历年高考理科数学汇编三角函数

合集下载

高考理科数学三角函数真题汇总

高考理科数学三角函数真题汇总

(2009年全国II理数)设△ABC的内角A、B、C的对边长分别为a、b、c,,,求B.(2010年广东理数)已知向量与互相垂直,其中.(1)求和的值;(2)若,求的值.(2010年安徽理数)设是锐角三角形,分别是内角所对边长,并且。

(△)求角的值;(△)若,求(其中)。

(2010年广东理数)已知函数在时取得最大值4.(1) 求的最小正周期;(2) 求的解析式;(3) 若,求.(2010年湖北理数)已知函数f(x)=(△)求函数f(x)的最小正周期;(△)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合。

(2010年辽宁理数)在△ABC中,a, b, c分别为内角A, B, C的对边,且(△)求A的大小;(△)求的最大值.(2010年浙江理数)在△ABC中,角A、B、C所对的边分别为a,b,c,已知(I)求sinC的值;(△)当a=2,2sinA=sinC时,求b及c的长.(2010年天津理数)已知函数(△)求函数的最小正周期及在区间上的最大值和最小值;(△)若,求的值。

(2011年广东理数)已知函数.(△)求的值;(△)设,求的值.(2011年湖北理数)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(1)求△ABC的周长;(2)求cos(A﹣C)的值.(2011年浙江理数)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p△R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.(2011年重庆理数)设α△R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.(2011年安徽理数)设,其中为正实数(△)当时,求的极值点;(△)若为上的单调函数,求的取值范围。

(2011年北京理数)已知函数。

(△)求的最小正周期:(△)求在区间上的最大值和最小值。

三角函数历年高考题汇编(附答案)yidayin

三角函数历年高考题汇编(附答案)yidayin

三角函数历年高考题汇编(附答案)yidayin考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京支,7,5分)在平面直角坐标系中,AB,CD,CA 是圆 x ³+y ²=1 上的四段弧(如图),点P 在其中一段A.ABB. CD c.即 D.参考答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式. 若点P 在 AB ⃗⃗⃗⃗⃗ 或 CD ⃗⃗⃗⃗⃗ 矛盾,故排除A,B.若点P 在CH(不包含端点G)上,则角α在第三象限。

此时tan α>0, cos α<0,与tan α<cos α矛盾,故排除 D,故选C.A. ming:0B.QOE ρ≥0C. ain 2a>0D. cos 2α>0参考答案 C 由AanaPO 得α是第一或第三象限角,若α是第三象限角,则A,B 错;由 sin 2a=2sin acos α知sin 2a>0,C 正确;α取¹/₂时.cos2α=2cos2α−1=2×(12)2−1=−12<0,D错.故选 C.分析本题考查三角图数值的符号,判定时可运用基本知识,程等变形及特殊值等多种方法,具有一定的灵活性..A.45B. 35C.35D.÷45参考答案 D 由三角函数的定义知cosα=√(−4)2+32=45故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点置合,始边与x轴的正半轴重合,终边在直线y=2x上,则00s 20=( )A.4/5B. 35C.35D.54参考答案 B 解法一:由三角函数定义知,tanθ=2,则cos2θ=cos2θ−sin2θcos2B+sin2θ=1−tan2θ1+tan2B=35.cos2θ=15故cos2θ=2cos2θ−1=35.5.(2015福建文,6,5分)若sinα=513,A.125B.−125C.512D.−512参考答案 D 'sin α=513,a为露四象限角,cosα=√1−sin2α=1213,∴tanα=sinαcosα=512故选 D.6.(2014课标1理,8,5分)设α∈(0,π2),β∈(0,π2),且tanα=1+sinβcosβ则( )A.30−β=π2B.3α+β=π2C.2α−β=π2D.2ca∗βa=112参考答案 C 由tanα=1+sinβcosβ得sinαcosα=1+sinβcosβ即sin acosβ=cosα+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2−α)所以:sin (α−β)=sin (π2−α),又因为 cos (0,π2),β∈(0,π2)所以 −π2<α−β<π2,0<π2<α<π2因此 cos −β=π37a 所以 2a +b =π2.故选C.参考答案 C . b=00855°=sin 35°>sin 33°±0, b=a. 又 ∴c =tan35∘=sin35∘cos35∘>sin35∘=cos55∘=b,∴c >b.∴c >b ”.故选C.9.(2013 大纲全国文,2,5分)已知a 是第二象限角, sinα=513,则cos α=( )A.1213B.513C.513D.1 236∴cosα=√1×sin 2α=−1213故选A.分析 本题考查三角图数值在各象限的符号,同角三角函数关系,属容易题。

专题20 三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

专题20  三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

十年(2014-2023)年高考真题分项汇编—三角函数解答题目录题型一:三角恒等变换...........................................................................1题型二:三角函数与向量综合...............................................................4题型三:三角函数的图像与性质...........................................................8题型四:正余弦定理的应用.................................................................20题型五:与三角形周长、面积有关问题..............................................38题型六:三角函数的建模应用.............................................................50题型七:结构不良型试题 (56)(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.【答案】(1)1313(2)5(3)26-解析:(1)由正弦定理可得,sin sin a b A B =,即2sin120sin B = ,解得:sin 13B =;(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =,即5sin120sin C = ,解得:sin 26C =,而120A =o ,所以,B C 都为锐角,因此cos 26C ==,cos 13B ==,故()sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2023年新课标全国Ⅰ卷·第17题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6解析:(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin 10A ∴=.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.3.(2018年高考数学江苏卷·第16题)(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.【答案】解析:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,29cos 25α=,因此27cos 22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,)αβπ+∈.又因为5cos()5αβ+=,所以25sin()5αβ+=,因此,tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--,因此,tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+-=-+==-++.4.(2018年高考数学浙江卷·第18题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin(π)α+的值;(2)若角β满足5sin()13αβ+=,求cos β值.【答案】(1)45;(2)5665-或1665.【解析】(1)由角α终边过点34(,55P --得4sin =5α-,所以4sin =sin =5απα+-().(2)由角α终边过点34(,55P --得3cos =5α-,由5sin()13αβ+=得12cos +=13αβ±().由()βαβα=+-得cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++当12cos()13αβ+=时,1235456cos 13513565β⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭;当12cos()13αβ+=-时,1235416cos 13513565β⎛⎫⎛⎫⎛⎫=-⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以56cos =65β-或1665.5.(2014高考数学广东理科·第16题)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭,(1)求A 的值;(2)若23)()(=-+θθf f ,2,0(πθ∈,求)43(θπ-f .【答案】解:(1)依题意有55233sin sin 12124322f A A ππππ⎛⎫⎛⎫=+=== ⎪ ⎪⎝⎭⎝⎭,所以A =(2)由(1)得()),4f x x x Rπ=+∈,()()3sin sin 442f f ππθθθθθ⎤⎛⎫⎛⎫∴+-=++-+==⎪ ⎪⎥⎝⎭⎝⎭⎦cos 4θ∴=,(0,)sin 24πθθ∈∴=== 33304444f πππθθθ⎛⎫⎛⎫∴-=-+==⎪ ⎝⎭⎝⎭6.(2014高考数学江苏·第15题)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【答案】(1)1010-;(2)43310+-解析:(1)因为α∈π,π2⎛⎫⎪⎝⎭,sin α=55,所以cos α=255=-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α=252510⎛⎫⨯-+⨯= ⎪ ⎪⎝⎭.(2)由(1)知sin2α=2sin αcos α=42555⎛⨯⨯-=- ⎝⎭,cos2α=1-2sin 2α=1-2325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=314525⎛⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭题型二:三角函数与向量综合1.(2014高考数学山东理科·第16题)已知向量(,cos 2)a m x = ,(sin 2,)b x n = ,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【答案】(Ⅰ)⎩⎨⎧==13n m (Ⅱ)z k k k ∈+-],,2[πππ解析:(Ⅰ)已知x n x m b a x f 2cos 2sin )(+=⋅=,)(x f 过点)2,32(),3,12(-ππ36cos 6sin 12(=+=∴πππn m f 234cos 34sin )32(-=+=πππn mf 1221222m n m n ⎧+=⎪⎪∴⎨⎪--=-⎪⎩解得⎩⎨⎧==13n m .(Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f )(x f 左移ϕ后得到622sin(2)(πϕ++=x x g 设)(x g 的对称轴为0x x =,1120=+=x d 解得00=x 2)0(=∴g ,解得6πϕ=x x x x g 2cos 222sin(2)632sin(2)(=+=++=∴πππ222,k x k k Zπππ∴-+≤≤∈,2k x k k Z πππ∴-+≤≤∈)(x f ∴的单调增区间为[,],2k k k Zπππ-+∈2.(2017年高考数学江苏文理科·第16题)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时,()f x 取得最大值,为3;5π6x =时,()f x取得最小值,为-.解析:解:(1)因为 cos ,s n )i (x x = a,(3,= b ,a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是3tan 3x =.又[0,]x π∈,所以5π6x =.(2)π(cos ,sin )(3,3cos s ()o (6f x x x x x x =⋅=⋅==+ a b .因为[0,]x π∈,所以ππ7π[,666x +∈,从而π1cos()62x -≤+≤.于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x取到最小值-.3.(2014高考数学辽宁理科·第17题)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.【答案】(1)a =3,c =2;(2)2327解析:(1)2BA BC ∙= ,1cos 3B =,cos 2BA BC B ∴∙= ,即6a c ⋅=①,由余弦定理可得2221cos 23a c b B ac +-==,化简整理得2213a c +=②,①②联立,解得,a =3,c =2;(2)12cos ,sin 33B B =∴== ,因为a =3,3b =,c =2,由余弦定理可得2227cos29a cb Cab -+==,42sin 9C ∴==,7123cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.解析2:(2)在△ABC 中,1cos ,sin 33B B =∴==,根据正弦定理sin sin b cB C=可得sin 42sin 9c B C b ==,a b c => ,C ∴为锐角,7cos 9C ∴==,7142223cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.4.(2015高考数学陕西理科·第17题)(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.【答案】(Ⅰ)3π;(Ⅱ)2.分析:(Ⅰ)先利用//m n可得sin sin 0a B -A =,再利用正弦定理可得tan A 的值,进而可得A 的值;(Ⅱ)由余弦定理可得c 的值,进而利用三角形的面积公式可得C ∆AB 的面积.解析:(Ⅰ)因为//m n,所以sin cos 0a B A =,由正弦定理,得sinA sinB A 0-=又sin 0B ≠,从而tan A =,由于0A π<<,所以3A π=(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A=+-而2,a ==3πA =得2742c c =+-,即2230c c --=因为0c >,所以3c =.故C ∆AB的面积为1bcsinA 22=.解法二:由正弦定理,得72sin sin 3π=B,从而21sin 7B =,又由a b >,知A B >,所以cos 7B =.故()321sinC sin A B sin sin cos cos sin 33314B B πππ⎛⎫=+=B +=+=⎪⎝⎭所以C ∆AB的面积为133bcsinA22=.5.(2015高考数学广东理科·第16题)(本小题满分12分)在平面直角坐标系xOy 中,已知向量,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x的值;(2)若m与n 的夹角为3π,求x 的值.【答案】解析:(1) ,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin,cos )n x x =,且m n ⊥ ,sin sin cos 0,sin cos ,tan 122cos x m nx x x x xx∴⋅=-=∴===(2)11sin cos ||||cos ,sin()223242m n x x m n x ππ⋅=-=⋅=∴-=5(0,,,,24444612x x x x πππππππ⎛⎫∈∴-∈-∴-== ⎪⎝⎭题型三:三角函数的图像与性质1.(2014高考数学江西理科·第17题)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1.(2)1.6a πθ=-⎧⎪⎨=-⎪⎩分析:(1)求三角函数最值,首先将其化为基本三角函数形式:当4a πθ==时,22()sin(sin cos sin()42224f x x x x x x x πππ=+++=+=-,再结合基本三角函数性质求最值:因为[0,]x π∈,从而3[,]444x πππ-∈-,故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)两个独立条件求两个未知数,联立方程组求解即可.由(02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩解析:解(1)当4a πθ==时,22()sin())sin cos sin()42224f x x x x x x x πππ=+++=+-=-因为[0,]x π∈,从而3[,444x πππ-∈-故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)由()02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,)22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩2.(2019·浙江·第18题)设函数()sin f x x =,x ∈R .(Ⅰ)已知[0,2)θπ∈,函数()f x θ+是偶函数,求θ的值;(Ⅱ)求函数22[([(124y f x f x ππ=+++的值域.【答案】【意图】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 三角大题(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 三角大题(精解精析)

2012-2021十年全国高考数学真题分类汇编 三角大题 (精解精析)1.(2020年高考数学课标Ⅱ卷理科)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A 。

(2)若BC =3,求ABC 周长地最大值.【结果】(1)23π。

(2)3+.思路:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴周长地最大值为3+.【点睛】本题考查解三角形地相关知识,涉及到正弦定理角化边地应用,余弦定理地应用,三角形周长最大值地求解问题。

求解周长最大值地关键是能够在余弦定理构造地等式中,结合基本不等式构造不等关系求得最值.2.(2019年高考数学课标Ⅲ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B 。

(2)若ABC △为锐角三角形,且1c =,求ABC △面积地取值范围.【结果】(1)3B π=;(2).【官方思路】.(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=,因为sin 0A ≠,所以sinsin 2A CB +=.由A BC 180++=︒,可得sin cos 22A C B +=,故B B Bcos 2sin cos 222=.因为B cos02≠,故B 1sin 22=,因此60=︒B .(2)由题设及(1)知△ABC 地面积=△ABC S a .由正弦定理得sin sin(120)1sin sin 2︒-===c A C a C C .由于△ABC 为锐角三角形,故090︒<<︒A ,090︒<<︒C .由(1)知120+=︒A C ,所以3090︒<<︒C ,故122<<a ,<<△ABC S .因此△ABC 面积地取值范围是.【点评】这道题考查了三角函数地基础知识,和正弦定理或者余弦定理地使用(此题也可以用余弦定理求解),最后考查△ABC 是锐角三角形这个款件地利用.考查地很全面,是一道很好地考题.3.(2019年高考数学课标全国Ⅰ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c .设22(sin sin )sin sin sin B C A B C -=-.(1)求A 。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编(附答案)

1、函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2、已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数3.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )4.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.函数()(1)cos f x x x =的最小正周期为( )A .2π B .32π C .π D .2π6.若3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,则φ的最小值为A.6πB.4πC. 3πD. 2π 7.函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3,32 D. -2,321、已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。

(1)求()f x 的解析式;(2)已知,(0,)2παβ∈, 且312(),(),513f f αβ==求()f αβ-的值。

8.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )1.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。

2.函数22cos sin 2y x x =+的最小值是_____________________ .3.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =12、已知函数()sin sin(),2f x x x x R π=++∈.I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值;(III)若3()4f α=,求sin2α的值. 30.已知函数()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.答案1.A 2.D 3.D 4.A 5.A 6.A 7.C 8.A 二1.0 2. 1 3.32。

新课标全国卷近五年高考数学理科三角函数真题汇编

新课标全国卷近五年高考数学理科三角函数真题汇编

2014年新课标理科4.钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( ) A. 5 B. 5C. 2 D. 1 【答案】B ..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。

为等腰直角三角形,不时,经计算当或=+======•••==2014年新课标理科12.设函数()3s i n x f x mp =.若存在()f x 的极值点0x 满足()22200x f x m +<éùëû,则m 的取值范围是(的取值范围是( ) A. ()(),66,-¥-È¥ B. ()(),44,-¥-È¥ C. ()(),22,-¥-È¥ D.()(),14,-¥-È¥【答案】 C.2.||,34∴34)]([,2||||,3)]([3πsin3)(2222020020C m m mm x f x m x x f m x x f 故选解得,,即的极值为><++≥+∴≤=±= 2014年新课标理科14.函数()()()sin 22sin cos f x x x j j j =+-+的最大值为_________. 【答案】 1.1∴.1≤sin φsin )φcos(-φcos )φsin()φcos(φsin 2-φsin )φcos(φcos )φsin()φcos(φsin 2-)φ2sin()(最大值为x x x x x x x x x f =•+•+=+•++•+=++=2013年新课标理科17.设q 为第二象限角,若21)4tan(=+pq ,则=+q q c o s s i n 。

十年高考真题分类汇编(2010-2019) 数学 专题05 三角函数(含解析)

十年高考真题分类汇编(2010-2019) 数学  专题05 三角函数(含解析)

十年高考真题分类汇编(2010—2019)数学专题05 三角函数1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1, ∴4sin αcos α=2cos 2α.∵α∈(0,π2),∴cos α>0,sin α>0, ∴2sin α=cos α. 又sin 2α+cos 2α=1, ∴5sin 2α=1,即sin 2α=15. ∵sin α>0,∴sin α=√55. 故选B.2.(2019·全国2·文T8)若x 1=π4,x 2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=( ) A.2 B.32C.1D.12【答案】A【解析】由题意,得f(x)=sin ωx 的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是( ) A.f(x)=|cos 2x| B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2 【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O,连接OA,OB,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S1=βr2=4β为定值,S△OAB=12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S△PAB+S1-S△OAB.当P为弧AB的中点时S△PAB最大,最大值为12(2|OA|sin β)(OP+|OA|cos β)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S 的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sin β=4β+4sin β,故选B.6.(2019·全国3·理T 12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5,又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2, ∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B【解析】因为cos 2α=2cos 2α-1=23,所以cos 2α=56,sin 2α=16.所以tan 2α=15,tan α=±√55. 由于a,b 的正负性相同,不妨设tan α>0,即tan α=√55, 由三角函数定义得a=√55,b=2√55,故|a-b|=√55. 9.(2018·全国3·T4)若sin α=13,则cos 2α=( ) A.89B.79C.-79D.-89【答案】B【解析】cos 2α=1-2sin 2α=1-2×(13)2=79. 10.(2018·全国3·文T6)函数f(x)=tanx1+tan 2x的最小正周期为( )A.π4 B.π2 C.π D.2π【答案】C【解析】f(x)=tanx1+tan 2x =sinx cosx1+sin 2x cos 2x=sinxcosxcos 2x+sin 2x =12sin 2x,∴f(x)的最小正周期是π.故选C.11.(2018·全国1·文T8)已知函数f(x)=2cos 2x-sin 2x+2,则( ) A.f(x)的最小正周期为π,最大值为3 B.f(x)的最小正周期为π,最大值为4 C.f(x)的最小正周期为2π,最大值为3 D.f(x)的最小正周期为2π,最大值为4 【答案】B【解析】因为f(x)=2cos 2x-(1-cos 2x)+2=3cos 2x+1=3×1+cos2x 2+1=32cos 2x+52,所以函数f(x)的最小正周期为2π2=π,当cos 2x=1时,f(x)max =4.12.(2018·天津·理T 6)将函数y=sin (2x +π5)的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间[3π4,5π4]上单调递增B.在区间[3π4,π]上单调递减 C.在区间[5π4,3π2]上单调递增D.在区间[3π2,2π]上单调递减 【答案】A【解析】函数y=sin (2x +π5)y=sin [2(x -π10)+π5]=sin 2x.当-π2+2k π≤2x≤π2+2k π,k ∈Z,即-π4+k π≤x≤π4+k π,k ∈Z 时,y=sin 2x 单调递增. 当π2+2k π≤2x≤3π2+2k π,k ∈Z,即π4+k π≤x≤3π4+k π,k ∈Z 时,y=sin 2x 单调递减, 结合选项,可知y=sin 2x 在[3π4,5π4]上单调递增.故选A. 13.(2018·全国2·理T 10)若f(x)=cos x-sin x 在[-a,a]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D .π【答案】A【解析】f(x)=cos x-sin x=-√2sin x ·√22-cos x ·√22=-√2sin x-π4,当x ∈[-π4,34π],即x-π4∈[-π2,π2]时,y=sin x-π4单调递增,y=-√2sin x-π4单调递减.∵函数f(x)在[-a,a]是减函数,∴[-a,a]⊆[-π4,34π],∴0<a≤π4,∴a 的最大值为π4.14.(2017·全国3·文T4)已知sin α-cos α=43,则sin 2α=( ) A.-79B.-29C.29D.79【答案】A【解析】∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79. 15.(2017·山东·文T4)已知cos x=34,则cos 2x=( ) A.-14 B.14C.-18D.18【答案】D【解析】cos 2x=2cos2x-1=2×(34)2-1=18.16.(2017·全国3·理T6)设函数f(x)=cos (x +π3),则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=8π3对称 C.f(x+π)的一个零点为x=π6D.f(x)在(π2,π)单调递减 【答案】D【解析】由f (x )=cos (x +π3)的【解析】式知-2π是它的一个周期,故A 中结论正确;将x=8π3代入f (x )=cos (x +π3),得f (8π3)=-1,故y=f (x )的图象关于直线x=8π3对称,故B 中结论正确;f (x+π)=cos (x +4π3),当x=π6时,f (x+π)=cos (π6+4π3)=0,故C 中结论正确;当x ∈(π2,π)时,x+π3∈(5π6,4π3),显然f (x )先单调递减再单调递增,故D 中结论错误. 17.(2017·全国2·文T3)函数f(x)=sin (2x +π3)的最小正周期为( ) A.4π B.2π C .πD.π2【答案】C【解析】T=2π2=π,故选C .18.(2017·天津·T7)设函数f(x)=2sin(ωx+φ),x ∈R,其中ω>0,|φ|<π,若f (5π8)=2,f (11π8)=0,且f(x)的最小正周期大于2π,则( ) A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24 D .ω=13,φ=7π24 【答案】A 【解析】∵f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,∴f (x )的最小正周期为4(11π8−5π8)=3π. ∴ω=2π3π=23,∴f (x )=2sin (23x+φ). ∴2sin (23×5π8+φ)=2,∴φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k=0,得φ=π12.19.(2017·山东·文T7)函数y=√3sin 2x+cos 2x 的最小正周期为( ) A.π2 B.2π3C .π D.2π【答案】C【解析】因为y=√3sin 2x+cos 2x=2(√32sin2x +12cos2x)=2sin (2x +π6),所以其最小正周期T=2π2=π. 20.(2017·全国1·理T 9)已知曲线C 1:y=cos x,C 2:y=sin (2x +2π3),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】曲线C 1的方程可化为y=cos x=sin (x +π2),把曲线C 1上各点的横坐标缩短到原来的12,纵坐标不变,得曲线y=sin (2x +π2)=sin 2(x +π4),为得到曲线C 2:y=sin 2(x +π3),需再把得到的曲线向左平移π12个单位长度.21.(2017·全国3·文T 6)函数f(x)=15sin (x +π3)+cos (x -π6)的最大值为( ) A.65 B.1C.35D.15【答案】A【解析】因为cos (x -π6)=cos [π2-(x +π3)]=sin (x +π3),所以f (x )=15sin (x +π3)+sin (x +π3)=65sin (x +π3),故函数f (x )的最大值为65.故选A .22.(2016·全国2·理T9)若cos (π4-α)=35,则sin 2α=( ) A.725B.15C.-15D.-725【答案】D【解析】cos [2(π4-α)]=2cos 2(π4-α)-1=2×(35)2-1=-725,且cos [2(π4-α)]=cos (π2-2α)=sin 2α,故选D .23.(2016·全国3·理T5)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825C.1D.1625【答案】A 【解析】由tan α=34,得cos2α+2sin 2α=cos 2α+4sinαcosαcos 2α+sin 2α=1+4tanα1+tan 2α=1+4×341+(34)2=42516=6425.故选A .24.(2016·全国3·文T6)若tan θ=-13,则cos 2θ=( ) A.-45B.-15C.15D.45【答案】D【解析】cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-(-13)21+(-13)2=45.故选D .25.(2016·全国1·理T12)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=-π4为f (x)的零点,x=π4为y=f(x)图象的对称轴,且f(x)在(π18,5π36)单调,则ω的最大值为( )A.11B.9C.7D.5【答案】B【解析】由题意知π4--π4=T4+kT2,k ∈Z,即π2=2k+14T=2k+14·2πω,k ∈Z,又ω>0,所以ω=2k+1,k ∈Z .又因为f (x )在(π18,5π36)单调, 所以5π36−π18≤T2,T ≥π6,即2πω≥π6,ω≤12.因为ω>0,所以0<ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时f (x )=sin 11x-π4,f (x )在π18,3π44单调递增,在3π44,5π36单调递减,不满足条件;若ω=9,又|φ|≤π2,则φ=π4,此时f (x )=sin 9x+π4,满足f (x )在π18,5π36单调的条件,由此得ω的最大值为9.26.(2016·山东·理T7)函数f(x)=(√3sin x+cos x)(√3cos x-sin x)的最小正周期是( ) A.π2 B .πC.3π2D.2π【答案】B【解析】f (x )=2sin (x +π6)×2cos (x +π6)=2sin (2x +π3),故最小正周期T=2π2=π,应选B .27.(2016·浙江·理T5)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( ) A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关 D.与b 无关,但与c 有关 【答案】B【解析】f (x )=sin 2x+b sin x+c=1-cos2x2+b sin x+c =-12cos 2x+b sin x+12+c.当b=0时,f (x )=-12cos 2x+12+c ,周期T=π; 当b ≠0时,f (x )=-12cos 2x+b sin x+12+c ,∵y=-12cos 2x 的周期为π,y=b sin x 的周期为2π, ∴f (x )的周期T=2π.∴f (x )的最小正周期与b 有关,但与c 无关.故选B .28.(2016·全国2·文T3)函数y=Asin(ωx+φ)的部分图象如图所示,则( ) A.y=2sin (2x -π6) B.y=2sin (2x -π3)C.y=2sin (x +π6)D.y=2sin (x +π3)【答案】A【解析】由题图知,A=2,周期T=2[π3-(-π6)]=π, 所以ω=2ππ=2,y=2sin(2x+φ). 因为函数图象过点(π3,2), 所以2=2sin (2×π3+φ).所以2π3+φ=2k π+π2(k ∈Z).令k=0,得φ=-π6,所以y=2sin (2x -π6),故选A .29.(2016·全国2·理T 7)若将函数y=2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A.x=kπ2−π6(k ∈Z) B.x=kπ2+π6(k ∈Z) C.x=kπ2−π12(k ∈Z) D.x=kπ2+π12(k ∈Z)【答案】B【解析】由题意可知,将函数y=2sin 2x 的图象向左平移π12个单位长度得函数y=2sin [2(x +π12)]=2sin (2x +π6)的图象,令2x+π6=π2+k π(k ∈Z),得x=kπ2+π6(k ∈Z).故选B .30.(2016·全国1·文T 6)将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4) B .y=2sin (2x +π3)C.y=2sin (2x -π4) D.y=2sin (2x -π3) 【答案】D【解析】由已知周期T=π,右移14T=π4后得y=2sin [2(x -π4)+π6]=2sin (2x -π3)的图象,故选D .31.(2016·四川·理T 3)为了得到函数y=sin (2x -π3)的图象,只需把函数y=sin 2x 的图象上所有的点( ) A.向左平行移动π3个单位长度 B.向右平行移动π3个单位长度 C.向左平行移动π6个单位长度 D.向右平行移动π6个单位长度 【答案】D【解析】y=sin (2x -π3)=sin [2(x -π6)].32.(2016·北京·理T 7)将函数y=sin (2x -π3)图象上的点P (π4,t)向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin 2x 的图象上,则( ) A.t=12,s 的最小值为π6B.t=√32,s 的最小值为π6C.t=12,s 的最小值为π3 D.t=√32,s 的最小值为π3【答案】A【解析】设P'(x ,y ).由题意得t=sin (2×π4-π3)=12,且P'的纵坐标与P 的纵坐标相同,即y=12.又P'在函数y=sin 2x 的图象上,则sin 2x=12,故点P'的横坐标x=π12+k π(k ∈Z)或5π12+k π(k ∈Z),结合题意可得s 的最小值为π4−π12=π6.33.(2016·全国2·文T 11)函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4 B.5 C.6 D.7 【答案】B【解析】因为f (x )=1-2sin 2x+6sin x=-2sin x-322+112,而sin x ∈[-1,1],所以当sin x=1时,f (x )取最大值5,故选B .34.(2015·福建·文T6)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125B.-125C.512 D.-512【答案】D【解析】∵sin α=-513,且α为第四象限角,∴cos α=√1-sin 2α=1213.∴tan α=sinαcosα=-512.35.(2015·全国1·理T 2,)sin 20°cos 10°-cos 160°sin 10°=( ) A.-√32 B.√32C.-12D.12【答案】D【解析】sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(10°+20°)=sin 30°=12.36.(2015·重庆·理T9)若tan α=2tan π5,则cos (α-3π10)sin (α-π5)=( )A.1B.2C.3D.4 【答案】C【解析】因为tan α=2tan π5,所以cos (α-3π10)sin (α-π5)=sin (α-3π10+π2)sin (α-π5)=sin (α+π5)sin (α-π5)=sinαcos π5+cosαsin π5sinαcos π5-cosαsin π5=tanα+tan π5tanα-tan π5=3tan π5tan π5=3.37.(2015·重庆·文T6)若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16C.57D.56【答案】A【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tan (α+β)tanα=12-131+12×13=17.38.(2015·安徽·理T10)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f(x)取得最小值,则下列结论正确的是( ) A.f(2)<f(-2)<f(0) B.f(0)<f(2)<f(-2) C.f(-2)<f(0)<f(2) D.f(2)<f(0)<f(-2) 【答案】A【解析】将要比较的函数值化归到函数的同一单调区间内.∵f (x )的最小正周期为π,∴f (-2)=f (π-2).又当x=2π3时,f (x )取得最小值, 故当x=π6时,f (x )取得最大值,π6,2π3是函数f (x )的一个递减区间.又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x=π6距离的大小.∵π-2-π6-0-π6=5π6-2-π6=2π3-2>0, ∴f (0)>f (π-2),即f (0)>f (-2),综上,f (0)>f (-2)>f (2).故选A .39.(2015·全国1·T8)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) A.(kπ-14,kπ+34),k ∈ZB.(2kπ-14,2kπ+34),k ∈Z C.(k -14,k +34),k ∈ZD.(2k -14,2k +34),k ∈Z 【答案】D【解析】不妨设ω>0,由函数图象可知,其周期为T=2×(54-14)=2,所以2πω=2,解得ω=π.所以f (x )=cos(πx+φ).由图象可知,当x=12(14+54)=34时,f (x )取得最小值,即f (34)=cos (3π4+φ)=-1, 解得3π4+φ=2k π+π(k ∈Z),解得φ=2k π+π4(k ∈Z). 令k=0,得φ=π4,所以f (x )=cos (πx +π4). 令2k π≤πx+π4≤2k π+π(k ∈Z), 解得2k-14≤x ≤2k+34(k ∈Z).所以函数f (x )=cos (πx +π4)的单调递减区间为[2k -14,2k +34](k ∈Z).结合选项知选D .40.(2015·陕西·理T 3文T 14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (π6x +φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.10 【答案】C【解析】因为sin (π6x +φ)∈[-1,1],所以函数y=3sin (π6x +φ)+k 的最小值为k-3,最大值为k+3.由题图可知k-3=2,解得k=5. 所以y 的最大值为k+3=5+3=8.故选C .41.(2015·山东·理T 3文T 4)要得到函数y=sin (4x -π3)的图象,只需将函数y=sin 4x 的图象( ) A.向左平移π12个单位B.向右平移π12个单位C.向左平移π3个单位 D.向右平移π3个单位【答案】B【解析】∵y=sin (4x -π3)=sin [4(x -π12)],∴只需将函数y=sin 4x 的图象向右平移π12个单位即可.42.(2014·全国1·T 文2)若tan α>0,则( ) A.sin α>0 B.cos α>0 C.sin 2α>0 D.cos 2α>0【答案】C【解析】由tan α>0知角α是第一或第三象限角,当α是第一象限角时,sin 2α=2sin αcos α>0;当α是第三象限角时,sin α<0,cos α<0,仍有sin 2α=2sin αcos α>0,故选C . 43.(2014·大纲全国·文T2)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45【答案】D【解析】设角α的终边上点(-4,3)到原点O 的距离为r ,r=√(-4)2+32=5,∴由余弦函数的定义,得cos α=x r =-45,故选D .44.(2014·全国1·理T8)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2 B.3α+β=π2 C.2α-β=π2 D.2α+β=π2【答案】C 【解析】由已知,得sinαcosα=1+sinβcosβ, ∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α. ∴sin(α-β)=cos α, ∴sin(α-β)=sin (π2-α). ∵α∈(0,π2),β∈(0,π2), ∴-π2<α-β<π2,0<π2-α<π2,∴α-β=π2-α,∴2α-β=π2.故选C .45.(2014·大纲全国·理T3)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 【答案】C【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=sin35°cos35°, ∴sin35°cos35°>sin 35°>sin 33°.∴c>b>a.故选C .46.(2014·全国1·文T7)在函数①y=cos|2x|,②y=|cos x|,③y=cos (2x +π6),④y=tan (2x -π4)中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③【答案】A【解析】由于y=cos|2x|=cos 2x,所以该函数的周期为2π2=π;由函数y=|cos x|的图象易知其周期为π;函数y=cos (2x +π6)的周期为2π2=π;函数y=tan (2x-π4)的周期为π2,故最小正周期为π的函数是①②③,故选A.47.(2014·全国1·理T 6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M,将点M 到直线OP 的距离表示成x 的函数f(x),则y=f(x)在[0,π]的图象大致为( )【答案】C【解析】由题意知|OM|=|cos x|,f(x)=|OM||sin x|=|sin xcos x|=12|sin 2x|,由此可知C 项中图符合.故选C .48.(2014·浙江·理T 4)为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=√2cos 3x 的图象 ( ) A.向右平移π4个单位 B.向左平移π4个单位 C.向右平移π12个单位 D.向左平移π12个单位【答案】C【解析】y=sin 3x+cos 3x=√2cos (3x -π4)=√2cos [3(x -π12)],因此需将函数y=√2cos 3x 的图象向右平移π12个单位.故选C .49.(2013·浙江·理T6)已知α∈R,sin α+2cos α=√102,则tan 2α=( ) A.43B.34C.-34 D.-43【答案】C【解析】由sin α+2cos α=√102,得sin α=√102-2cos α. ① 把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或cos α=3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.50.(2013·大纲全国·文T2)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213B.-513C.513D.1213【答案】A 【解析】∵α是第二象限角,∴cos α=-√1-sin 2α=-√1-(513)2=-1213.故选A . 51.(2013·广东·文T4)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15C.15 D.25【答案】C【解析】∵sin (5π2+α)=sin (π2+α)=cos α=15,∴cos α=15.52.(2013·全国2·文T6)已知sin 2α=23,则cos 2(α+π4)=( )A.16 B.13C.12D.23【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.53.(2012·全国·理T9)已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【答案】A【解析】结合y=si n ωx的图象可知y=sin ωx在[π2ω,3π2ω]单调递减,而y=sin(ωx+π4)=sin[ω(x+π4ω)],可知y=sin ωx的图象向左平移π4ω个单位之后可得y=sin(ωx+π4)的图象,故y=sin(ωx+π4)在[π4ω,5π4ω]单调递减,故应有[π2,π]⊆[π4ω,5π4ω],解得12≤ω≤54.54.(2012·全国·文T9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4【答案】A【解析】由题意可知函数f(x)的周期T=2×(5π4-π4)=2π,故ω=1,∴f(x)=sin(x+φ).令x+φ=kπ+π2,将x=π4代入可得φ=kπ+π4,∵0<φ<π,∴φ=π4.55.(2011·全国·理T5文T7)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ=( )A.-45B.-35C.35D.45【答案】B【解析】由三角函数的定义知tan θ=2,且θ为第一或第三象限角,故由“1”的代换得cos2θ=cos2θ-sin2θ=cos 2θ-sin2θcos2θ+sin2θ=1-tan2θ1+tan2θ=1-221+22=-35.56.(2011·全国·理T11)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<π2)的最小正周期为π,且f(-x)=f(x),则()A.f(x)在(0,π2)单调递减B.f(x)在(π4,3π4)单调递减C.f(x)在(0,π2)单调递增D.f(x)在(π4,3π4)单调递增【答案】A【解析】∵f (x )=sin(ωx+φ)+cos(ωx+φ)=√2sin ωx+φ+π4,又∵f (x )的最小正周期为π,∴2πω=π,即ω=2.又f (-x )=f (x ),故f (x )是偶函数,即φ+π4=π2+k π(k ∈Z),φ=k π+π4(k ∈Z).因|φ|<π2,取k=0,则φ=π4,从而f (x )=√2cos 2x ,且在(0,π2)上单调递减,故选A .57.(2011·全国·文T11)设函数f(x)=sin (2x +π4)+cos (2x +π4),则( ) A.y=f(x)在(0,π2)单调递增,其图象关于直线x=π4对称B.y=f(x)在(0,π2)单调递增,其图象关于直线x=π2对称C.y=f(x)在(0,π2)单调递减,其图象关于直线x=π4对称D.y=f(x)在(0,π2)单调递减,其图象关于直线x=π2对称 【答案】D【解析】∵f (x )=sin (2x +π4)+cos (2x +π4)=√2sin (2x +π4+π4)=√2cos 2x ,∴f (x )在(0,π2)内单调递减,且图象关于直线x=π2对称.故选D . 58.(2010·全国·理T9)若cos α=-45,α是第三象限的角,则1+tan α21-tanα2=( )A.-12B.12C.2D.-2【答案】A【解析】∵cos α=-45,α为第三象限角,∴sin α=-35.1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2) 2(cos α2+sin α2)(cos α2-sin α2)=1+sinαcos 2α2-sin 2α2=1+sinαcosα=-12.59.(2010·全国·文T10)若cos α=-45,α是第三象限的角,则sin (α+π4)等于( )A.-7√210B.7√210C.-√210 D.√210【答案】A【解析】因为α是第三象限的角,所以sin α<0.sin α=-√1-cos 2α=-√1-(-45)2=-35.故sin (α+π4)=sin αcos π4+cos αsin π4=√22(sin α+cos α)=√22(-35-45)=-7√210.60.(2010·全国·文T 6)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(√2 ,-√2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数大致图象为( )【答案】C【解析】因为d 是圆周上的点P 到x 轴的距离,所以每转半周,即π弧度,d 的值就会周期性出现,又质点P 的角速度为1,可知,该函数的周期为T=π1=π.起始点为P 0(√2,-√2)在第四象限,对应的d=√2,逆时针旋转到x 轴时,d 的值逐渐减小到0且此时t=π4.综上,只有C 项满足,故选C .61.(2019·江苏·T13)已知tanαtan (α+π4)=-23,则sin 2α+π4的值是 .【答案】√210 【解析】由tanαtan (α+π4)=tanαtanα+11-tanα=tanα(1-tanα)tanα+1=-23,得3tan 2α-5tan α-2=0,解得tan α=2或tan α=-13.又sin (2α+π4)=sin 2αcos π4+cos 2αsin π4=√22(sin 2α+cos 2α)=√22×2sinαcosα+cos 2α-sin 2αsin 2α+cos 2α=√22×2tanα+1-tan 2αtan 2α+1. (*) ①当tan α=2时,(*)式=√22×2×2+1-2222+1=√22×15=√210;②当tan α=-13时,(*)式=√22×2×(-13)+1-(-13)2(-13)2+1=√22×13-19109=√210.综上,sin (2α+π4)=√210.62.(2019·全国1·文T 15)函数f(x)=sin (2x +3π2)-3cos x 的最小值为.【答案】-4【解析】f(x)=sin (2x +3π2)-3cos x =-cos 2x-3cos x =-2cos 2x-3cos x+1=-2(cosx +34)2+178. ∵-1≤cos x≤1,∴当cos x=1时,f(x)min =-4. 故函数f(x)的最小值是-4.63.(2018·全国2·理T15)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 【答案】—12【解析】∵(sin α+cos β)2+(cos α+sin β)2=1,∴sin 2α+cos 2β+cos 2α+sin 2β+2sin αcos β+2sin βcos α=1+1+2sin(α+β)=1. ∴sin(α+β)=−12.64.(2018·全国2·文T15)已知tan α-5π4=15,则tan α=_________.【答案】32【解析】∵tan (α-54π)=tanα-tan 54π1+tanαtan 54π=tanα-11+tanα=15,∴5tan α-5=1+tan α.∴tan α=32.65.(2018·北京·理T11)设函数f(x)=cos (ωx -π6)(ω>0).若f(x)≤f (π4)对任意的实数x 都成立,则ω的最小值为____________. 【答案】23【解析】∵f(x)≤f (π4)对任意的实数x 都成立,∴当x=π4时,f(x)取得最大值,即f (π4)=cos (π4ω-π6)=1, ∴π4ω-π6=2k π,k ∈Z,∴ω=8k+23,k ∈Z. ∵ω>0,∴当k=0时,ω取得最小值23.66.(2018·全国3·理T 15)函数f(x)=cos (3x +π6)在[0,π]的零点个数为 . 【答案】3【解析】令f(x)=cos (3x +π6)=0,得3x+π6=π2+k π,k ∈Z,∴x=π9+kπ3=(3k+1)π9,k ∈Z.则在[0,π]的零点有π9,4π9,7π9.故有3个.67.(2018·全国1·理T 16)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 . 【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x-2. 令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π. 因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.68.(2018·江苏·T 7)已知函数y=sin(2x+φ)-π2<φ<π2的图象关于直线x=π3对称,则φ的值为_______. 【答案】−π6【解析】由题意可得sin (2π3+φ)=±1,解得2π3+φ=π2+k π(k ∈Z),即φ=-π6+k π(k ∈Z). 因为-π2<φ<π2,所以k=0,φ=-π6.69.(2017·北京·文T9)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β= 【答案】13【解析】由角α与角β的终边关于y 轴对称,得α+β=2k π+π,k ∈Z,即β=2k π+π-α,k ∈Z,故sinβ=sin(2k π+π-α)=sin α=13.70.(2017·全国1·文T15)已知α∈(0,π2),tan α=2,则cos (α-π4)=__________.【答案】3√1010【解析】由tan α=2,得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈(0,π2),所以cos α=√55,sin α=2√55.因为cos (α-π4)=cos αcos π4+sin αsin π4,所以cos (α-π4)=√55×√22+2√55×√22=3√1010.71.(2017·北京·理T12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________________. 【答案】-79【解析】由角α与角β的终边关于y 轴对称可得β=(2k+1)π-α,k ∈Z,则cos(α-β)=cos[2α-(2k+1)π]=-cos 2α=2sin 2α-1=2×(13)2-1=-79.72.(2017·江苏·T5)若tan (α-π4)=16,则tan α=________.【答案】75【解析】因为tan (α-π4)=tanα-tan π41+tanα·tan π4=tanα-11+tanα=16,所以tan α=75.73.(2017·全国2·理T 14)函数f(x)=sin 2x+√3cos x-34(x ∈[0,π2])的最大值是________. 【答案】1【解析】由题意可知f (x )=1-cos2x+√3cos x-34=-cos 2x+√3cos x+14=-(cosx -√32)2+1.因为x ∈[0,π2],所以cos x ∈[0,1]. 所以当cos x=√32时,函数f (x )取得最大值1.74.(2017·全国2·文T 13)函数f(x)=2cos x+sin x 的最大值为 . 【答案】√5【解析】因为f (x )=2cos x+sin x=√5sin(x+φ)(其中tan φ=2),所以f (x )的最大值为√5. 75.(2016·全国1·文T14)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ-π4)= . 【答案】-43【解析】∵sin (θ+π4)=35,∴cos (θ-π4)=cos [(θ+π4)-π2]=35.又θ是第四象限角,∴θ-π4是第三或第四象限角.∴sin (θ-π4)=-45.∴tan (θ-π4)=-43.76.(2016·四川·文T 11)sin 750°= . 【答案】12【解析】sin 750°=sin(720°+30°)=sin 30°=12. 77.(2016·四川·理T11)cos 2π8-sin 2π8=_________. 【答案】√22【解析】cos 2π8-sin 2π8=cos π4=√22.78.(2016·浙江·T10)已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=√2,b= . 【答案】1【解析】因为2cos 2x+sin 2x=1+cos 2x+sin 2x=√2sin (2x +π4)+1,所以A=√2,b=1.79.(2016·全国3·理T 14)函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移_______个单位长度得到. 【答案】2π3【解析】因为y=sin x+√3cos x=2sin (x +π3),y=sin x-√3cos x=2sin (x-π3)=2sin[(x-2π3)+π3],所以函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移2π3个单位长度得到.80.(2015·江苏·理T8)已知tan α=-2,tan(α+β)=17,则tan β的值为 . 【答案】3【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tanαtan (α+β)=17+21-27=3.81.(2015·四川·理T 12)sin 15°+sin 75°的值是_____________. 【答案】√62【解析】sin 15°+sin 75°=sin(45°-30°)+sin(45°+30°)=sin 45°cos 30°-cos 45°sin 30°+sin 45°cos 30°+cos 45°sin 30°=2sin 45°cos 30°=2×√22×√32=√62. 82.(2015·四川·文T13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是 . 【答案】-1【解析】由sin α+2cos α=0,得tan α=-2.所以原式=2sinαcosα-cos 2αsin 2α+cos 2α=2tanα-1tan 2α+1=2×(-2)-1(-2)2+1=-55=-1. 83.(2015·天津·文T14)已知函数f(x)=sin ωx+cos ωx (ω>0),x ∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为 . 【答案】√π2【解析】f (x )=sin ωx+cos ωx=√2sin ωx+π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z,所以ω2=π4+2k π,k ∈Z . 又ω-(-ω)≤2πω2,即ω2≤π2,所以ω=√π2.84.(2015·湖南·文T15)已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图象的交点中,距离最短的两个交点的距离为2√3,则ω=____________. 【答案】π2【解析】如图所示,在同一直角坐标系中,作出函数y=2sin ωx 与y=2cos ωx 的图象,A ,B 为符合条件的两交点.则A (π4ω,√2),B (-3π4ω,-√2), 由|AB|=2√3,得√(πω)2+(2√2)2=2√3,解得πω=2,即ω=π2.85.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为 . 【答案】1【解析】∵f (x )=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.86.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f(x)max=1.87.(2014·重庆·文T13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=______.【答案】√22【解析】本题可逆推,将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.88.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为. 【答案】1【解析】∵f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.89.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f (x )max =1.90.(2013·全国2·理T15)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 【答案】-√105【解析】由tan (θ+π4)=1+tanθ1-tanθ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-3√1010,sin θ=√1010,sin θ+cos θ=-√105.91.(2013·全国2·文T 16)函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin (2x +π3)的图象重合,则φ=_________. 【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.92.(2013·全国1·理T 15文T 16)设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= . 【答案】−2√55【解析】∵f (x )=sin x-2cos x=√5sin(x-φ), 其中sin φ=2√55,cos φ=√55.当x-φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=cos (π2+φ)=-sin φ=-2√55. 93.(2011·江西·理T14)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 【答案】-8【解析】∵sin θ=-2√55<0及P (4,y )是角θ终边上一点,∴θ为第四象限角.又由三角函数的定义得√4+y 2=-2√55,且y<0,∴y=-8(合题意),y=8(舍去).故y=-8.94.(2019·浙江·T18)设函数f(x)=sin x,x ∈R. (1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值; (2)求函数y=f x+π122+f x+π42的值域.【解析】(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x 都有sin(x+θ)=sin(-x+θ),。

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

2024年高考数学真题分类汇编05:三角函数与解三角形

2024年高考数学真题分类汇编05:三角函数与解三角形
一个交点,结合偶函数的对称性可知该交点只能在 y 轴上,即可得 a 2 ,并代入检验即可;
解法二:令 h x f (x) g x , x 1,1 ,可知 h x 为偶函数,根据偶函数的对称性可
知 h x 的零点只能为 0,即可得 a 2 ,并代入检验即可. 【解析】解法一:令 f (x) g x ,即 a(x 1)2 1 cos x 2ax ,可得 ax2 a 1 cos x , 令 F x ax2 a 1,G x cos x ,
三角函数与解三角形
一、单选题
1.(2024·全国)已知 cos( ) m, tan tan 2 ,则 cos( ) ( )
A. 3m
B. m 3
C.
m 3
D. 3m
2.(2024·全国)当

[0, 2 ] 时,曲线
y
sin
x

y
2
sin
3x
6
的交点个数为(

A.3
B.4
C.6
的最小正周期为
π
.则函数在
π 12
,
π 6
的最小值是( )
A. 3
2
B. 3 2
C.0
D. 3 2
9.(2024·上海)下列函数 f x 的最小正周期是 2π 的是( )
A. sinx cosx C. sin2x cos2x
B. sinxcosx D. sin2x cos2x
二、多选题
y
f
x 在 0,1 处的切线与两坐标轴围
成的三角形的面积为( )
A. 1 6
B.
1 3
C.
1 2
D.
2 3
7.(2024·北京)已知fxFra biblioteksinx

全国高考数学试题分类汇编三角函数

全国高考数学试题分类汇编三角函数

历年全国高考数学试题分类汇编——三角函数1.(200全国卷Ⅰ理第7题,文第7题)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )342.(2005全国卷Ⅰ理第11题,文第11题)在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断: ① 1cot tan =⋅B A② 2sin sin 0≤+<B A③ 1cos sin 22=+B A④ C B A 222sin cos cos =+其中正确的是 (A )①③(B )②④ (C )①④ (D )②③3.(2005全国卷Ⅱ理第1题,文第1题)函数f (x ) = | sin x +cos x |的最小正周期是 (A)4π (B)2π(C )π (D )2π4.(2005全国卷Ⅱ理第4题,文第4题)已知函数y =tan x ω 在(-2π,2π)内是减函数,则 (A )0 <ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -15.(2005全国卷Ⅱ理第7题)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 06.(2005全国卷Ⅱ理第14题)设a 为第四象限的角,若513sin 3sin =a a ,则tan 2a =______________.7.(2005全国卷Ⅲ理第1题,文第1题)已知α为第三象限角,则2α所在的象限是 (A )第一或第二象限 (B )第二或第三象限 (C )第一或第三象限 (D )第二或第四象限设02x π≤≤,sin cos x x =-,则 (A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤9.(2005全国卷Ⅲ理第8题,文第8题)22sin 2cos 1cos 2cos 2⋅=+αααα(A) tan α (B) tan 2α (C) 1 (D)1210.(2005辽宁卷第8题)若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是 ( ) A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)11.(2005辽宁卷第16题)ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 .12.(2005江苏卷第5题)ABC BC A ABC ∆==∆则中,3,3,π的周长为( )A .3)3sin(34++πB B .3)6sin(34++πBC .3)3sin(6++πBD .3)6sin(6++πB13、(2005江苏卷第10题)若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =( ) A .97- B .31- C .31 D .97对任意的锐角α,β,下列不等关系中正确的是 (A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ15.(2005北京卷理第8题)函数f (x(A )在[0,),(,]22πππ上递增,在33[,),(,2]22ππππ上递减 (B )在3[0,),[,)22πππ上递增,在3(,],(,2]22ππππ上递减 (C )在3(,],(,2]22ππππ上递增,在3[0,),[,)22πππ上递减 (D )在33[,),(,2]22ππππ上递增,在[0,),(,]22πππ上递减16.(2005北京卷理第10题)已知tan 2α=2,则tanα的值为-34,tan ()4πα+的值为 .17.(2005北京卷文第12题)在△ABC 中,AC =3,∠A =45°,∠C =75°,则BC 的长为 .18.(2005天津卷理第8题) 要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的( )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 (B)横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度(C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度19(2005天津卷文第8题)函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y20.(2005上海卷文第5题)函数x x x y cos sin 2cos +=的最小正周期T=__________。

三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
(1)若 ,求B;
(2)求 的最小值.
【答案】(1) ;
(2) .
解析:(1)因为 ,即 ,
而 ,所以 ;
(2)由(1)知, ,所以 ,
而 , 所以 ,即有 .
所以

当且仅当 时取等号,所以 的最小值为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022新高考全国I卷·第18题
4.(2021年新高考全国Ⅱ卷·第18题)在 中,角 、 、 所对的边长分别为 、 、 , , ..
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
选择条件①的解析:
据此可得: , ,此时 .
选择条件②的解析:
据此可得: ,
则: ,此时: ,则: .
选择条件③的解析:
可得 , ,
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
则 ,
所以 ,
故 ,
所以 ,
所以 的周长为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022年全国乙卷理科·第17题
2.(2022新高考全国II卷·第18题)记 的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为 ,已知 .

三角函数--2023高考真题分类汇编完整版

三角函数--2023高考真题分类汇编完整版

三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。

2023年高考真题分类汇编---三角函数

2023年高考真题分类汇编---三角函数

2023年高考真题分类汇编---三角函数1.(2023新课标全国Ⅰ卷)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+= ( ) A .79B .19 C .19-D .79-解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=, 所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.选:B 2.(2023新课标全国Ⅱ卷)已知α锐角,1cos 4α=,则sin 2α= ( ).ABCD解:因为2cos 12sin 2αα=-=,而α为锐角,解得:sin 2α=14==. 选:D .3.(2023全国乙卷)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D 解:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈, 则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,选:D .4.(2023全国甲卷)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为 ( ) A .1B .2C .3D .4解:因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭; 当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.选:C . 5.(2023新课标全国Ⅰ卷)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.解:因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根, 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,答案为:[2,3).6.(2023新课标全国Ⅱ卷)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =______.解:设1211,,,22A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=, 由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知, ()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=. 因为28ππsin 033f ϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以()2sin 4π3f x x ⎛⎫=-⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=-⎪⎝⎭,()2πsin 4ππ3f ⎛⎫∴=-= ⎪⎝⎭. 7. (2023北京卷)设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭.(1)若(0)2f =-,求ϕ的值. (2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭条件②:π13f ⎛⎫-=- ⎪⎝⎭; 条件③:()f x 区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.解:(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()(0)sin 0cos cos 0sin sin f ωϕωϕϕ=⋅+⋅==,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><, 所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+, 又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,Z 32k k ϕ-+=-+∈,所以π2π,Z 6k k ϕ=-+∈,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减, 所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.。

新课标全国卷近五年高考数学理科 三角函数真题汇编

新课标全国卷近五年高考数学理科 三角函数真题汇编

新课标全国卷近五年高考数学理科三角函数真题汇编新课标全国卷近五年高考数学理科三角函数真题汇编本文将对新课标全国卷近五年的高考数学理科三角函数真题进行汇编,帮助考生更好地了解考试趋势和备考策略。

一、确定文章类型本文属于说明文,旨在向考生介绍新课标全国卷近五年高考数学理科三角函数真题的出题特点和备考策略。

二、编写提纲1、引言1、介绍新课标全国卷高考数学理科三角函数真题的意义;2、提出本文的写作目的。

2、考试要求1、介绍新课标全国卷高考数学理科三角函数的考试要求;2、提出考生需要掌握的知识点。

3、历年考题分析1、分析近五年高考数学理科三角函数的出题特点;2、分析历年考题的难易程度和考察范围。

4、备考策略1、提出备考高考数学理科三角函数的策略;2、强调备考过程中需要注意的事项。

5、总结1、总结新课标全国卷高考数学理科三角函数真题的特点;2、强调考生在备考过程中需要注重的知识点和能力。

三、展开情节1、引言高考数学理科三角函数是考试中的重点内容之一,对于学生的数学成绩有着重要的影响。

通过对历年真题的汇编和分析,可以帮助考生更好地了解考试趋势和备考策略。

2、考试要求高考数学理科三角函数的考试要求主要包括正弦定理、余弦定理、三角函数的图像和性质、简单的三角变换等知识点。

考生需要熟练掌握这些知识点,并且能够将它们应用到具体的题目中。

3、历年考题分析通过对近五年高考数学理科三角函数的出题特点进行分析,可以发现考试题目主要集中在以下三个方面:一是利用正弦定理和余弦定理解决长度、面积和角度等问题;二是三角函数的图像和性质,包括周期性、奇偶性、单调性和最值等;三是简单的三角变换,包括和差倍角公式的应用、三角函数的恒等变形等。

其中,每年至少有一道题目涉及到以上三个方面中的某一个方面。

此外,考题的难易程度和考察范围也有所不同,有些题目比较简单,只需要考生掌握基本的知识点就可以解决,而有些题目则比较难,需要考生具备较强的数学思维能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考理科数学汇编——三角函数综合
一、三角函数与变换
(2017.9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( D ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2
B .把
C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
π12个单位长度,得到曲线C 2
C .把C 1上各点的横坐标缩短到原来的
12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2
D .把C 1上各点的横坐标缩短到原来的
12倍,纵坐标不变,再把得到的曲线向左平移π12
个单位长度,得到曲线C 2
(2015.2)o o o o sin 20cos10cos160sin10- =( D )
(A )32- (B )32 (C )12- (D )12 (2015.8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( D )
(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44
k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44
k k k Z -+∈ (2014.2)若,则( C )
A. B. C. D.
(2014.7)在函数①,② ,③,④中,最小正周期为的所有函数为( A )
0tan >α0sin >α0cos >α02sin >α02cos >α|2|cos x y =|cos |x y =)62cos(π+=x y )42tan(π
-=x y π
A.①②③
B. ①③④
C. ②④
D. ①③
(2013.15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=___5-
___. 二、解三角形
(2018.17)在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.
(1)求cos ADB ∠; (2)若DC =,求BC .
解:(1)在ABD △中,由正弦定理得
sin sin BD AB A ADB =∠∠.
由题设知,52sin 45sin ADB
=︒∠,所以sin ADB ∠=.
由题设知,90ADB ∠<︒,所以cos ADB ∠==
(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=
. 在BCD △中,由余弦定理得
2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255
=+-⨯⨯25=. 所以5BC =.
(2017.17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A
(1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长.
(2016.17)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.
解:(Ⅰ)已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
∵sinC≠0,sin(A+B)=sinC ∴cosC=,
又0<C<π,∴C=;
(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,
∵S=absinC=ab=,∴ab=6,
∴(a+b)2﹣18=7,∴a+b=5,
∴△ABC的周长为5+.
(2015.16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .
【解析】如图,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,
AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理
可得sin sin BC BE E C =∠∠,即o o 2sin 30sin 75
BE =,解得BE =6+2,平移AD , 当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,
∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,
sin sin BF BC FCB BFC =∠∠, 即
o o 2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).
(2014.16)如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得 点的仰角,点的仰角以及;从点测得
.已知山高,则山高__150___.
【解析】:在中,已知
, 易得:;在中,已知,
易得:,由,
即:;
在中,已知,
易得:.
(2013.17)如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,
MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100BC m =MN =m ABC ∆0045,90,100CAB ABC BC ∠=∠==1002AC =AMC ∆0075,60,1002MAC MCA AC ∠=∠==045AMC ∠=sin sin AC AM AMC ACM =∠∠10023100322AM =
⨯=AMN ∆0060,90,1003MAN MNA AM ∠=∠==150MN m =
∠BPC =90°. (1)若PB =12
,求PA ;(2)若∠APB =150°,求tan ∠PBA . 解:(1)由已知得∠PBC =60°,所以∠PBA =30°.
在△PBA 中,由余弦定理得PA
2=11732cos 30424
+-︒=.
故PA . (2)设∠PBA =α,由已知得PB =sin α.
在△PBA sin sin(30)
αα=︒-, 化简得α=4sin α.
所以tan α=4,即tan ∠PBA =4.。

相关文档
最新文档