制不是必须的,因为缺省的网格生成控制对多数模型生成都是合 适的。如果没有指定网格生成控制,程序会在 DESIZE 命令使用缺省设置生成自由网格。 可用 Smartsize 项替代产生质量更好的自由网格(见本章中的§7.3.5)
利用下列命令和 GUI 途径可直接给实体模型图元分配属性。
·给关键点分配属性:
命令:KATT GUI : Main Menu>Preprocessor>-Attributes-Define>All Keypoints
Main Menu>Preprocessor>-Attributes-Define>Picked KPs ·给线分配属性:
THICK(NODE) = 0 *ENDIF *ENDDO
NODE = $ MXNODE =
最后,用 RTHICK 函数分配数组的厚度给单元。 RTHICK,THICK(1),1,2,3,4 /ESHAPE,1.0 $ /USER,1 $ /DIST,1,7 /VIEW,1,-0.75,-0.28,0.6 $ /ANG,1,-1 /FOC,1,5.3,5.3,0.27 $ EPLO
7.3.2 单元形状
如果打算划分网格的单元类型可以采用不止一种形状,那么应当设置单元形状为最小的 那一种。例如,在同一个划分网格的区域的多个面单元可以是三角形或四边形的。 单元可 是六面体(块)或四面体形状,但建议在同一个模型中不要混用这两种形状的单元。(例外 是使用过渡的金字塔形单元,本手册生成§7.3.9 中有论述。)
为定义单元属性,首先必须建立一些单元属性表。典型地包括单元类型(ET 命令或菜 单途径 Main Menu>Preprocessor>Element Type>Add/Edit/Delete)、实常数组(R 命 令或菜单途径 Main Menu>Preprocessor>Real Constants)、材料特性(MP 和 TB 命令, 菜单途径 Main Menu> Preprocessor>Material Props>material option)。

ansys网格划分方法

ansys网格划分方法

ANSYS程序提供了使用便捷、高质量的对几何模型进行网格划分的功能。

主要包括4种网格划分方法:自由网格划分、映射网格划分、延伸网格划分和自适应网格划分。

(1)自由网格划分ANSYS程序的自由网格划分功能十分强大,这种网格划分方法没有单元形状的限制,网格也不遵循任何模式,因此适合于对复杂形状的面和体进行网格划分,这就避免了用户对模型各个部分分别划分网格后进行组装时各部分网格不匹配带来的麻烦。

对面进行网格划分,自由网格可以只有四边形单元组成,或者只有三角形单元组成,或者二者混合。

对体进行自由网格划分,一般指定网格为四面体单元、六面体单元作为过渡,也可以加入到四面体网格中。

若要严格定义单元形状,可通过以下方法实现。

Command:MSHAPE、MSHKEYGUI:Main Menu︱Preprocessor︱Meshing︱Mesher Opts(2)映射网格划映射网格划分允许用户将几何模型分解成简单的几部分,然后选择合适的单元属性和网格控制,生成映射网格,映射网格划分主要适合于规则的面和体,单元成行并具有明显的规则形状,仅适用于四边形单元(对面)和六面体(对体)。

图2.7所示为映射网格划分结果显示。

(3)延伸网格划分延伸网格划分可将一个二维网格延伸成一个三维网格,主要是利用体扫掠,从体的某一边界面扫掠贯穿整个体而生成体单元。

如果需扫掠的面由三角形网格组成,体将生成四面体单元,如果面网格由四边形网格组成,体将生成六面体单元,如果面由三角形和四边形单元共同组成,则体将由四面体和六面体单元共同填充。

(4)自适应网格划分自适应网格划分是在生成了具有边界条件的实体模型以后,用户指示程序自动地生成有限元网格,分析、估计网格的离散误差,然后重新定义网格大小,再次分析计算、估计网格的离散误差,直至误差低于用户定义的值或达到用户定义的求解次数。

ANSYS单元设置和网格划分

ANSYS单元设置和网格划分

5
6 执行网格划分
6
7
7 清除网格
8 细化网格Global全局设置,为有限元模型8 分配单 元属性
20
网格划分 (续)
1. ..... 2. ..... .....
Procedure
要进行网格划分: Main Menu: Preprocessor > MeshTool
1.给图元定义单元属性 (体、面等). 2. 设定网格密度控制.
CFD 边界层及电磁分析中旳 skin effects); • 网格细化 - 在制定区域细化网格 (并不清除已经划好旳).
22
网格划分 (续)
使用缺省设置划分网格.
Objective
假如没有对网格进行任何控制,ANSYS将使用缺省设置: • 自由网格划分,即四边形网格划分 (2-D 模型) ,其中可能
Choose Clear.
出现拾取框后,在图形窗口中拾取要清除旳图 元. 并选择 OK 或 Apply执行.
35
6
单元属性(续)
1. ..... 2. ..... .....
Procedure
例如: 定义恒定旳各向同性材料属性
要定义材料属性 :
Main Menu: Preprocessor >
Material Properties >
-Structural>Linear>Isotropic
材料性质
7
单元属性(续)
28
面划分映射网格
阐明给面划分映射网格时,必须满足旳三个条件
Objective
给面划分映射网格时,下面旳条件必须被满足: -此面必须由3或4条线围成 -在对边上必须有相等旳单元划分数 -假如此面由3条线围成,则三条边上旳单元 划分数必须相等且必须是偶 数

ANSYS网格划分的基本原则

ANSYS网格划分的基本原则

ANSYS网格划分的基本原则2009-09-24 20:29ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。

在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题。

ANSYS软件平台提供了网格映射划分和自由适应划分的策略。

映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍ANSYS网格划分详细介绍众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。

通常情况下,可利用ANSYS 的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。

对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。

如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。

在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。

对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。

AnsysWorkbench网格控制之——全局网格控制(上)

AnsysWorkbench网格控制之——全局网格控制(上)

AnsysWorkbench网格控制之——全局网格控制(上)在使用ANSYS Workbench进行网格划分时,全局网格控制可以使用默认的设置,但要进行高质量的网格划分,还需要用户了解全局控制的常用设置,尤其是对于复杂的零部件。

网格全局控制的设置包含了6个组别,分别是Display(显示)、Defaults(缺省设置)、Sizing(尺寸控制)、Inflation(膨胀控制)、Advanced(高级控制)、Defeaturing(损伤设置)、Statistics(网格信息)等信息,如下图所示。

全局网格设置1 显示组显示组可以用于直观地显示网格质量显示组设置网格质量显示2 缺省设置组缺省设置包括Physics Preference物理场选择、Rwlevance关联度、Element MIdside Nodes网格中节点。

缺省设置组2.1 Physics Preference物理环境选择划分网格目标的物理环境包括结构分析(Mechanical)、电磁分析(Electromagnetics)、流体分析(CFD)、显示动力学分析(Explicit)等物理场选择不同物理场下默认设置如下图不同的物理环境的默认设置2.2 Rwlevance关联度Rwlevance数值越小网格越粗疏,即可拖到也可输入值,从-100至100代表网格由疏到密。

虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此一起介绍。

Relevance Center 是在Rwlevance数值基础上再次区分粗、中、精。

如下图。

Relevance Center与在Rwlevance关系2.3 Element MIdside Nodes网格中节点用于设置网格的中节点,dropped为无中节点,kept为有中节点。

中节点设置如果为缺省值Proguam Controlled则由程序默认控制,以下为实体、壳、梁的网格单元默认值实体、壳、梁的默认单元3 Sizing尺寸控制组尺寸控制组3.1 Size Function尺寸功能尺寸功能Adaptive关闭尺寸功能,只能设置最基本参数Curvature 曲率,可以控制曲面处网格的变化,使转角处网格细化Proximity近似,控制狭窄处网格层数P&C近似和曲率,即可以控制曲面处网格的变化,也可控制狭窄处网格层数uniform控制网格尺寸最大与最小值尺寸控制效果3.2 Relevance Center相关中心,见2.23.3 Element Size单元尺寸(略)3.4 Initial size Seed初始尺寸种子初始尺寸种子设置Initial Size Seed初始尺寸种子用来控制每一部件的初始网格种子,此时已定义单元的尺寸会被忽略,它包含Active Assembly、Full Assembly、Part 三个选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档