微生物的生理

合集下载

微生物的生理学功能与代谢机制

微生物的生理学功能与代谢机制

微生物的生理学功能与代谢机制微生物是一种在我们日常生活中无所不在的微小生物,它们存在于我们周围的土壤、水源、空气和人体等各种环境中。

虽然它们通常被视为致病的元凶,但实际上,微生物在地球上发挥着至关重要的作用,它们可以分解有机物质、促进土壤肥力、发酵食品以及合成药物等。

了解微生物的生理学功能和代谢机制可以帮助我们更好地利用它们的作用,并对我们的生活和健康产生积极的影响。

1. 微生物的生理学功能微生物具有多种不同的生理学功能,包括分解、协同和共生。

其中,分解是微生物最重要的功能之一,它们能够分解化学物质,使其成为直接或间接的生命体建筑材料。

微生物可以分解糖、脂肪和蛋白质等有机物质,并将其转换成能量、碳和氮等营养元素。

此外,微生物还能够利用电子受体转移链(ETC)来释放能量,并产生氧化还原反应的能量。

微生物在短时间内就可以完成这些工作,速度非常快。

协同是微生物的另一种生理学功能,微生物经常在生态系统中协同工作,例如共同分解有机物质,互相提供其他营养元素以及互相防止其他有害微生物的入侵。

这种协同作用对适应环境和生存至关重要。

共生是微生物的第三种生理学功能,其中包括与其他生物体的相互作用。

有些微生物在其他生物体中营养良好,例如肠道中的某些菌群。

这些微生物可以合成一些维生素和有机酸,使它们可以在肠道中重复生长。

2. 微生物的代谢机制微生物的代谢机制包括分解代谢、发酵代谢和呼吸代谢。

分解代谢是微生物将复杂的有机物质分解成较简单的物质。

它们通过酶水解营养物质,因此也被称为酶解代谢。

微生物不断地分解和合成不同的化学物质,以满足自己的生长、分裂和代谢需求。

发酵代谢是微生物在没有氧气的情况下产生能量的一种方式。

这种代谢方式可以将有机物质转化为小分子的有机酸、酒精和丙酮等,产生大量的能量。

发酵代谢常被应用于酿酒、食品发酵和生物燃料生产中,是微生物工业的一个重要方面。

呼吸代谢是微生物在有氧气的情况下产生能量的一种方式,它使微生物能够更有效地利用氧气。

食品微生物学 第三章微生物的生理 第二节微生物的生长

食品微生物学 第三章微生物的生理  第二节微生物的生长

微生物的生理
(1)微生物的生长曲线 将少量单细胞微生物纯菌种接 种到新鲜的液体培养基中,在最适条件下培养,在培养过程 中定时测定细胞数量,以细胞数的对数为纵坐标,时间为横 坐标,可以画出一条有规律的曲线,这就是微生物的生长曲 线(growth curve)。生长曲线严格说应称为繁殖曲线,因 为单细胞微生物,如细菌等都以细菌数增加作为生长指标。 这条曲线代表了细菌在新的适宜环境中生长繁殖至衰老死亡 的动态变化。根据细菌生长繁殖速度的不同可将其分为四个 时期(见图3-1)。
微生物的生理
第三章
微生物的生理
3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢
微生物的生理
3.2 微生物的生长
3.2.1 微生物生长与繁殖
微生物在适宜的条件下,不断从周围环境中吸收营养物 质,并转化为细胞物质的组分和结构。同化作用的速度超过 了异化作用,使个体细胞质量和体积增加,称为生长。单细 胞微生物,如细菌个体细胞增大是有限的,体积增大到一定 程度就会分裂,分裂成两个大小相似的子细胞,子细胞又重 复上述过程,使细胞数目增加,称为繁殖。单细胞微生物的 生长实际是以群体细胞数目的增加为标志的。霉菌和放线菌 等丝状微生物的生长主要表现为菌丝的伸长和分枝,其细胞 数目的增加并不伴随着个体数目的增多而增加。
微生物的生理
(4)比浊法 在细菌培养生长过程中,由于细胞数量的 增加,会引起培养物混浊度的增高,使光线透过量降低。在 一定浓度范围内,悬液中细胞的数量与透光量成反比,与光 密度成正比。比浊管是用不同浓度的BaCl2与稀H2SO4配制成 的10支试管,其中形成的BaSO4有10个梯度,分别代表10个 相对的细菌浓度(预先用相应的细菌测定)。某一未知浓度 的菌液只要在透射光下用肉眼与某一比浊管进行比较,如果 两者透光度相当,即可目测出该菌液的大致浓度。 如果要 作精确测定,则可用分光光度计进行。在可见光的450~ 650nm波段内均可测定。

微生物在生态系统中的生理和生态功能

微生物在生态系统中的生理和生态功能

微生物在生态系统中的生理和生态功能微生物是生态系统中最基础的成分之一,它们的生理和生态功能在整个生态系统中起着至关重要的作用。

微生物是有机物质分解和元素循环的主要驱动力之一,同时还参与了多种生态系统过程,如生产力、物质转化和营养平衡等。

在此文中,将讨论微生物在生态系统中的生理和生态功能。

微生物的生理功能微生物通过其各种生理反应来影响整个生态系统。

微生物可以利用光能或化学反应能力,将简单的无机物质转换成有机物质,进而支配着整个生态系统的能量流和物质转化。

例如,植物通过光合作用将二氧化碳和水转换成葡萄糖,而微生物利用这些葡萄糖作为能源。

微生物也能够利用各种无机盐化合物和气体,例如硝酸盐和氨气,将它们转换成有机物质。

此外,微生物还可以利用各种生物物质,包括碳水化合物、脂类、蛋白质和核酸等,为整个生态系统提供能量。

微生物的生态功能微生物的生态功能包括了加速土壤有机质分解、维护土壤结构和增强土壤肥力等,对整个生态系统起着重要作用。

微生物可以通过分解植物和动物遗体,将其转化为可被植物吸收的养分。

同时,微生物可以分解化学污染物和有毒物质,将其转化为无毒的有机物和无机物。

另外,微生物还可以对土壤结构和质量起着重要作用。

有些微生物会将土壤颗粒粘合在一起,形成透气性较好的团聚体,使土壤积水、侵蚀等问题减少。

此外,微生物可以通过分解各种有机物,增加土壤的肥力。

微生物在生态系统中的规律微生物在生态系统中的规律可以总结为四条:1.微生物的分布和数量受到环境因素的影响。

温度、湿度、水分、氧气和营养物含量是影响微生物数量和分布的主要因素。

2.微生物在生态系统中的作用是复杂的、多方面的和广泛的。

微生物参与营养循环、能量储存、分解生物残渣、保持土壤结构、抑制病原体生长和维持生物多样性等多种作用。

3.微生物的功能和物质转化能力具有强大的适应性。

微生物可以通过适应性变化,使其在不同生态系统中发挥不同的功能。

4.微生物在生态系统中的作用是互相联系的,系统内的一种微生物可以影响到另一种微生物的数量和功能,并且整个微生物群落是可塑的、复杂的和动态变化的。

第六章 微生物的生理特性1

第六章 微生物的生理特性1

微生物利用废水营养的情况
细菌往往优先利用易被吸收的有机物质。 如果这种物质的量已经满足要求,它就不再利 用其它的物质了。在工业废水的生物处理中, 常加入生活污水补充工业废水中某些营养物质 的不足。加多少酌情而定,否则反而会把细菌 养“娇”,不利于工业废水的处理。因为生活 污水中的有机物比工业废水中的有机物易被吸 收利用。
4、光能异养(photorganotroph)
属于这一营养类型的细菌很少,如红 螺菌中的一些细菌以这种方式生长。一般 来说,光能营养型细菌生长时大多需要 生长因子。 碳源——有机物作供氢体和碳源,要有CO2存在。 能源——光
红螺菌
光能 CH3 [CH2O] +2CH3COCH3+H2O CHOH CO2 + 2 光合色素 CH3 红螺菌(Rhodospirillum sp.)属于光合细菌(Photosynthetic Bacteria,PSB)的一种,广泛分布于江河、湖泊、海洋等水域环境 中,尤其在有机物污染的积水处数量较多。
氧化还原电位又称氧化还原电势(redox potential),是度量 某氧化还原系统中的还原剂释放电子或氧化剂接受电子趋势 的一种指标,其单位是V(伏)或mV(毫伏)。
不同类型微生物生长对氧化还原电位的要求不同
好氧性微生物:+0.1伏以上时可正常生长,以+0.3~+0.4伏为宜; 厌氧性微生物:低于+0.1伏条件下生长; 兼性厌氧微生物:+0.1伏以上时进行好氧呼吸, +0.1伏以下时进行发酵。
α w=Pw/Pow 式中Pw代表溶液蒸汽压力, POw代表纯水蒸汽压力。
纯水α w为1.00,溶液中溶质越多, α w越小
微生物一般在α w为0.60~0.99的条件下生长, α w过低时, 微生物生长的迟缓期延长, 生长速率和总生长量减少。 微生物不同,其生长的最适α w不同。

微生物生理—微生物生长规律

微生物生理—微生物生长规律

一、生长与繁殖的概念
4、个体生长:微生物细胞个体吸收营养物质,进行新陈 代谢,原生质与细胞组分的增加为个体生长。
5、群体生长:群体中个体数目的增加。可以用重量、体 积、密度或浓度来衡量
群体生长 = 个体生长 + 个体繁殖
二、微生物的生长曲线
一条典型的生长曲线至少可以分为: 迟缓期,对数期,稳定期和衰亡期等四个生长时期
新的培养基,最终可全部死亡。此期细菌的菌体变形或 自溶,染色不典型,难以进行鉴定。
小结
1)生长与繁殖的概念:生长、繁殖、发育、 个体生长、群体生长
2)微生物的生长曲线:迟缓期、对数期、稳 缓期 是细菌植入到新环境后的一个适应阶段。此时菌
体增大,代谢活跃,合成并积累所需酶系统。RNA含 量明显增多,但DNA的量无变化,此时细菌数并不增 加。这一过程一般约需1~4 h。
二、微生物的生长曲线
2、对数期 细菌此时生长迅速,以恒定速度进行分裂繁殖,
活菌数以几何级数增长,达到顶峰,生长曲线接近一 条斜的直线。一般而言,该期的病原菌致病力最强, 其形态、染色特性及生理活性均较典型,对抗菌药物 等的作用较为敏感。大肠杆菌的对数期可持续6~10 h。
二、微生物的生长曲线
3、稳定期 此时因营养的消耗、代谢产物的蓄积等,细菌繁殖
速度下降,死亡数逐步上升,新繁殖的活菌数与死菌数 大致持平。该期细菌的形态及生理性状常有改变,革兰 氏阳性菌此时可染成阴性。毒素等代谢产物大多此时产 生。大肠杆菌的稳定期持续约8 h。
二、微生物的生长曲线
4、衰亡期 细菌开始大量死亡,死菌数超过活菌数。如不移植到
微生物的生长规律
主要内容
生长与繁殖的概念 微生物的生长曲线
一、生长与繁殖的概念

环境课件第四章微生物的生理

环境课件第四章微生物的生理

以光为能源,以有机物为碳源和氮源的微生 物。
化能自养型
化能异养型
以无机物氧化释放的化学能为能源,以二氧 化碳为碳源合成细胞物质的微生物。
以有机物氧化释放的化学能为能源,以有机 物为碳源合成细胞物质的微生物。
微生物的能量代谢
发酵
光合作用
有机物在厌氧条件下被微生物分解为 不彻底的氧化产物,同时释放能量的 过程。
3
发酵在工业生产中的应用
利用微生物的发酵作用,可以生产酒精、啤酒、 面包、酸奶等食品,以及抗生素、酶制剂、有机 酸等化工产品。
呼吸作用
呼吸作用定义
01
呼吸作用是微生物在有氧条件下,通过分解有机物产生能量的
过程,同时产生二氧化碳和水。
呼吸类型
02
根据微生物对氧的需求不同,呼吸作用可分为好氧呼吸、微好
环境课件第四章微生物的生理
contents
目录
• 微生物生理概述 • 微生物的营养物质代谢 • 微生物的能量转换与利用 • 微生物的生长规律与调控 • 微生物的代谢调控与基因表达 • 微生物生理在环境保护中的应用
01 微生物生理概述
微生物的营养类型
光能自养型
光能异养型
以光为能源,以二氧化碳或碳酸盐为碳源, 以铵盐、硝酸盐或硫化氢为氮源或硫源,合 成细胞物质的微生物。
响其生长速率和代谢活动。
pH值
环境pH值的变化会影响微生物 细胞膜的通透性和酶的活性,
从而影响其生长。
氧气
好氧微生物需要氧气进行呼吸 作用,而厌氧微生物则在无氧
条件下生长。
营养物质
微生物生长需要碳源、氮源、 无机盐等营养物质,缺乏或过
量都会影响其生长。
微生物生长的调控机制

微生物生理学

微生物生理学

微生物生理学简介微生物生理学是研究微生物(包括细菌、真菌、病毒等)在生理上的活动和代谢过程的学科。

微生物在地球上广泛存在,并在各个生态系统中扮演着重要角色。

了解微生物生理学有助于我们理解微生物的生命活动和其与环境之间的相互关系。

本文将从微生物的生长、代谢、运动等方面介绍微生物生理学的基本知识。

微生物的生长微生物的生长是指微生物个体数量的增加。

微生物可以通过两种主要方式进行繁殖:有丝分裂和无丝分裂。

有丝分裂适用于真菌和一些原生动物,通过细胞核的分裂和细胞质的分裂来产生新的个体。

无丝分裂适用于细菌和病毒等微生物,在此过程中,微生物通过复制DNA并将其分配给新形成的细胞来繁殖。

微生物的生长受到一系列因素的影响,包括温度、pH值、营养物质和氧气含量等。

不同的微生物对这些环境因素的要求各不相同。

例如,嗜热菌可以在高温环境中生长,而嗜冷菌则适应于低温环境。

微生物的代谢微生物通过代谢产生能量和合成生物分子。

代谢过程可以分为两个主要类型:有氧代谢和厌氧代谢。

有氧代谢是指微生物在氧气存在的情况下进行的代谢过程,产生较多的能量。

厌氧代谢是指微生物在氧气缺乏的条件下进行的代谢过程,产生较少的能量。

微生物通过新陈代谢和合成代谢来维持生理功能。

新陈代谢是指分解有机物质以产生能量的过程,合成代谢是指合成微生物所需的有机物质和细胞组件的过程。

微生物的运动微生物可以有不同的运动方式,包括游动、滑动和极纤毛等。

游动是指微生物利用鞭毛或纤毛等结构在液体中进行活动。

滑动是指微生物利用纤毛或假足等结构在固体表面上移动。

极纤毛是一种很短的纤毛,存在于细菌和某些原生动物中,用于以一种像旋转的方式推动细胞。

微生物的运动与其环境之间的相互作用密切相关。

微生物通过感知环境中的化学物质浓度、光照和温度等刺激来调整自己的运动方式。

这种对环境的感知和反应既可以是积极的,也可以是消极的,有助于微生物适应不同的生态环境。

结论微生物生理学作为一个重要的学科,研究微生物在生理上的活动和代谢过程。

正常微生物群的生理作用

正常微生物群的生理作用

正常微生物群的生理作用
正常微生物群的生理作用主要包括:
1. 帮助消化:正常微生物群可以帮助消化食物中的一些难以消化的物质,特别是在大肠中。

2. 产生营养物质:正常微生物群可以分解一些未被消化的食物成分,产生必需的营养物质,如维生素、氨基酸等。

3. 抑制病原菌:正常微生物群可以通过抢占营地、分泌抗菌物质等方式抑制病原菌的生长和繁殖,从而维护肠道健康。

4. 提高免疫力:正常微生物群可以激活免疫系统,提高机体的免疫力,对于预防和治疗某些疾病具有重要作用。

5. 维护肠道健康:正常微生物群可以维护肠壁屏障,保持肠道黏膜的完整性,防止有害物质进入循环系统,从而对肠道健康发挥重要作用。

食品微生物学 第三章微生物的生理 第四节微生物的代谢

食品微生物学 第三章微生物的生理 第四节微生物的代谢
微生物的生理
第三章
微生物的生理
3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢
微生物的生理
3.4 微生物的代谢
代谢(metabolism)是微生物细胞与外界环境不断进行 物质交换的过程,即微生物细胞不停地从外界环境中吸收适 当的营养物质,在细胞内合成新的细胞物质并储存能量,这 是微生物生长繁殖的物质基础,同时它又把衰老的细胞和不 能利用的废物排出体外。因而它是细胞内各种生物化学反应 的总和。由于代谢活动的正常进行,保证的微生物的生长繁 殖,如果代谢作用停止,微生物的生命活动也就停止。因此 代谢作用与微生物细胞的生存和发酵产物的形成紧密相关。 微生物的代谢包括微能量代谢和物质代谢两部分。
微生物的生理
第四阶段:2-磷酸甘油酸转变为丙酮酸。这一阶段包括 以下两步反应:
① 2-磷酸甘油酸在烯醇化酶的催化下生成磷酸烯醇式丙 酮酸。
反应中脱去水的同时引起分子内部能量的重新分配,形 成一个高能磷酸键,为下一步反应做了准备。
微生物的生理
② 磷酸烯醇式丙酮酸在丙酮酸激酶的催化下,转变为 丙酮酸。
GDP+ Pi GTP 琥珀酰CoA 琥珀酸硫激酶 琥珀酸 + CoASH
琥珀酰CoA在琥珀酸硫激酶的催化下,高能硫酯键被水 解生成琥珀酸,并使二磷酸鸟苷(GDP)磷酸化形成三磷酸 鸟苷(GTP)。这是三羧酸循环中唯一的一次底物水平磷酸 化。
微生物的生理
⑥琥珀酸脱ቤተ መጻሕፍቲ ባይዱ生成延胡索酸
FAD
FADH2
琥珀酸
NAD+
NADH +H+
苹果酸
草酰乙酸
苹果酸脱氢酶
TCA循环的总反应式如下:

微生物的五大营养要素及其生理功能

微生物的五大营养要素及其生理功能

微生物的五大营养要素及其生理功能微生物是一类极为微小的生物体,包括细菌、真菌和病毒等。

它们以各种不同的方式获取营养,以维持其正常的生物学功能。

微生物的五大营养要素是碳、氮、磷、硫和微量元素。

下面将逐个介绍这些营养要素及其生理功能。

1.碳(C):碳是微生物体内最重要的元素之一,它是构成有机物的基础。

微生物利用碳来合成细胞组成部分,如蛋白质、核酸、脂质和多糖。

碳还用于能量代谢过程中的有机物氧化,从而获取生命活动所需的能量。

微生物可以从有机和无机源中获取碳。

典型的有机源包括葡萄糖、果糖和乳糖等,而无机源主要是二氧化碳。

2.氮(N):氮是微生物体内蛋白质和核酸的重要组成元素。

微生物通过氮的转化过程将氨、硝酸盐或有机氮转化为氨基酸,然后合成蛋白质。

微生物还能从一些无机氮化合物中获取能量,如硝酸盐的还原过程能产生反应所需的能量。

3.磷(P):磷在微生物体内存在于DNA、RNA、ATP(三磷酸腺苷)和磷脂等有机物中。

微生物利用磷合成核酸和能量储存分子ATP,在细胞代谢和生长中起着重要作用。

磷还是微生物体内多元酸和磷脂酰胆碱等重要分子的组成元素。

4.硫(S):硫在微生物体内存在于蛋白质和核酸的硫氨基酸(如蛋氨酸和半胱氨酸)中。

硫原子具有特定的化学性质,在蛋白质的折叠和稳定性中起着重要作用。

硫还参与微生物体内的代谢反应,如硫酸盐的还原和硫酸胺基酸的反应。

5.微量元素:微生物还需要一些微量元素来完成其生物学功能。

常见的微量元素包括铁(Fe)、锰(Mn)、镁(Mg)、锌(Zn)、铜(Cu)、钴(Co)和钼(Mo)等。

这些微量元素在微生物体内作为辅酶或酶的一部分,参与细胞的代谢过程。

总体而言,微生物的五大营养要素对其生物学功能起着至关重要的作用。

这些要素不仅是构成微生物体结构的基本组成成分,还是微生物体内许多重要化学反应的催化剂。

通过碳、氮、磷、硫和微量元素的摄取和转化,微生物能够完成其代谢过程、细胞增殖、免疫反应和生物修复等生理功能。

微生物的生理与代谢

微生物的生理与代谢

微生物的生理与代谢微生物是由单细胞生物组成的一个广泛的群体,其种类繁多,包括细菌、真菌、病毒等等。

虽然微生物微小无形,但是它们对人类生存和健康产生着极为重要的影响。

微生物不仅寄生在人体内,还广泛分布在海洋、土壤、空气等环境中。

微生物的生理与代谢研究是微生物学领域的一个重要内容,本文将介绍微生物的生理代谢过程以及其应用。

一、微生物的生理代谢过程微生物的生理代谢过程包括能量代谢和非能量代谢两个部分。

能量代谢主要通过三种生化途径来完成:糖酵解、无氧呼吸和有氧呼吸。

糖酵解是指将葡萄糖等简单碳水化合物分解,产生能量,同时生成乳酸等代谢产物。

无氧呼吸是指微生物在缺氧环境下,通过代谢糖类、脂肪酸或其他有机物质,产生ATP能量,并释放出二氧化碳和水等副产物。

而有氧呼吸则需要氧气参与,将有机物质完全氧化成CO2和H2O,并同时产生ATP能量。

非能量代谢主要包括一些特定的代谢途径。

例如产生酸性物质的乳酸发酵、醋酸发酵和丙酮酸发酵等;发酵坚果及肉类的曲霉、产奶酪的嗜热乳酸菌等。

此外,微生物还可以利用硫化氢、氨气和甲烷等无机化合物进行生物氧化或利用CO2进行光合作用。

二、微生物生理代谢的应用微生物的能量代谢和非能量代谢的研究无疑对现代生物技术的发展产生了很大的影响。

下面我们将依次介绍微生物在食品加工、生物污染控制、医药开发等方面的应用。

1. 食品加工微生物在食品加工中的应用是微生物学的一个重要领域。

比如酿酒,麦芽中的淀粉可以利用酵母发酵成乙醇和二氧化碳;制作奶酪的过程中,乳糖发酵成乳酸,使其凝固,形成奶酪。

此外,微生物还可以生产酸奶和豆浆等发酵食品,以及开发富含菌株蛋白质的饲料等。

2. 生物污染控制微生物在环境污染治理方面的应用也十分广泛,例如:在一些含高浓度污染物的土壤中,可以通过微生物进行生物清洁;微生物菌剂能够适用于受污染的土地疏浚,去除污染物,以及清除水体中的有毒化学物质等。

微生物菌剂选择合适的菌株可以有效地控制生物污染。

第六章 微生物的生理特性

第六章 微生物的生理特性

第一节
微生物的营养
(一)、配制原则 1、目的明确:根据不同细菌或微生物的 营养需要配制或选用不同的培养基。 举例: 见前述曝气池微生物群体的培养基,放 线菌、霉菌、酵母菌、氧化亚铁硫杆菌 的培养基等。其它查资料
第一节
微生物的营养
2、营养协调:注意各种营养物质的浓度及配比,同 时要注意考虑添加生长因子。(自行设计或自作配 方时) 例如:废水的好氧生物处理营养要求: BOD5:N:P=l00:5:1 3、理化条件适宜:指培养基的pH值等。(自行设计 或自作配方时) 例如:好氧生物处理时,水的pH值应在6~9之间最 佳。
第一节
微生物的营养
3、能源 能源——能为微生物生命活动提供最初能 量来源的营养物质和辐射能(光能)。 能源的种类如下。
第一节
微生物的营养
第一节
微生物的营养
4、生长因子 生长因子——是一类调节微生物正常代谢所 必需,但不能利用简单的碳、氮源自行合成 的有机物。 即某些微生物在生长过程中不能自身合成的, 同时又是生长所必需的须由外界供给的营养 物质。 生长因子包括:维生素,碱基(嘌呤、嘧 啶),氨基酸等等。
第一节 微生物的营养
水处理中的污水
图6-2
液体培养基
第一节 微生物的营养
(2)、固体培养基 固体培养基——外观呈固体状的培养基。 一般是在液体培养基中加入 2%左右的琼脂作为凝固 剂。 固体培养基主要用于普通的微生物学研究等,如菌 种的分离、菌落计数与菌种保藏等。 有机固体废弃物也可以看作为固体培养基。 马铃薯片、大米、馒头、米饭、米糠、木屑等均属 固体培养基。 典型的固体培养基见下图。
第一节 微生物的营养
6-3 细菌、放线菌、青霉菌固体培养基 上的典型群体特征

微生物生理学

微生物生理学

微生物生理学微生物生理学,简单来说就是研究微生物的生命活动和代谢规律。

微生物是一类生命活动丰富、功能多样的生物,对各种化合物都有代谢能力,常常作为重要的工业菌来使用。

微生物生理学研究更是应用广泛,如农业、医学、食品、环保等领域。

下面,我们从微生物的代谢入手,探讨一下微生物生理学的一些基本概念和应用。

第一部分微生物代谢微生物代谢是微生物生理学的核心之一。

代谢是生命活动的基本过程,包括有机物的分解与合成,能量的产生与利用等。

在微生物代谢中,可以分为两种类型,即可以在顺应郭中生存的化能型微生物和以化学反应为生存基础的化学型微生物。

1.1 化能型微生物化能型微生物,也叫做碳源化微生物,可以分解有机物质并利用氮气、二氧化碳等化合物产生大量的能量,从而完成其生存过程。

常见的化能型微生物有产酸菌、膜糖体菌等。

这些微生物能够利用糖类、脂肪、蛋白、醇等有机物质产生能量,产生的能量可以用于合成细胞组分或响应外界刺激。

此外,还可以利用无机物质进行能量代谢,例如硫化氢细菌可以利用硫化氢合成ATP。

1.2 化学型微生物化学型微生物,也叫做于外营养物质微生物,不依靠外界有机体大量提供生存必需物质,而是通过化学反应来获得维持基本功能的能量和生物分子。

最典型的例子是大多数甲烷杆菌,它们不依赖于外部有机体大量提供生命必需物质,而是利用甲烷和碳酸盐进行代谢反应,获得能量和所需化合物质。

与化能型微生物不同的是,化学型微生物更多的是通过化学反应来维持生命活动和代谢。

第二部分微生物生理学的应用微生物生理学的应用十分广泛,从食品工业到医学领域,都可以利用到微生物生理学知识。

下面,我们重点介绍其中几个应用。

2.1 食品工业微生物在食品工业中起着极其重要的作用。

酸奶、芝士、酱油等食品的生产离不开微生物的应用。

微生物可以发酵,产生酸、酸性物质、酵素、蛋白质等,根据不同的产品需要,制定不同的菌种和发酵条件,从而生产出不同的食品。

2.2 医学领域微生物在医学领域的应用十分广泛。

《环境微生物学》微生物生理

《环境微生物学》微生物生理

微生物的物质转运与排泄
膜转运机制
微生物通过细胞膜上的转运蛋白 和通道蛋白实现物质的主动和被 动转运,维持细胞内环境稳态。
物质排泄
微生物通过多种方式将代谢废物 和过剩物质排出体外,以维持细
胞内外环境平衡。
抗性机制
部分微生物具有排出有害物质和 抗生素的抗性机制,这些机制有 助于微生物在污染环境中存活和
THANKS
感谢观看
微生物的共生与拮抗
共生关系
微生物间存在多种共生关系,如互惠共生、寄生共生等,它们通过相互合作,共同利用资源,促进彼 此的生长发育。
拮抗作用
某些微生物会分泌抗生素等物质,抑制或杀死其它微生物的生长,以获取更多的生态位和资源。
微生物的菌群互作与生态平衡
菌群互作
环境中存在大量的微生物菌群,它们之 间通过相互作用,形成一个复杂的网络 ,影响着整个生态系统的稳定性和功能 。
氮、磷去除
某些微生物具有硝化、反硝化作用,能够去除废水中的氮、磷等营 养物质,防止水体富营养化。
生物膜技术
利用微生物在载体表面形成生物膜,通过生物膜对废水的吸附、降 解作用,提高废水处理效率。
微生物在固废处理与资源化中的应用
1 2 3
堆肥技术
利用微生物对有机固体废弃物进行好氧堆肥,将 有机物质转化为稳定的腐殖质,实现有机废弃物 的减量化和资源化。
微生物能利用多种营养物 质,包括有机物、无机物 、气体等,表现出极高的 营养类型多样性。
代谢途径多样性
微生物具有多种代谢途径 ,包括好氧呼吸、厌氧呼 吸、发酵等,能够适应不 同环境和底物。
物质循环作用
微生物通过分解和合成作 用,参与环境中物质循环 ,对生态系统稳定和平衡 起到重要作用。

微生物的生理.

微生物的生理.

5.2.2光能异养型
以光为能源,具有光合色素,需要有机 物作为碳源和供氢体。
5.2.3化能自养型
利用无机物氧化放出的化学能作为能 源,常见的微生物有:硫化细菌、硝化 细菌等。
5.2.4化能异养型 这类微生物能源来自有机物氧化所产
生的化学能。分为:腐生微生物和寄生微 生物。
集团位移是指被运输物质在膜内受到 化学修饰,以被修饰的形式进入细胞的物 质运输方式。
• 确定微生物对营养物质的需求从两方面考虑,一方面,分 析微生物的化学成分;另一方面,测定微生物对外源物质 的需要。
• 微生物的成分分析表明,微生物细胞由碳、氢、氧、氮等 化学元素组成。其中碳、氢、氧、氮、硫、磷六种元素占 细胞干重的97%。
• 这些元素主要以水、有机物、无机物和无机盐的形式存在 于细胞中。水是主要成分,占细胞含量的80%左右。水、 有机质、无机质等物质共同赋予细胞遗传性、通透性和生 化活性。
对于少数微生物来说,既可利用无机 含氮化合物作为氮源,也可利用有机含 氮化合物作为氮源。
4.无机盐: 无机盐或矿物元素在微生物的生命活
动中起着十分重要的作用。 主要功能是:①构成细胞的组成成分;
②作为酶的组成成分; ③维持酶的活性; ④调节细胞渗透压; ⑤作为某些自养菌的能源。
(1)磷:细胞中矿质元素中磷含量最高, 是合成核酸、磷脂及高能磷酸化合物的 重要原料。
(5)钙:是某些酶的激活剂,参与细胞 膜通透性的调节。
(6)微量元素:除上述元素外,微生物 生长还需要其他微量元素,这些元素往 往参与酶的组成或作为酶的调节因子。
5.水:
水是微生物细胞的主要组成成分,占细胞 干重的70%-80%,水在代谢过程中起着重要作 用。
主要生理作用有:①重要组成成分;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 提问:人工投加光合
细菌(PSB,红螺菌) 有利于水产养殖,原 因? • 迅速转化毒物(水族 排泄物被细菌分解后 的氨、有机酸)为高 蛋白的菌体,作为鱼 的饲料,且不消耗氧 ; • 优势生长时能抑制水 族病原菌的生长
(三)氮源
• 哪些物质可作为细菌的氮源? • 有机氮(氨基酸和蛋白质)、无机氮( N2、 NH3、 铵盐、硝酸盐)等。 • 实验室中有机氮源——蛋白胨
70%~90%水
90%有机物
细菌化学成分示意图
一、细菌营养物及营养类型
• 传统上根据功能不同对营养物归类
• 水、无机盐和碳源、氮源、能源、生 长因子等。
• (一)水
• 提问:水对细菌有哪些作用?
• 1)溶剂作用
• 2)运输物质的载体
• 3)参与生化反应(如脱水、加水反应)
(二)碳源和能源
• 1)碳源
(2)从km可判断酶的专一性和天然底物。 Km最小的底物,通 常就是该酶的最适底物,也就是天然底物。

底物影响酶反应速度的方程表达式—— 污染物生物降解速度方程 劳伦斯方程 微生物生长速度的方程 莫氏方程
米氏方

• • • • • 微生物比增长速度 v——反应速度; V——最大反应速度; 最大比增长速度 S——底物浓度; Km——米氏常数 Ks-微生物与底物亲和的大小
•琼脂主要成份—半乳聚糖,
分子量大,呈网状粘着力强,溶 解分散(温度为96℃以上) • 石花菜(红藻)→琼脂
琼脂特性
C.多数微生物在琼脂培养基
表面生长并形成独立菌落; • A.不能被绝大多数微生 物利用、分解液化; • 提问:有什么好处?
提问:有何好处?
易于纯化分离
• 不作为额外碳源,干
扰试验,保持固体特
蛋白胨 pH
7.2~7.4
• 牛肉膏——瘦牛肉经过 加热浓缩抽提的膏状物
(主要作碳源)
• 蛋白胨——动植物蛋白(大豆或动物骨粉等)经初步酶 解形成的短肽(主要作氮源)
• 类似物如酵母膏、麦芽汁、土壤浸出液、牛奶、玉米粉 • 优点——营养丰富、配制容易 • 缺点?
• 质量不稳定、选择性差;
• 在实际应用中还应注意 • 1. 营养要求小范围可改变 • 指细菌对碳源等的种类、数量一定程度上可驯化适 应(酶的诱导、易变异)
• 2. “营养要平衡”,存在一定比例搭配的现象
• 主要是指碳氮磷的比例关系,通常称碳氮磷比。
• 根瘤菌要求碳氮比为11.5:1
• 土壤中微生物混合群体要求碳氮比为25:1 • 污(废)水生物处理中好氧微生物群体(活性污泥) 要求为BOD5:N:P=100:5:1
• !学会养细菌
酶 及 其 作 用
• 酶是生物催化剂,酶制剂已经开始应用于三废治 理
• 各种生物包括细菌细胞内几乎所有生化反应都需要酶的 催化。作为生物催化剂酶具有高效性、专一性、温和的 催化条件等优点,同时由于酶的化学本质是蛋白质,因 而也有容易失活的缺点。
• 绝大多数酶是蛋白质,根据化学组成可以把酶分为简单酶 (单成分酶)、结合酶(全酶);根据结构的不同酶可以 分为单体酶、聚合酶;根据存在位臵的不同酶又有胞内酶 和胞外酶之分,根据催化反应性质的不同,酶分为水解酶、 氧化还原酶、转移酶、异构化酶、裂解酶、合成酶等。
• 厌氧生物处理中的厌氧微生物群体要求BOD5:N: P=350~500:5:1
• 为了保证污(废)水(有机固体废物)生物处理 要按碳氮磷比配给营养 。
• 城市生活污水不存在营养不足的问题。但有的工 业废水缺某种营养,当营养量不足时,应供给或 补足。 • 如酒精废水缺 ? ; N、P
• 洗涤剂废水 • 炼油废水 ? ?
设 km=
———
k1
k2 + k3
v =——————
km + [S]
Vmax · [S]
(km>>[S],v = k[S]; km <<[S],v = Vmax)
3. 米氏常数的意义
km= [S]
则: v = Vmax/2
意义:
(1) km是酶的一个基本的特征常数。其大小与酶的浓度无关, 而与具体的底物有关,且随着温度、pH和离子强度而改变。
• 绝大多数能, “能吃苦也能享福”,优先利
用; • 又根据能源不同 • 又分为光能自养型细菌和化能自养型细菌。
ห้องสมุดไป่ตู้
(1)光能自养细菌(无氧有光)
• 只有紫硫细菌和绿硫细菌
较洁净的光照池塘无氧臭(H2S) 区

紫硫、绿硫细菌代谢方式
• 光照 [CH2O](糖) + H2O + 2S↓ • CO2 + H2S →
② 有机营养细菌(异养菌)
• 有机(异养)——以有机物为碳源
• 提问:自养、异养菌哪种繁殖快? • “吃砖头和吃粮食的区别”
• 异养菌是有机污水处理的主角
•根据能源的不同
(1)光能异养与化能异养
. Ⅰ化能异养菌
• 以有机物作为碳源和能源的细菌。
• 绝大多数的细菌都属于化能异养菌。
• Ⅱ. 光能异养细菌(无氧有光)
(五)生长因子
• ——必需,但不能自身合成的有机物
• 种类:嘌呤、嘧啶类、维生素类 • 作用:? • 嘌呤和嘧啶参与合成核酸和辅酶; 维生素, 重要辅酶 • 多数细菌不存在生长因子问题。
• 只有少数细菌需要外界提供现成的生长因子,才 能生长,如乳酸菌需要多种维生素,因此只能生 活在这些物质供应充足的环境,如牛奶中、肠道。
• • 光能+色素 有机物 + CO2 → 菌体 [CH2O]
• 小分子有机物碳源 • 主要指红螺菌(有氧无光时可化能异养生存) • 提问:在污水处理中的优势是什么?
•不受氧气限制,尤其适于高浓度有机废水(食品 行业)的高效处理(*红螺菌用于污水处理现状如 何?)
问题:与水分离困难,光照问题
——嗜盐红螺菌大量滋生时的红盐田
微 生 物 的 生 理
生理
• 生理——生命活动机理
• 生命活动——营养、呼吸
• 营养物及其获取方式——营养
• 营养物质的代谢 ——呼吸
• 营养物的种类、用途及营养物的吸收方式
• 水、盐、“粮食” • 异养-自养;吸收方式—四种 (酶起主要作用)
• 如何代谢?不同代谢类型的细菌分类
• 光能—化能;好氧—厌氧; (酶起主要作用)
VS S Ks m K
Km大小反映了酶与底物亲合力的大小。 •若 •v——总污染物微生物降解速度;
•V—(KX)—最大速度;
•X—微生物浓度
第二节 微生物的营养 • 提问:如何知道细菌所需的营养物种类呢? • 单因子或复合因子培养试验、由细胞化学组成进行推 断。
10%~20%干物质 10%无机盐
• 提问:哪些物质可以产生化 学能?
• 有机碳源
• 所有细菌细胞内能 量传递体都是ATP • 营养型细菌分类 • 根据碳源不同 • 分为无机营养—— 有机营养 • (或自养——异养)
• 特殊的无机物(如S、Fe)
• 提问:什么样的细菌利用光 能? • 含有光合色素
① 无机营养细菌(自养菌)
• 无机(自养)—CO2、CO和CO32• 提问:能否也利用有机物呢?
• 酶的活力大小用酶所催化反应的反应速度来表示,影响酶 促反应速度的因素有 、 、 、 、 、 等。 • 酶浓度、底物浓度、温度、pH、抑制剂、激活剂等。
酶活力的测定
——酶活力是指酶催化某一化学反应的能力。 酶(活力)单位:在一定条件下,一定时间内将一定量 的底物转化为产物所需的酶量。(U/g,U/ml) 在标准反应条件(25℃)下,每分钟内催化一微摩尔底 物的酶量定为一个酶活力单位,即 1IU=1μmol/min 催量:在最适条件下,每秒钟内使一摩尔底物转化的酶 量定为1kat单位,即 1kat=1mol/s
• 供碳元素来源的物质 • 细菌细胞中的碳素含量占
• 种类?
• 有机物、无机碳化合物 • 随细菌不同,各有偏好 • 细菌最喜好的碳源是?
干物质质量的50%左右。 细菌对碳素的需求量最大。
• 碳源作用— • 细胞的碳骨架、大多还是 能源物质。
•糖
• 尤其是葡萄糖及其多糖
2)能源
• 细菌的能源种类
• 化学能、光能
1kat = 6×107IU
比活力 = 活力单位数/ 毫克蛋白(氮)
酶促反应动力学
1. 底物浓度对酶反应速度的影响
Vmax
零级反应 v = k [E]
v
一级反应 v = k [S]
[S]
用中间产物学说解释底物浓度与反应速度关系曲线的二相现象:
k1 k3 S + E ES E+P k2 当底物浓度很低时,有多余的酶没与底物结合,随着底 物浓度的增加,中间络合物的浓度不断增高。 当底物浓度较高时,溶液中的酶全部与底物结合成中间产 物,虽增加底物浓度也不会有更多的中间产物生成。 2. 米氏方程式(Michaelis-Menten equation)
缺N P过剩
N、P
留意!
• 但如果工业废水不缺营养,就切勿盲目补充! • 提问:为什么? • 过犹不及——“娇惯”
• 细菌往往先利用这类现成的容易被吸收、利用的有机物质, 而不再利用工业废水中难以吸收、利用的有机物,从而导 致细菌分解特殊有机物的能力下降
• 学以致用——养细菌
二.培养基 ———水、碳源、氮源、无机盐及生长
• 种类:硫细菌(硫化细菌和硫磺细菌)、(亚)硝
化细菌及铁细菌、氢细菌。
• 例如,亚硝化细菌进行有机物合成反应如下 • 2NH3 + 2O2 HNO2 + 4 H + 619千焦耳 • ATP • CO2 + 4 H [CH2O] + H2 O
相关文档
最新文档