专题26动点综合问题(共45题)-2021年中考数学真题分项汇编(解析版)【全国通用】
(2021年整理)初中数学动点问题及练习题附参考答案
初中数学动点问题及练习题附参考答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学动点问题及练习题附参考答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学动点问题及练习题附参考答案的全部内容。
初中数学动点问题及练习题附参考答案所谓“动点型问题"是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静。
数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动"等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。
2021年中考数学二轮专题复习《动点问题》精选练习(含答案)
中考二轮专题复习《动点问题》精选练习一、选择题1.如图所示,直角三角形AOB中,AB⊥OB,且AB=OB=3.设直线l:x=t截此三角形所得的阴影部分面积为S,则S与t之间的函数关系的图象为(如选项所示)( )2.如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( )A.16B.C.D.3.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()4.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.6.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()7.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是()8.如图,已知直线y=0.75x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8B.12C.10.5D.8.5二、填空题9.如图,半径为1的⊙P的圆心在(﹣4,0)处.若⊙P以每秒1个单位长度,沿x轴向右匀速运动.设运动时间为t秒,当⊙P上有且只有2个点到y轴的距离为2,则t的取值范围是.10.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是.11.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .12.如图,在矩形ABCD中,AB=6,BC=8,点E从点A出发,以1个单位/秒的速度向B移动,同时,点F 从点B出发,以2个单位/秒的速度向C移动,当点F到达C点时均停止运动,则秒后△EBF的面积为5个平方单位.13.如图,已知⊙C半径为2,OA=OB=4,P在⊙C上为一动点,连接PA,交y轴于E点,则ABE面积的最大值为;最小值为 .14.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.15.如图,定点A(-2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为.16.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为.其中正确的说法是(把你认为正确的说法的序号都填上)参考答案1.D.2.C3.C4.B5.A6.B7.B8.C9.答案为:1<t <3或5<t <7.解:①⊙P 位于y 轴左侧时,当t=1时,⊙P 的圆心在(﹣3,0)处,此时⊙P 到y 轴距离为2的点只有1个; 当t=3时,⊙P 的圆心在(﹣2,0)处,此时⊙P 到y 轴的距离为2的点只有垂直于x 轴的直径的两端点;∴当1<t <3时,⊙P 上有且只有2个点到y 轴的距离为2;②⊙P 位于y 轴右侧时,当t=5时,⊙P 的圆心在(1,0)处,此时⊙P 到y 轴距离为2的点只有(2,0)这1个; 当t=7时,⊙P 的圆心在(﹣2,0)处,此时⊙P 到y 轴的距离为2的点只有(2,0)这1个;∴当5<t <7时,⊙P 上有且只有2个点到y 轴的距离为2;综上,1<t <3或5<t <7,10.答案为:(3,4)或(2,4)或(6﹣2,4).11.答案为:(2,4),(3,4),(8,4).12.答案为:1;13.答案为:228 ;14.答案为:AB .15.答案为:(﹣1,﹣1).16.。
专题28 动点综合问题(共32题)(原卷版)-2023年中考数学真题分项汇编(全国通用)
专题28动点综合问题(32题)1.(2023·四川遂宁·统考中考真题)如图,在ABC 中,1068AB BC AC ===,,,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM AC ⊥于点M 、作PN BC ⊥于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,55⎛⎫ ⎪⎝⎭D .32,55⎛⎫ ⎪⎝⎭2.(2023·广东深圳·统考中考真题)如图1,在Rt ABC △中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()A .1552B .427C .17D .533.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()....(2023·黑龙江齐齐哈尔统考中考真题)如图,在正方形ABCD 同时出发,沿射线AB 的方向匀速运动,且速度的大小相等,连接动的路程为(0x x ≤≤,下列图像中能反映S A ....5.(2023·河南·统考中考真题)如图1,点从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点运动的路程为x ,PB PC,图2是点P 运动时关系图象,则等边三角形ABC 的边长为(A .6B .3C .43236.(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线2y x =--与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的O 上两动点,且2CD =,P 为弦CD 的中点.当C 、D 两点在圆上运动时,PAB 面积的最大值是()A .8B .6C .4D .37.(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A .B .C .D .A.10B.910C 9.(2023·山东滨州·统考中考真题)已知点P是等边AP BP CP为边的三角形中,最小内角的大小为(段,,A.14︒B.16︒C 10.(2023·甘肃武威·统考中考真题)如图1,正方形→匀速运动,运动到点C时停止.设点发沿AB BC象如图2所示,则点M的坐标为()4,23B.()4,4A.()11.(2023·浙江绍兴·统考中考真题)如图,在∥交AC于点E;过点D作DF∥DE AB的面积,则一定能求出(上的点,2DM ME=.若已知CMNA.AFE△的面积C .BCN △的面积D .DCE △的面积12.(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,ADE V 和BCE 是位于直线AB 同侧的两个等边三角形,点,P F 分别是,CD AB 的中点.若4AB =,则下列结论错误..的是()A .PA PB +的最小值为33B .PE PF +的最小值为23C .CDE 周长的最小值为6D .四边形ABCD 面积的最小值为33二、填空题13.(2023·四川达州·统考中考真题)在ABC 中,43AB =,60C ∠=︒,在边BC 上有一点P ,且12BP AC =,连接AP ,则AP 的最小值为___________.14.(2023·浙江宁波·统考中考真题)如图,在Rt ABC △中,90C ∠=︒,E 为AB 边上一点,以AE 为直径的半圆O 与BC 相切于点D ,连接AD ,3,35BE BD ==.P 是AB 边上的动点,当ADP △为等腰三角形时,AP 的长为_____________.15.(2023·四川凉山·统考中考真题)如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.16.(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上17.(2023·河南·统考中考真题)以点D,M,N为顶点的三角形是直角三角形时,18.(2023·湖南·统考中考真题)如图,在矩形B C D A→→→运动.运动过程中,线段CB'19.(2023·广西·统考中考真题)如图,在边长为,的中点,则N分别是EF AF20.(2023·山东·统考中考真题)如图,在四边形点E在线段BC上运动,点21.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD 中,5AB =,12AD =,对角线AC 与BD交于点O ,点E 为BC 边上的一个动点,EF AC ⊥,EG BD ⊥,垂足分别为点F ,G ,则EF EG +=___________.22.(2023·山东烟台·统考中考真题)如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.23.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ' ,当点A '恰好落在EC 上时,DE 的长为______.24.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,点B 的坐标为()86-,,过点B 分别作x 轴、y 轴的垂线,垂足分别为点C 、点A ,直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上,动点N 在直线26y x =--上,若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为________25.(2023·四川自贡·统考中考真题)如图,直线段AB 上一动点,点H 是直线BE DF +取最小值时,3BH 三、解答题26.(2023·重庆·统考中考真题)如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.27.(2023·辽宁大连·统考中考真题)如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.28.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.29.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t 秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N 在运动的过程中,在坐标平面内是否存在一点Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q 的坐标,若不存在,说明理由.30.(2023·江苏苏州·统考中考真题)某动力科学研究院实验基地内装有一段笔直的轨道AB ,长度为1m 的金属滑块在上面做往返滑动.如图,滑块首先沿AB 方向从左向右匀速滑动,滑动速度为9m /s ,滑动开始前滑块左端与点A 重合,当滑块右端到达点B 时,滑块停顿2s ,然后再以小于9m /s 的速度匀速返回,直到滑块的左端与点A 重合,滑动停止.设时间为()s t 时,滑块左端离点A 的距离为()1m l ,右端离点B 的距离为()2m l ,记12,d l l d =-与t 具有函数关系.已知滑块在从左向右滑动过程中,当 4.5s t =和5.5s 时,与之对应的d 的两个值互为相反数;滑块从点A 出发到最后返回点A ,整个过程总用时27s (含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点A 到点B 的滑动过程中,d 的值________________;(填“由负到正”或“由正到负”)(2)滑块从点B 到点A 的滑动过程中,求d 与t 的函数表达式;(3)在整个往返过程中,若18d =,求t 的值.31.(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点(3,0),(0,1),(23,1)A B D ,矩形EFGH 的顶点1130,,3,,0,222E F H ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.①如图②,当边E F ''与AB 相交于点M 、边G H ''与BC 相交于点N ,且矩形E F G H ''''与菱形为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当2311334t ≤≤时,求S 的取值范围(直接写出结果即可).32.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.。
2021年中考数学专题训练 《一次函数:动点综合》(含答案详解)
2021年九年级中考数学一轮复习专题《一次函数:动点综合》1.在平面直角坐标系中,直线y=kx﹣4k+4过定点C,B(0,m)(其中0<m<8),点A在x轴的正半轴上且满足∠ACB=90°.(1)如图1,直接写出定点C的坐标,直接写出点A的坐标.(用含m的式子表示)(2)如图2,作矩形AOBD,连接CD.①当0<m<4时,求的值.②是否存在m的值使得OA=2CD?若存在,求出m的值,若不存在,举反例并说明理由.2.直线y=k(x﹣6)交x轴的正半轴于点A,交y轴的正半轴于点B,且△AOB的面积等于27.(1)如图1,求直线AB的解析式;(2)如图2,P为线段AB上一点,过点B作BD∥x轴,交OP的延长线于点D,设点P的横坐标为m,线段BD的长为d.求d与m之间的函数关系式;(3)如图3,在(2)的条件下,过点P作PE⊥y轴,垂足为E,连接AE交OP于点F,且DE+EF=AF,Q为EP延长线上一点,若∠AQD=90°,求PQ的长.3.如图①,在矩形OACB中,点A、B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.(1)请直接写出点C的坐标;(2)如图②,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB 上一点C'重合,求线段CF的长度;(3)如图③,动点P(x,y)在第一象限,且y=2x﹣6,点D在线段AC上,是否存在直角顶点为P的等腰直角△BDP,若存在,请求出点P的坐标;若不存在,请说明理由.4.如图直线y=﹣2x+7与x轴、y轴分别交于点C、B,与直线y=x交于点A.(1)求点A的坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则点P的坐标是;(3)点Q在线段AB上,使△OAQ的面积等于6,求点Q的坐标.5.如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求直线AB的函数解析式;(2)若点C在直线AB上,△AOC的面积等于20,求C点的坐标.6.如图,在平面直角坐标系中,边长为4的正方形OABC的顶点A、C分别在y轴、x 轴的正半轴上,点O在原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ,当点A第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N.(1)若θ=30°时,求点A的坐标;(2)设△MBN的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论.7.如图,在平面直角坐标系中,一条直线y=kx+3经过A(1,1)和C(﹣2,m)两点.(1)求m的值;(2)设这条直线与y轴相交于点B,求△OBC的面积.8.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(﹣5,﹣3)和E(﹣2,0),AB=AC,∠BAC=90°,将△ABC平移可得到△DEF,点A、B、C的对应点分别为点D、E、F.(1)求点C的坐标;(2)求直线EF与y轴的交点坐标.9.如图,在平面直角坐标系xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x 轴交于点A,与y轴的负半轴交于点B,以AB为边、B为直角顶点作等腰直角△ABC.(1)无论k取什么值,直线l一定经过一个定点,求这个定点坐标.(2)若直线l经过点(2,﹣3),当点C在第三象限时,求C点坐标.(3)若k>0,C在直线l左侧,则OC+AC的最小值为.10.如图,直线y=与坐标轴分别交于点A、B,与直线y=x交于点C,在如图线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P,Q其中一点停止运动时,另一点也停止运动.分别过点P、Q做x轴的垂线,交直线AB、OC于点E,F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.参考答案1.解:(1)∵y =kx ﹣4k +4=k (x ﹣4)+4, ∴当x =4时,y =4,∴定点C 坐标为(4,4),当4<m <8时,如图1,过点C 作CE ⊥OA 于E ,CF ⊥OB 于F ,∴CE =CF =4,∠CFB =∠CEA =90°=∠AOB , ∴∠ECF =90°=∠ACB , ∴∠FCB =∠ECA ,∴△ACE ≌△BCF (ASA ), ∴BF =AE =4﹣m ,∴OA =4+4﹣m =8﹣m ,∴点A (8﹣m ,0),当0<m ≤4时,同理可求点A (8﹣m ,0), 故答案为:(4,4),(8﹣m ,0); (2)①∵四边形ADBO 是矩形, ∴AD =OB =m ,OA =BD =8﹣m , ∴点D (8﹣m ,m ),∴CD ==(4﹣m ),∴==;②当m =4时,点C 与点D 重合,不合题意舍去; 当0<m <4时,∵OA =2CD , ∴8﹣m =2(4﹣m ),∴m =,当4<m <8时,∵OA =2CD ,∴8﹣m =2(m ﹣4),∴m =,综上所述:m =或.2.解:(1)∵直线y =k (x ﹣6)交x 轴的正半轴于点A ,交y 轴的正半轴于点B , ∴点B (0,﹣6k ),点A (6,0),∵△AOB 的面积等于27,∴×6×(﹣6k )=27,∴k =﹣, ∴直线AB 的解析式为:y =﹣(x ﹣6)=﹣x +9; (2)∵k =﹣,∴点B (0,9),∵点P 的横坐标为m ,∴点P 的纵坐标为﹣m +9, ∵BD ∥x 轴,∴△BDP ∽△AOP ,∴,∴d =;(3)如图3,延长DB ,AE 交于点M ,过点A 作AG ⊥EQ 于G ,过点D 作DH ⊥EQ 于H , ∵点P (m ,﹣m +9), ∴点E (0,﹣m +9),∴直线AE解析式为y=,∵DB⊥y轴,∴点M纵坐标为9,∴点M的横坐标为,∴MB=BD,又∵DM⊥BE,∴ME=DE,∵DE+EF=AF,∴ME+EF=AF,∴MF=AF,∵DB∥OA,∴△DMF∽△OAF,∴,∴MD=OA=6,∴BD=MB=3,∴3=,∴m=2,∴点P(2,6),设点Q坐标为(a,6),∵DH⊥EQ,AG⊥EQ,∴∠DHQ=∠AGQ=90°=∠DQA,∴∠DQH+∠AQG=90°=∠DQH+∠HDQ,∴∠AQG=∠HDQ,∴△DHQ∽△QGA,∴,∴,∴a=9或a=0(舍去),∴点Q(9,6),∴PQ=7.3.解:(1)∵四边形ABCD是矩形,∴BC=OA=8,AC=OB=6,AC∥OB,BC∥OA,∴点C的坐标(8,6);(2)∵BC=8,AC=6,∴AB===10,∵把△ACF沿着AF折叠,点C刚好与线段AB上一点C'重合,∴AC=AC'=6,CF=C'F,∠C=∠AC'F=60°,∴BC'=AB﹣AC'=4,∵BF2=C'F2+C'B2,∴(8﹣CF)2=CF2+16,∴CF=3;(3)设点P(a,2a﹣6),当点P在BC下方时,如图③,过点P作EF∥BC,交y轴于E,交AC于F,∵△BPD是等腰直角三角形,∴BP=PD,∠BPD=90°,∴EF∥BC,∴∠BEP=∠BOA=90°,∠PFD=∠CAO=90°,∴∠BPE+∠DPF=∠DPF+∠PDF,∴∠BPE =∠PDF ,∴△BPE ≌△PDF (AAS ),∴PF =BE =6﹣(2a ﹣6)=12﹣2a ,EP =DF , ∵EF =EP +PF =a +12﹣2a =8, ∴a =4,∴点P (4,2);当点P 在BC 的上方时,如图④,过点P 作EF ∥BC ,交y 轴于E ,交AC 的延长线于F ,同理可证△BPE ≌△PDF ,∴BE =PF =2a ﹣6﹣6=2a ﹣12, ∵EF =EP +PF =a +2a ﹣12=8, ∴a =,∴点P (,),综上所述:点P 坐标为(4,2)或(,).4.解:(1)联立方程组得:,解得:,∴A 点坐标是(2,3);(2)设P 点坐标是(0,y ),∵△OAP 是以OA 为底边的等腰三角形,∴OP =PA ,∴22+(3﹣y )2=y 2, 解得y =,∴P 点坐标是(0,),故答案为(0,);(3)∵直线y =﹣2x +7与x 轴、y 轴分别交于点C 、B , ∴B (0,7),C (,0), ∴S △AOB =×7×2=7>6, 设点Q 的坐标是(x ,y ), 作QD ⊥y 轴于点D ,如图, 则QD =x ,∴S △OBQ =S △OAB ﹣S △OAQ =7﹣6=1,∴OB •QD =1,即×7x =1,∴x =, 把x =代入y =﹣2x +7,得y =,∴Q 的坐标是(,).5.解:(1)∵A(4,3)∴OA=OB==5,∴B(0,﹣5),设直线AB的解析式为y=kx+b,则有,∴,∴直线AB的解析式为y=2x﹣5;(2)设C(x,2x﹣5),当C在第一象限时,S△AOC=S△BOC﹣S△AOB=×5x﹣×5×4=20,解得x=12,∴C(12,19);当C在第四象限时,S△AOC=S△BOC+S△AOB=×(﹣5x)+×5×4=20,解得x=﹣4,∴C(﹣4,﹣13),综上,C的坐标为(﹣4,﹣13)或(12,19).6.解:(1)作AD⊥y轴于D,∵∠AOD=30°,OA=4,∴AD=,OD=OA=2,∴A(2,2);(2)在旋转正方形OABC的过程中,P值不变.证明:在图2中,将△AOM绕点O顺时针旋转90°,得到△COE.由旋转,可知:OM=OE,AM=CE,∠AOM=∠COE,∠MOE=90°.∵直线OM的解析式为y=x,∴∠MON=45°.∵∠MOE=90°,∴∠EON=45°.在△MON和△EON中,,∴△MON≌△EON(SAS),∴MN=EN=CN+AM.∴P=BM+BN+MN=BM+AM+BN+CN=2AB,∴在旋转正方形OABC的过程中,P值不变.7.解:(1)∵一条直线y=kx+3经过A(1,1),∴1=k+3,解得:k=﹣2,所以直线解析式为:y=﹣2x+3,把C(﹣2,m)代入y=﹣2x+3中,得:m=7;(2)令x=0,则y=3,所以直线与y轴的交点B为(0,3),由(1)得点C的坐标为(﹣2,7),所以△OCB的面积==3.8.解:(1)如图,过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N,则∠AMB=∠CNA=90°,Array∴∠ABM+∠BAM=90°,∵∠BAC=90°,∴∠CAN+∠BAM=90°,∴∠ABM=∠CAN,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN,BM=AN.∵A(﹣4,0),B(﹣5,﹣3),∵OA=4,BM=3=AN,OM=5,∴CN=AM=OM﹣OA=1,ON=OA﹣AN=1,∴点C的坐标为(﹣1.﹣1);(2)∵在平移过程中,点B(﹣5,﹣3)对应点E(﹣2.0),点(C(﹣1,﹣1)对应点F,∴F(2,2),设直线EF的函数表达式为y=kx+b,则,解得,∴直线EF的函数表达式为y=0.5x+1,在y=0.5x+1中,当x=0时,y=1,∴直线EF与y轴的交点坐标为(0,1).9.解:(1)∵y=kx﹣4k=k(x﹣4),∴无论k取什么值,直线l一定经过一个定点(4,0);(2)∵直线l经过点(2,﹣3),∴﹣3=2k﹣4k,解得k=,∴直线l:y=x﹣6,∴A(4,0),B(0,﹣6),∴OA=4,OB=6,作CD⊥y轴于D,如图1,∵△ABC是以AB为边、B为直角顶点作等腰直角△ABC,∴∠ABC=90°,AB=BC,∵∠ABO+∠OAB=90°,∴∠CBD=∠OAB,在△CBD和△BOA中,,∴△CBD≌△BOA(AAS),∴CD=OB=6,BD=OA=4,∴OD=OB﹣BD=6﹣4=2,∴C(﹣6,﹣2);(3)由(1)可知直线l一定经过一个定点(4,0);∴A(4,0),∴OA=4,∴OC+AC的最小值为4,故答案为4.10.解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴点A(8,0),点B(0,4),∴BO=4,AO=8,∴,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴=,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4,综上所述:当t=2或4时,矩形PEFQ为正方形;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值==,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t>,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,∴t=4时,S矩形PEFQ的最大值=3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值=16.。
2021年中考数学几何动态综合压轴题(题集)
2021年中考数学几何动态综合压轴题(题集)学校:___________姓名:___________班级:___________考号:___________1.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E,A,D在同一条直线上),发现BE=DG 且BE⊥DG.小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转,(如图1)还能得到BE=DG吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转,(如图2)试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG和矩形ABCD,且23AE ABAG AD==,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,BG2+DE2是定值,请求出这个定值.2.如图,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t秒.(1)若a=2,那么t为何值时△BPQ与△BDA相似?(2)已知M为AC上一点,若当t=32时,四边形PQCM是平行四边形,求这时点P的运动速度.(3)在P、Q两点运动过程中,要使线段PQ在某一时刻平分△ABD的面积,点P的运动速度应限制在什么范围内?(提示:对于一元二次方程,有如下的结论:若x1•x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=﹣ba,x1•x2=ca)3.如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D 相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.4.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.5.如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值;(3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.6.如图,在正方形ABCD 中,10AB cm =,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF AE ⊥,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2cm 的速度运动,当点E 与点D 重合时,运动停止.设BEF ∆的面积为2y cm ,E 点的运动时间为x 秒.(1)求证:CE EF =;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围;(3)求BEF ∆面积的最大值.7.如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD=x,△BDE的面积为S.(1)当α=30°时,求x的值.(2)求S与x的函数关系式,并写出x的取值范围;SΔABC时,判断⊙E与A′C的位置关系,并求相应的tanα值.(3)以点E为圆心,BE为半径作⊙E,当S=148.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;(2)当点E落在AC边上时,求t的值;(3)当点Q在边AB上时,设▱PEQD的面积为S(S>0),求S与t之间的函数关系式;(4)连接CD,直接写出CD将▱PEQD分成的两部分图形面积相等时t的值.9.∠2017广东省广州市,第24题,14分)如图,矩形ABCD 的对角线AC ∠BD 相交于点O ∠△COD 关于CD 的对称图形为△CED ∠∠1)求证:四边形OCED 是菱形;∠2)连接AE ,若AB =6cm ∠BC ∠①求sin ∠EAD 的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1c m/s 的速度沿线段OP 匀速运动到点P ,再以1.5c m/s 的速度沿线段P A 匀速运动到点A ,到达点A 后停止运动,当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.10.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).11.如图,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA (不包括端点)上运动,且满足AE CG =,AH CF =.(1)求证:AEH CGF ∆≅∆;(2)试判断四边形EFGH 的形状,并说明理由.(3)请探究四边形EFGH 的周长一半与矩形ABCD 一条对角线长的大小关系,并说明理由.12.如图,在四边形ABCD 中,AD ∥BC∠∠E∠F 同时从B 点出发,沿射线BC 向右匀速移动,已知点F 的移动速度是点E 移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG ,设E 点移动距离为x∠0∠x∠6∠∠∠1∠∠DCB= 度,当点G 在四边形ABCD 的边上时,x= ∠∠2)在点E∠F 的移动过程中,点G 始终在BD 或BD 的延长线上运动,求点G 在线段BD 的中点时x 的值; ∠3)当2∠x∠6时,求△EFG 与四边形ABCD 重叠部分面积y 与x 之间的函数关系式,当x 取何值时,y 有最大值?并求出y 的最大值.13.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,连接EF,求∠DEF的余切值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)连接CE,若△CDE为等腰三角形,求BF的长.14.如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?15.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E∠GF ⊥CD ,垂足为点F∠ ∠1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE的值为 ∠ ∠2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°∠α∠45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:∠3)拓展与运用:正方形CEGF 在旋转过程中,当B∠E∠F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6∠GH=2,则BC= ∠16.如图所示,ABCD 为平行四边形,13AD =,25AB =,DAB α∠=,且5cos 13α=,点E 为直线CD 上一动点,将线段EA 绕点E 逆时针旋转α得到线段EF ,连接CF .(1)求平行四边形ABCD 的面积;(2)当点C,B,F三点共线时,设EF与AB相交于点G,求线段BG的长;(3)求线段CF的长度的最小值.17.如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.18.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.19.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为()4,4-,点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点P 停止运动,点Q 也停止运动.连接BP ,过点P 作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D ,BD 与y 轴交于点E ,连接PE ,设点P 运动的时间为()s t .(1)求PBD ∠的度数及点D 的坐标(用t 表示).(2)当t 为何值时,PBE ∆为等腰三角形?(3)探索POE ∆周长是否随时间t 的变化而变化.若变化,说明理由;若不变,试求出这个定值.20.如图,平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,OA =,OC =8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1cm 的速度匀速运动.设运动时间为t 秒.(1)用t 的式子表示∠OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当∠OPQ 与∠P AB 和∠QPB 相似时,抛物线y =14x 2+bx +c 经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.21.如图,在ABC中,∠A=90°,AB=3,AC=4,点M、Q分别是边AB、BC上的动点(点M不与A、B重合),且MQ∠BC,过点M作MN∠BC.交AC于点N,连接NQ,设BQ=x.(1)是否存在一点Q,使得四边形BMNQ为平行四边形,并说明理由;(2)当BM=2时,求x的值;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.22.如图1,在▱ABCD中,AB=2,BC=6,∠D=60°,点E从B点出发沿着线段BC每秒1个单位长度的速度向C 运动,同时点F从B点出发沿着射线BC每秒2单位长度的速度向C运动,以EF为边在直线BC上方作等边△EFG,设点E、F的运动时间为t秒,其中0<t≤4.(1)当t=秒时,点G落在线段AD上;(2)如图2,连接BG,试说明:无论t为何值,BG始终平分∠ABC;(3)求△EFG与▱ABCD重叠部分面积y与t之间的函数关系式,当t取何值时,y有最大值?并求出y的最大值.23.如图,四边形ABCD 为一个矩形纸片,AB =3∠BC =2,动点P 自D 点出发沿DC 方向运动至C 点后停止,△ADP 以直线AP 为轴翻折,点D 落在点D 1的位置,设DP =x ∠△AD 1P 与原纸片重叠部分的面积为y ∠∠1)当x 为何值时,直线AD 1过点C ∠ ∠2)当x 为何值时,直线AD 1过BC 的中点E ∠ ∠3)求出y 与x 的函数表达式.24.如图,已知ABC ∆的顶点坐标分别为()()3,0,0,4(,30),A B C -.动点,M N 同时从A 点出发,M 沿,A C N →沿折线,A B C →→均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN .(1)求直线BC的解析式;(2)移动过程中,将三角形AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标﹔M N移动时,记三角形ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.(3)当点,25.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.26.如图,在同一平面上,一个正方形纸ABCD与一个等腰直角三角形纸片ECD拼在一起,使一直角边与正方形一边完全重合,且顶点B、E分别在CD的两侧,连接AE交CD于F,点P是边AB上的动点,连接PF,作QF⊥FP 交BE于Q,连接PQ,AB=4,设QC=x.(1)求当点P与点A重合时x的值;(2)是否存在这样的点P,连接PD、QD,使得PD=QD?若存在,请求出AP的长度;若不存在,请说明理由;(3)设△PQD的面积为y,求y关于x的函数关系式,并求出y的最小值.27.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.(1)请判断线段AE和CD的数量关系,并说明理由;(2)当A、E、F三点在同一直线上时,求CD的长;(3)设AE的中点为M,连接FM,试求线段FM长的最大值.28.如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点,A B 不重合),连接CE ,过点B 作BF CE ⊥于点G ,交AD 于点F . (1)求证:ABF BCE ∆∆≌;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC DG =;(3)如图3,在(2)的条件下,过点C 作CM DG ⊥于点H ,分别交,AD BF 于点,M N ,求MNNH的值.29.已知四边形ABCD 是菱形,AC 、BD 交于点E ,点F 在CB 的延长线上,连结EF 交AB 于H ,以EF 为直径作⊙O ,交直线AD 于A 、G 两点,交BC 于K 点.(1)如图1,连结AF ,求证:四边形AFBD 是平行四边形; (2)如图2,当∠ABC =90°时,求tan ∠EFC 的值;(3)如图3,在(2)的条件下,连结OG ,点P 在弧FG 上,过点P 作PT ∥OF 交OG 于T ,PR ∥OG 交OF 于R 点,连结TR ,若AG =2,在点P 运动过程中,探究线段TR 的长是否为定值,如果是,则求出这个定值;如果不是,请说明理由.方作正方形AEFG .图(1) 图(2) (1)连接GD ,求证:DG =BE ; (2)连接FC ,求∠FCN 的度数;(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB=m ,BC=n (m 、n 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线BC 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变?若∠FCN 的大小不变,请用含m 、n 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请画图说明.31.已知,在ABC 中,90,45BAC ABC ∠=∠=,点D 为直线BC 上一动点(点D 不与点,B C 重合).以AD 为边作正方形,ADEF 连接CF . 观察猜想:(1)如图1,当点D 在线段BC 上时,判断CF CD BC 、、之间数量关系,并证明;类比探究:(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出,,CF BC CD 三条线段之间的关系; 拓展延伸:(3)如图3,当点D 在线段BC 的反向延长线上时,且点,A F 分别在直线BC 的两侧,其他条件不变; ①请直接写出,,CF BC CD 三条线段之间的关系;②若正方形ADEF 的边长为、对角线,AE DP 相交于点O ,连接OC ,求OC 的长度.32.在数学活动中,小明发现将两块不同的等腰直角三角板进行旋转,能得到一组结论:在其中一块三角板Rt△ABC,AB=BC=4,∠B为直角,将另一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB、BC或其延长线于E、F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,求出CF;若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图②加以证明;(3)若将三角板的直角原点放在斜边上的点P处(如图③),当15APAC,PF和PE有怎样的数量关系,证明你发现的结论.33.两张矩形纸片ABCD和CEFG完全相同,且AB=CE,AD>AB.操作发现:(1)如图1,点D在GC上,连接AC、CF、CG、AG,则AC和CF有何数量关系和位置关系?并说明理由.实践探究:(2)如图2,将图1中的纸片CEFG以点C为旋转中心逆时针旋转,当点D落在GE上时停止旋转,则AG和GF 在同一条直线上吗?请判断,并说明理由.(1)如图1,ABC ∆中,90ACB ∠=︒,2BC AC =,点P 在AB 上,PD AC ⊥于点D ,PE BC ⊥于点E ,连接BD ,DE 求证: BDE ∆是“半高”三角形;(2)如图2,ABC ∆是“半高”三角形,且BC 边上的高是“半高”,点P 在AB 上,//PQ BC 交AC 于点Q ,PM BC⊥于点M ,QN BC ⊥于点N .①请探究BM ,PM ,CN 之间的等量关系,并说明理由; ②若ABC ∆的面积等于16,求MQ 的最小值.35.附加题,已知:矩形ABCD ,2,5AB BC ==,动点P 从点B 开始向点C 运动,动点P 速度为每秒1个单位,以AP 为对称轴,把ABP ∆折叠,所得AB P '∆与矩形ABCD 重叠部分面积为y ,运动时间为t 秒.(1)当运动到第几秒时点B '恰好落在AD 上; (2)求y 关于t 的关系式,以及t 的取值范围; (3)在第几秒时重叠部分面积是矩形ABCD 面积的14; (4)连接PD ,以PD 为对称轴,将PCD ∆作轴对称变换,得到PC D '∆,当t 为何值时,点P B C ''、、在同一直线上?(1)如图1,若AB=4,DE,求BF的长;(2)如图2.连接AE,交BF于点H,若DF=HF=2,求线段AB的长;(3)如图3,连接BF,AB=,设EF=x,△BEF的面积为S,请用x的表达式表示S,并求出S的最大值;当S取得最大值时,连接CE,线段DB绕点D顺时针旋转30°得到线段DJ,DJ与CE交于点K,连接CJ,求证:CJ⊥CE.37.在∠ABC中,有890CA CB C︒,==∠=,如图,△DEF的三个顶点D,E,F分别在∠ABC的边BC,AC,AB 上.(1)已知点F是AB的中点.∠如图∠,若△DEF是等边三角形,试直接写出正△DEF的边长;∠如图∠,若90∠=,△DEF 的面积为10,求CD的长;EFD︒(2)若90∠=,DF=DE, △DEF的面积是否存在最小值?若存在,求此时CD的值;若不存在,请说明理由.EFD︒38.如图,在平面直角坐标系中,已知点A∠10∠0∠∠B∠4∠8∠∠C∠0∠8),连接AB∠BC ,点P 在x 轴上,从原点O 出发,以每秒1个单位长度的速度向点A 运动,同时点M 从点A 出发,以每秒2个单位长度的速度沿折线A∠B∠C 向点C 运动,其中一点到达终点时,另一点也随之停止运动,设P∠M 两点运动的时间为t 秒. ∠1)求AB 长;∠2)设△PAM 的面积为S ,当0≤t≤5时,求S 与t 的函数关系式,并指出S 取最大值时,点P 的位置; ∠3∠t 为何值时,△APM 为直角三角形?39.正方形ABCD 的边长为6cm ,点M E 、分别是线段BD AD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作MN AF ⊥,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:AF MN =;(2)如图2,若点M 从点D 出发,以1/cm s 的速度沿DA 向点A 运动,同时点E 从点B /s 的速度沿BD 向点D 运动,运动时间为ts . ①设ycm BF =,求y 关于t 的函数表达式; ②当2BN AN =时,连接FN ,求FN 的长.40.已知ABC ∆是等边三角形,2BC cm =,点D 是直线BC 上的一动点,以AD 为边在直线BC 的同侧作等边三角形ADE .过点C 作CF DE 交直线AB 于点F ,连结EF .(1)如图1,当点D 在线段BC 上时,求证:四边形DCFE 是平行四边形.(2)如图2,点D 从B 点出发,在直线BC 上沿B 点左侧以每秒1cm 的速度移动,移动时间为t 秒(0t >). ①当2t =时,求证:四边形DCFE 是矩形;②在点D 的移动过程中,四边形DCFE 有没有可能成为菱形?说明理由.41.已知正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且45ECF ∠=︒,直线CE 与直线AD 交于点H ,直线CF 交直线AB 于点G ,连接EF ,GH .(1)如图1,当DF BE =时,求证:FC 平分DFE ∠;(2)如图2,将图1中的GCH ∠绕点C 逆时针旋转,其他条件不变,(1)的结论是否成立?说明理由;(3)当CGH 是等腰三角形时,直接写出AG 的长.42.如图,在矩形ABCD 中,4AB cm =,8BC cm =,点P 从点D 出发向点A 运动,运动到点A 即停止;同时点Q 从点B 出发向点C 运动,运动到点C 即停止.点P 、Q 的速度的速度都是1/cm s ,连结PQ ,AQ ,CP ,设点P 、Q 运动的时间为()t s .()1当t 为何值时,四边形ABQP 是矩形?()2当t 为何值时,四边形AQCP 是菱形?()3分别求出()2中菱形AQCP 的周长和面积.43.已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与BC 、DC 的延长线交于点E 、F ,连接EF ,设CE=a ,CF=b .(1)如图1,当时,求b 的值;(2)当a=4时,如图2,求出b 的值;(3)如图3,请写出∠EAF 绕点A 旋转的过程中a 、b 满足的关系式,并说明理由.44.如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤6),试求S 与t 的函数表达式;(3)在题(2)的条件下,是否存在某一时刻,使得△OMN 的面积与OABC 的面积之比为3:4?如果存在,请求出t 的取值;如果不存在,请说明理由.45.在矩形ABCD 中,AE BD ⊥于点E ,点P 是边AD 上一点.(1)若BP 平分ABD ∠,交AE 于点G ,PF BD ⊥于点F ,如图①,证明四边形AGFP 是菱形;(2)若PE EC ⊥,如图②,求证:AE AB DE AP ⋅=⋅;(3)在(2)的条件下,若1AB =,2BC =,求AP 的长.46.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12.点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1.设CF =kEF ,则k = ;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2.求证:BE -DE =2CF ; (3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的取值范围.47.在平面直角坐标系中,直线ABy =kx ﹣1分别交x 轴、y 轴于点A 、B ,直线CDy =x+2分别交x 轴、y 轴于点D 、C ,且直线AB 、CD 交于点E ,E 的横坐标为﹣6.(1)如图①,求直线AB的解析式;(2)如图②,点P为直线BA第一象限上一点,过P作y轴的平行线交直线CD于G,交x轴于F,在线段PG取点N,在线段AF上取点Q,使GN=QF,在DG上取点M,连接MN、QN,若∠GMN=∠QNF,求DMDG的值;(3)在(2)的条件下,点E关于x轴对称点为T,连接MP、TQ,若MP∥TQ,且GN:NP=4:3,求点P的坐标.48.如图,在矩形ABCD中,点E是对角线AC上一动点,连接BE,作CF⊥BE分别交BE于点G,AB于点F.(1)如图1,若CF恰好平分∠BCA,求证:△CGE≌△CGB;(2)如图2,若AEAC=15,取BC的中点H,连接AH交BE于点P,求证:∠AH=3AP;∠BH2=BF•BA.49.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.50.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,求出AC的长.。
中考数学复习专题动点综合问题含中考真题解析
中考数学复习专题动点综合问题含中考真题解析 The document was prepared on January 2, 2021专题36 动点综合问题解读考点知识点名师点晴动点问题中的特殊图形等腰三角形与直角三角形利用等腰三角形或直角三角形的特殊性质求解动点问题相似问题利用相似三角形的对应边成比例、对应角相等求解动点问题动点问题中的计算问题动点问题的最值与定值问题理解最值或定值问题的求法动点问题的面积问题结合面积的计算方法来解决动点问题动点问题的函一次函数或二次函数的图象结合函数的图象解决动点问题数图象问题2年中考【2015年题组】1.(2015牡丹江)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A.考点:动点问题的函数图象.2.(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A. B. C.D.【答案】B.【解析】试题分析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP 的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选B.考点:1.动点问题的函数图象;2.分段函数;3.分类讨论;4.压轴题.3.(2015资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A. B.C. D.【答案】B.考点:1.动点问题的函数图象;2.分段函数.4.(2015广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A. B. C. D.【答案】D.【解析】考点:1.动点问题的函数图象;2.压轴题;3.动点型;4.分段函数.5.(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C.D.【答案】C.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BPBQ,解y=123xx=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQBC,解y=12x3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12APBQ,解y=12(9﹣3x)x=29322x x;故D选项错误.故选C.考点:1.动点问题的函数图象;2.分段函数.6.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t 的函数关系的图象是()A. B. C.D.【答案】B.考点:1.动点问题的函数图象;2.数形结合.7.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12【答案】A .考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.8.(2015乐山)如图,已知直线334y x =-与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最大值是( )A .8B .12C .212D .172【答案】C .【解析】试题分析:∵直线334y x =-与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴点C (0,1)到直线34120x y --=的距离是223041234⨯-⨯-+=165,∴圆C 上点到直线334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525⨯⨯=212,故选C .考点:1.圆的综合题;2.最值问题;3.动点型.9.(2015庆阳)如图,定点A (﹣2,0),动点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为 .【答案】(﹣1,﹣1).考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.动点型;4.最值问题;5.综合题.10.(2015三明)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是______ .【答案】1.考点:1.翻折变换(折叠问题);2.动点型;3.最值问题;4.综合题..11.(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).【解析】试题分析:连接ED ,如图,∵点B 的对称点是点D ,∴DP=BP,∴ED 即为EP+BP 最短,∵四边形ABCD 是菱形,顶点B (2,0),∠DOB=60°,∴点D 的坐标为(13点C 的坐标为(33OC 的解析式为:3y x =,∵点E 的坐标为(﹣1,0),∴可得直线ED 的解析式为:(13)1y x =+-,∵点P 是直线OC 和直线ED 的交点,∴点P 的坐标为方程组33(13)1y x y x ⎧=⎪⎨⎪=-⎩的解,解方程组得:23323x y ⎧=⎪⎨=-⎪⎩,所以点P 的坐标为(233,23-故答案为:(33,23-).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(2015咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG>GE ;②AE=BF;③点G 运动的路径长为π;④CG 的最小值为51-.其中正确的说法是 .(把你认为正确的说法的序号都填上)【答案】②④.由于OC 和OG 的长度是一定的,因此当O 、G 、C 在同一条直线上时,CG 取最小值,22OB BC +14+5CG 的最小值为OC ﹣51,故④正确;综上所述,正确的结论有②④.故答案为:②④.考点:1.四边形综合题;2.综合题;3.动点型;4.压轴题.13.(2015江西省)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO 上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.【答案】23或27或2.图(3)中,∠APB=90°,∵AO=BO,∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°,∴△APO是等边三角形,∴AP=2;故答案为:23或27或2.考点:1.勾股定理;2.含30度角的直角三角形;3.直角三角形斜边上的中线;4.分类讨论;5.动点型;6.综合题;7.压轴题。
专题26动点综合问题(共45题)-2021年中考数学真题分项汇编(解析版)
中考数学真题分项汇编(全国通用)专题26 动点综合问题【共45题】一.选择题(共11小题)1.(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.【解析】由题意当0≤x≤4时,y=12×AD×AB=12×3×4=6,当4<x<7时,y=12×PD×AD=12×(7﹣x)×4=14﹣2x.故选:D.2.(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解析】如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A . 3.(2020•江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt △OAB 向右上方平移,得到Rt △O 'A 'B ',且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A 'B '的表达式为( )A .y =xB .y =x +1C .y =x +12D .y =x +2【分析】求得A 、B 的坐标以及抛物线的对称轴,根据题意设出A ′(1,n ),则B ′(4,n +3),把B ′(4,n +3)代入抛物线解析式求得n ,即可求得A ′、B ′的坐标,然后根据待定系数法即可求得直线A 'B '的表达式.【解析】如图,∵抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =﹣1或3,令x =0,求得y =﹣3,∴A (3,0),B (0,﹣3),∵抛物线y =x 2﹣2x ﹣3的对称轴为直线x =−−22×1=1,∴A ′的横坐标为1,设A ′(1,n ),则B ′(4,n +3),∵点B '落在抛物线上,∴n +3=16﹣8﹣3,解得n =2,∴A ′(1,2),B ′(4,5),设直线A 'B '的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A 'B '的表达式为y =x +1,故选:B .4.(2020•衡阳)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m 的函数图象如图2所示.那么▱ABCD的面积为()A.3B.3√2C.6D.6√2【分析】根据函数图象中的数据可以分别求得平行四边形的边AD的长和边AD边上的高BM的长,从而可以求得平行四边形的面积.【解析】过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,如图1所示,由图象和题意可得,AE=6﹣4=2,DE=7﹣6=1,BE=2,∴AB=2+1=3,∵直线BE平行直线y=x,∴BM=EM=√2,∴平行四边形ABCD的面积是:AD•BM=3×√2=3√2.故选:B.5.(2020•辽阳)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据Rt△ABC中,∠ACB=90°,AC=BC=2√2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.【解析】∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x•sin45°=√22x,∴CE=AC﹣AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE•CE=√22x(2√2−√22x)=−12x2+2x=−12(x﹣2)2+2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x﹣2,∴CP=4﹣x,y=12(4﹣x)2=12(x﹣4)2.∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.6.(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.【解析】①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x﹣4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2﹣x)=(3+√3)(12﹣x),为一次函数;故选:D.7.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48【分析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC=√BC2−BP2=√102−82=6,△ABC的面积=12×AC×BP=12×8×12=48,故选:D.8.(2020•广元)如图,AB,CD是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→B→O的路线匀速运动,设∠APD=y(单位:度),那么y与点P运动的时间(单位:秒)的关系图是()A.B.C.D.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→B运动时;(3)当点P沿B→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解析】(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→B运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿B→O运动时,当点P在点B的位置时,y=45°,当点P在点O的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.9.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【分析】连接AE,由题意DE=OE,设DE=OE=x,则OA=OD=2x,AE=2√5,在Rt△AEO中,利用勾股定理构建方程即可解决问题.【解析】如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A .10.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m /s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y 是t 的二次函数,图象是先缓后陡,由此即可判断.【解析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y 是t 的二次函数,图象是先缓后陡, 在右侧上升时,情形与左侧相反,故选:C .11.(2020•河南)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2)D .(4,2)【分析】根据已知条件得到AC =6,OC =2,OB =7,求得BC =9,根据正方形的性质得到DE =OC =OE =2,求得O ′E ′=O ′C ′=2,根据相似三角形的性质得到BO ′=3,于是得到结论.【解析】如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形,∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0),∴AC =6,OC =2,OB =7,∴BC =9,∵四边形OCDE 是正方形,∴DE =OC =OE =2,∴O ′E ′=O ′C ′=2,∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°,∴E ′O ′∥AC ,∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC , ∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2),故选:B .二.填空题(共11小题)12.(2020•通辽)如图①,在△ABC 中,AB =AC ,∠BAC =120°,点E 是边AB 的中点,点P 是边BC 上一动点,设PC =x ,P A +PE =y .图②是y 关于x 的函数图象,其中H 是图象上的最低点.那么a +b 的值为 4+2√3 .【分析】点A关于BC的对称点为点A′,连接A′E交BC于点P,此时y最小,进而求解.【解析】如图,将△ABC沿BC折叠得到△A′BC,则四边形ABA′C为菱形,菱形的对角线交于点O,设菱形的边长为2m,在△ABC中,BC=2BO=2×AC sin∠OAC=4m×sin60°=2√3m,从图②看,AB+BE=3√3=3m,解得:m=√3;点A关于BC的对称点为点A′,连接A′E交BC于点P,此时y最小,∵AB=AC,∠BAC=120°,则∠BAA′=60°,故AA′B为等边三角形,∵E是AB的中点,故A′E⊥AB,而AB∥A′C,故∠P A′C为直角,则a=PC=A′Ccos∠BCA′=2mcos30°=4√33m,此时b=AA′=2m,则a+b=2m+4√33m=4+2√3.故答案为4+2√3.13.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE 的面积最小.【解析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .∵AC =CB ,AM =OM ,∴MC =12OB =1,∴点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C ′.∵直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,∴D (4,0),E (0,﹣3),∴OD =4,OE =3,∴DE =√32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE =DM DE , ∴MN 3=35,∴MN =95,当点C 与C ′重合时,△C ′DE 的面积最小,最小值=12×5×(95−1)=2, 故答案为2.14.(2020•福建)设A ,B ,C ,D 是反比例函数y =k x 图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【分析】如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.【解析】如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,15.(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【分析】用待定系数求得反比例函数y=k1x,再与直线y=x联立方程组求得D点坐标,再题意求得运动后P 点的坐标,最后将求得的P 点坐标代入y =k 2x (x >0)求得结果. 【解析】把A (﹣1,﹣4)代入y =k 1x 中得,k 1=4, ∴反比例函数y =k 1x 为y =4x , ∵A (﹣1,﹣4)、B (﹣4,﹣1),∴AB 的垂直平分线为y =x ,联立方程驵{y =4x y =x,解得{x =−2y =−2,或{x =2y =2, ∵AC =BC ,CD ⊥AB ,∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =k 1x (x <0)的图象于点D , ∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =k2x (x >0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则(x +2)2+(x +2)2=(3√2)2,∴x =1,∴P (1,1),把P (1,1)代入y =k2x (x >0)中,得k 2=1, 故答案为:1.16.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 ①②④ .【分析】由折叠的性质可得∠D =∠AD 'E =90°=∠DAD ',AD =AD ',可证四边形ADED '是正方形,可得AD=AD'=D'E=DE=√3,AE=√2AD=√6,∠EAD'=∠AED'=45°,由勾股定理可求EF的长,由旋转的性质可得AE=A'E=√6,∠D'ED''=α,∠EA'D''=∠EAD'=45°,可求A'F=√6−2,可判断①;由锐角三角函数可求∠FED'=30°,由弧长公式可求弧D'D″的长度,可判断②;由等腰三角形的性质可求∠EAA'=∠EA'A=52.5°,∠A'AF=7.5°,可判断③;由“HL”可证Rt△ED'G≌Rt△ED''G,可得∴∠D'GE=∠D''GE=52.5°,可证△AF A'∽△EFG,可判断④,即可求解.【解析】∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD'E=90°=∠DAD',AD=AD',∴四边形ADED'是矩形,又∵AD=AD'=√3,∴四边形ADED'是正方形,∴AD=AD'=D'E=DE=√3,AE=√2AD=√6,∠EAD'=∠AED'=45°,∴D'B=AB﹣AD'=2,∵点F是BD'中点,∴D'F=1,∴EF=√D′E2+D′F2=√3+1=2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=√6,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=√6−2,故①正确;∵tan∠FED'=D′FD′E=1√3=√33,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度=75°×π×√3180°=5√312π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AF A'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AF A'=∠EFG,∴△AF A'∽△EFG,故④正确,故答案为:①②④.17.(2020•东营)如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2√2.【分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=√OP2−1,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解析】连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ长度的最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA=OBtanA=6,在Rt△AOP′中,∠A=30°,∴OP′=12OA=3,∴线段PQ长度的最小值=√32−1=2√2,故答案为:2√2.18.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解析】如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.19.(2020•鄂州)如图,半径为2cm的⊙O与边长为2cm的正方形ABCD的边AB相切于E,点F为正方形的中心,直线OE 过F 点.当正方形ABCD 沿直线OF 以每秒(2−√3)cm 的速度向左运动 1或(11+6√3) 秒时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2.【分析】分两种情形:如图1中,当点A ,B 落在⊙O 上时,如图2中,当点C ,D 落在⊙O 上时,分别求解即可解决问题.【解析】如图1中,当点A ,B 落在⊙O 上时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2此时,运动时间t =(2−√3)÷(2−√3)=1(秒)如图2中,当点C ,D 落在⊙O 上时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2此时,运动时间t =[4+2﹣(2−√3)]÷(2−√3)=(11+6√3)(秒),综上所述,满足条件的t 的值为1秒或(11+6√3)秒.故答案为1或(11+6√3).20.(2020•鄂州)如图,已知直线y =−√3x +4与x 、y 轴交于A 、B 两点,⊙O 的半径为1,P 为AB 上一动点,PQ 切⊙O 于Q 点.当线段PQ 长取最小值时,直线PQ 交y 轴于M 点,a 为过点M 的一条直线,则点P 到直线a 的距离的最大值为 2√3 .【分析】在直线y=−√3x+4上,x=0时,y=4,y=0时,x=4√33,可得OB=4,OA=4√33,得角OBA=30°,根据PQ切⊙O于Q点可得OQ⊥PQ,由OQ=1,因此当OP最小时PQ长取最小值,此时OP ⊥AB,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,根据勾股定理和特殊角30度即可求出PM的长.【解析】如图,在直线y=−√3x+4上,x=0时,y=4,当y=0时,x=4√3 3,∴OB=4,OA=4√3 3,∴tan∠OBA=OAOB=√33,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ=√OP2−OQ2,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP=12OB=2,此时PQ=√22−12=√3,BP=√42−22=2√3,∴OQ=12OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP=12BP=√3,∴BE=√(2√3)2−(√3)2=3,∴OE=4﹣3=1,∵OE=12OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2√3.故答案为:2√3.21.(2020•成都)如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ 于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ 长度的最大值为3√2,线段DH长度的最小值为√13−√2.【分析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.首先利用相似三角形的性质证明EM=2FN,推出EM=2,FN=1,当点P与A重合时,PQ的值最大,解直角三角形求出OD,OH即可解决问题.【解析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.22.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为3cm或5cm.【分析】当点O在点H的左侧⊙O与直线a相切时,OP=PH﹣OH;当点O在点H的右侧⊙O与直线a相切时,OP=PH+OH,即可得出结果.【解析】∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.三.解答题(共23小题)23.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,再由AF=CF=EF ,得到∠AEF =∠EAF ,∠FEC =∠FCE ,从而推断出∠AFD =∠F AE +∠ABF =∠F AE +∠CEF ,从而可求出∠ABF =∠CEF =30°,即可证明.【解析】(1)连接CF ,∵FG 垂直平分CE ,∴CF =EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF =AF ,∴AF =EF ;(2)连接AC ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠F AE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=12∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠F AE+∠ABF=∠F AE+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.24.(2020•金华)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABOC是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴OK =KE =KD =2√2,∵AO =8√2,∴AK =6√2,∴AK =3DK ,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形:如图2中,设AG 交PQ 于H ,过点H 作HN ⊥x 轴于N ,交AC 于M ,设AM =t .∵菱形P AQG ∽菱形ADFE ,∴PH =3AH , ∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AMNH =MHPN =AHPH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM =BM ﹣AB =3t ﹣8,∵HI 是△OPQ 的中位线,∴OP =2IH ,∴HI =HN ,∴8+t =9t ﹣24,∴t =4,∴OP =2HI =2(8+t )=24,∴P (24,0).②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形:如图4中,QH =3PH ,过点H 作HM ⊥OC 于M ,过D 点P 作PN ⊥MH 于N .∵MH 是△QAC 的中位线,∴MH =12AC =4, 同法可得:△HPN ∽△QHM ,∴NPHM =HN MQ =PH QH =13, ∴PN =13HM =43,∴OM =PN =43,设HN =t ,则MQ =3t ,∵MQ =MC ,∴3t =8−43,∴t =209,∴OP =MN =4+t =569, ∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ , ∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289,∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PNHM =HNMQ =PHHQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0). 25.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点?(2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上.(参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)【分析】(1)如图1中,连接OA .求出∠AOC 的度数,以及旋转速度即可解决问题.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,过点P 作PD ⊥OC 于D ,解直角三角形求出CD 即可.(3)如图3中,连接OP ,解直角三角形求出∠POM ,∠COM ,可得∠POH 的度数即可解决问题.【解析】(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°,在Rt △ACO 中,cos ∠AOC =OC OA =2.23=1115.∴∠AOC =43°,∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°,过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ),2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m .(3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN ,在Rt △OPM 中,cos ∠POM =OP OM =38,∴∠POM =68°,在Rt △COM 中,cos ∠COM =OC OM =2.28=1140,∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°, ∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.26.(2020•潍坊)如图1,在△ABC 中,∠A =90°,AB =AC =√2+1,点D ,E 分别在边AB ,AC 上,且AD =AE =1,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE ,BD ,CD .(1)当0°<α<180°时,求证:CE =BD ;(2)如图3,当α=90°时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;(3)在旋转过程中,求△BCD 的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS ”证得△ACE ≌△ABD 即可得到结论;(2)利用“SAS ”证得△ACE ≌△ABD ,推出∠ACE =∠ABD ,计算得出AD =BC =√2+2,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,∵∠CAE +∠BAE =∠BAD +∠BAE =90°,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴CE =BD ;(2)证明:如图3中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,∴BC =√2AB =√2+2,CD =AC +AD =√2+2, ∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线; (3)解:△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时△BCD 的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图4中:∵∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,DG ⊥BC 于G ,∴AG =12BC =√2+22,∠GAB =45°,∴DG =AG +AD =√2+22+1=√2+42,∠DAB =180°﹣45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12(√2+2)(√2+42)=3√2+52, 旋转角α=135°.27.(2020•苏州)如图,已知∠MON =90°,OT 是∠MON 的平分线,A 是射线OM 上一点,OA =8cm .动点P 从点A 出发,以1cm /s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm /s的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O 、P 、Q 三点作圆,交OT 于点C ,连接PC 、QC .设运动时间为t (s ),其中0<t <8.(1)求OP +OQ 的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)求四边形OPCQ 的面积.【分析】(1)由题意得出OP =8﹣t ,OQ =t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD =OD =x ,OB =√2BD =√2x ,PD =8﹣t ﹣x ,得出PDOP =BDOQ ,则8−t−x8−t =xt ,解出x =8t−t 28.由二次函数的性质可得出答案; (3)证明△PCQ 是等腰直角三角形.则S △PCQ =12PC •QC =12×√22PQ ⋅√22PQ =14PQ 2.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8﹣t )2+t 2.由四边形OPCQ 的面积S =S △POQ +S △PCQ 可得出答案.【解析】(1)由题意可得,OP =8﹣t ,OQ =t ,∴OP +OQ =8﹣t +t =8(cm ).(2)当t =4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON ,∴∠BOD =∠OBD =45°,∴BD =OD ,OB =√2BD .设线段BD 的长为x ,则BD =OD =x ,OB =√2BD =√2x ,PD =8﹣t ﹣x ,∵BD ∥OQ ,∴PD OP =BD OQ , ∴8−t−x 8−t =x t ,∴x =8t−t 28. ∴OB =√2⋅8t−t 28=−√28(t −4)2+2√2.当t =4时,线段OB 的长度最大,最大为2√2cm .(3)∵∠POQ =90°,∴PQ 是圆的直径.∴∠PCQ =90°.∵∠PQC =∠POC =45°,∴△PCQ 是等腰直角三角形.∴S △PCQ =12PC •QC =12×√22PQ ⋅√22PQ =14PQ 2. 在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8﹣t )2+t 2.∴四边形OPCQ 的面积S =S △POQ +S △PCQ =12OP ⋅OQ +14PQ 2,=12t(8−t)+14[(8−t)2+t 2],=4t −12t 2+12t 2+16﹣4t =16.∴四边形OPCQ 的面积为16cm 2.28.(2020•黑龙江)如图,在平面直角坐标系中,矩形ABCD 的边AB 长是x 2﹣3x ﹣18=0的根,连接BD ,∠DBC =30°,并过点C 作CN ⊥BD ,垂足为N ,动点P 从B 点以每秒2个单位长度的速度沿BD 方向匀速运动到D 点为止;点M 沿线段DA 以每秒√3个单位长度的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t >0).(1)线段CN = 3√3 ;(2)连接PM 和MN ,求△PMN 的面积s 与运动时间t 的函数关系式;(3)在整个运动过程中,当△PMN 是以PN 为腰的等腰三角形时,直接写出点P 的坐标.【分析】(1)解方程求出AB的长,由直角三角形的性质可求BD,BC的长,CN的长;(2)分三种情况讨论,由三角形的面积可求解;(3)分两种情况讨论,由等腰三角形的性质和勾股定理可求解.【解析】(1)∵AB长是x2﹣3x﹣18=0的根,∴AB=6,∵四边形ABCD是矩形,∴AD=BC,AB=CD=6,∠BCD=90°,∵∠DBC=30°,∴BD=2CD=12,BC=√3CD=6√3,∵∠DBC=30°,CN⊥BD,∴CN=12BC=3√3,故答案为:3√3.(2)如图,过点M作MH⊥BD于H,∵AD∥BC,∴∠ADB=∠DBC=30°,∴MH=12MD=√32t,∵∠DBC=30°,CN⊥BD,∴BN=√3CN=9,当0<t <92时,△PMN 的面积s =12×(9﹣2t )×√32t =−√32t 2+9√34t ; 当t =92时,点P 与点N 重合,s =0,当92<t ≤6时,△PMN 的面积s =12×(2t ﹣9)×√32t =√32t 2−9√34t ; (3)如图,过点P 作PE ⊥BC 于E ,当PN =PM =9﹣2t 时,∵PM 2=MH 2+PH 2,∴(9﹣2t )2=(√32t )2+(12﹣2t −32t )2, ∴t =3或t =73,∴BP =6或143,当BP =6时,∵∠DBC =30°,PE ⊥BC ,∴PE =12BP =3,BE =√3PE =3√3,∴点P (3√3,3),当BP =143时,同理可求点P (7√33,73), 当PN =NM =9﹣2t 时,∵NM 2=MH 2+NH 2,∴(9﹣2t )2=(√32t )2+(32t ﹣3)2, ∴t =3或24(不合题意舍去),∴BP =6,∴点P (3√3,3),综上所述:点P 坐标为(3√3,3)或(7√33,73). 29.(2020•河北)如图1和图2,在△ABC 中,AB =AC ,BC =8,tan C =34.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且AM =CN =2.点P 从点M 出发沿折线MB ﹣BN 匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持∠APQ =∠B .(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将△ABC 的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【分析】(1)如图1中,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可.(2)利用相似三角形的性质求解即可.(3)分两种情形:当0≤x ≤3时,当3<x ≤9时,分别画出图形求解即可.(4)求出CK 的长度,以及CQ 的最大值,利用路程与速度的关系求解即可.【解析】(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.。
中考数学高频考点《动点综合问题》专项测试卷-带答案
中考数学高频考点《动点综合问题》专项测试卷-带答案(16道)一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .484.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x 菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C.D.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中O为原点35OA OB==点C为平面内一动点32BC=连接AC点M是线段AC上的一点且满足:1:2CM MA=.当线段OM取最大值时点M的坐标是()A.36,55⎛⎫⎪⎝⎭B.365,555C.612,55⎛⎫⎪⎝⎭D.6125,55510.(2023·广东深圳·统考中考真题)如图1 在Rt ABC△中动点P从A点运动到B点再到C点后停止速度为2单位/s 其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A155B427C.17D.5311.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中60A∠=︒4AB=动点M N同时从A 点出发点M以每秒2个单位长度沿折线A B C--向终点C运动点N以每秒1个单位长度沿线段AD向终点D运动当其中一点运动至终点时另一点随之停止运动.设运动时间为x秒AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A .B .C .D .12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C.D.13.(2023·河南·统考中考真题)如图1 点P从等边三角形ABC的顶点A出发沿直线运动到三角形内部一点再从该点沿直线运动到顶点B.设点P运动的路程为x PByPC图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.43D.23二解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC中①C=90° 点M从点C出发沿CB方向以1cm/s 的速度匀速运动到达点B停止运动在点M的运动过程中过点M作直线MN交AC于点N且保持①NMC=45° 再过点N作AC的垂线交AB于点F连接MF将①MNF关于直线NF对称后得到①ENF已知AC=8cm BC=4cm设点M运动时间为t(s)①ENF与①ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中能否使得四边形MNEF为正方形?如果能求出相应的t值如果不能说明理由(2)求y关于t的函数解析式及相应t的取值范围(3)当y取最大值时求sin①NEF的值.AB=点O是对角线AC的中点动点P 15.(2023·吉林·统考中考真题)如图,在正方形ABCD中4cmQ分别从点A B同时出发点P以1cm/s的速度沿边AB向终点B匀速运动点Q以2cm/s的速度沿折线-向终点D匀速运动.连接PO并延长交边CD于点M连接QO并延长交折线DA ABBC CD-于点N连接PQ QM MN NP得到四边形PQMN.设点P的运动时间为x(s)(04<<)四边形PQMN的x面积为y(2cm)(1)BP的长为__________cm CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时直接写出x的值.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .参考答案一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据菱形的性质求出各点坐标 分M 的横坐标x 在01 12 23~之间三个阶段 用含x 的代数式表示出PMN 的底和高 进而求出分段函数的解析式 根据解析式判断图象即可. 【详解】解:菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 ∴2AB AD == 3OA =∴()2222231OB AB OA --= ∴123OC OB BC =+=+=∴(3A ()10B , ()3,0C 设直线AB 的解析式为y kx b =+ 将(3A ()10B ,代入 得: 03k b b +=⎧⎪⎨=⎪⎩ 解得33k b ⎧=-⎪⎨=⎪⎩ ∴直线AB 的解析式为33y x =-MN y ∥轴∴N 的横坐标为x(1)当M 的横坐标x 在01之间时 点N 在线段AB 上 PMN 中MN 上的高为1x + ∴(,33N x x ∴(3333MN x x -+∴()()2113313122PMNS MN x x x x =⋅+=⋅+= ∴该段图象为开口向上的抛物线(2)当M 的横坐标x 在12之间时 点N 在线段BC 上 PMN 中3MN = MN 上的高为1x + ∴()()113313122PMNS MN x x x =⋅+=+=∴该段图象为直线(3)当M 的横坐标x 在23~之间时 点N 在线段BC 上 PMN 中MN 上的高为1x + 由(3D ()3,0C 可得直线CD 的解析式为333y x =-+∴(,333M x x + (),0N x ∴333MN x =-+ ∴()(()21133313331322PMN S MN x x x x =⋅+=-+⋅+=++ ∴该段图象为开口向下的抛物线观察四个选项可知 只有选项A 满足条件故选A .【点睛】本题考查动点问题的函数图象 涉及坐标与图形 菱形的性质 二次函数 一次函数的应用等知识点 解题的关键是分段求出函数解析式.2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .【答案】D【分析】根据速度与时间的关系即可得出答案.【详解】解:刚开始速度随时间的增大而增大 匀速跑一段时间后减速到① 然后再加速再匀速到① 由于体力原因 应该第一个50米速度快 用的时间少 第二个50米速度慢 用的时间多故他的速度大小v (m/s )随时间t (s )变化的图像可能是D .故选:D .【点睛】本题主要考查函数的图象 要根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件 结合实际意义得出正确的结论.3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x 在图中表示出来 设,25AE z BE z ==- 在直角三角形中 找到等量关系 求出未知数的值 得到BDE △的值.【详解】解:当10x =时 由题意可知10,5AD CD ==在Rt CDB △中 由勾股定理得22222520425BD CD BC =+=+=设,25AE z BE z ==-222(25)50625BE z z z ∴=-=-+在Rt ADE △中 由勾股定理得2222100DE AD AE z =-=-在Rt DEB △中 由勾股定理得222BD DE BE =+即2242510050625z z z =-+-+解得6z =6,19DE BE ∴==1198762BDE a S ∴==⨯⨯=当25x =时 由题意可知 10CD BD ==设,25BE q AE q ==-222(25)62550AE q q q =-=-+在Rt CDA △中 由勾股定理得222221510325AD AC CD =+=+=在Rt BDE △中由勾股定理得2222100DB BD BE q =-=-Rt DEA 中 由勾股定理得222AD DE AE =+即2232510062550q q q =-+-+解得8q =6DE ∴=168242BDE b S ∴==⨯⨯= 762452a b ∴-=-=.故选:B .【点睛】本题主要考查勾股定理 根据勾股定理列出等式是解题的关键 运用了数形结合的思想解题. 4.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】B【分析】求出MN 在O 点左侧时的两段图象 即可得出结论.【详解】解:当MN 在O 点左侧 即:2t <时:①当正方形EFGH 的边GH 在AOB 的外部时 重叠部分为矩形 如图:设,HE FG 分别交AB 于点,I K①垂直于BC 的直线MN 从AB 出发 沿BC 3 ①3IE FK t ==①在矩形ABCD 中 4AB =43BC =①228AC AB BC =+=①4OA OB AB ===①ABO 为等边三角形①60OAB OBA ∠=∠=︒①tan60AI BK IE t ==÷︒=①42IK t =- ①()23422343S IK IE t t t t =⋅=-=-+ 图象为开口向下的一段抛物线①当正方形EFGH 的边GH 在AOB 的内部时 与AOB 重叠部分即为正方形EFGH 如图:由①可知:42EF IK t ==-①()242S t =- 图象是一段开口向上的抛物线当MN 过点O 时 即2t =时 ,E F 重合 此时 0S =综上:满足题意的只有B 选项故选B .【点睛】本题考查动点的函数图象问题.解题的关键是确定动点的位置 利用数形结合和分类讨论的思想进行求解.5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】A【分析】分04t ≤< 48t ≤< 812t ≤<三种情况 分别求出函数解析即可判断.【详解】解:过点D 作DH CB ⊥于H①5DE DF == 8EF = ①142EH FH EF === ①223DH DE EH =-当04t ≤<时如图,重叠部分为EPQ △ 此时EQ t = PQ DH ∥①EPQ EDH ∽ ①PQ EQ DH EH= 即34PQ t = ①34PQ t = ①2133248S t t t =⨯= 当48t ≤<时如图,重叠部分为四边形PQC B '' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=- 8FC t '=-①PB DE '∥①PB F DCF '∽ ①2PB F DCF S B F SCF ''⎛⎫= ⎪⎝⎭又183122DCFS =⨯⨯=①212128PB F S t '-⎛⎫= ⎪⎝⎭ ①()231216PB F S t '=-①DH BC ⊥ 90A B C '''∠=︒①A C DH ''∥①C QF HFD '∽①2C QF HFD S C F S HF ''⎛⎫= ⎪⎝⎭ 即2814432C QF S t '-⎛⎫= ⎪⎝⎭⨯⨯ ①()2388C QF S t '=-①()()22233331283168162PB F C QF S S S t t t t ''=-=---=-++当 812t ≤<时如图,重叠部分为四边形PFB ' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=-①PB DE '∥①PB F DCF '∽①2PB F DCF S B F S CF ''⎛⎫= ⎪⎝⎭ 即212128PB FS t '-⎛⎫= ⎪⎝⎭①()231216PB F S S t '==-综上 ()()()()22230483334816231281216t t S t t t t t ⎧≤<⎪⎪⎪=-++≤<⎨⎪⎪-≤<⎪⎩①符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律 考查二次函数相关知识根据平移点的特点列出函数表达式是关键 有一定难度.6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分三种情况分别求出S 与x 的函数关系式 根据函数的类型与其图象的对应关系进行判断即可.【详解】解:①60MAN ∠=︒ 6AC AB ==①ABC 是边长为6的正三角形①AD 平分MAN ∠①30MAD NAD ∠=∠=︒ AD BC ⊥ 3CD DB ==①当矩形EFGH 全部在ABC 之中 即由图1到图2 此时03x <≤①EG AC ∥①30MAD AGE ∠=∠=︒①30NAD AGE ∠=∠=︒①AE EG x ==在Rt AEF 中 60EAF ∠=︒ ①33EF AE =①23S = ①如图3时 当AE AF GE AF AF CF AC +=+=+= 则162x x += 解得4x = 由图2到图3 此时34x <≤如图4 记BC EG 的交点为Q ,则EQB △是正三角形①6EQ EB BQ x ===-①()626GQ x x x =--=- 而60PQG ∠=︒ ①)3326PG QG x ==-①PQG EFHG S S S =-矩形())231263262x x =-⨯-- 233123183x =+- ①如图6时 6x = 由图3到图6 此时46x <≤如图5 同理EKB △是正三角形①6EK KB EB x ===- 162FC AC AF x =-=- 3EF x = ①EKCF S S =梯形1136622x x ⎛⎫=-+- ⎪⎝⎭ 23333x x =+ 因此三段函数的都是二次函数关系 其中第1段是开口向上 第2段 第3段是开口向下的抛物线 故选:A .【点睛】本题考查动点问题的函数图象 求出各种情况下S 与x 的函数关系式是正确解答的前提 理解各种函数所对应的图象的形状是解决问题的关键.7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m【答案】C【分析】根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a = 作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F ,则可得33m AF AB == ))333m PE PB AB PA a t =-=- 从而得到22334216PBQa St a ⎛⎫=--+ ⎪⎝⎭ 根据PBQS的最大值为3求出a 的值 从而得到4m 43m 23m AB BC AF ===,, 最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a =作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F120ABC ∠=︒ 60ABF ∴∠=︒33m AF AB ∴== ))333m PE AB PA a t ==-=- )2221133333322444216PBQa SBQ PE t a t t at t a ⎛⎫∴=⋅⋅=-=-+=--+ ⎪⎝⎭ 由图象可得PBQS 的最大值为323316a ∴=解得:4a =或4a =-(舍去) 4a ∴=4m 43m 23m AB BC AF ∴===,,∴平行四边形ABCD 的面积为:2432324m BC AF ⋅=故选:C .【点睛】本题主要考查了平行四边形的性质 解直角三角形 二次函数的图象与性质 熟练掌握平行四边形的性质 二次函数的图象与性质 添加适当的辅助线构造直角三角形 是解题的关键.8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】先证明菱形PQMN 是边长为x 一个角为60︒的菱形 找到临界点 分情况讨论 即可求解. 【详解】解:作PD AC ⊥于点D 作⊥QE AB 于点E由题意得AP x = 3AQ x = ①3cos30AD AP =⋅︒= ①12AD DQ AQ ==①PD 是线段AQ 的垂直平分线 ①30PQA A ∠=∠=︒①60QPE ∠=︒ PQ AP x == ①132QE AQ x == PQ PN MN QM x ==== 当点M 运动到直线BC 上时此时 BMN 是等边三角形 ①113AP PN BN AB ==== 1x = 当点Q N 运动到与点C B 、重合时①1322AP PN AB === 32x = 当点P 运动到与点B 重合时 ①3AP AB == 3x = ①当01x <≤时 233y x x ==当312x <≤时 如图,作FG AB ⊥于点G 交QM 于点R则32BN FN FB x ===- 33FM MS FS x ===- )333FR x =- ①())2231373939333332y x x -⋅--=+当332x <<时 如图,作HI AB ⊥于点I则3BP PH HB x ===- )33HI x =- ①())21333393332y x x =⋅--= 综上 y 与x 之间函数关系的图象分为三段 当01x <≤时 是开口向上的一段抛物线 当312x <≤时 是开口向下的一段抛物线 当332x <≤时 是开口向上的一段抛物线 只有选项A 符合题意 故选:A .【点睛】本题主要考查了动点问题的函数的图象 二次函数的图形的性质 等边三角形的性质 菱形的性质 三角形的面积公式 利用分类讨论的思想方法解答和熟练掌握抛物线的性质是解题的关键.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中 O 为原点 35OA OB == 点C 为平面内一动点 32BC =连接AC 点M 是线段AC 上的一点 且满足:1:2CM MA =.当线段OM 取最大值时 点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555C .612,55⎛⎫⎪⎝⎭D .6125,555 【答案】D【分析】由题意可得点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫ ⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E 先证OAM DAC ∽ 得23OM OA CD AD == 从而当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时 CD 取得最大值 然后分别证BDO CDF ∽ AEM AFC ∽ 利用相似三角形的性质即可求解.【详解】解:①点C 为平面内一动点 32BC = ①点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E①35OA OB ==①AD OD OA =+=95①23OA AD = ①:1:2CM MA = ①23OA CMAD AC==①OAM DAC ∠∠= ①OAM DAC ∽ ①23OM OA CD AD == ①当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时CD 取得最大值①35OA OB == OD =35①BD =()222235153522OB OD ⎛⎫++ ⎪ ⎪⎝⎭①9CD BC BD =+= ①23OM CD = ①6OM =①y 轴x ⊥轴 CF OA ⊥ ①90DOB DFC ∠∠==︒ ①BDO CDF ∠∠= ①BDO CDF ∽①OB BDCF CD=153529=解得185CF =同理可得 AEM AFC ∽①23ME AM CF AC ==23185= 解得125ME =①22221256565OE OM ME ⎛⎫=-- ⎪ ⎪⎝⎭①当线段OM 取最大值时 点M 的坐标是65125⎝⎭,故选D .【点睛】本题主要考查了勾股定理 相似三角形的判定及性质 圆的一般概念以及坐标与图形 熟练掌握相似三角形的判定及性质是解题的关键.10.(2023·广东深圳·统考中考真题)如图1 在Rt ABC △中 动点P 从A 点运动到B 点再到C 点后停止 速度为2单位/s 其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A 155B 427C .17D .53【答案】C【分析】根据图象可知0=t 时 点P 与点A 重合 得到15AB = 进而求出点P 从点A 运动到点B 所需的时间 进而得到点P 从点B 运动到点C 的时间 求出BC 的长 再利用勾股定理求出AC 即可. 【详解】解:由图象可知:0=t 时 点P 与点A 重合 ①15AB =①点P 从点A 运动到点B 所需的时间为1527.5s ÷= ①点P 从点B 运动到点C 的时间为11.57.54s -= ①248BC =⨯=在Rt ABC △中:2217AC AB BC += 故选C .【点睛】本题考查动点的函数图象 勾股定理.从函数图象中有效的获取信息 求出,AB BC 的长 是解题的关键.11.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中 60A ∠=︒ 4AB = 动点M N 同时从A 点出发 点M 以每秒2个单位长度沿折线A B C --向终点C 运动 点N 以每秒1个单位长度沿线段AD 向终点D 运动 当其中一点运动至终点时 另一点随之停止运动.设运动时间为x 秒 AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是( )A .B .C .D .【答案】A【分析】连接BD 过点B 作BE AD ⊥于点E 根据已知条件得出ABD △是等边三角形 进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒ 当04t <<时 M 在AB 上 当48t ≤<时 M 在BC 上 根据三角形的面积公式得到函数关系式【详解】解:如图所示 连接BD 过点B 作BE AD ⊥于点E 当04t <<时 M 在AB 上菱形ABCD 中 60A ∠=︒ 4AB = ①AB AD =,则ABD △是等边三角形 ①122AE ED AD === 33BE AE =①2,AM x AN x ==①2AM ABAN AE== 又A A ∠=∠ ①AMN ABE ∽ ①90ANM AEB ∠=∠=︒ ①223MN AM AN x - ①21332y x x x =当48t ≤<时 M 在BC 上①1123322y AN BE x x =⨯=⨯ 综上所述 04t <<时的函数图象是开口向上的抛物线的一部分 当48t ≤<时 函数图象是直线的一部分 故选:A .【点睛】本题考查了动点问题的函数图象 二次函数图象的性质 一次函数图象的性质 菱形的性质 勾股定理 等边三角形的性质与判定 相似三角形的性质与判定 熟练掌握以上知识是解题的关键. 12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADMDCNBMNABCD S S S SS=---正方形 求出S 与x 之间函数关系式 再判断即可得出结论.【详解】解:ADMDCNBMNABCD S S SSS=---正方形1114444(4)(4)222x x x x =⨯-⨯-⨯---21282x x =-+ 21(2)62x =-+ 故S 与x 之间函数关系为二次函数 图像开口向上 2x =时 函数有最小值6 故选:A .【点睛】本题考查了正方形的性质 二次函数的图像与性质 本题的关键是求出S 与x 之间函数关系式 再判断S 与x 之间函数类型.13.(2023·河南·统考中考真题)如图1 点P 从等边三角形ABC 的顶点A 出发 沿直线运动到三角形内部一点 再从该点沿直线运动到顶点B .设点P 运动的路程为x PBy PC= 图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A .6B .3C .43D .23【答案】A【分析】如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时 PB PC = 23AO = 易知30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为3 可知23AO OB == 过点O 作OD AB ⊥ 解直角三角形可得cos303AD AO =⋅︒= 进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时1PB PC= ①PB PC = 3AO =又①ABC 为等边三角形①60BAC ∠=︒ AB AC =①()SSS APB APC △≌△①BAO CAO ∠=∠①30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为43①3OB = 即23AO OB ==①30BAO ABO ∠=∠=︒过点O 作OD AB ⊥①AD BD =,则cos303AD AO =⋅︒=①6AB AD BD =+=即:等边三角形ABC 的边长为6故选:A .【点睛】本题考查了动点问题的函数图象 解决本题的关键是综合利用图象和图形给出的条件.2二 解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC 中 ①C =90° 点M 从点C 出发沿CB 方向以1cm /s的速度匀速运动 到达点B 停止运动 在点M 的运动过程中 过点M 作直线MN 交AC 于点N 且保持①NMC =45° 再过点N 作AC 的垂线交AB 于点F 连接MF 将①MNF 关于直线NF 对称后得到①ENF 已知AC =8cm BC =4cm 设点M 运动时间为t (s ) ①ENF 与①ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中 能否使得四边形MNEF 为正方形?如果能 求出相应的t 值 如果不能 说明理由(2)求y 关于t 的函数解析式及相应t 的取值范围(3)当y 取最大值时 求sin ①NEF 的值.【答案】(1)85(2)⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y (3310 【详解】试题分析:(1)由已知得出CN =CM =t FN ①BC 得出AN =8﹣t 由平行线证出①ANF ①①ACB 得出对应边成比例求出NF =12AN =12(8﹣t ) 由对称的性质得出①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t 由正方形的性质得出OE =ON =FN 得出方程 解方程即可(2)分两种情况:①当0<t ≤2时 由三角形面积得出2124y t t =-+ ①当2<t ≤4时 作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH 得出GH =23NF =13(8﹣t ) 由三角形面积得出21(8)12y t =-(2<t ≤4) (3)当点E 在AB 边上时 y 取最大值 连接EM ,则EF =BF EM =2CN =2CM =2t EM =2BM 得出方程 解方程求出CN =CM =2 AN =6 得出BM =2 NF =12AN =3 因此EM =2BM =4 作FD ①NE 于D由勾股定理求出EB 22EM BM +=25 求出EF =12EB 5 由等腰直角三角形的性质和勾股定理得出DF 的长 在Rt①DEF 中 由三角函数定义即可求出sin①NEF 的值.试题解析:解:(1)能使得四边形MNEF 为正方形 理由如下:连接ME 交NF 于O 如图1所示:①①C =90° ①NMC =45° NF ①AC ①CN =CM =t FN ①BC ①AN =8﹣t ①ANF ①①ACB ①84AN AC NF BC == =2 ①NF =12AN =12(8﹣t ) 由对称的性质得:①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t ①四边形MNEF 是正方形 ①OE =ON =FN ①t =12×12(8﹣t ) 解得:t =85即在点M 的运动过程中 能使得四边形MNEF 为正方形 t 的值为85(2)分两种情况:①当0<t ≤2时 y =12×12(8﹣t )×t =2124t t -+ 即2124y t t =-+(0<t ≤2) ①当2<t ≤4时 如图2所示:作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH ①GH =23NF =13(8﹣t ) ①y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t - 即21(8)12y t =-(2<t ≤4) 综上所述:⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y .(3)当点E 在AB 边上时 y 取最大值 连接EM 如图3所示:则EF =BF EM =2CN =2CM =2t EM =2BM ①BM =4﹣t ①2t =2(4﹣t ) 解得:t =2 ①CN =CM =2 AN =6 ①BM =4﹣2=2 NF =12AN =3 ①EM =2BM =4 作FD ①NE 于D ,则EB 22EM BM +2242+=5 ①DNF 是等腰直角三角形①EF =12EB 5 DF =22 NF 32 在Rt①DEF 中 sin①NEF =DF EF 3225310【点睛】本题是四边形综合题目 考查了正方形的判定与性质 相似三角形的判定与性质 勾股定理 三角函数 三角形面积的计算 等腰直角三角形的判定与性质等知识 本题综合性强 有一定难度. 15.(2023·吉林·统考中考真题)如图,在正方形ABCD 中 4cm AB = 点O 是对角线AC 的中点 动点P Q 分别从点A B 同时出发 点P 以1cm/s 的速度沿边AB 向终点B 匀速运动 点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M 连接QO 并延长交折线DA AB -于点N 连接PQ QM MN NP 得到四边形PQMN .设点P 的运动时间为x (s )(04x <<) 四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式 并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时 直接写出x 的值.【答案】(1)()4x - x(2)()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)43x =或83x = 【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON == 可得四边形PQMN 是平行四边形 证明ANP CQM ≌即可(2)分02x <≤ 24x <≤两种情况分别画出图形 根据正方形的面积 以及平行四边形的性质即可求解 (3)根据(2)的图形 分类讨论即可求解.【详解】(1)解:依题意 1AP x x =⨯=()cm ,则()4PB AB AP x cm =-=-①四边形ABCD 是正方形①,90AD BC DAB DCB ∠=∠=︒∥①点O 是正方形对角线AC 的中点①,OM OP OQ ON ==,则四边形PQMN 是平行四边形①MQ PN = MQ NP ∥①PNQ MQN ∠=∠又AD BC ∥①ANQ CQN ∠=∠①ANP MQC ∠=∠在,ANP CQM 中ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩①ANP CQM ≌①()cm MC AP x ==故答案为:()4x - x .(2)解:当02x <≤时 点Q 在BC 上由(1)可得ANP CQM ≌同理可得PBQ MDN ≌①4,2,PB x QB x MC x =-== 42QC x =-则222MCQ BPQ y AB S S =--()()164242x x x x =--⨯--241216x x =-+当24x <≤时 如图所示则AP x = 224AN CQ x CB x ==-=-()244PN AP AN x x x =-=--=-+①()44416y x x =-+⨯=-+综上所述 ()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)依题意 ①如图,当四边形PQMN 是矩形时 此时90PQM ∠=︒①90PQB CQM ∠+∠=︒①90BPQ PQB ∠+∠=︒①BPQ CQM ∠=∠又B BCD ∠=∠①~BPQ CQM ①BP BQ CQ CM= 即4242x x x x-=- 解得:43x =当四边形PQMN 是菱形时,则PQ MQ =①()()()22224242x x x x -+=+-解得:0x =(舍去)①如图所示 当PB CQ =时 四边形PQMN 是轴对称图形424x x -=- 解得83x = 当四边形PQMN 是菱形时,则4PN PQ == 即44x -+= 解得:0x =(舍去)综上所述 当四边形PQMN 是轴对称图形时 43x =或83x =. 【点睛】本题考查了正方形的性质 动点问题 全等三角形的性质与判定 矩形的性质 平行四边形的性质与判定 菱形的性质 轴对称图形 熟练掌握以上知识是解题的关键.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .。
动点综合问题(共32题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题动点综合问题(32题)1(2023·四川遂宁·统考中考真题)如图,在△ABC 中,AB =10,BC =6,AC =8,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM ⊥AC 于点M 、作PN ⊥BC 于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A.5,5B.6,245C.325,245D.325,5【答案】C【分析】如图所示,过点C 作CD ⊥AB 于D ,连接CP ,先利用勾股定理的逆定理证明△ABC 是直角三角形,即∠C =90°,进而利用等面积法求出CD =245,则可利用勾股定理求出AD =325;再证明四边形CMPN 是矩形,得到MN =CP ,故当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =325,则点E 的坐标为325,245.【详解】解:如图所示,过点C 作CD ⊥AB 于D ,连接CP ,∵在△ABC 中,AB =10,BC =6,AC =8,∴AC 2+BC 2=62+82=100=102=AB 2,∴△ABC 是直角三角形,即∠C =90°,∴S △ABC =12AC ⋅BC =12AB ⋅CD ,∴CD =AC ⋅BC AB=245,∴AD =AC 2-CD 2=325;∵PM ⊥AC ,PN ⊥BC ,∠C =90°,∴四边形CMPN 是矩形,∴MN =CP ,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =AD =325,∴点E 的坐标为325,245,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.2(2023·广东深圳·统考中考真题)如图1,在Rt △ABC 中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()B.427C.17D.53A.1552【答案】C【分析】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点B所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【详解】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5s;∴点P从点B运动到点C的时间为11.5-7.5=4s,∴BC=2×4=8;在Rt△ABC中:AC=AB2+BC2=17;故选:C.【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长,是解题的关键.3(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A 点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段AD 向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y 个平方单位,则下列正确表示y与x函数关系的图象是()A. B.C. D.【答案】A【分析】连接BD ,过点B 作BE ⊥AD 于点E ,根据已知条件得出△ABD 是等边三角形,进而证明△AMN ∽ABE 得出∠ANM =∠AEB =90°,当0<t <4时,M 在AB 上,当4≤t <8时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE ⊥AD 于点E ,当0<t <4时,M 在AB 上,菱形ABCD 中,∠A =60°,AB =4,∴AB =AD ,则△ABD 是等边三角形,∴AE =ED =12AD =2,BE =3AE =23∵AM =2x ,AN =x ,∴AM AN =AB AE =2,又∠A =∠A ∴△AMN ∽ABE∴∠ANM =∠AEB =90°∴MN =AM 2-AN 2=3x ,∴y =12x ×3x =32x2当4≤t <8时,M 在BC 上,∴y =12AN ×BE =12x ×23=3x ,综上所述,0<t <4时的函数图象是开口向上的抛物线的一部分,当4≤t <8时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,AB =4,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为x 0≤x ≤4 ,△DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是()A. B.C. D.【答案】A【分析】先根据S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,求出S 与x 之间函数关系式,再判断即可得出结论.【详解】解:S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,=4×4-12×4x -12×4(4-x )-12x (4-x ),=12x 2-2x +8,=12(x -2)2+6,故S 与x 之间函数关系为二次函数,图像开口向上,x =2时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.5(2023·河南·统考中考真题)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBPC=y ,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.43D.23【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =23,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,可知AO =OB =23,过点O 作OD ⊥AB ,解直角三角形可得AD =AO ⋅cos30°=3,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PBPC=1,∴PB =PC ,AO =23,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC SSS ,∴∠BAO =∠CAO ,∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,∴OB =23,即AO =OB =23,∴∠BAO =∠ABO =30°,过点O 作OD ⊥AB ,∴AD =BD ,则AD =AO ⋅cos30°=3,∴AB =AD +BD =6,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.6(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的⊙O 上两动点,且CD =2,P 为弦CD 的中点.当C 、D 两点在圆上运动时,△PAB 面积的最大值是()A.8B.6C.4D.3【答案】D【分析】根据一次函数与坐标轴的交点得出OA =OB =2,确定AB =22,再由题意得出当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =-2,当y =0时,x =-2,∴A -2,0 ,B 0,-2 ,∴OA =OB =2,∴AB =OA 2+OB 2=22,∵△PAB 的底边AB =22为定值,∴使得△PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD =2,⊙O 的半径为1,∴DP=22∴OP=OD2-DP2=22,∵OE⊥AB,∴OE=12AB=2,∴PE=OE+OP=322,∴S△PAB=12×22×322=3,故选:D.【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键.7(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC和ABC均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A. B.C. D.【答案】D【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+2R,之后同时到达点A,C,两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴分别同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A,C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除C,故选:D.【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.8(2023·江苏苏州·统考中考真题)如图,在平面直角坐标系中,点A的坐标为9,0,点C的坐标为0,3,以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC⋅EF的值为()A.10B.910C.15D.30【答案】D【分析】根据题意,得出E4,0,勾股定理求得EF=10,AC=310,即可求解.,F5,3【详解】解:连接AC、EF∵点A的坐标为9,0,以OA,OC为边作矩形OABC.,点C的坐标为0,3∴B9,3,AC=32+92=310则OA=9,BC=OA=9依题意,OE=4×1=4,BF=4×1=4∴AE=9-4=5,则E4,0,∴CF=BC-BF=9-4=5∴F5,3,∴EF=5-42+32=10,∵C0,3,∴AC⋅EF=310×10=30故选:D.【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得E,F的坐标是解题的关键.9(2023·山东滨州·统考中考真题)已知点P 是等边△ABC 的边BC 上的一点,若∠APC =104°,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°【答案】B【分析】将△ABP 绕点A 逆时针旋转60°得到△ACQ ,可得以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,根据邻补角以及旋转的性质得出∠AQC =∠APB =76°,进而即可求解.【详解】解:如图所示,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,∴AP =AQ ,∠PAQ =60°,BP =CQ ,∠AQC =∠APB ,∴△APQ 是等边三角形,∴PQ =AP ,∴以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,∵∠APC =104°,∴∠APB =76°∴∠AQC =∠APB =76°∴∠PQC =76°-60°=16°,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A.4,23B.4,4C.4,25D.4,5【答案】C【分析】证明AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,则当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,而运动路程为0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,运动路程为0或4,结合函数图象可得M 4,25 ,故选:C .【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11(2023·浙江绍兴·统考中考真题)如图,在△ABC 中,D 是边BC 上的点(不与点B ,C 重合).过点D作DE ∥AB 交AC 于点E ;过点D 作DF ∥AC 交AB 于点F .N 是线段BF 上的点,BN =2NF ;M 是线段DE 上的点,DM =2ME .若已知△CMN 的面积,则一定能求出()A.△AFE 的面积B.△BDF 的面积C.△BCN 的面积D.△DCE 的面积【答案】D【分析】如图所示,连接ND ,证明△FBD ∽△EDC ,得出FB ED =FD EC ,由已知得出NF ME =BF DE ,则FDEC=NFME,又∠NFD =∠MEC ,则△NFD ∽△MEC ,进而得出∠MCD =∠NDB ,可得MC ∥ND ,结合题意得出S △EMC =12S △DMC =12S △MNC ,即可求解.【详解】解:如图所示,连接ND ,∵DE ∥AB ,DF ∥AC ,∴∠ECD =∠FDB ,∠FBD =∠EDC ,∠BFD =∠A ,∠A =DEC .∴△FBD ∽△EDC ,∠NFD =∠MEC .∴FB ED =FD EC .∵DM =2ME ,BN =2NF ,∴NF =13BF ,ME =13DE ,∴NF ME =BF DE .∴FD EC=NF ME .又∵∠NFD =∠MEC ,∴△NFD ∽△MEC .∴∠ECM =∠FDN .∵∠FDB =∠ECD ∴∠MCD =∠NDB .∴MC ∥ND .∴S △MNC =S △MDC .∵DM =2ME ,∴S △EMC =12S △DMC =12S △MNC .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ∥ND 是解题的关键.12(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33【答案】A【分析】延长AD ,BC ,则△ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则Q ,P ,F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长AD ,BC ,依题意∠QAD =∠QBA =60°∴△ABQ 是等边三角形,∵P 是CD 的中点,∴PD =PC ,∵∠DEA =∠CBA ,∴ED ∥CQ∴∠PQC =∠PED ,∠PCQ =∠PDE ,∴△PDE ≌△PCQ ∴PQ =PE ,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设AQ ,BQ 的中点分别为G ,H ,则GP =12AE ,PH =12EB∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE =EB ,则Q ,P ,F 三点共线,PF 取得最小值,此时AE =EB =12AE +EB =2,则△ADE ≌△ECB ,∴C ,D 到AB 的距离相等,则CD ∥AB ,此时PF =32AD =3此时△ADE 和△BCE 的边长都为2,则AP ,PB 最小,∴PF =32×2=3,∴PA =PB =22+3 2=7∴PA +PB =27,或者如图所示,作点B 关于GH 对称点B ,则PB =PB ,则当A ,P ,B 三点共线时,AP +PB =AB此时AB =AB 2+BB =42+23 2=27故A 选项错误,根据题意可得P ,Q ,F 三点共线时,PF 最小,此时PE =PF =3,则PE +PF =23,故B 选项正确;△CDE 周长等于CD +DE +CE =CD +AE +EB =CD +AB =CD +4,即当CD 最小时,△CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵∠GHQ =60°,∠GHM =∠GDM =60°,则∠CHM =120°如图,延长DE ,HG ,交于点N ,则∠NGD =∠QGH =60°,∠NDG =∠ADE =60°∴△NGD 是等边三角形,∴ND =GD =HM ,在△NPD 与△HPC 中,∠NPD =∠HPC∠N =∠CHP =60°PD =PC∴△NPD ≌△HPC∴ND =CH∴CH =MH∴∠HCM =∠HMC =30°∴CM ∥QF ,则CM ⊥DM ,∴△DMC 是直角三角形,在△DCM 中,DC >DM∴当DC =DM 时,DC 最短,DC =GH =12AB =2∵CD =PC +2PC∴△CDE 周长的最小值为2+2+2=6,故C 选项正确;∵△NPD ≌△HPC∴四边形ABCD 面积等于S △ADE +S △EBC+S △DEC =S △ADE +S 平行四边NEBH∴当△BGD的面积为0时,取得最小值,此时,D,G重合,C,H重合∴四边形ABCD面积的最小值为3×34×22=33,故D选项正确,故选:A.【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E点与F重合时得出最小值是解题的关键.二、填空题13(2023·四川达州·统考中考真题)在△ABC中,AB=43,∠C=60°,在边BC上有一点P,且BP= 12AC,连接AP,则AP的最小值为.【答案】213-2【分析】如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;结合圆周角定理及垂径定理易得AM=BM=CM=4,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得∠AMC=∠PNB,从而易证△AMC∼△PNB可得CMPN=ACPB=21即PN=12CM=2勾股定理即可求得AN=213在△APN中由三角形三边关系AP≥AN-PN即可求解.【详解】解:如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN ⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;∵∠C=60°,M为△ABC的外接圆的圆心,∴∠AMB=120°,AM=BM,∴∠MAB=∠MBA=30°,∴MD=12AM,∵MD⊥AB,∴AD=12AB=23,在Rt△ADM中,∵AM2=MD2+AD2,∴AM2=12AM2+232,∴AM=4,即AM=BM=CM=4,由作图可知BN⊥AB,N在BP的垂直平分线上,∴∠PBN=∠BPN=90°-∠ABC,∴∠PNB=180°-∠PBN+∠BPN=2∠ABC,又∵M为△ABC的外接圆的圆心,∴∠AMC=2∠ABC,∴∠AMC=∠PNB,∵CM PN =AMBN,∴△AMC∼△PNB,∴CM PN =ACPB,∵BP=12AC,∴CM PN =ACPB=21,即PN=12CM=2,∴PN=BN=2,在Rt△ABN中,AN=AB2+BN2=432+22=213,在△APN中,AP≥AN-PN=213-2,即AP最小值为213-2,故答案为:213-2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30°角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合△ABC的外接圆构造相似三角形.14(2023·浙江宁波·统考中考真题)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连接AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.【答案】230或6【分析】连接OD,勾股定理求出半径,平行线分线段成比例,求出CD的长,勾股定理求出AC和AD的长,分AP=AD和AP=PD两种情况进行求解即可.【详解】解:连接OD,∵以AE为直径的半圆O与BC相切于点D,∴OD⊥BC,OA=OE=OD,∴∠ODB=90°设OA=OE=OD=r,则OB=OE+BE=3+r,在Rt△ODB中:OD2+BD2=OB2,即:r2+352=3+r2,解得:r=6,∴OA=OE=OD=6,∴OB=9,AB=15,AE=12,∵∠C=∠ODB=90°,∴OD∥AC,∴OB OA =DBDC=96=32,∵DB=35,∴CD=25,∴BC=DB+CD=55,∴AC=AB2-BC2=10,∴AD=AC2+CD2=230;∵△ADP为等腰三角形,当AD=AP时,AP=230,当PA=PD时,∵OA=OD,∴点P与点O重合,∴AP=OA=6,不存在PD=AD的情况;综上:AP的长为230或6.故答案为:230或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P的位置,是解题的关键.15(2023·四川凉山·统考中考真题)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【答案】1+3【分析】如图所示,取AB的中点D,连接OD,CD,先根据等边三角形的性质和勾股定理求出CD=3,再根据直角三角形的性质得到OD=12AB=1,再由OC≤OD+CD可得当O、C、D三点共线时,OC有最大值,最大值为1+3.【详解】解:如图所示,取AB的中点D,连接OD,CD,∵△ABC是边长为2的等边三角形,∴CD⊥AB,BC=AB=2,∴BD=AD=1,∴CD=BC2-BD2=3,∵OM⊥ON,即∠AOB=90°,∴OD =12AB =1,∵OC ≤OD +CD ,∴当O 、C 、D 三点共线时,OC 有最大值,最大值为1+3,故答案为:1+3.【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O 、C 、D 三点共线时,OC 有最大值是解题的关键.16(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE +PF 取得最小值时,AP PC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP =27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.17(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A=90°,则BN=AB2+AN2=2,∴BN=ND=2∴AD=AN+ND=2+1,综上,AD的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.【答案】11-2【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P 在AD 上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·广西·统考中考真题)如图,在边长为2的正方形ABCD 中,E ,F 分别是BC ,CD 上的动点,M ,N 分别是EF ,AF 的中点,则MN 的最大值为.【答案】2【分析】首先证明出MN 是△AEF 的中位线,得到MN =12AE ,然后由正方形的性质和勾股定理得到AE =AB 2+BE 2=4+BE 2,证明出当BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF ,AF 的中点,∴MN 是△AEF 的中位线,∴MN =12AE ,∵四边形ABCD 是正方形,∴∠B =90°,∴AE =AB 2+BE 2=4+BE 2,∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE =4+22=22,∴MN =12AE =2,∴MN 的最大值为2.故答案为:2.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.20(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【答案】29-2【分析】设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,证明∠DFA=90°,可知点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O的交点F 时,线段BF有最小值,据此求解即可.【详解】解:设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,∴当点F运动到OB与⊙O的交点F 时,线段BF有最小值,∵AD=4,AD=2,,∴AO=OF =12∴BO=52+22=29,BF的最小值为29-2,故答案为:29-2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键.21(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD中,AB=5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG=.【答案】6013【分析】连接OE ,根据矩形的性质得到BC =AD =12,AO =CO =BO =DO ,∠ABC =90°,根据勾股定理得到AC =AB 2+BC 2=13,求得OB =OC =132,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =12,AO =CO =BO =DO ,∵AB =5,BC =12,∴AC =AB 2+BC 2=13,∴OB =OC =132,∴S △BOC =S △BOE +S △COE =12×OB ⋅EG +12OC ⋅EF =12S △ABC =12×12×5×12=15,∴12×132EG +12×132EF =12×132(EG +EF )=15,∴EG +EF =6013,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22(2023·山东烟台·统考中考真题)如图1,在△ABC 中,动点P 从点A 出发沿折线AB →BC →CA 匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则△ABC 的高CG 的长为.【答案】732【分析】过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴BC =7,BQ =4,QC =3在Rt △ABQ 中,AB =8,BQ =4∴AQ =AB 2-BQ 2=82-42=43∵S △ABC =12AB ×CG =12AQ ×BC ,∴CG =BC ×AQ AB=7×438=732,故答案为:732.【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23(2023·新疆·统考中考真题)如图,在▱ABCD 中,AB =6,BC =8,∠ABC =120°,点E 是AD 上一动点,将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,DE 的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC=120°,∠HDC=60°,进而求得DH,HC,根据折叠的性质得出CB=CE,进而在Rt△ECH中,勾股定理即可求解.【详解】解:如图所示,过点C作CH⊥AD交AD的延长线于点H,∵在▱ABCD中,AB=6,BC=8,∠ABC=120°,∴∠ADC=∠ABC=120°,∠HDC=60°,CD=AB=6,AD=CB=8,DC=3,∴DH=DC×cos∠HDC=12在Rt△ECH中,HC=CD2-DH2=62-32=33∵将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,∴∠AEB=∠CEB又AD∥BC∴∠EBC=∠AEB∴∠EBC=∠CEB∴CE=BC=8设ED=x,∴EH=x+3在Rt△ECH中,EC2=EH2+HC2∴82=x+322+33解得:x=37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.24(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK= AB=8,∴∠NAJ+∠ANJ=90°,∵AN =MN ,∠ANM =90°,∴∠MNK +∠ANJ =90°,∴∠MNK =∠NAJ ,∴△MNK ≌△NAJ ,设N x ,-2x -6 ,∴MK =NJ =-x ,KN =AJ =-2x -6-6=-2x -12,而KJ =AB =8,∴-2x -12-x =8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.25(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题26(2023·重庆·统考中考真题)如图,△ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【答案】(1)当0<t≤4时,y=t;当4<t≤6时,y=12-2t(2)图象见解析,当0<t≤4时,y随x的增大而增大(3)t的值为3或4.5【分析】(1)分两种情况:当0<t≤4时,根据等边三角形的性质解答;当4<t≤6时,利用周长减去2AE即可;(2)在直角坐标系中描点连线即可;(3)利用y=3分别求解即可.【详解】(1)解:当0<t≤4时,连接EF,由题意得AE=AF,∠A=60°,∴△AEF是等边三角形,∴y=t;当4<t≤6时,y=12-2t;(2)函数图象如图:。
【2021中考数学】一次函数:动点综合含答案
2021年九年级中考数学一轮复习专题《一次函数:动点综合》1.如图所示,在平面直角坐标系中,直线y=﹣x+3分别与x轴、y轴交于点B,C,且与直线y=x﹣2交于点A,直线y=x﹣2与y轴交于点D.(1)直接写出点A,B,C,D的坐标;(2)若点E是直线AD上的点,且△COE的面积为12,求直线CE的函数表达式;(3)设点P是x轴上的点,使得点P到点A,C的距离和最小,直接写出点P的坐标.2.如图,在平面直角坐标系中,直线y=kx过点A(6,m),过点A作x轴的垂线,垂足为点B,过点A作y轴的垂线,垂足为点C.∠AOB=60°,CD⊥OA于点D.动点P从点O 出发,以每秒2个单位长度的速度向点A运动,动点Q从点A出发.以每秒个单位长度的速度向点B运动.点P,Q同时开始运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s),且t>0.(1)求m与k的值;(2)当点P运动到点D时,求t的值;(3)连接DQ,点E为DQ的中点,连接PE,当PE⊥DQ时,请直接写出点P的坐标.3.八年级数学兴趣小组的同学在一起研究数学问题:已知直线y =2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第二象限作等腰Rt △ABC ,请你参与解决以下问题:(1)如图1,请求出点C 的坐标;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD =AC ,设△ABC 的面积为S 1,△ADE 的面积为S 2,请判断S 1与S 2的大小关系,并说明理由;(3)如图3,设直线AC 交x 轴于M ,P (﹣2.5,k )是线段BC 上一点,在线段BM 是否存在一点N ,使直线PN 平分△BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.4.如图,直线y =﹣x ﹣4交x 轴和y 轴于点A 和点C ,点B (0,2)在y 轴上,连接AB ,点P 为直线AB 上一动点.(1)直线AB 的解析式为 ;(2)若S △APC =S △AOC ,求点P 的坐标;(3)当∠BCP =∠BAO 时,求直线CP 的解析式及CP 的长.5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系xOy中,直线y=kx+8与直线y=x﹣1交于点A(3,m).(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣1交于点M,过点P 作垂直于x轴的直线与直线y=kx+8交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.7.点P是平面直角坐标系中的一点且不在坐标轴上,过点P向x轴,y轴作垂线段,若垂线段的长度的和为4,则点P叫做“垂距点”,例如:如图中的P(1,3)是“垂距点”.(1)在点A(2,2),B(,﹣),C(﹣1,5),是“垂距点”的为;(2)若D(m,m)为“垂距点”,求m的值;(3)若过点(2,3)的一次函数y=kx+b(k≠0)的图象上存在“垂距点”,则k的取值范围是.8.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.9.如图,直线l的解析式为y=﹣x+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).(1)求出A点的坐标;(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.(3)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C 运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)10.如图,在平面直角坐标系xOy中,直线l:y=kx+b与x轴交于点A(﹣6,0),与y1:y=x相交于点C.轴交于点B(0,4),与直线l2(1)求直线l的函数表达式;1(2)求△COB的面积;(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.参考答案1.解:(1)∵直线y=﹣x+3分别与x轴、y轴交于点B,C,∴令y=0,则﹣x+3=0,解得x=6,令x=0,则y=3,∴B(6,0),C(0,3),∵直线y=x﹣2与y轴交于点D,∴当x=0时,y=﹣2,∴D(0,﹣2),解得,∴A(5,);(2)设点E的坐标为(),∴,即,∴a=±8,∴E(8,2)或E(﹣8,﹣6),设CE的函数表达式为y=kx+3,把E(8,2)或E(﹣8,﹣6)代入上式得或,∴直线CE的函数表达式为或;(3)如图,求得C关于x轴的对称点C′(0,﹣3),连接AC′,交x轴于P,设直线AC′的解析式为y=mx﹣3,代入A(5,)得,=5m﹣3,解得m=,∴直线AC′为y=x﹣3,令y=0,则x﹣3=0,解得x=,∴.2.解:(1)∵AB⊥OB,∴∠ABO=90°,∵∠AOB=60°,∴∠BAO=30°,∵A(6,m),∴OB=6,AB=m,∴OA=2OB=12,AB=6,∴m=6,即A(6,6),∵直线y=kx过点A(6,6),∴6k=6,∴k=;(2)如图1,∵AB∥y轴,∴∠COD=∠BAO=30°,∵CD⊥OA,∴∠CDO=90°,∵OC=AB=6,∴CD=OC=3,OD=CD=9,当点P运动到点D时,OP=OD=9,∴t=;(3)如图2,连接PQ,过点P作PF⊥AB于F,由题意得:OP=2t,AQ=t,Rt△ACD中,∠ACD=30°,AC=6,∴AD=3,∴PD=OA﹣AD﹣OP=12﹣2t﹣3=9﹣2t,∵E是DQ的中点,PE⊥DQ,∴PQ=PD=9﹣2t,Rt△APF中,∠BAO=30°,∴PF=AP==6﹣t,∵AQ=t,BF=t,∴FQ=AB﹣AQ﹣BF=6﹣t﹣t=6﹣2t,Rt△PQF中,由勾股定理得:PQ2=FQ2+PF2,∴(9﹣2t)2=(6﹣2t)2+(6﹣t)2,解得:t1=3(如图3,此时F与Q重合),t2=,如图4,过点P作PM⊥x轴于点M,Rt△OPM中,∠POM=30°,∴OM=OP=t,PM=t;∴P(3,3)或(,).3.解:(1)令x=0,则y=2,令y=0,则x=﹣1,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB +∠CBH =90°,∠CBH +∠ABO =90°,∴∠ABO =∠BCH ,∵∠CHB =∠BOA =90°,BC =BA ,∴△CHB ≌△BOA (AAS ),∴BH =OA =2,CH =OB ,则点C (﹣3,1);(2)将点A 、C 的坐标代入一次函数表达式:y =mx +b 得:,解得,故直线AC 的表达式为:y =x +2;∵AD =AC ,AB ⊥BC ,则BC =BD ,故S △ABC =S △ABD ,由C 、D 的坐标,同理可得直线CD 的表达式为:y =﹣x ﹣…①,则点E (0,﹣), 直线AD 的表达式为:y =﹣3x +2…②,联立①②并解得:x =1,即点D (1,﹣1),点B 、E 、D 的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1), 故点E 是BD 的中点,∴S 2=S △ABD =S △ABC =S 1,故S 1=2S 2;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN =S△BCM==NB×k=NB,解得:NB=,则ON=,∵BN<BM,故点N在线段MB上,故点N(﹣,0).4.解:(1)∵直线y=﹣x﹣4交x轴和y轴于点A和点C,∴点A(﹣4,0),点C(0,﹣4),设直线AB的解析式为y=kx+b,由题意可得:,解得:,∴直线AB的解析式为y=x+2,故答案为:y=x+2;(2)∵点A(﹣4,0),点C(0,﹣4),点B(0,2),∴OA=OC=4,OB=2,∴BC=6,设点P(m,m+2),当点P在线段AB上时,∵S△APC =S△AOC,∴S△ABC ﹣S△PBC=×4×4,∴×6×4﹣×6×(﹣m)=8,∴m=﹣,∴点P(﹣,);当点P在BA的延长线上时,∵S△APC =S△AOC,∴S△PBC ﹣S△ABC=×4×4,∴×6×(﹣m)﹣×6×4=8,∴m=﹣,∴点P(﹣,﹣),综上所述:点P坐标为(﹣,)或(﹣,﹣);(3)如图,当点P在线段AB上时,设CP与AO交于点H,在△AOB和△COH中,,∴△AOB≌△COH(ASA),∴OH=OB=2,∴点H坐标为(﹣2,0),设直线PC解析式y=ax+c,由题意可得,解得:,∴直线PC解析式为y=﹣2x﹣4,联立方程组得:,解得:,∴点P(﹣,),∴CP==,当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线P'C解析式为y=2x﹣4,联立方程组,∴点P(4,4),∴CP==4,综上所述:CP的解析式为:y=﹣2x﹣4或y=2x﹣4;CP的长为或4.5.解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,=×6×4=12;∴S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=1,∴点M的横坐标为1或﹣1;当M 的横坐标是:1,在y =x 中,当x =1时,y =,则M 的坐标是(1,);在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5).当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7).综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7). 6.解:(1)把A (3,m )代入y =x ﹣1中,得m =3﹣1=2,∴A (3,2),把A (3,2)代入y =kx +8中,得2=3k +8,解得,k =﹣2;答:k ,m 的值为﹣2、2;(2)由(1)知,直线y =kx +8为y =﹣2x +8,根据题意,如图:∵点P (n ,n ),∴M (n ﹣1,n ),N (n ,﹣2n +8),∴PM =1,PN =|3n ﹣8|,∵PN ≤2PM ,∴|3n ﹣8|≤2×1,∴2≤n≤∵P与N不重合,∴n≠﹣2n+8,∴n≠,综上,2≤n≤,且n≠.7.解:(1)根据题意,对于点A而言,|2|+|2|=4,A是“垂距点”,对于点B而言,||+|﹣|=4,B是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为A和B.(2)根据题意得|m|+||=4①当m>0时,则2m=4,解得m=2,②当m<0时,则﹣2m=4,解得m=﹣2,故m的值为±2.(3)如图,取E(0,4),F(4,0),G(﹣4,0).连接EF,EG,在EF上取一点P,作PM⊥OE于M,PN⊥OF于N.则有四边形PMON是矩形,可得PN=OM,∵OE=OF,∴∠OEF=45°∴PM=EM,∴PM+PN=OM+EM=4,∴线段EF或线段EG上的点是“垂距点”,当直线y=kx+b与线段EF或线段EG有交点时,直线y=kx+b上存在“垂距点”,∵直线y=kx+b,经过A(2,3),∴3=2k+b,∴b=3﹣2k,∴直线y=kx+3﹣2k,当直线经过E(0,4)时,k=﹣,当直线经过F(4,0)时,k=﹣,观察图象可知满足条件的k的值为k≤﹣或k≥﹣且k≠0.故答案为:k≤﹣或k≥﹣且k≠0.8.解:(1)∵点A的坐标为(0,6),∴设直线AB的解析式为y=kx+6,∵点C(2,4)在直线AB上,∴2k+6=4,∴k=﹣1,∴直线AB的解析式为y=﹣x+6;(2)由(1)知,直线AB的解析式为y=﹣x+6,令y=0,∴﹣x+6=0,∴x=6,∴B(6,0),∴S=OB•y C=12,△OBC∵△OPB的面积是△OBC的面积的,∴S=×12=3,△OPB设P的纵坐标为m,=OB•m=3m=3,∴S△OPB∴m=1,∵C(2,4),∴直线OC的解析式为y=2x,当点P在OC上时,x=,∴P(,1),当点P在BC上时,x=6﹣1=5,∴P(5,1),即:点P(,1)或(5,1);(3)∵△OBP是直角三角形,∴∠OPB=90°,①当点P在OC上时,如图,过点C作CH⊥x轴于H,∵C(2,4),∴CH=4,OC=2=OB•CH=OC•BP,∴S△OBC∴BP===,由(2)知,直线OC的解析式为y=2x①,设点P的坐标为(m,2m),∵B(6,0),∴BP2=(m﹣6)2+4m2=,∴m=∴P(,),②当点P在BC上时,同①的方法,∴P(3,3),即:点P的坐标为(,)或(3,3).9.解:(1)将点B(0,4)代入直线l的解析式得:b=4,∴直线l的解析式为:y=x+4,令y=0得:x=3,∴A(3,0).(2)存在.∵Q在第一象限的角平分线上,设Q(x,x),根据勾股定理:QB2+BA2=QA2,x2+(x﹣4)2+52=x2+(x﹣3)2,解得x=16,故Q(16,16).(3)能使△ABC为轴对称图形,则得:△ABC为等腰三角形,当AB=BC时,C(0,9)或(0,﹣1),此时C点运动1秒或11秒,当AB=AC时,C(0,﹣4),此时C点运动14秒,当AC=BC时,C(0,),此时C点运动秒.综上所述:当C点运动1秒、秒、11秒、14秒时,能使△ABC为轴对称图形.10.解:(1)将点A(﹣6,0),B(0,4)代入y=kx+b中,得,∴,∴直线l的函数表达式为y=x+4;1的函数表达式为y=x+4①,(2)由(1)知,直线l1:y=x,∵直线l2联立①②解得,,∴C(6,8),∵B(0,4),∴OB=4,=OB•|x C|=×4×6=12;∴S△COB(3)设P(m,0),∵O(0,0),C(6,8),∴OP=|m|.OC=10,CP=,∵△POC是等腰三角形,①当OP=OC时,∴|m|=10,∴m=±10,∴P(﹣10,0)或(10,0),②当OP=CP时,∴|m|=,∴m=,∴P(,0),③当OC=CP时,∴10=,∴m=0(舍)或m=12,∴P(12,0),即:满足条件的点P的坐标为(﹣10,0)或(10,0)或(12,0)或(,0).21。
2021中考数学 压轴专题训练之动点问题(含答案)
2021中考数学 压轴专题训练之动点问题1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB-BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图22. 如图,抛物线y=-x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y=kx+n 与y 轴交于点C ,与抛物线y=-x 2+bx+c 的另一个交点为D ,已知A (-1,0),D (5,-6),P 点为抛物线y=-x 2+bx+c 上一动点(不与A ,D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作PF ∥y 轴交直线l 于点F ,求PE+PF 的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N ,C ,M ,P 为顶点的四边形为平行四边形.若存在,求出点M 的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2, -4 )、O (0, 0)、B (2, 0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.4. 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.5. 如图①,在平面直角坐标系xOy 中,已知抛物线y=ax 2-2ax -8a 与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-4).(1)点A 的坐标为 ,点B 的坐标为 ,线段AC 的长为 ,抛物线的解析式为 .(2)点P 是线段BC 下方抛物线上的一个动点.如果在x 轴上存在点Q ,使得以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.①6. 如图,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.7. 如图,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?4=MN 1=MA 1>MB x AB=8. 如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.9. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.10. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11. 如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(m,8),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象,直接写出当x>0时不等式2x+6-kx>0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?12. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.13. 在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.14. 如图,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.15. 如图,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ; (2)求证:ADAE为定值; (3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.16. 如图,二次函数y=-x2+4x+5的图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D,C重合),点N 的纵坐标为n.过点N作直线与线段DA,DB分别交于点P,Q,使得∥DPQ与∥DAB 相似.①当n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个∥DPQ与∥DAB相似,请直接写出n的取值范围.17. 已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y 轴的正半轴上,且四边形ABCD为梯形.∥求点D的坐标;∥将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.18. 如图,在平面直角坐标系xOy 中,二次函数y =-x 2+2x +8的图象与一次函数y =-x +b 的图象交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为-7.点P 是二次函数图象上A 、B 两点之间的一个动点(不与点A 、B 重合),设点P 的横坐标为m ,过点P 作x 轴的垂线交AB 于点C ,作PD ⊥AB 于点D . (1)求b 及sin ∠ACP 的值;(2)用含m 的代数式表示线段PD 的长;(3)连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为1∶2?如果存在,直接写出m 的值;如果不存在,请说明理由.19. 如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.20. 已知平面直角坐标系中两定点A (-1, 0)、B (4, 0),抛物线y =ax 2+bx -2(a≠0)过点A 、B ,顶点为C ,点P (m , n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得顺次首尾连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考数学 压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1. 【答案】【思维教练】(1)设一次函数解析式,将已知点A 、B 的坐标值代入求解即可;(2)S △CPQ =12·CP·Q y ,CP =14-t ,点Q 在AB 上,Q y 即为当x =t 时的y 值,代入化简得出S 与t 的函数关系式,化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论,当Q 在OA 上时,过点C ;当Q 在AB 上时,过点A ;当Q 在BC 上时,过点C 和点B ,再列方程并求解.解图1解:(1)把A(3,33),B(9,53)代入y =kx +b ,得⎩⎨⎧3k +b =33,9k +b =53,解得⎩⎨⎧k =33,b =23,∴y =33x +23;(3分)(2)在△PQC 中,PC =14-t ,∵OA =32+(33)2=6且Q 在OA 上速度为3单位长度/s , AB =62+(23)2=43且Q 点在AB 上的速度为3单位长度/s , ∴Q 在OA 上时的横坐标为t ,Q 在AB 上时的横坐标为32t , PC 边上的高线长为33t +2 3.(6分)所以S =12(14-t )(32t +23)=-34t 2+532t +143(2≤t ≤6).当t =5时,S 有最大值为8134.(7分)解图2(3)①当0<t ≤2时,线段PQ 的中垂线经过点C(如解图1).可得方程(332t )2+(14-32t )2=(14-t )2.解得t 1=74,t 2=0(舍去),此时t =74.(8分)解图3②当2<t ≤6时,线段PQ 的中垂线经过点A(如解图2). 可得方程(33)2+(t -3)2=[3(t -2)]2.解得t 1=3+572,∵t 2=3-572(舍去),此时t =3+572. ③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25-52t ,解得t =223.(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2. 解得t 1=38+2027,t 2=38-2027(舍去). 此时t =38+2027.(11分) 综上所述,t 的值为74,3+572,223,38+2027.(12分)【难点突破】解决本题的关键点在于对PQ 的垂直平分线过四边形顶点的情况进行分类讨论,在不同阶段列方程求解.2. 【答案】[分析] (1)将点A ,D 的坐标分别代入直线表达式、抛物线的表达式,即可求解; (2)设出P 点坐标,用参数表示PE ,PF 的长,利用二次函数求最值的方法.求解; (3)分NC 是平行四边形的一条边或NC 是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A ,D 的坐标代入y=kx +n 得:解得:故直线l 的表达式为y=-x -1.将点A ,D 的坐标代入抛物线表达式, 得解得故抛物线的表达式为:y=-x 2+3x +4. (2)∵直线l 的表达式为y=-x -1,∴C (0,-1),则直线l 与x 轴的夹角为45°,即∠OAC=45°, ∵PE ∥x 轴,∴∠PEF=∠OAC=45°.又∵PF ∥y 轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF .设点P 坐标为(x ,-x 2+3x +4), 则点F (x ,-x -1),∴PE +PF=2PF=2(-x 2+3x +4+x +1)=-2(x -2)2+18,∵-2<0,∴当x=2时,PE +PF 有最大值,其最大值为18. (3)由题意知N (0,4),C (0,-1),∴NC=5,①当NC 是平行四边形的一条边时,有NC ∥PM ,NC=PM. 设点P 坐标为(x ,-x 2+3x +4),则点M 的坐标为(x ,-x -1), ∴|y M -y P |=5,即|-x 2+3x +4+x +1|=5, 解得x=2±或x=0或x=4(舍去x=0),则点M 坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC 是平行四边形的对角线时,线段NC 与PM 互相平分. 由题意,NC 的中点坐标为0,,设点P 坐标为(m ,-m 2+3m +4), 则点M (n',-n'-1), ∴0==,解得:n'=0或-4(舍去n'=0), 故点M (-4,3).综上所述,存在点M ,使得以N ,C ,M ,P 为顶点的四边形为平行四边形,点M 的坐标分别为: (2+,-3-),(2-,-3+),(4,-5),(-4,3).3. 【答案】(1)212y x x =-+。
中考数学动态型问题试题归类(含答案)
中考数学动态型问题试题归类(含答案)以下是查字典数学网为您引荐的中考数学静态型效果试题归类(含答案),希望本篇文章对您学习有所协助。
中考数学静态型效果试题归类(含答案)18.(2021江苏苏州,18,3分)如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点动身,以1cm/s的速度沿着ABCD 的方向不停移动,直到点P抵达点D后才中止.△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,那么点P从末尾移动到中止移动一共用了 (4+2 ) 秒(结果保管根号).剖析:依据图②判别出AB、BC的长度,过点B作BEAD于点E,然后求出梯形ABCD的高BE,再依据t=2时△PAD的面积求出AD的长度,过点C作CFAD于点F,然后求出DF的长度,应用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再依据时间=路程速度计算即可得解.解答:解:由图②可知,t在2到4秒时,△PAD的面积不发作变化,在AB上运动的时间是2秒,在BC上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,AB=2cm,BC=2cm,过点B作BEAD于点E,过点C作CFAD于点F,那么四边形BCFE是矩形,BE=CF,BC=EF=2cm,∵A=60,BE=ABsin60=2 = ,AE=ABcos60=2 =1,ADBE=3 ,即 AD =3 ,解得AD=6cm,DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD= = =2 ,所以,动点P运动的总路程为AB+BC+CD=2+2+2 =4+2 ,∵动点P的运动速度是1cm/s,点P从末尾移动到中止移动一共用了(4+2 )1=4+2 (秒). 23.(2021贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,失掉△ACD和△ABC.(1)如图②,将△ACD沿AC边向上平移,使点A与点C重合,衔接AD和BC,四边形ABCD是形;(2)如图③,将△ACD的顶点A与A点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同不时线上,那么旋转角为度;衔接CC,四边形CDBC是形;(3)如图④,将AC边与AC边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,衔接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
中考数学综合题专题【动点综合型问题一】专题解析
中考数学综合题专题【动点综合型问题一】专题解析1.(北京模拟)已知抛物线y =-x2+2x +m -2与y 轴交于点A (0,2m -7),与直线y =2x 交于点B 、C (B 在C 的右侧). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得∠BFE =∠CFE ,若存在,求出点F 的坐标,若不存在,说明理由;(3)动点P 、Q 同时从原点出发,分别以每秒 5 个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒.若△PMQ 与抛物线y =-x2+2x +m -2有公共点,求t 的取值范围.解:(1)把点A (0,2m -7)代入y =-x2+2x +m -2,得m =5∴抛物线的解析式为y =-x2+2x +3(2)由⎩⎪⎨⎪⎧y =-x2+2x +3y =2x 解得⎩⎨⎧x 1=3y 1=23 ⎩⎨⎧x 2=-3y 2=-23∴B (3,23),C (-3,-23) ∵y =-x2+2x +3=-(x -1)2+4∴抛物线的对称轴为x =1设F (1,y )∵∠BFE =∠CFE ,∴tan ∠BFE =tan ∠CFE 当点F 在点B 上方时,3-1y -23=3+1y +23解得y =6,∴F (1,6) 当点F 在点B 下方时,3-123-y=3+1-y -23解得y =6(舍去)∴满足条件的点F 的坐标是F (1,6)(3)由题意,OP =5t ,OQ =25t ,∴PQ =5t ∵P 、Q 在直线直线y =2x 上∴设P (x ,2x ),则Q (2x ,4x )(x<0)∴x 2+4x 2=5t ,∴x =-t∴P (-t ,-2t ),Q (-2t ,-4t )∴M (-2t ,-2t )当M (-2t ,-2t )在抛物线上时,有-2t =-4t2-4t +3解得t =13-14(舍去负值)当P (-t ,-2t )在抛物线上时,有-2t =-t2-2t +3 解得t =3(舍去负值)∴t 的取值范围是:13-14≤t≤ 32.(北京模拟)在平面直角坐标系中,抛物线y 1=ax2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B .(1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长;②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A (1,2) ∴⎩⎪⎨⎪⎧c =2a +3+c =2 解得⎩⎪⎨⎪⎧a =-1c =0 ∴抛物线y 1的解析式为y 1=-x2+3x令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a可得△ODP ∽△OAH ,∴DPOP=AHOH=2∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a )∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=79∴OP 的长为79②设直线AC 的解析式为y =kx +b ∴⎩⎪⎨⎪⎧2=k +b 0=6k +b 解得k =-2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +125由题意,OP =t ,PF =2t ,QC =2t ,GQ = 45t 当EF 与MN 重合时,则OF +CN =6∴3t +2t + 4 5 t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6∴t +2t + 4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点 ∴⎩⎪⎨⎪⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =- 1 3 x 2+ 13x +4 (2)连接DQ ,依题意知AP =t∵抛物线y =- 1 3 x 2+ 13x +4与y 轴交于点C∴C (0,4)又A (-3,0,B (4,0)可得AC =5,BC =42,AB =7∵BD =BC ,∴AD =AB -BD =7-42∵CD 垂直平分PQ ,∴QD =DP ,∠CDQ =∠CDP ∵BD =BC ,∴∠DCB =∠CDB ∴∠CDQ =∠DCB ,∴DQ ∥BC∴△ADQ ∽△ABC ,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP =42-32 7 ,∴AP =AD +DP =177∴线段PQ 被CD 垂直平分时,t 的值为177(3)设抛物线y =- 1 3 x 2+ 1 3 x +4的对称轴x = 12与x 轴交于点E由于点A 、B 关于对称轴x = 12对称,连接BQ 交对称轴于点M 则MQ +MA =MQ +MB ,即MQ +MA =BQ 当BQ ⊥AC 时,BQ 最小,此时∠EBM =∠ACO∴tan ∠EBM =tan ∠ACO =34∴ ME BE = 3 4 ,即 ME 4- 1 2= 34 ,解得ME =21 8∴M (1 2,21 8)∴在抛物线的对称轴上存在一点M (1 2,218),使得MQ +MA 的值最小4.(北京模拟)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.动点P 从点A 出发,沿AC →CB →BA 边运动,点P 在AC 、CB 、BA 边上运动的速度分别为每秒3、4、5个单位.直线l 从与AC 重合的位置开始,以每秒 43个单位的速度沿CB 方向移动,移动过程中保持l ∥AC ,且分别与CB 、AB 边交于点E 、F .点P 与直线l 同时出发,设运动的时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动.(1)当t =_________秒时,点P 与点E 重合;当t =_________秒时,点P 与点F 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点P′ 落在EF 上,点F 的对应点为F′ ,当EF′⊥AB 时,求t 的值;(3)作点P 关于直线EF 的对称点Q ,在运动过程中,若形成的四边形PEQF 为菱形,求t 的值;(4)在整个运动过程中,设△PEF 的面积为S ,直接写出S 关于t 的函数关系式及S 的最大值.解:(1)3;4.5提示:在Rt △ABC 中,∠C =90°,AC =6,BC =8∴AB =6 2+82=10,∴sin B =ACAB = 3 5 ,cos B =BCAB = 4 5 ,tan B =ACBC =34当点P 与点E 重合时,点P 在CB 边上,CP =CE∵AC =6,点P 在AC 、CB 边上运动的速度分别为每秒3、4个单位 ∴点P 在AC 边上运动的时间为2秒,CP =4(t -2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-4 3t在Rt△BEF中,BEBF=cos B∴8-43t5(t-4)=45,解得t=4.5(2)由题意,∠PEF=∠MEN∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF ∵EN⊥AB,∴∠B=∠MEN∴∠CPE=∠B,∴tan∠CPE=tan B∵tan∠CPE=CECP,tan B=ACBC=34∴CECP=34,∴CP=43CE∵AP=3t(0<t<2),CE=43t,∴CP=6-3t∴6-3t=43×43t,解得t=5443(3)连接PQ交EF于O∵P、Q关于直线EF对称,∴EF垂直平分PQ若四边形PEQF为菱形,则OE=OF=1 2EF①当点P在AC边上运动时易知四边形POEC为矩形,∴OE=PC ∴PC=12EF∵CE=43t,∴BE=8-43t,EF=BE·tan B=34(8-43t)=6-t∴6-3t=12(6-t),解得t=6 5②当点P在CB边上运动时,P、E、Q三点共线,不存在四边形PEQF③当点P在BA边上运动时,则点P在点B、F之间∵BE=8-43t,∴BF=BEcos B=54(8-43t)=10-53t∵BP=5(t-4),∴PF=BF-BP=10-53t-5(t-4)=30-20 3t∵∠POF=∠BEF=90°,∴PO∥BE,∴∠OPF=∠B在Rt△POF中,OFPF=sin B∴12(6-t)30-203t=35,解得t=307∴当t =6 5或t =307时,四边形PEQF 为菱形(4)S =⎩⎪⎪⎨⎪⎪⎧-23t 2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)83t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒). (1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB′E ,记△PB′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)在整个运动过程中,是否存在以点D 、P 、B′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.解:(1)60°(2)∵∠A =∠B =60°,PB =PB′ ∴△PB′B 是等边三角形∴PB =PB′=BB′=2t ,BE =B′E =t ,PE =3t 当0<t ≤2时S =S △PB′E=1 2 B′E ·PE = 1 2 t ·3t = 32t2 当2<t≤4时S =S △PB′E - S △FB′C = 3 2 t2- 3 4 ( 2t -4 )2=- 32t2+43t -4 3 当4<t≤5时设PB′、PE 分别交DC 于点G 、H ,作GK ⊥PH 于K ∵△PB′B 是等边三角形,∴∠B′PB =60°=∠A ∴PG ∥AD ,又DG ∥AP ∴四边形APGD 是平行四边形∴PG =AD =4∵AB ∥CD ,∴∠GHP =∠BPH∵∠GPH =∠BPH =12∠B′PB =30°∴∠GHP =∠GPH =30°,∴PG =GH =4∴GK =12PG =2,PK =KH =PG ·cos30°=2 3∴PH =2PK =4 3∴S =S △PGH=1 2 PH ·GK =12×43×2=4 3 综上得,S 与t 之间的函数关系式为:S =⎩⎪⎨⎪⎧32t 2(0<t≤2)-32t 2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB′=90° ∵∠B′PB =60°,∴∠DPA =30° 又∠A =60°,∴∠ADP =90° ∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB′=90°作DM ⊥AB 于M ,DN ⊥B′B 于N则AM =2,DM =23,NC =3,DN =3 3PM =|10-2-2t |=|8-2t | NB′=|3+4-2t |=|7-2t |DP 2=DM 2+PM 2=(23 )2+( 8-2t )2=( 8-2t)2+12 DB′ 2=DN 2+NB′=( 33 )2+( 7-2t )2=( 7-2t)2+27∵DP 2+DB′ 2=B′P 2∴(8-2t )2+12+( 7-2t )2+27=( 2t)2解得t 1=15+73 2>5(舍去),t 2=15-732若∠DB′P =90°,则DB′ 2+B′P 2=DP 2 ∴(7-2t )2+27+( 2t )2=( 8-2t)2+12解得t 1=-1(舍去),t 2=0(舍去)∴存在以点D 、P 、B′为顶点的三角形为直角三角形,此时t =1或t =15-732②若DP =B′P ,则(8-2t )2+12=( 2t)2解得t =198若B′D =B′P ,则( 7-2t )2+27=( 2t)2解得t =197若DP =DB′,则( 8-2t )2+12=( 7-2t)2+27 解得t =0(舍去)∴存在以点D 、P 、B′为顶点的三角形为等腰三角形,此时t =19 8或t =1976.(北京模拟)已知二次函数y =- 33mx 2+3mx -2的图象与x 轴交于点A (23,0)、点B ,与y 轴交于点C . (1)求点B 坐标;(2)点P 从点C 出发以每秒1个单位的速度沿线段CO 向O 点运动,到达点O 后停止运动,过点P 作PQ ∥AC 交OA 于点Q ,将四边形PQAC 沿PQ 翻折,得到四边形PQA′C′,设点P 的运动时间为t .①当t 为何值时,点A′恰好落在二次函数y =-33mx2+3mx -2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.解:(1)将A (2 3,0)代入y =- 33mx2+3mx -2得0=- 3 3 m ×( 2 3 )2+3m ×2 3-2,解得m =33∴y =- 13x2+3x -2令y =0,得- 13x2+3x -2=0,解得:x 1=3,x 2=2 3∴B(3,0)(2)①由y =-13x2+3x -2,令x =0,得y =-2∴C (0,-2)∵y =-1 3 x 2+3x -2=- 1 3 ( x - 323 )2+14∴二次函数图象的对称轴为直线x = 323过A′作A′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60°∴∠PQA =150°,∠A′QH =60°,AQ =A′Q =2QH ∵点A′在二次函数图象的对称轴上∴⎩⎪⎨⎪⎧OQ +QH =3 23OQ +2QH =23解得QH =32∴AQ =3,CP =1 ∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA′C′ 落在第一象限内的图形为等腰三角形QA′DDQ =A′Q =3tA′H =AQ ·sin60°=3t ·3 2=32tS=S△A′DQ=12·3t·32t=334t2∵当0<t≤1时,S随t的增大而增大∴当t=1时,S有最大值334ⅱ)当1<t<2时,四边形PQA′C′落在第一象限内的图形为四边形EOQA′S四边形EOQA′=S梯形PQA′C′-S△OPQ-S△PC′E=[23-32(2-t)2]-32(2-t)2-34t2=-534t2+43t-2 3∵-534t2+43t-23=-534(t-85)2+635且1<85<2,∴当t=85时,S有最大值635∵635>334,∴S的最大值是6357.(北京模拟)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD= 2 (2)作AH⊥BC于H,交EG于O,DK⊥EF于K,PM⊥DA交DA的延长线于M∵AD∥BC,∠A=120°,AB=AD=2∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=32∵AP=t,∴PM=32t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴EN AD=PEPA,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1 解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t=6-1,t=62-1,t=4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x+42交x轴于点A,交y轴于点B.在线段OA上有一动点P,以每秒2个单位长度的速度由点O向点A匀速运动,以OP 为边作正方形OPQM交y轴于点M,连接QA和QB,并从QA和QB的中点C和D向AB 作垂线,垂足分别为点F和点E.设P点运动的时间为t秒,四边形CDEF的面积为S1,正方形OPQM与四边形CDEF重叠部分的面积为S2.(1)直接写出A点和B点坐标及t的取值范围;(2)当t=1时,求S1的值;(3)试求S2与t的函数关系式(4)直接写出在整个运动过程中,点C和点D所走过的路程之和.解:(1)A(42,0)、B(0,42),0≤t≤4(2)过Q作QH⊥AB于H∵C、D分别是QA和QB的中点∴CD∥AB,CD=12AB=12×42×2=4∵CF⊥AB,DE⊥AB,∴CF∥DE∴四边形CDEF是平行四边形又∵CF⊥AB,∴四边形CDEF是矩形∵CF⊥AB,QH⊥AB,∴CF∥QH又∵C是QA中点,∴CF=12QH连接OQ∵正方形OPQM,∴∠1=∠2,OP=PQ=QM=MO∵OA=OB,∴PA=MB∴Rt△QPA≌Rt△QMB,∴QA=QB,∠PQA=∠MQB∵QH⊥AB,∴∠3=∠4∴∠1+∠MQB+∠3=180°,∴O、Q、H三点共线∴QH=OH-OQ∵t=1,点P的运动速度为每秒2个单位长度∴OP=2,∴OQ=2又∵OA=42,∴OH=4∴QH=OH-OQ=4-2=2,∴CF=1∴S1=CD·CF=4×1=4(3)当点Q落在AB上时,OQ⊥AB,△QOA是等腰直角三角形∴t=22÷2=2当0≤t≤2时,S2=0当点E落在QM上,点F落在PQ上时,△CFK和△DEG都是等腰直角三角形过C作CT⊥PQ于T则CT=12AP=12(42-2t)=22(4-t)∴CF=2CT=4-t连接OQ,分别交AB、CD于N、R则ON=22OA=22×42=4∵OP=2t,∴OQ=2t,∴QN=2t-4∴CF=12QN=t-2∴4-t=t-2,∴t=3当2<t≤3时,重叠部分为等腰梯形GHIK △QGK和△QHI都是等腰直角三角形∵QN=2t-4,RN=CF=t-2,∴QR=t-2 ∴GK=2QR=2t-4,HI=2QN=4t-8∴S 2=1 2 (GK +HI)·RN =12(2t -4+4t -8)(t -2)=3(t -2)2 当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t)∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT=4(t -2)-2(4-t)·22(4-t)=-t 2+12t -24综上得S 2关于t 的函数关系式为:S 2=⎩⎪⎨⎪⎧0(0≤t≤2)3(t -2 )2(2<t≤3)-t 2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半9.(上海模拟)如图,正方形ABCD 中,AB =5,点E 是BC 延长线上一点,CE =BC ,连接BD .动点M 从B 出发,以每秒2个单位长度的速度沿BD 向D 运动;动点N 从E 出发,以每秒2个单位长度的速度沿EB 向B 运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t 秒,过M 作BD 的垂线MP 交BE 于P . (1)当PN =2时,求运动时间t ;(2)是否存在这样的t ,使△MPN 为等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)设△MPN 与△BCD 重叠部分的面积为S ,直接写出S 与t 的函数关系式和函数的定义域.解:(1)∵正方形ABCD ,∴∠DBC =45° ∵MP ⊥DB ,∴△BMP 是等腰直角三角形 ∵BM =2t ,∴BP =2BM =2t 又PN =2,NE =2t当0<t<2.5时,BP +PN +NE =BE∴2t +2+2t =10,∴t =2当2.5<t<5时,BP -PN +NE =BE∴2t -2+2t =10,∴t =3(2)过M 作MH ⊥BC 于H则△NQC ∽△NMH ,∴QCCN=MHHN∴QC5-2t=t10-t -2t,∴QC =5t -2t 210-3t令QC =y ,则y =5t -2t 210-3t整理得2t 2-(3y +5)t +10y =0∵t 为实数,∴[-(3y +5)]2-4×2×10y≥0即9y 2-50y +25≥0,解得y≥5(舍去)或y≤59∴线段QC 长度的最大值为59(3)当0<t<2.5时∵∠MPN =∠DBC +∠BMP =45°+90°=135° ∴∠MPN 为钝角,∴MN>MP ,MN>PN若PM =PN ,则2t =10-4t解得t =57(4-2) 当2.5<t<5时∵∠MNP >∠MBP =∠MPB ,∴MP>MN 若MN =PN ,则∠PMN =∠MPN =45°∴∠MNP =90°,即MN ⊥BP ∴BN =NP ,BP =2BN ∴2t =2(10-2t),解得t =103若PM =PN∵PN =BP -BN =BP -(BE -NE)=BP +NE -BE∴2t =2t +2t -10,解得t =57(4+2)∴当t = 5 7 ( 4-2 ),t = 10 3 ,t = 57( 4+2)时,△MPN 为等腰三角形(4)S =⎩⎨⎧ 8t 3-50t 2+75t20-6t(0<t<2.5)5t - 252(2.5<t<5)10.(重庆模拟)如图,已知△ABC 是等边三角形,点O 是AC 的中点,OB =12,动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在直线OB 上,取OB 的中点D ,以OD 为边在△AOB 内部作如图所示的矩形ODEF ,点E 在线段AB 上.(1)求当等边△PMN 的顶点M 运动到与点O 重合时t 的值; (2)求等边△PMN 的边长(用含t 的代数式表示);(3)设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请直接写出S 与t 的函数关系式及自变量t 的取值范围;(4)点P 在运动过程中,是否存在点M ,使得△EFM 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.解:(1)当点M 与点O 重合时∵△ABC 、△PMN 是等边三角形,O 为AC 中点 ∴∠AOP =30°,∠APO =90°∵OB =12,∴AO =43=2AP =23t 解得t =2∴当t =2时,点M 与点O 重合(2)由题设知∠ABM =30°,AB =83,AP =3t ∴PB =83-3t ,PM =PB ·tan30°=8-t 即等边△PMN 的边长为8-t(3)S =⎩⎪⎨⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-32t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG ∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t∴S =S 梯形FONG=12(FG +ON)·FO= 12( 2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段FO设PM 交EF 于点I ,则重叠部分为五边形IJONG FJ =AJ -AF =23t -23,FI =2t -2∴S =S 梯形FONG -S △FIJ =23t +63- 12( 23t -23 )( 2t -2) =-23t 2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG ∵AP =3t ,∴PE =43-3t ∴IG =GE =4-t ,EK =43-3t∴KD =23-( 43-3t)=3t -23,DN =t -2∴S =S 梯形IMNG-S △KDN=1 2 (4-t +8-t)·23-12(3t -23)(t -2)=-32t 2+10 3④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3∴ER=2EP=23t-8 3∴RD=23-(23t-83)=103-23t MD=10-2t∴S=S△RMD=12(10-2t)(103-23t)=23t2-203t+50 3⑤当5<t≤8时,S=0(4)∵MN=BN=PN=8-t,∴MB=16-2t①若FM=EM,则M为OD中点∴OM=3∵OM+MB=OB,∴3+16-2t=12∴t=3.5②若FM=FE=6,则OM=62-(23)2=2 6∵OM+MB=OB,∴26+16-2t=12∴t=2+ 6③若EF=EM=6,点M在OD或DB上则DM=62-(23)2=2 6∴DB+DM=MB或者DB-DM=MB∴6+26=16-2t或6-26=16-2t∴t=5-6或t=5+ 6综上所述,当t=3.5、2+6、5-6、5+6时,△MEF是等腰三角形11.(浙江某校自主招生)如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=34x和y=-43x+253.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒53个单位的速度沿射线AO下滑,直至顶点B落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.解:(1)联立⎩⎨⎧y = 3 4x y =- 4 3 x +25 3解得⎩⎪⎨⎪⎧x =4y =3∴A (4,3),∴OA =4 2+32=5∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2 分两种情况:①当点Q 在OA 上时,∵PQ ≥BA >PC ,∴只存在一点Q ,使QC =QP作QN ⊥CP 于N ,则CN =12CP =OQ =1∴QA =5-1=4,∴k = 42=2②当点Q 在OC 上时,同理只存在一点Q ,使CP =CQ =2∴OQ +OA =10-2=8,∴k = 82=4综上所述,当t =2秒时,以所得的等腰三角形CPQ 沿底边翻折, 翻折后得到菱形的k 值为2或4 (3)①当点A 运动到点O 时,t =3 当0<t≤3时,设O′C′ 交x 轴于点D则tan ∠DOO′= 3 4 ,即 DO′ OO′ = DO′5 3t= 3 4 ,∴DO′= 54t∴S = 1 2 DO′·OO′= 1 2 ·5 4 t ·5 3 t = 25 24t 2②当点C 运动到x 轴上时,t =( 5× 4 3)÷53=4 当3<t≤4时,设A′B′ 交x 轴于点E∵A′O = 5 3 t -5,∴A′E = 3 4 A′O =5t -154∴S = 1 2 ( A′E +O′D )·A′O′= 1 2 ( 5t -15 4 + 5 4 t )·5=50t -75 8③当点B 运动到x 轴上时,t =( 5+5× 4 3)÷53=7 当4<t≤7时,设B′C′ 交x 轴于点F∵A′E = 5t -15 4 ,∴B′E =5- 5t -15 4 =35-5t4∴B′F = 4 3 B′E =35-5t3∴S =5 2- 1 2 · 35-5t 4 · 35-5t 3 =- 25 24 t 2+ 175 12 t -62524综上所述,S 关于滑行时间t 的函数关系式为:数学专题之【动点综合型问题】精品解析———————————————————————————————————————S = ⎩⎪⎨⎪⎧2524t 2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ?(2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围; (3)当4<t <8时,求△APE 的面积为S 的变化范围.解(1)AP =x cm ,BQ =2x cm∵∠BEP =∠BEQ ,BE =BE ,∠PBE =∠QBE =45° ∴△PBE ≌△QBE ,∴PB =BQ即8-x =2x ,∴x =83∴点P 出发83秒后,∠BEP =∠BEQ(2)①当0<x≤4时,点Q 在BC 上,作EN ⊥AB 于N ,EM ⊥BC 于M∵AD ∥BC ,∴ AE EQ = ADBQ = 8 2x =4x即 AE EQ = 4 x ,∴ AEAQ =4 x +4∴ NE BQ = AE AQ ,∴NE = AE ·BQAQ =8x x +4∴S = 1 2 AP ·NE = 1 2 x · 8x x +4 =4x2x +4即S = 4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB 于F ,交BD 于H 则 AE EQ = ADHQ = 8 16-2x =4 8-x即 AE EQ = 4 8-x ,∴ AEAQ = 4 8-x +4 =4 12-x作EN ⊥AB 于N ,则 NE FQ =AEAQ∴NE = AE ·FQFQ =32 12-x∴S =1 2 AP ·NE = 1 2 x ·32 12-x =16x 12-x即S = 16x12-x(4<x<8)(3)当4<x <8时,由S = 16x 12-x ,得x =12S16+S∵4<x <8,∴4< 12S16+S<8∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S) 解得8<S<3213.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E . (1)求出经过A 、D 、C 三点的抛物线解析式;(2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由; (3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.解:(1)由题意得:D (3,33)、C (9,33) 设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx 把D 、C 两点坐标代入上式,得: ⎩⎨⎧9a +3b =3381a +9b =33解得:a =-3 9 ,b =43 3∴抛物线的解析式为:y =-3 9 x2+433x (2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形 ∴PC =AQ ,即6-2t =t,∴t =2当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值 (3)①当点P 在DC 上,即0≤t≤3时∵DP ∥AQ ,∴△DEP ∽△AEQ ∴DEy=DPAQ=2tt=2,∴y =13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB∴AEBP=QAQB,即y12-2t=t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎪⎨⎪⎧2 (0≤t≤3)12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F′,由菱形对称性知F′ 在DA 上,且DF′=DF =1作点G 关于抛物线对称轴的对称点G′,易求DG′=4连接F′G′ 交DB 于点M 、交对称轴于点N ,则点M 、N 即为所求的两点过F′ 作F′H ⊥DG′ 于H ,可得HD =1 2 ,F′H = 3 2 ,HG′=92∴F′G′=F′H 2+HG′ 2=21∴四边形FMNG 周长最小值为F′G′+FG =21+114.(浙江模拟)如图,直线y =-x +5和直线y =kx -4交于点C (3,m ),两直线分别交y 轴于点A 和点B ,一平行于y 轴的直线l 从点C 出发水平向左平移,速度为每秒1个单位,运动时间为t ,且分别交AC 、BC 于点P 、Q ,以PQ 为一边向左侧作正方形PQDE . (1)求m 和k 的值;(2)当t 为何值时,正方形的边DE 刚好在y 轴上?(3)当直线l 从点C 出发开始运动的同时,点M 也同时在线段AB 上由点A 向点B 以每秒4个单位的速度运动,问点M 从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2 ∴C (3,2),代入y =kx -4得k =2 (2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t∵正方形PQDE ,∴PQ =PE当正方形的边DE刚好在y轴上时,3t=3-t,∴t=3 4(3)∵直线y=-x+5交y轴于点A,∴A(0,5)∴点M坐标为(0,5-4t)当点M和点P的纵坐标相等时,5-4t=t+2,∴t=3 5∵3 5<34,∴点M进入正方形PQDE时,t=34当点M和点Q的纵坐标相等时,5-4t=2-2t,∴t=3 2∴点M从进入正方形PQDE到离开正方形持续的时间为:t=32-34=3415.(浙江模拟)如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x 轴的正半轴上,点B坐标为(3,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动.P、Q两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t(秒).(1)求∠AOC的度数;(2)记四边形BCQP的面积为S(平方单位),求S与t之间的函数关系式;(3)设PQ与OB交于点M.①当△OMQ为等腰三角形时,求t的值.②探究线段OM长度的最大值,说明理由.解:(1)∵点B坐标为(3,1),∴OA=3,AB=1∴在Rt△OAB中,tan∠AOB=ABOA=13=33∴∠AOB=30°∵将△OAB作轴对称变换得△OCB∴△OCB≌△OAB,∴∠COB=∠AOB=30°∴∠AOC=60°(2)∵OP=CQ=t,AB=1,OC=OA= 3 ∴AP=OQ=3-t∴S=2S△OAB-S△OPQ-S△PAB=OA·AB-12OP·OQ·sin∠AOC-12PA·AB=3×1-12×t×(3-t)×32-12×(3-t)×1=34t2-14t+32(3)①若△OMQ为等腰三角形,则可能有三种情况:(i)若OM=MQ,则∠MQO=∠MOQ=30°∵∠AOC=60°,∴∠OPQ=90°∴OP=12OQ,即t=12(3-t)解得:t=3 3(ii)若OM=OQ,则∠OMQ=∠OQM=75°∵∠AOC=60°,∴∠OPQ=45°过点Q作QD⊥OA于D,则QD=DP即32(3-t)=t-12(3-t)解得:t=1(iii)若MQ=OQ,则∠OMQ=∠MOQ=∠MOP 得PQ∥OA,显然不符合题意②分别过点P、Q作OB的垂线,垂足分别为E、F ∵OP=t,OQ=3-t,∠MOP=∠MOQ=30°∴S△OPQ=S△OPM+S△OOM=12OM·PE+12OM·QF=14OM·OP+14OM·OQ=14OM(OP+OQ)=14OM(t+3-t)=34OM过点Q作QG⊥OA于G则S△OPQ=12OP·QG=12OP·OQ·sin60°=34t(3-t)=-34(t2-3t)∴34OM=-34(t2-3t)∴OM=-(t2-3t)=-(t-32)2+3 4∴当t=32时,线段OM的长度取得最大值3416.(浙江模拟)已知直线y=43x+4与x轴、y轴分别相交于点A、B,点C从O点出发沿射线OA以每秒1个单位长度的速度匀速运动,同时点D从A点出发沿AB以每秒1个单位长度的速度向B点匀速运动,当点D到达B点时C、D都停止运动.点E是CD的中点,直线EF⊥CD交y轴于点F,点E′与E点关于y轴对称.点C、D的运动时间为t(秒).(1)当t=________秒时,点F经过原点O;(2)设四边形BDCO的面积为S,求S与t的函数关系式;(3)当直线EF与△AOB的一边垂直时,求t的值;(4)以CD为一边,在CD的右侧作菱形CDMN,其中DM∥x轴.当点N在直线E′F左侧时,直接写出菱形CDMN与△EFE′重叠部分为轴对称图形时t的取值范围.解:(1)5 2提示:∵直线y=43x+4与x轴、y轴分别相交于点A、B∴A(-3,0),B(0,4),∴AO=3,BO=4 ∴AB=AO2+BO2=32+42=5当点F经过原点时,连接OD由题意,EF是CD的垂直平分线∴OD=OC=t∵AD=t,∴AD=OD,∴∠DAO=∠DOA∵∠DBO+∠DAO=90°,∠DOB+∠DOA=90°∴∠DBO=∠DOB,∴OD=BD∴AD=BD,∴AD=12AB=5 2(2)∵AO=3,BO=4,AB=5∴sin∠BAO=BOAB=45,cos∠BAO=AOAB=35过D作DH⊥AC于H当0≤t≤3时∵CO=t,AD=t,∴AC=3-t,DH=AD·sin∠BAO=45t∴S=S△ABO-S△ADC=12×3×4-12·(3-t)·45t=25t2-65t+6当3<t≤5时,AC=t-3∴S=S△ABO+S△ADC=12×3×4+12·(t-3)·45t=25t2-65t+6综合得S与t的函数关系式为:S=25t2-65t+6(0≤t≤5)(3)当EF⊥BO时∵EF⊥CD,∴CD∥BO,∴∠ACD=90°在Rt△ADC中,ACAD=cos∠BAO∴3-tt=35,∴t=158当EF⊥AB时∵EF⊥CD,∴直线CD与直线AB重合∴点C与点A重合,∴t=3(4)t=54或t=154提示:①当0<t<158,且重叠部分为等腰梯形PEQM时则∠PEQ=∠MQE∵菱形CDMN,∴CD∥MN∴∠MQE=∠CEQ,∴∠PEQ=∠CEQ∵EF⊥CD,即∠CEF=90°,∴∠CEQ=45°∴∠ACD=∠CEQ=45°过D作DH⊥AC于H,则△DHC是等腰直角三角形∴DH=HC,∴45t=3-t-35t,∴t=54②当158<t<5,且重叠部分为等腰梯形EHNK时同理可得∠CHE=45°连接DH∵EF垂直平分CD,∴CH=DH,∠DHE=∠CHE=45°∴∠DHC=90°,∴DH=45t而CH=CO-HO=CO-(AO-AH)=t-(3-3 5t)∴t-(3-35t)=45t,∴t=15417.(浙江模拟)如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,DE=16,M是BC边的中点,动点P从点A出发,沿边AB以每秒1个单位长度的速度向终点B运动.设动点P的运动时间是t秒.(1)求线段AE的长;(2)当△ADE与△PBM相似时,求t的值;(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).解:(1)∵ABCD是矩形,∴∠D=90°∴AE=AD2+DE2=122+162=20(2)∵∠D=∠B=90°∴△ADE与△PBM相似时,有两种情况:当∠DAE=∠PMB时,有DEPB=ADBM即1621-t=126,解得t=13当∠DAE=∠BPM时,有DEBM=ADPB即166=1221-t,解得t=332(3)①由题意得:S△EHP=S△EMP∵DC∥AB,∴∠DEA=∠HAP又∵∠D=∠AHP=90°,∴△ADE∽△PHA∴AH DE=PHAD=APAE,即AH16=PH12=t20∴AH=45t,PH=35t,EH=20-45t∴S△EHP=12×35t×(20-45t)∵DC=21,DE=16,∴EC=5 ∴S△EMP=S梯形EPBC-S△ECM-S△PBM=12(5+21-t)×12-12×5×6-12×(21-t)×6∴1 2×35t×(20-45t)=12(5+21-t)×12-12×5×6-12×(21-t)×6解得t=75±5174∵0<t<21,∴t=75-5174②14011≤t≤20提示:当点B′落在线段AE上时连接B′P、EB,∵B′C′和BC关于PE对称∴B′P=BP=21-t,B′E=BE=BC2+EC2=122+52=13 ∴AB′=AE-B′E=20-13=7,B′H=AH-AB′=45t-7在Rt△B′HP中,B′H2+PH2=B′P2∴(45t-7)2+(35t)2=(21-t)2,解得t=14011当点C′落在线段AE上时连接C′P、CP,∵B′C′和BC关于PE对称C′P2=CP2=122+(21-t)2,C′E=CE=5∴AC′=AE-C′E=20-5=15,C′H=AH-AC′=45t-15 在Rt△C′HP中,C′H2+PH2=C′P2∴(45t-15)2+(35t)2=122+(21-t)2,解得t=2018.(浙江模拟)如图,抛物线与x轴交于A(6,0)、B(19,0)两点,与y轴交于点C(0,8),直线CD∥x轴交抛物线于另一点D.动点P、Q分别从C、D两点同时出发,速度均为每秒1个单位,点P向射线DC方向运动,点Q向射线BD方向运动,设P、Q运动的时间为t(秒),AQ交CD于E.(1)求抛物线的解析式;(2)求△APQ的面积S与t的函数关系式;(3)连接BE.是否存在某一时刻t,使得∠AEB=∠BDC?若存在,求出t的值;若不存在,请说明理由.解:(1)∵抛物线与x轴交于A(6,0)、B(19,0)两点∴设抛物线的解析式为y=a(x-6)(x-19)∵抛物线与y轴交于点C(0,8)∴8=a(0-6)(0-19),∴a=457∴y=457(x-6)(x-19)(2)作PF⊥x轴于F,QG⊥x轴于G,DH⊥x轴于H,∵CD∥x轴,∴PF=DH=OC=8当y=8时,457(x-6)(x-19)=8解得x1=0,x2=25∴D(25,8),OH=CD=25∵B(19,0),∴BH=25-19=6 ∴BD=BH2+DH2=62+82=10∵△BDH∽△BQG,∴BDBQ=DHQG=BHBG∴1010+t=8QG=6BG∴QG=45t+8,BG=35t+6∴FG=t+19+35t+6=85t+25,AG=35t+19∴S=S梯形PFGQ-S△PAF-S△QAG=12(PF+QG)·FG-12AF·PF-12AG·QG=12(8+45t+8)(85t+25)-12(t+6)·8-12(35t+19)(45t+8)=25t2+445t+100(3)∵AC=BD=10,∴四边形ABDC是等腰梯形∴∠ACD=∠BDC若∠AEB=∠BDC,则∠AEC+∠BED=∠BED+∠EBD ∴∠AEC=∠EBD,∴△AEC∽△EBD∴AC ED=CEDB,即10ED=25-ED10解得ED=5或ED=20(>AB,舍去)∵△QED∽△QAB,∴EDAB=QD QB即513=tt+10,∴t=254∴存在某一时刻t,使得∠AEB=∠BDC,t=25 419.(浙江模拟)如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A在B的左侧),交y 轴于C 点,已知B 点坐标为(8,0),tan ∠ABC =12,△ABC 的面积为8. (1)求抛物线的解析式;(2)直线EF (EF ∥x 轴,且分别交y 轴、线段CB 于E 、F 两点)从C 点开始,以每秒1个单位的速度向下运动,与x 轴重合时停止运动;同时动点P 从B 点出发沿线段BO 以每秒2个单位的速度向终点O 运动,连接FP ,设运动时间为t 秒.是否存在t 的值,使以P 、B 、F 为顶点的三角形与△ABC 相似?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)的条件下,连接AC 交EF 于点G .当t 为何值时,A 、P 、F 、G 所围成的图形是平行四边形、等腰梯形和等腰直角三角形.解:(1)∵B (8,0),∴OB =8 ∵OC OB=tan ∠ABC =12,∴OC =4,∴C (0,4)∵S △ABC =8,∴ 12AB ·OC =8∴AB =4,∴OA =4,∴A (4,0)把A 、B 、C 三点坐标代入y =ax2+bx +c ,得 ⎩⎪⎨⎪⎧16a +4b +c =064a +8b +c =0c =4解得a =1 8 ,b =- 32,c =4 ∴抛物线的解析式为y = 1 8 x 2- 32x +4 (2)存在∵AB =OC =4,OB =8,∴AC =42,BC =4 5由题意,BP =2t ,BF =45-5t若△PBF ∽△ABC ,则PBAB=BFBC即2t4=45-5t45,∴t =4 3若△FBP ∽△ABC ,则 BF AB =BPBC即 45-5t 4= 2t45,∴t =20 7∴当t =4 3或t =207时,以P 、B 、F 为顶点的三角形与△ABC 相似(3)t =43时,A 、P 、F 、G 所围成的图形是平行四边形 t =2时,A 、P 、F 、G 所围成的图形是等腰梯形 t =245时,A 、P 、F 、G 所围成的图形是等腰直角三角形20.(浙江模拟)已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC的解析式为y=-2x+6,将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.(1)求直线AD解析式;(2)动点P从点B出发,以每秒1个单位的速度沿x轴正方向匀速运动,点Q是射线CE 上的点,且∠PAQ=∠BAC.设点P运动时间为t秒,△POQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,请说明理由.解:(1)∵直线AC解析式为y=-2x+6∴A(0,6),C(3,0),∴OA=6,OC=3由题意,∠AEC=∠AOC=90°,AE=AO=6,CE=CO=3设CD=x,则OD=x+3易证△CED∽△AOD,∵AO=2CE∴OD=2DE,即DE=x+32在Rt△CED中,32+(x+32)2=x2解得x=5(舍去负值),∴CD=5∴OD=8,D(8,0)设直线AD解析式为y=kx+6,则有:8k+6=0,∴k=-3 4∴y=-34x+6(2)①当P在线段BO上时,即0<t<3时∵∠PAQ=∠BAC,∴∠BAP=∠CAQ又∵∠ABP=∠ACQ=∠ACO,AB=AC∴△ABP≌△ACQ,∴BP=CQ=t,OP=3-t作QH⊥OD于H,则QH=CQ·sin∠ECD=4 5t∴S=12OP·QH=12(3-t)·45t=-25t2+65t即S=-25t2+65t②当P在x轴正半轴上时,即t>3时同①可得:BP=CQ=t,OP=t-3∴S=12OP·QH=12(t-3)·45t=25t2-65t。
2021年最新全国各地中考数学试卷分类汇编:动态问题
全国各地中考数学试卷分类汇编:动态问题选择题1.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为〔3,3〕,点C的坐标为〔12,0〕,点P为斜边OB上的一动点,那么PA+PC的最小值为〔〕.A 13B31C319D、27【答案】B、【解析】如图,作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,那么此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.解:如图,作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,那么此时PA+PC的值最小.∵DP=PA,∴PA+PC=PD+PC=CD、∵B〔3,3〕,∴AB=3,OA=3,∠B=60°.由勾股定理得:OB=23.由三角形面积公式得:12×OA×AB=12×OB×AM,即12×3×3=12×23×AM.∴AM=32.∴AD=2×32=3.∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°.∵DN ⊥OA ,∴∠ND A=30°,∴AN=12×AD=32. 由勾股定理得:DN=2233()2-=332. ∵C 〔12,0〕,∴CN=3-12-32=1.在Rt△DNC 中,由勾股定理得:DC=2233()12+=31.即PA +PC 的最小值是31. 所以应选B 、【方法指导】此题考查了三角形的内角和定理,轴对称的最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置,题目比较好,难度适中.【易错警示】弄不清楚最小值问题,赵不到最短距离而出错.2.〔2019山东临沂,14,3分〕如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动.设运动时间为t(s),△OEF 的面积为S(cm2),那么S(cm2)与t(s)的函数关系可用图象表示为〔 〕AB C D OF【答案】:B、3〔2019四川南充,10,3分〕如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发秒时,△BPQ的面积为y cm2,y与的函数关系的图象如图2〔曲线OM为抛物线的一部分〕.那么以下结论:①AD=BE=5cm;②当0<≤5时,2 5 2 ty=;③直线NH的解析式为2725+-=ty;④假设△ABE与△QBP相似,那么429=t秒.其中正确结论的个数为〔〕A、4B、3C、2D、1O O O O t/st/st/st/sS/cm2 S/cm2 S/cm2 S/cm2 8416 16 16 168 8 84 4 48 8 88A、B、D、【答案】:B 、【解析】据图〔2〕可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.【方法指导】此题考查了二次函数的综合应用及动点问题的函数图象,根据图〔2〕判断出点P 到达点E 时,点Q 到达点C 是解题的关键,也是此题的突破口,难度较大.4.(2019湖北荆门,12,3分)如下图,等腰梯形ABCD ,AD ∥BC ,假设动直线l 垂直于BC ,且向右匀速(注:〝匀速〞二字为录入者所添加)平移,设扫过的阴影部分的面积为S ,BP 为x ,那么S 关于x 的函数图象大致是( )【答案】A【解析】为计算的方便,不妨设AB =CD=,AD =1,∠ABC =45°.分别过点A ,D 向BC 作垂线,垂足依次为E ,F ,如图3,设动直线l 移动的速度为x .①当0≤x <1时,S =12x2,其图象是开口向上的抛物线的一部分;②当1≤x <2时,S =12+1×(x -1)=x -12,其图象是直线的一部分;③当2≤x ≤3时,S =2-12(3-x)2,其图象A 、B 、C 、D 、(第12题)是开口向下的抛物线的一部分.综上所述,选A 、【方法指导】判断函数大致图象的试题,一般应先确立函数关系解析式,再根据函数图象及性质做出合理的判断.解答分段函数的图象问题一般遵循以下步骤:①根据自变量的取值范围对函数进行分段;②求出每段的解析式;③由每段的解析式确定每段图象的形状.5 (2019山东烟台,12,3分)如图1.E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE —ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止.它们的运动速度都是1cm/s.假设点P,Q 同时开始运动,设运动时间为t(s),⊿BPQ 的面积y(cm2).y 与t 的函数关系图像如图2,那么下面结论错误的选项是〔 〕A. cm AE 6=B. 54sin =∠EBC C. 当100≤<t 时,252t y = D.当s t 12=时,PBQ ∆是等腰三角形【答案】A【考点解剖】此题是一道典型的动点问题,主要考查了三角函数、等x y B A DC 图3 EF l P腰三角形的判定、二次函数的解析式、三角形的面积公式,解决此题的关键是能够根据图形中点的位置与相应线段、面积的变化来理解函数图象表达的意义,数形结合,化静为动,从而正确的解决问题.【解析】 如图:利用数形结合思想方法,结合图1、图2分别求出BE=BC=10cm ,DE=4cm ,AE=6cm ;然后利用勾股定理求出AB ,即可求出sin ∠EBC=54;当100≤<t 时,根据△BPF ∽△EBA 可求出BQ边上的高PF t 54=,然后利用三角形面积公式即可求出y 与t 的函数关系式y=⨯t 21t 54252t =,最后利用排除法即可选D.【方法指导】点的运动问题,主要表现在运动路径与时间之间的图象关系.解决动点问题时,对题意的理解要清晰,关键是正确获取或处理题中的信息,明确哪些是变化的量,哪些是不变的量.填空题1. 〔2019杭州4分〕射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切〔切点在边上〕,请写出t可取的一切值〔单位:秒〕【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;【解析】∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,那么PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,那么∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,那么∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3那么PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.【方法指导】此题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊..2(2019浙江湖州,16,4分)如图,点A是第一象限内横坐标为23的一个定点,AC⊥x轴=-于点N.假设点P是线于点M,交直线y x段ON上的一个动点,∠APB=30°,BA⊥PA,那么点P在线段ON 上运动时,A点不变,B点随之运动,求当点P从点O运动到点N 时,点B运动的路径长是__▲__.【答案】22【解析】〔1〕首先,需要证明线段B0Bn就是点B运动的路径〔或轨迹〕,如答图②所示.利用相似三角形可以证明;〔2〕其次,如答图①所示,利用相似三角形△AB0Bn∽△AON,求出线段B0Bn的长度,即点B运动的路径长.OM=23,点N在直线y=-x上,AC⊥x轴于点M,那么△OMN为等腰直角三角形,ON=2OM=2×23=26.如答图①所示,设动点P在O点〔起点〕时,点B的位置为B0,动点P在N点〔起点〕时,点B的位置为Bn,连接B0Bn.∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°,∴△AB0Bn∽△AON,且相似比为tan30°,∴B0Bn=ON•tan30°=26×33=22.现在来证明线段B0Bn就是点B运动的路径〔或轨迹〕.如答图②所示,当点P运动至ON上的任一点时,设其对应的点B 为Bi,连接AP,ABi,B0Bi.∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,∴△AB0Bi ∽△AOP,∴∠AB0Bi=∠AOP.又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,∴∠AB0Bi=∠AB0Bn,∴点Bi在线段B0Bn上,即线段B0Bn就是点B 运动的路径〔或轨迹〕.综上所述,点B运动的路径〔或轨迹〕是线段B0Bn,其长度为2222【方法指导】此题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.此题的要点有两个:首先,确定点B 的运动路径是此题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B 运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中3.〔2019山东菏泽,14,3分〕如下图,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于Q ,当CQ=13CE 时, EP+BP=____________.【答案】12.【解析】延长BQ 角射线EF 于M. ∵E 、F 分别是AB 、AC 的中点,∴EF//BC ,即EM//BC.∴△EQM ∽△EQB ,∴123132===CE CE CQ EQ BC EM ,BC D EP FQ 〔第14题〕即26EM,∴EM=12.∵∠CBP的平分线交CE于Q,∴∠PBM=∠CBM,∵EM//BC,∴∠EMB=∠CBM,∴∠PBM=∠EMB,∴PB=PM,所以EP+BP=EM=12.【方法指导】此题考查三角形相似、三角形中位线性质、角平分线意义等.此题是一道动点型问题,解题时要善于从〝动中求静,联想关联知识〞.解答题1. 〔2019杭州4分〕射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q 出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P 为圆心,cm为半径的圆与△ABC的边相切〔切点在边上〕,请写出t可取的一切值〔单位:秒〕【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;【解析】∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,那么PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,那么∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,那么∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3那么PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.【方法指导】此题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.2.〔2019湖北孝感,25,12分〕如图1,正方形ABCD的边长为1,点E在边BC上,假设∠AEF=90°,且EF交正方形外角的平分线CF 于点F.〔1〕图1中假设点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请表达你的一个构造方案,并指出是哪两个三角形全等〔不要求证明〕;〔2〕如图2,假设点E在线段BC上滑动〔不与点B,C重合〕.①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.考点:二次函数综合题.专题:综合题.分析:〔1〕取AB的中点G,连接EG,利用SSS能得到△AGE与△ECF 全等;〔2〕①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,那么FH=a ﹣1,然后表示出点F的坐标,根据点F恰好落在抛物线y=﹣x2+x+1上得到有关a的方程求得a值即可求得点F的坐标;解答:〔1〕解:如图1,取AB的中点G,连接EG.△AGE与△ECF全等.〔2〕①假设点E在线段BC上滑动时AE=EF总成立.证明:如图2,在AB上截取AM=EC、∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.②过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,那么FH=a﹣1,∴点F的坐标为F〔a,a﹣1〕∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a2=2,〔负值不合题意,舍去〕,∴.∴点F 的坐标为.点评:此题考查了二次函数的综合知识,题目中涉及到了全等的知识,还渗透了方程思想,是一道好题.3〔2019·济宁,23,?分〕如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C、在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A 出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.假设运动时间为t秒,在运动过程中四边形PEFQ总为矩形〔点P、Q重合除外〕.〔1〕求点P运动的速度是多少?〔2〕当t为多少秒时,矩形PEFQ为正方形?〔3〕当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.分析:〔1〕根据直线y=-x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;〔2〕当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;〔3〕根据〔2〕中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:〔1〕∵直线y=-x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,那么EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;〔2〕如图1,当PQ=PE时,矩形PEFQ为正方形,那么OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8-2t,∴QP=t-〔8-2t〕=3t-8,∴t=3t-8,解得:t=4;〔3〕如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,当t=-=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴QP=t-〔8-2t〕=3t-8,∴S矩形PEFQ=QP•QE=〔3t-8〕•t=3t2-8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=-=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考查了二次函数与一次函数的综合应用,得出P ,Q 不同的位置进行分类讨论得出是解题关键.4.〔2019·潍坊,24,13分〕如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点. 〔1〕求抛物线的解析式;〔2〕假设直线平分四边形OBDC 的面积,求k 的值.〔3〕把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?假设存在,求出P 点坐标;假设不存在,请说明理由.答案:〔1〕因为抛物线关于直线x =1对称,AB =4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a +3b =1.5,即a +b =0.5, 又12=-a b ,即b =-2a ,代入上式解得a =-0.5,b =1,从而c =1.5,所以23212++-=x x y .〔2〕由〔1〕知23212++-=x x y ,令x =0,得c(0,1.5),所以CD//AB ,令kx -2=1.5,得l 与CD 的交点F(23,27k ), 令kx -2=0,得l 与x 轴的交点E(0,2k ),根据S 四边形OEFC =S 四边形EBDF 得:OE +CF =DF +BE , 即,511),272()23(272=-+-=+k k k kk 解得 〔3〕由〔1〕知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO =∠NPO ,所以Rt △MPM1∽Rt △NPN1, 所以1111PN PM NN MM =, (1)不妨设M(xM ,yM)在点N(xN ,yN)的左侧,因为P 点在y 轴正半轴上,那么〔1〕式变为N M N M y t y t x x --=-,又yM =k xM -2, yN =k xN -2,所以〔t +2〕(xM +xN)=2k xM xN , (2)把y =kx -2(k ≠0)代入221x y -=中,整理得x2+2kx -4=0, 所以xM +xN =-2k , xM xN =-4,代入〔2〕得t =2,符合条件, 故在y 轴上存在一点P 〔0,2〕,使直线PM 与PN 总是关于y 轴对称.考点:此题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:此题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。
2021年九年级数学中考三轮压轴专题《二次函数动点综合》
三轮压轴专题:《二次函数动点综合》1.如图1,矩形OBCD的边OD,OB分别在x轴和y轴上,且B(0,8),D(10,0).点E是DC边上一点,将矩形OBCD沿过点O的射线OE折叠,使点D恰好落在BC边上的点A处.(1)若抛物线y=ax2+bx经过点A,D,求此抛物线的解析式;(2)若点M是(2)中抛物线对称轴上的一点,是否存在点M,使△AMN为等腰三角形?若存在,直接写出点M的坐标;若不存在,说明理由;(3)如图2,动点P从点O出发沿x轴正方向以每秒1个单位的速度向终点D运动,动点Q从点D出发沿折线D﹣C﹣A以同样的速度运动,两点同时出发,当一点运动到终点时,另一点也随之停止,过动点P作直线1⊥x轴,依次交射线OA,OE于点F,G,设运动时间为t(秒),△QFG的面积为S,求S与t 的函数关系式,并直接写出t的取值范围.(t的取值应保证△QFG的存在)2.如图,在平面直角坐标系中,⊙A的半径为5,点A的坐标为(3,0),⊙A与x轴相交于点B,C,交y轴正半轴于点D.(1)求点B,D的坐标;(2)过点B作⊙A的切线,与过点A,C的抛物线交于点P.抛物线交y轴正半轴于点Q.若P的纵坐标为t,四边形PQAC的面积为y.①求y与t的函数关系式;②若△PBO与△DOA相似,求m2﹣12tm+y取最小值时m的值.3.在平面直角坐标系中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行或重合,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形,点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图①中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3CD 3,都是点A ,B ,C 的外延矩形,矩形A 3B 3CD 3是点A,B,C的最佳外延矩形.(1)如图②,已知A(﹣1,0),B(3,2),点C在直线y =x﹣1上,设点C的横坐标为t.①若t=,则点A,B,C的最佳外延矩形的面积为.②若点A,B,C的最佳外延矩形的面积为9,求t的值.(2)如图③,已知点M(4,0),n(0,),P(x,y)是抛物线y=﹣x2+2x+3上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标x的取值范围;(3)已知D(1,0).若Q是抛物线y=﹣x2﹣2mx﹣m2+2m+1的图象在﹣2≤x≤1之间的最高点,点E的坐标为(0,4m),设点D,E,Q的最佳外延矩形的面积为S,当4≤S≤6时,直接写出m的取值范围.4.在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM∥x轴,OM∥y轴,则称△PQM为点P,Q的“云三角形”.(1)若B点的坐标为(4,0),m=2,则点P,B的“云三角形”的面积为.(2)当点P,Q的“云三角形”是等腰三角形时,求点B的坐标.(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c,①若点M为抛物线上一点,△POM是点P,O的“云三角形”,求△POM的面积S与m之间的函数关系式,并写出m的取值范围;②当点P,Q的“云三角形”的面积为3,且抛物线y=ax2+bx+c 与点P,Q的“云三角形”恰有两个交点时,直接写出m的取值范围.5.对于平面中给定的一个图形及一点P,若图形上存在两个点A、B,使得△PAB是边长为2的等边三角形,则称点P是该图形的一个“美好点”.(1)若将x轴记作直线l,下列函数的图象上存在直线l的“美好点”的是(只填选项).A.正比例函数y=xB.反比例函数y=C.二次函数y=x2+2(2)在平面直角坐标系xOy中,若点M(n,0),N(0,n),其中n>0,⊙O的半径为r.①若r=2,⊙O上恰好存在2个直线MN的“美好点”,求n 的取值范围;②若n=4,线段MN上存在⊙O的“美好点”,直接写出r的取值范围.6.定义:在平面直角坐标系中,点(m,n)是某函数图象上的一点,作该函数图象中自变量大于m的部分关于直线x=m的轴对称图形,与原函数图象中自变量大于或等于m的部分共同构成一个新函数的图象,则这个新函数叫做原函数关于点(m,n)的“孪生函数”.例如:图①是函数y=x+1的图象,则它关于点(0,1)的“孪生函数”的图象如图②所示,且它的“孪生函数”的解析式为y=.(1)直接写出函数y=x+1关于点(1,2)的“孪生函数”的解析式.(2)请在图③的平面坐标系(单位长度为1)中画出函数y=关于点(﹣1,﹣3)的“孪生函数”的图象,并求出图象上到x轴距离为6的所有点的坐标.(3)点M是函数G:y=﹣x2+4x﹣3的图象上的一点,设点M 的横坐标为m,G′是函数G关于点M的“孪生函数”.①当m=1时,若函数值y的范围是﹣1≤y<1,求此时自变量x的取值范围;②直接写出以点A(1,1)、B(﹣1,1)、C(﹣1,﹣1)、D (1,﹣1)为顶点的正方形ABCD与函数G′的图象只有两个公共点时,m的取值范围.7.已知抛物线C1:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛物线C2:y=x2.(1)直接写出抛物线C1的解析式;(2)如图1,已知抛物线C1与x轴交于A,B两点,点A在点B的左侧,点P(,t)在抛物线C上,QB⊥PB交抛物线于点1Q.求点Q的坐标;(3)已知点E,M在抛物线C2上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛物线C2只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.8.在平面直角坐标系中,直线y=﹣x+3交y轴于点C,抛物线y=﹣x2+bx+c过点C,交x轴于A、B两点(点A在点B的左侧),OB=OC.(1)求b,c的值;(2)在线段BC上有一点H,直线AH交y轴于D,在射线AH 上有一点G,过点G的直线交y轴正半轴于点F,交x轴于点E,∠CAG=∠OCB,∠FEO+∠CHA=90°,点E的横坐标为t,EG 的长为d,求d与t的函数关系式;(3)在(2)的条件下,设直线EF交BC于点M,过点E作y 轴平行线交直线AD于点N,点P在抛物线上,连接DP、DM、DE、EN、PE、PN,若=(点E在AB延长线上),S=4S△PNE,求点P的坐标.△DME9.如图1:抛物线y=ax2+bx+3交x轴于点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC=3.(1)求抛物线的解析式;(2)如图2,点P在第一象限的抛物线上,连接PC、PA,若点P横坐标为t,△PAC的面积为S,求S与t的函数关系式;(3)在(2)的条件下,当S=3时,点G为第二象限抛物线上一点,连接PG,CH⊥PG于点H,连接OH,若tan∠OHG=,求GH的长.10.如图,已知直线y=kx与抛物线y=mx2+n交于点A、C.(1)若m=﹣1,且点A坐标为A(1,2),求抛物线解析式与点C坐标;(2)如图1,若k=1,将直线y=x沿着x轴翻折,在第四象限交抛物线于点P,若,求mn的值;(3)如图2,已知抛物线与直线解析式分别为y=与y =x,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(t,0)是x轴正半轴上的动点,记S△AEB=S1,S△EOD=S2,OE=s,OD=t,当满足∠BAE=∠BED=∠AOD的E点有两个时,求S1•S2﹣(S1+)+的最小值,并求出此时E的坐标.11.已知,抛物线C1:y=ax2+bx﹣4经过点L(﹣1,0)、(2,﹣6)(1)求抛物线的解析式;(2)如图1,平移抛物线C1使其顶点为M(0,2)得到抛物线C,点A为抛物线C2第一象限内异于点M的任意一点,直线AM 2交x轴于点C,过点C作x轴的垂线交抛物线C2于点B,直线AB与y轴交于点N,求点N的坐标;(3)如图2,点P是抛物线C1第一象限内的点,过点P的直线y=mx+n(n<0)与抛物线C1交于另一点Q,连接LP交y轴于点S,连接LQ交y轴于点T.若OS•OT=2,探究m与n之间的数量关系,并说明理由.12.如图,在平面直角坐标系中,直线y=x+2与抛物线y=+bx+c交于A、B两点,点A在x轴上,点B的横坐标为4.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),点P的横坐标为m.①如图1,连接PO,以点P为旋转中心,把线段PO逆时针旋转90°,得到线段PC.当m为何值时,点C在直线AB上;②如图2,一动圆以点P为圆心,并与直线AB相切,设圆的半径为r,求r关于m的函数关系式,并求出r的取值范围.13.如图,已知抛物线y=ax2+c过点,过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B 在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)设点D(a,0)在x轴上运动,连接FD,作FD的垂直平分线与过点D作x轴的垂线交于点I,判断点I是否在抛物线y=ax2+c,并证明你的判断;(3)若k=1,设AB的中点为M,抛物线上是否存在点P,使得△PMF周长最小,若存在求出周长的最小值,若不存在说明理由;(4)若,在抛物线上是否存在点Q,使得△QAB 的面积为,若存在求出点Q的坐标,若不存在说明理由.14.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)求抛物线的顶点坐标(用含a的式子表示);(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.15.有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t 的值;(3)如图3,抛物线y=ax2+bx+c与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①a<0,ab≠0,c=2;②顶点D在以AB为直径的圆上.点P(x0,y0)是抛物线y=ax2+bx+c上任意一点,且t=y﹣.若t≤m+恒成立,求m的最小值.参考答案1.(1)解:∵四边形OBCD是矩形,B(0,8),D(10,0)∴BC=OD=10,DC=OB=8,∠OBC=∠C=90°,由折叠可得:OA=OD=10,AE=DE∵∠OBC=90°,OB=8,OA=10,∴AB=6,∴AC=4,设AE=DE=x,则CE=8﹣x,∵∠C=90°,∴x2=42+(8﹣x)2解得:x=5,∴AE=DE=5,∴点A的坐标为(6,8),点E的坐标为(10,5),∵抛物线y=ax2+bx经过点A(6,8),D(10,0),∴角解得:此抛物线的解析式为(2)存在M、N,使以A、M、N、E为顶点的四边形为菱形,设抛物线的对称轴与BC交于点H,过点E作ET⊥AH,垂足为T,连接AM、ME,如图1,设点M的坐标为(m,n),则,∴AH=6﹣5=1,HM=﹣8﹣nET=10﹣5=5,TM=﹣5﹣n因为AH⊥HM,∴AM2=AH2+MH2=1+(8﹣n)2∵ET⊥MH∴ME2=ET2+MT2=25+(5﹣n)2①若AM与AE是菱形的一组邻边,则AM=AE∴AM2=AE2∴1+(8﹣n)2=25∴(8﹣n)2=24解得:②若EM与EA是菱形的一组邻边,则EM=EA∴EM2=EA2∴25+(5﹣n)2=25∴(5﹣n)2=0∴n3=5③若MA与ME是菱形的一组邻边,则MA=ME∴MA2=ME2∴1+(8﹣n)2=25+(5﹣n)2解得:n4=2.5综上所述:满足要求的点M的坐标为,(5,5),(5,2.5)(3)设直线OA的解析式y=k1z,∵点A的坐标为(6,8),∴6k1x=8,∴,直线OA的解析式,同理可得:直线OE的表达式为y=,∵OP=1×t=t∴P(t,0)∵直线⊥x轴于点P,点F,G是直线l与OA,OE的交点∴,故,当0<t<8时,点Q在线段DC上过点Q作QS⊥直线l,垂足为S,如图2,则QS=PD=10﹣t∴==,②当8≤t<9时,点Q在线段CA上,且在直线l的右侧,设FG交AC于点N,如图3,则QN=CN﹣CQ=PD﹣CQ=(10t)﹣(t﹣8)=18﹣2t∴==③当t=9时,QN=18﹣2t=0,点Q与点N重合,此时△QFG 不存在,故舍去,④当9<t≤10时,点Q在线段CA上,且在直线l的左侧,设FG交AC于点N,如图4.则QN=CQ﹣CN=CQ﹣PD=(10﹣t)=2t﹣18∴=(2t﹣18)=综上所述:2.解:(1)如图,连接OD,则AD=AB=5,∵点A(3,0),∴OA=3,∴OB=AB﹣OA=2,∴B(﹣2,0),在Rt△AOB中,根据勾股定理得,OD==4,∴D(0,4);(2)①∵⊙A的半径为5,点A(3,0),∴C(8,0),∴设过点A,C的抛物线的解析式为y=a(x﹣3)(x﹣8),由(1)知,B(﹣2,0),∵BP是⊙A的切线,∴BP⊥OB,∴P(﹣2,t),∵点P在抛物线上,∴t=a(﹣2﹣3)(﹣2﹣8),∴a=,∴抛物线的解析式为y=(x﹣3)(x﹣8)=x2﹣x+,∴Q(0,),∴OQ=,∴y=S四边形PQAC=S△PBC﹣S梯形PBOQ﹣S△OAQ=×10t﹣×2×(t+)﹣×3×=t;②设w=m2﹣12tm+y当△PBO∽△DOA时,,∴,∴t=,此时,y=,∴m2﹣12tm+y=m2﹣12×m+=m2﹣32m+=(m﹣16)2﹣248,当m=16时,m2﹣12tm+y有最小值﹣248;当△PBO∽△AOD时,,∴,∴t=,此时,y=,∴m2﹣12tm+y=m2﹣12×m+=m2﹣18m+=(m﹣9)2﹣76,当m=9时,m2﹣12tm+y有最小值﹣76,而﹣248<﹣76,∴m2﹣12tm+y取最小值时,m的值为16.3.解:(1)①如图②,作矩形ANBM,∵t=,∴C(,),∵A(﹣1,0),B(3,2),∴C在矩形ANBM内部,此时,矩形ANBM是点A,B,C的最佳外延矩形.S=AM•BM=(3+1)(2﹣0)=8.矩形ANBM故答案为8.②若C在x轴下方,则:4[2﹣(t﹣1)]=9,解得t=.若C在B点右上方,则:(t+1)(t﹣1)=9,解得t1=﹣(舍),t2=.综上所述,t的值为或.(2)令y=﹣x2+2x+3=,解得x1=1+,x2=1﹣,令y=﹣x2+2x+3=0,解得x1=﹣1,x2=3,点M,N,P的最佳外延矩形面积的最小值为4×=14,此时P点横坐标x的取值范围为:0≤x≤1﹣或1+≤x≤3.(3)∵y=﹣x2﹣2mx﹣m2+2m+1=﹣(x+m)2+2m+1,∴抛物线的顶点坐标为(﹣m,2m+1).当1≤﹣m即m≤﹣1时,Q点坐标为(1,﹣m2)若﹣m2<4m,则m>0(舍)或m<﹣4,此时S=m2,∵4≤S≤6,∴﹣≤m≤﹣2(舍).若﹣m2≥4m,则﹣4≤m≤0,此时S=﹣4m,∴4≤﹣4m≤6,解得:﹣≤m≤﹣1,当﹣2<﹣m<1即﹣1<m<2时,Q点的坐标就是抛物线顶点,S=4m(m+1),∴4≤4m(m+1)≤6,解得≤m≤,当﹣m≤﹣2即m≥2时,4m≥8,不合题意,舍去.综上所述,m的取值范围为:≤m≤或﹣≤m≤﹣1.4.解:(1)如图1,∵A(0,6),B(4,0),∴直线AB解析式为,∵m=2,∴P(2,3)∵PM∥x轴,QM∥y轴,∴M(4,3),∠PMB=90°∴PM=2,BM=3,∴点P,B的“云三角形”△PBM的面积=;故答案为:3(2)如图2,根据题意,得MP=MQ,∠PMQ=90°,∴∠MPQ=45°,∵PM∥x轴,∴∠ABO=45°,∴OB=OA=6,点B的坐标为(6,0);(3)如图3,①首先,确定自变量取值范围为0<m<3,由(2)易得,线段AB的表达式为y=6﹣x,∴点P的坐标为(m,6﹣m),∵抛物线y=ax2+bx+c经过O,B两点,∴抛物线的对称轴为直线x=3,∴点M的坐标为(6﹣m,6﹣m),∴PM=(6﹣m)﹣m=6﹣2m,∴;②当点P在对称轴左侧,即m<3时,∵点P,Q的“云三角形”面积为3,由①得:2m2﹣12m+18=3,解得:或(舍去).当点P在对称轴上或对称轴右侧,即m≥3时,,∴,,,∵抛物线=ax2+bx+c与点P,Q的“云三角形”恰有两个交点,∴,解得:.综上所述,m的取值范围为:或.5.解:(1)∵x轴是图形l,△PAB是边长为2的等边三角形,∴P点纵坐标为±,y =x上存在点(,)或(﹣,﹣)是x轴的“美好点”,y =上存在点(,)或(﹣,﹣)是x轴的“美好点”,y=x2+2中y的最小是2,∴y=x2+2上不存在x轴的“美好点”,故选A、B;(2)①∵M(n,0),N(0,n),n>0,∴∠MNO=60°,MN=2n,△ABC与△ABD是边长为2的等边三角形,∴AC∥BD∥y轴,设直线NM的解析式为y=kx+b,则有,∴k=﹣,设过C点与MN平行的直线为y=﹣+c,过D点与MN平行的直线为y=﹣+d,当直线y=﹣+c与圆O相切时,c=4,∴n=4+2=6,此时⊙O上恰好存在1个直线MN的“美好点”,当y=﹣+d与圆O相切时,d=4,此时y=﹣+c经过点O,即c=0,此时⊙O上恰好存在3个直线MN的“美好点”,∴0<n<4时,⊙O上恰好存在2个直线MN的“美好点”;②如图:∵△ABC与△ABD是边长为2的等边三角形,∴C点在以O为圆心OC为半径的圆上,D点在以O为圆心OD 为半径的圆上,∵n=4,∴M(4,0),N(0,4),∴∠ONM=60°,当MN与D点所在圆相切时,OD=r=2,此时线段MN上存在⊙O的“美好点”,当OC=OM时,OC=r=4,此时线段MN上存在⊙O的“美好点”,∴2≤r≤4时,线段MN上存在⊙O的“美好点”.6.解:(1)函数y=x+1在x>1部分任意取一点(2,3)关于x=1的对称点为(0,3),设函数y=x+1图象关于x=1对称的部分的图象解析式为y=kx+b,将点(0,3),(1,2)代入解析式,得,解得,∴“孪生函数”的解析式为y=;(2)令y=6,则x=,∴点的坐标为(,6),∵点(,6)关于x=﹣1的对称点为(﹣,6),令y=﹣6,则=6,解得x=﹣,∴点的坐标为(﹣,﹣6),点(﹣,﹣6)关于x=﹣1的对称点的坐标为(﹣,﹣6),综上所述:到x轴距离为6的点的坐标为(,6)或(﹣,﹣6)或(﹣,6)或(﹣,﹣6);(3)①当m=1时,G'的解析式为y=,令y=﹣1,﹣x2+4x﹣3=﹣1,解得x=2﹣或x=2+,令y=﹣1,﹣x2+1=﹣1,解得x=﹣或x=,当﹣≤x<0或0<x<2或2<x<2+时,﹣1≤y<1;②函数y=﹣x2+4x﹣3的顶点为(2,1),点(2,1)关于x=m对称的点的坐标为(2m﹣2,1),∴函数y=﹣x2+4x﹣3关于x=m对称的函数解析式为y=﹣(x ﹣2m+2)2+1,当2m﹣2>1时,即m>,当x=1时,﹣(3﹣2m)2+1>﹣1,即<m<,∴<m<时G'与正方形ABCD有两个交点;当x=﹣1时,﹣(1﹣2m)2+1<﹣1,即m<或m>,∴m<;综上所述:<m<或m<时G'与正方形ABCD有两个交点.7.解:(1)由已知可知,抛物线C2:y=x2向右平移1个单位长度,再向下平移4个单位长度得到抛物线C1:y=ax2+bx+c,∴抛物线C1:y=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),∵点P(,t)在抛物线C1上,∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.8.解:(1)直线y=﹣x+3交y轴于点C,则点C(0,3),OB =OC=3,则点B(3,0),故c=3,将点B的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,故b=2,c=3;(2)抛物线的表达式为:y=﹣x2+2x+3,∵OB=OC,∴∠OBC=∠OCB=45°,∴∠CAG=∠OCB=45,过点E作ET⊥AH于点T,过点C作CK⊥AC交AH于点K,过点C作PQ∥x轴,过点K作KQ⊥PQ于点Q,∵CK⊥AC,∴∠ACK=90°,∴∠CKA=45°,∴∠CAK=∠CKA,∴AC=CK,∵∠PAC=∠QCK,∠APC=∠CQK=90°,∴△APC≌△CQK(AAS),∴PC=KQ,PA=CQ=3,∵点A(﹣1,0),故OA=1,∴PC=KQ=1,故点K(3,2);由点A、K的坐标得,直线AK的表达式为:y=x+,故点D(0,),则tan∠ADO==,∵∠FEO+∠CHA=90°,∠FEO+∠OFE=90°,∴∠OFE=∠CHA,∵∠OFE+∠CFB=180°,∴∠CHA+∠CFB=180°,∴∠FGH+∠FCH=180°,∵∠FCH=45°,∴∠FGH=135°,∴∠HGE=45°,∴∠HGE=∠TEG=45°,∴TG=TE=CE,∵EA=t+1,tan∠TAE==,∴AT=2TE,在Rt△ATE中,TE2+AT2=AE2,TE2+(2TE)2=(t+1)2,解得:TE=(t+1),d =EG=TE=(t+1);(3)如图,过点P作PZ⊥EN角BN的延长线于点Z,直线PZ 交y轴于点C′(C),延长DM交EN于点W,∵=,则设BE=3k,则FC=5k,则OF=3﹣5k,OE=3+3k,由(2)知,∠HGE=45°,∴∠GEA+∠GAE=45°,∵∠ACO+∠DAO=180°﹣∠AOD﹣∠CAK=45°,∴∠ACO=∠GEA,∴tan∠ACO=tan∠GEA,∵tan∠==,∴tan∠=,∴=,即=,解得:k=,故OF=,OE=4,故点E(4,0),点F(0,),由点E、F的坐标得,直线EF的表达式为:y=﹣x+,而BC 的表达式为:y=﹣x+3,联立上述两个表达式并解得:x=,故点M(,),∵点D(0,),故DM∥x轴,则DM=,∵点N在直线y=x+上,且横坐标为4,∴点N(4,),则EN=,∴DM=EN,∵S△PNE=4S△DME,则NE•PZ=4××DM•y M,故PZ=4WE=4×=2,四边形C′ZEO为矩形,则C′Z=OE=4,故C′P=2,当x=2时,y=﹣x2+2x+3=3,故点P(2,3).9.解:(1)c=3,故OC=3,tan∠ABC=1,则OA=3,tan∠BAC=3,则OA=1,故点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),则抛物线的表达式为:y=a(x+1)(x﹣3),将点C坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)点P(t,﹣t2+2t+3),点A(﹣1,0),将点P、A坐标代入一次函数表达式y=kx+b并解得:直线PA的表达式为:y=(3﹣t)(x+1),设直线AP交y轴于点R,则R(0,3﹣t),S=CR×(x﹣x A)=(3﹣3+t)(t+1)=t2+t;P(3)S=t2+t=3,解得:t=﹣3(舍去)或2,故点P(2,3),而点C(0,3),连接CP,则CP∥x轴,CH⊥GP,则∠CPH=∠OCH=α,HM⊥CP,则∠CHM=∠HCO=α,过点O作ON⊥CH交CH的延长线于点N,作HM⊥CP于点M,CP=2,OC=3,CH=CP sinα=2sinα,ON=OC sinα=3sinα,CN=OC cosα=3cosα,∵ON⊥CN,GH⊥CH,∴∠HON=∠OHG,故tan∠HON====tan∠OHG=,解得:tan,则sinα=,cosα=,MH=CH cosα=2sinα•cosα=,CM=CH sinα=,故点H (,);设点G(m,﹣m2+2m+3),而点P(2,3),由点G、P的坐标得,直线PG表达式中的k值为:﹣m=﹣tanα=,故点G(﹣,),由点G、H的坐标得,GH=.10.解:(1)∵点A(1,2)在直线y=kx上∴k=2,即直线为y=2x∵点A(1,2)在抛物线y=mx2+n上,m=﹣1∴﹣1+n=2,解得:n=3∴抛物线解析式为y=﹣x2+3解得:(即点A)∴点C坐标为(﹣3,﹣6);(2)过点A作AM⊥x轴于点M,过点P作PN⊥x轴于点N∴∠OMA=∠ONP=90°∵点A在直线y=x上,设A(a,a)(a>0)∴OM=AM=a,∠AOM=45°∵点A关于x轴对称点A'(a,﹣a)∴直线y=x沿着x轴翻折得到直线OA'解析式为y=﹣x,∠PON=∠AOM=45°∴△AOM、△PON都是等腰直角三角形∵∴∴ON=PN=2a∴P(2a,﹣2a)∵点A、P都在抛物线y=mx2+n∴①﹣②消去n后整理得:ma=﹣1,即a=﹣①×4﹣②消去ma2后整理得:n=2a∴n=﹣∴mn=﹣2;(3)过点E作EH⊥x轴于点H解得:,,∵点A在第一象限∴A(1,),OA=,tan∠AOD=∴∠AOD=60°∴∠BAE=∠BED=∠AOD=60°设直线AB与x轴交点为F,则△AOF为等边三角形∴OF=OA=2,F(2,0)设直线AB解析式为:y=kx+b解得:∴直线AB:y=﹣x+2解得:(即点A)∴点B与点F重合,点B在x轴上∴OB=AB=OA=2∵∠BAE=∠BED,∠BEO=∠BAE+∠ABE=∠BED+∠OED ∴∠ABE=∠OED∵∠BAE=∠AOD∴△ABE∽△OED∴即∴t==﹣(s﹣1)2+,故0<t<;∵OE=s,sin∠EOH==∴EH=OE=s∴S2=S△EOD=OD•EH=st==∵∴S1==∴S1•S2﹣(S1+)+=﹣[+]+=,令s(2﹣s)=u,则原式=u2﹣u+=,∵>0,∴当u=时,S1•S2﹣(S1+)+的最小值为,此时,s(2﹣s)=,解得:s1=,s2=,当s=或时,均满足0<t<;∴当OE=s1=时,OH=cos60°=,EH=sin60°=,∴E1(,)当OE=s2=时,OH=cos60°=,EH=sin60°=,∴E2(,),综上所述,E的坐标为:E1(,),E2(,).11.解:(1)将点(﹣1,0)、(2,﹣6)的坐标代入抛物线表达式并解得:b=﹣3,c=﹣4,故抛物线的表达式为:y=x2﹣3x﹣4;(2)设AC等解析式为y=k1x+2,联立得:x2﹣k1x=0,∴x A=k1,设直线AB的解析式为y=k2x+b2,联立得:x2﹣k2x+2﹣b2=0,∴x A x B=2﹣b2,∵x B=x C=,∴b2=4,即点N坐标为(0,4);(3)设直线LP的解析式为y=a1x+a1,联立得:x2﹣(3+a1)x﹣4﹣a1=0,∴a1=x P﹣4,设直线LQ的解析式为y=a2x+a2,同理得:a2=x Q﹣4,∵OS•OT=2,∴(x P﹣4)(x Q﹣4)=2,∴x P x Q﹣4(x P+x Q)+16=2,联立得:x2﹣(3+m)x﹣4﹣n=0,∴x P x Q=﹣4﹣n,x P+x Q=3+m,∴n=﹣4m﹣2.12.解:(1)由题意得A(﹣2,0),B(4,6),,解得:,则所求函数解析式为:y=﹣+2x+6;(2)①过P作PG⊥y轴于G点,过C点作CH⊥PG交PG的延长线于H点,设P(m,﹣1/2m2+2m+6),∵∠PGO=∠CHP=90°,∠CPH=∠POG(同角的余角相等),PO=PC,∴△POG≌△CPH(AAS),∴CH=PG=﹣m,OG=PH=﹣m2+2m+6,则C(﹣m2+3m+6,﹣m2+m+6)又∵C点在直线AB上,∴﹣m2+m+6=﹣m2+3m+6+2,解得:m=﹣1;②过P点作PE⊥x轴于E点,交AB于F点,设⊙P与直线AB相切于Q点,连PQ,则PQ⊥AB,∴△PQF和△AEF均是等腰直角三角形,∴PF=PQ=r,AE=EF=m+2,又∵PF+EF=﹣m2+2m+6,即r+m+2=﹣m2+2m+6,解得r=﹣m2+m+2=﹣(m﹣1)2+,当m=1时,r的最大值为,∵﹣2<m<4,∴0<r≤.13.解:(1)由题意得:,解得:;∴抛物线解析式为;(2)设I(a,y),过I作IH⊥y轴于点H,则IH=a,FH=y ﹣2,IF=ID=y,在Rt△IHF中∴IF2=IH2+FH2,∴y2=a2+(y﹣2)2,,故点I在抛物线y=x2+c;(3)若k=1,设AB的中点为M,则,解得中点M的坐标为:(2,4),由(2)可知,抛物线上的点到点F的距离等于它到x轴的距离.设抛物线上存在点P,使得△PMF周长最小,过点P作PP'⊥x 轴于点P′,∵FM+PM+PF=FM+PM+PP′,∵FM是定值,PM+PP'≥MP'.故当MP⊥x轴时,PM+PP′=MP′,此时P、M、P′共线,△PMF 周长最小,故点P(2,2),∴MP′=4,MF=2,故△PMF周长最小的最小值为:4+2;(4)设R(x R,y R)、Q(x Q,y Q),A(x A,y A),B(x B,y B),把点B的坐标代入y=kx+2并解得:k=2,故点A(2﹣2,4﹣2),故x B﹣x A=4,S=S△AQR+S△BQR=QR•(x R﹣x A)+(x B﹣x R)=(x B﹣x A)△QAB=4×QR=4,解得:QR=2,QR=|y﹣y Q|=|x+2﹣(x2+1)|=|﹣(x﹣2)2+2|=2,R当﹣(x﹣2)2+2=2时,解得:x=2,故点Q(2,2);﹣(x﹣2)2+2=﹣2时,解得:x=﹣2或6,故点Q(﹣2,2)或(6,10);综上,点Q(2,2)或(﹣2,2)或(6,10).14.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),函数的对称轴为:x=﹣1,故点D(﹣1,﹣4a);(2)无关,理由:由抛物线的表达式得,点C(0,﹣3a),将点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线CD的表达式为:y=ax﹣3a,令y=0,则x=3,故点E(3,0),即OE=3,OE的长与a值无关;(3)tanβ===﹣a,故﹣≤a≤﹣1;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE,则PD=PE,∠DPE=90°,而点D(﹣1,﹣4a),点E(3,0),过点P作y轴的平行线交过点D与x轴的平行线于点M,交x 轴于点N,∵∠PDM+∠MPD=90°,∠MPD+∠EPN=90°,∴∠MPD=∠EPN,∠PMD=∠ENP=90°,PD=PE,∴△PMD≌△ENP(AAS),∴MD=PN,MP=NE,即n=﹣1﹣m,﹣4a﹣n=3﹣m,解得:n=﹣1﹣m,m=2a+1,∵a<0,故m=2a+1<1,故n=﹣m﹣1(m<1).15.(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD为“和睦四边形”;(2)解:在直线y=﹣x+6中,当x=0时,y=6;当y=0时,x=8,∴B(0,6),A(8,0),∴OB=6,OA=8,∴AB==10,由题意得:AQ=5t,AP=4t,BQ=10﹣5t,OP=8﹣4t,连接PQ,∵==,==,∴=,又∵∠BAO=∠QAP,∴△AQP∽△ABO,最新Word ∴∠APQ=∠AOB=90°,∴QP==3t,∵四边形BOPQ为“和睦四边形”,∴①当OB=OP时,6=8﹣4t,∴t=;②当OB=BQ时,6=10﹣5t,∴t=;③当OP=PQ时,8﹣4t=3t,∴t=;④当BQ=PQ时,10﹣5t=3t,∴t=,综上所述,t的值为或或或;(3)解:在抛物线y=ax2+bx+2中,顶点D的坐标为(,),C(0,2),∵CD=OC,∴CD2=OC2,∴①,∵D在以AB为直径的圆上,且在抛物线对称轴上,∴△ADB为等腰直角三角形,∴,∴②,。
新中考数学真题分项汇编专题26动点综合问题(共45题)(解析版)
专题26 动点综合问题【共45题】一.选择题(共11小题)1.(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.【解析】由题意当0≤x≤4时,y=12×AD×AB=12×3×4=6,当4<x<7时,y=12×PD×AD=12×(7﹣x)×4=14﹣2x.故选:D.2.(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解析】如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .3.(2020•江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt △OAB 向右上方平移,得到Rt △O 'A 'B ',且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A 'B '的表达式为( ) A .y =xB .y =x +1C .y =x +12D .y =x +2【分析】求得A 、B 的坐标以及抛物线的对称轴,根据题意设出A ′(1,n ),则B ′(4,n +3),把B ′(4,n +3)代入抛物线解析式求得n ,即可求得A ′、B ′的坐标,然后根据待定系数法即可求得直线A 'B '的表达式.【解析】如图,∵抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B , 令y =0,解得x =﹣1或3, 令x =0,求得y =﹣3, ∴A (3,0),B (0,﹣3),∵抛物线y =x 2﹣2x ﹣3的对称轴为直线x =−−22×1=1, ∴A ′的横坐标为1,设A ′(1,n ),则B ′(4,n +3), ∵点B '落在抛物线上, ∴n +3=16﹣8﹣3,解得n =2, ∴A ′(1,2),B ′(4,5), 设直线A 'B '的表达式为y =kx +b , ∴{k +b =24k +b =5, 解得{k =1b =1∴直线A 'B '的表达式为y =x +1, 故选:B .4.(2020•衡阳)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m 的函数图象如图2所示.那么▱ABCD的面积为()A.3 B.3√2C.6 D.6√2【分析】根据函数图象中的数据可以分别求得平行四边形的边AD的长和边AD边上的高BM的长,从而可以求得平行四边形的面积.【解析】过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,如图1所示,由图象和题意可得,AE=6﹣4=2,DE=7﹣6=1,BE=2,∴AB=2+1=3,∵直线BE平行直线y=x,∴BM=EM=√2,∴平行四边形ABCD的面积是:AD•BM=3×√2=3√2.故选:B.5.(2020•辽阳)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P 运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据Rt△ABC中,∠ACB=90°,AC=BC=2√2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.【解析】∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x•sin45°=√22x,∴CE=AC﹣AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE•CE=√22x(2√2−√22x)=−12x2+2x=−12(x﹣2)2+2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x﹣2,∴CP=4﹣x,y=12(4﹣x)2=12(x﹣4)2.∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.6.(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.【解析】①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x﹣4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2﹣x)=(3+√3)(12﹣x),为一次函数;故选:D.7.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.48【分析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC=√BC2−BP2=√102−82=6,△ABC的面积=12×AC×BP=12×8×12=48,故选:D.8.(2020•广元)如图,AB,CD是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→B→O的路线匀速运动,设∠APD=y(单位:度),那么y与点P运动的时间(单位:秒)的关系图是()A.B.C.D.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→B运动时;(3)当点P沿B→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解析】(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→B运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿B→O运动时,当点P在点B的位置时,y=45°,当点P在点O的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.9.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4 C.3√3D.2√2【分析】连接AE,由题意DE=OE,设DE=OE=x,则OA=OD=2x,AE=2√5,在Rt△AEO中,利用勾股定理构建方程即可解决问题.【解析】如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.10.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【解析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.11.(2020•河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A .(32,2)B .(2,2)C .(114,2) D .(4,2)【分析】根据已知条件得到AC =6,OC =2,OB =7,求得BC =9,根据正方形的性质得到DE =OC =OE =2,求得O ′E ′=O ′C ′=2,根据相似三角形的性质得到BO ′=3,于是得到结论. 【解析】如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形, ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .二.填空题(共11小题)12.(2020•通辽)如图①,在△ABC 中,AB =AC ,∠BAC =120°,点E 是边AB 的中点,点P 是边BC 上一动点,设PC =x ,P A +PE =y .图②是y 关于x 的函数图象,其中H 是图象上的最低点.那么a +b 的值为 4+2√3 .【分析】点A关于BC的对称点为点A′,连接A′E交BC于点P,此时y最小,进而求解.【解析】如图,将△ABC沿BC折叠得到△A′BC,则四边形ABA′C为菱形,菱形的对角线交于点O,设菱形的边长为2m,在△ABC中,BC=2BO=2×AC sin∠OAC=4m×sin60°=2√3m,从图②看,AB+BE=3√3=3m,解得:m=√3;点A关于BC的对称点为点A′,连接A′E交BC于点P,此时y最小,∵AB=AC,∠BAC=120°,则∠BAA′=60°,故AA′B为等边三角形,∵E是AB的中点,故A′E⊥AB,而AB∥A′C,故∠P A′C为直角,则a=PC=A′Ccos∠BCA′=2mcos30°=4√33m,此时b=AA′=2m,则a+b=2m+4√33m=4+2√3.故答案为4+2√3.13.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2.【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C ′.求出MN ,当点C 与C ′重合时,△C ′DE 的面积最小.【解析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .∵AC =CB ,AM =OM , ∴MC =12OB =1,∴点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C ′. ∵直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E , ∴D (4,0),E (0,﹣3), ∴OD =4,OE =3, ∴DE =2+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE , ∴△DNM ∽△DOE , ∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C ′重合时,△C ′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.14.(2020•福建)设A ,B ,C ,D 是反比例函数y =kx 图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【分析】如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .证明四边形ABCD 是平行四边形即可解决问题.【解析】如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD , ∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形. ∵反比例函数的图象在一,三象限, ∴直线AC 与直线BD 不可能垂直, ∴四边形ABCD 不可能是菱形或正方形, 故选项①④正确, 故答案为①④,15.(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【分析】用待定系数求得反比例函数y=k1x,再与直线y=x联立方程组求得D点坐标,再题意求得运动后P点的坐标,最后将求得的P点坐标代入y=k2x(x>0)求得结果.【解析】把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y=k1x为y=4x,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵{y=4xy=x,解得{x=−2y=−2,或{x=2y=2,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=k1x(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则(x+2)2+(x+2)2=(3√2)2,∴x=1,∴P (1,1), 把P (1,1)代入y =k 2x(x >0)中,得k 2=1, 故答案为:1.16.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 ①②④ .【分析】由折叠的性质可得∠D =∠AD 'E =90°=∠DAD ',AD =AD ',可证四边形ADED '是正方形,可得AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°,由勾股定理可求EF 的长,由旋转的性质可得AE =A 'E =√6,∠D 'ED ''=α,∠EA 'D ''=∠EAD '=45°,可求A 'F =√6−2,可判断①;由锐角三角函数可求∠FED '=30°,由弧长公式可求弧D 'D ″的长度,可判断②;由等腰三角形的性质可求∠EAA '=∠EA 'A =52.5°,∠A 'AF =7.5°,可判断③;由“HL ”可证Rt △ED 'G ≌Rt △ED ''G ,可得∴∠D 'GE =∠D ''GE =52.5°,可证△AF A '∽△EFG ,可判断④,即可求解. 【解析】∵把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处, ∴∠D =∠AD 'E =90°=∠DAD ',AD =AD ', ∴四边形ADED '是矩形, 又∵AD =AD '=√3, ∴四边形ADED '是正方形,∴AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°, ∴D 'B =AB ﹣AD '=2, ∵点F 是BD '中点, ∴D 'F =1, ∴EF =√D′E2+D′F2=√3+1=2,∵将△AED ′绕点E 顺时针旋转α,∴AE=A'E=√6,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=√6−2,故①正确;∵tan∠FED'=D′FD′E=1√3=√33,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度=75°×π×√3180°=5√312π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AF A'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AF A'=∠EFG,∴△AF A'∽△EFG,故④正确,故答案为:①②④.17.(2020•东营)如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2√2.【分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=√OP2−1,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解析】连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ长度的最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA=OBtanA=6,在Rt△AOP′中,∠A=30°,∴OP′=12OA=3,∴线段PQ长度的最小值=√32−1=2√2,故答案为:2√2.18.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2.【分析】如图,连接BE ,BD .求出BE ,BD ,根据DE ≥BD ﹣BE 求解即可. 【解析】如图,连接BE ,BD .由题意BD =√22+42=2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小, ∴DE 的最小值为2√5−2. 故答案为2√5−2.19.(2020•鄂州)如图,半径为2cm 的⊙O 与边长为2cm 的正方形ABCD 的边AB 相切于E ,点F 为正方形的中心,直线OE 过F 点.当正方形ABCD 沿直线OF 以每秒(2−√3)cm 的速度向左运动 1或(11+6√3) 秒时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2.【分析】分两种情形:如图1中,当点A ,B 落在⊙O 上时,如图2中,当点C ,D 落在⊙O 上时,分别求解即可解决问题.【解析】如图1中,当点A ,B 落在⊙O 上时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2此时,运动时间t =(2−√3)÷(2−√3)=1(秒)如图2中,当点C ,D 落在⊙O 上时,⊙O 与正方形重叠部分的面积为(23π−√3)cm 2此时,运动时间t =[4+2﹣(2−√3)]÷(2−√3)=(11+6√3)(秒), 综上所述,满足条件的t 的值为1秒或(11+6√3)秒. 故答案为1或(11+6√3).20.(2020•鄂州)如图,已知直线y =−√3x +4与x 、y 轴交于A 、B 两点,⊙O 的半径为1,P 为AB 上一动点,PQ 切⊙O 于Q 点.当线段PQ 长取最小值时,直线PQ 交y 轴于M 点,a 为过点M 的一条直线,则点P 到直线a 的距离的最大值为 2√3 .【分析】在直线y =−√3x +4上,x =0时,y =4,y =0时,x =4√33,可得OB =4,OA =4√33,得角OBA =30°,根据PQ 切⊙O 于Q 点可得OQ ⊥PQ ,由OQ =1,因此当OP 最小时PQ 长取最小值,此时OP ⊥AB ,若使点P 到直线a 的距离最大,则最大值为PM ,且M 位于x 轴下方,过点P 作PE ⊥y 轴于点E ,根据勾股定理和特殊角30度即可求出PM 的长. 【解析】如图,在直线y =−√3x +4上,x =0时,y =4, 当y =0时,x =4√33,∴OB=4,OA=4√3 3,∴tan∠OBA=OAOB=√33,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ=√OP2−OQ2,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP=12OB=2,此时PQ=√22−12=√3,BP=√42−22=2√3,∴OQ=12OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP=12BP=√3,∴BE=√(2√3)2−(√3)2=3,∴OE=4﹣3=1,∵OE=12OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2√3.故答案为:2√3.21.(2020•成都)如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ 于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ 长度的最大值为3√2,线段DH长度的最小值为√13−√2.【分析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.首先利用相似三角形的性质证明EM=2FN,推出EM=2,FN=1,当点P与A重合时,PQ的值最大,解直角三角形求出OD,OH即可解决问题.【解析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.22.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为3cm或5cm.【分析】当点O在点H的左侧⊙O与直线a相切时,OP=PH﹣OH;当点O在点H的右侧⊙O与直线a相切时,OP=PH+OH,即可得出结果.【解析】∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.三.解答题(共23小题)23.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,再由AF=CF =EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠F AE+∠ABF=∠F AE+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.【解析】(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF =AF , ∴AF =EF ;(2)连接AC ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点, ∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ), 当点F 与菱形ABCD 对角线交点O 重合时, AF +CF 最小,即此时MN +NG 最小, ∵菱形ABCD 边长为1,∠ABC =60°, ∴△ABC 为等边三角形,AC =AB =1, 即MN +NG 的最小值为12;(3)不变,理由是: 延长EF ,交DC 于H ,∵∠CFH =∠FCE +∠FEC ,∠AFH =∠F AE +∠FEA , ∴∠AFC =∠FCE +∠FEC +∠F AE +∠FEA ,∵点F 在菱形ABCD 对角线BD 上,根据菱形的对称性可得: ∠AFD =∠CFD =12∠AFC , ∵AF =CF =EF ,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠F AE+∠ABF=∠F AE+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.24.(2020•金华)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABOC是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK =3DK ,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形:如图2中,设AG 交PQ 于H ,过点H 作HN ⊥x 轴于N ,交AC 于M ,设AM =t .∵菱形P AQG ∽菱形ADFE , ∴PH =3AH ,∵HN ∥OQ ,QH =HP , ∴ON =NP ,∴HN 是△PQO 的中位线, ∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°, ∴△HMA ∽△PNH , ∴AM NH=MH PN=AH PH=13,∴HN =3AM =3t , ∴MH =MN ﹣NH =8﹣3t , ∵PN =3MH , ∴8﹣t =3(8﹣3t ), ∴t =2,∴OP =2ON =2(8﹣t )=12, ∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP , ∴AM HN=MH PN=AH HP=13,设MH =t ,∴PN =3MH =3t , ∴AM =BM ﹣AB =3t ﹣8, ∵HI 是△OPQ 的中位线, ∴OP =2IH , ∴HI =HN , ∴8+t =9t ﹣24, ∴t =4,∴OP =2HI =2(8+t )=24, ∴P (24,0).②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,QH =3PH ,过点H 作HM ⊥OC 于M ,过D 点P 作PN ⊥MH 于N .∵MH 是△QAC 的中位线,∴MH =12AC =4,同法可得:△HPN ∽△QHM , ∴NP HM=HN MQ=PH QH=13,∴PN =13HM =43,∴OM =PN =43,设HN =t ,则MQ =3t , ∵MQ =MC , ∴3t =8−43, ∴t =209,∴OP =MN =4+t =569, ∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线, ∴CQ =2HI ,NQ =CI =4, 同法可得:△PMH ∽△HNQ , ∴MH NQ=PM HN=PH HQ=13,则MH =13NQ =43,设PM =t ,则HN =3t , ∵HN =HI ,∴3t =8+43, ∴t =289,∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89, ∴P (89,0).③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP , ∴AI =IB =4, ∴PN =IB =4,同法可得:△PNH ∽△HMQ , ∴PN HM=HN MQ=PH HQ=13,∴MH =3PN =12,HI =MH ﹣MI =4, ∵HI 是△ABP 的中位线, ∴BP =2IH =8, ∴OP =OB +BP =16, ∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).25.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点? (2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上. (参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)【分析】(1)如图1中,连接OA .求出∠AOC 的度数,以及旋转速度即可解决问题.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,过点P 作PD ⊥OC 于D ,解直角三角形求出CD 即可.(3)如图3中,连接OP ,解直角三角形求出∠POM ,∠COM ,可得∠POH 的度数即可解决问题. 【解析】(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°, 在Rt △ACO 中,cos ∠AOC =OCOA =2.23=1115. ∴∠AOC =43°, ∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°, 过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ), 2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m . (3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN , 在Rt △OPM 中,cos ∠POM =OP OM =38, ∴∠POM =68°,在Rt △COM 中,cos ∠COM =OCOM =2.28=1140, ∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°, ∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.26.(2020•潍坊)如图1,在△ABC 中,∠A =90°,AB =AC =√2+1,点D ,E 分别在边AB ,AC 上,且AD =AE =1,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE ,BD ,CD .(1)当0°<α<180°时,求证:CE =BD ;(2)如图3,当α=90°时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ; (3)在旋转过程中,求△BCD 的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS ”证得△ACE ≌△ABD 即可得到结论;(2)利用“SAS ”证得△ACE ≌△ABD ,推出∠ACE =∠ABD ,计算得出AD =BC =√2+2,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, ∵∠CAE +∠BAE =∠BAD +∠BAE =90°, ∴∠CAE =∠BAD , 在△ACE 和△ABD 中, {AC =AB∠CAE =∠BAD AE =AD, ∴△ACE ≌△ABD (SAS ), ∴CE =BD ;(2)证明:如图3中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, 在△ACE 和△ABD 中, {AC =AB∠CAE =∠BAD AE =AD, ∴△ACE ≌△ABD (SAS ), ∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°, ∴∠EFB =90°, ∴CF ⊥BD ,∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°, ∴BC =√2AB =√2+2,CD =AC +AD =√2+2, ∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解:△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时△BCD 的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图4中:∵∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,DG ⊥BC 于G , ∴AG =12BC =√2+22,∠GAB =45°,∴DG =AG +AD =√2+22+1=√2+42,∠DAB =180°﹣45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12(√2+2)(√2+42)=3√2+52, 旋转角α=135°.27.(2020•苏州)如图,已知∠MON =90°,OT 是∠MON 的平分线,A 是射线OM 上一点,OA =8cm .动点P 从点A 出发,以1cm /s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm /s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O 、P 、Q 三点作圆,交OT 于点C ,连接PC 、QC .设运动时间为t (s ),其中0<t <8. (1)求OP +OQ 的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)求四边形OPCQ 的面积.【分析】(1)由题意得出OP =8﹣t ,OQ =t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD =OD =x ,OB =√2BD =√2x ,PD =8﹣t ﹣x ,得出PD OP=BD OQ,则8−t−x 8−t =x t ,解出x =8t−t 28.由二次函数的性质可得出答案;(3)证明△PCQ 是等腰直角三角形.则S △PCQ =12PC •QC =12×√22PQ ⋅√22PQ =14PQ 2.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8﹣t )2+t 2.由四边形OPCQ 的面积S =S △POQ +S △PCQ 可得出答案. 【解析】(1)由题意可得,OP =8﹣t ,OQ =t , ∴OP +OQ =8﹣t +t =8(cm ).(2)当t =4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON , ∴∠BOD =∠OBD =45°, ∴BD =OD ,OB =√2BD .设线段BD 的长为x ,则BD =OD =x ,OB =√2BD =√2x ,PD =8﹣t ﹣x , ∵BD ∥OQ , ∴PD OP=BD OQ,∴8−t−x 8−t=x t,∴x=8t−t2 8.∴OB=√2⋅8t−t28=−√28(t−4)2+2√2.当t=4时,线段OB的长度最大,最大为2√2cm.(3)∵∠POQ=90°,∴PQ是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形.∴S△PCQ=12PC•QC=12×√22PQ⋅√22PQ=14PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2.∴四边形OPCQ的面积S=S△POQ+S△PCQ=12OP⋅OQ+14PQ2,=12t(8−t)+14[(8−t)2+t2],=4t−12t2+12t2+16﹣4t=16.∴四边形OPCQ的面积为16cm2.28.(2020•黑龙江)如图,在平面直角坐标系中,矩形ABCD的边AB长是x2﹣3x﹣18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=3√3;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.【分析】(1)解方程求出AB的长,由直角三角形的性质可求BD,BC的长,CN的长;(2)分三种情况讨论,由三角形的面积可求解;(3)分两种情况讨论,由等腰三角形的性质和勾股定理可求解.【解析】(1)∵AB长是x2﹣3x﹣18=0的根,∴AB=6,∵四边形ABCD是矩形,∴AD=BC,AB=CD=6,∠BCD=90°,∵∠DBC=30°,∴BD=2CD=12,BC=√3CD=6√3,∵∠DBC=30°,CN⊥BD,∴CN=12BC=3√3,故答案为:3√3.(2)如图,过点M作MH⊥BD于H,∵AD∥BC,∴∠ADB=∠DBC=30°,∴MH=12MD=√32t,∵∠DBC=30°,CN⊥BD,∴BN=√3CN=9,当0<t<92时,△PMN的面积s=12×(9﹣2t)×√32t=−√32t2+9√34t;当t=92时,点P与点N重合,s=0,当92<t≤6时,△PMN的面积s=12×(2t﹣9)×√32t=√32t2−9√34t;(3)如图,过点P作PE⊥BC于E,当PN =PM =9﹣2t 时, ∵PM 2=MH 2+PH 2,∴(9﹣2t )2=(√32t )2+(12﹣2t −32t )2,∴t =3或t =73, ∴BP =6或143,当BP =6时,∵∠DBC =30°,PE ⊥BC , ∴PE =12BP =3,BE =√3PE =3√3, ∴点P (3√3,3), 当BP =143时, 同理可求点P (7√33,73), 当PN =NM =9﹣2t 时, ∵NM 2=MH 2+NH 2, ∴(9﹣2t )2=(√32t )2+(32t ﹣3)2, ∴t =3或24(不合题意舍去), ∴BP =6, ∴点P (3√3,3),综上所述:点P 坐标为(3√3,3)或(7√33,73).29.(2020•河北)如图1和图2,在△ABC 中,AB =AC ,BC =8,tan C =34.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且AM =CN =2.点P 从点M 出发沿折线MB ﹣BN 匀速移动,到达点N 时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.【分析】(1)如图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.(2)利用相似三角形的性质求解即可.(3)分两种情形:当0≤x≤3时,当3<x≤9时,分别画出图形求解即可.(4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.【解析】(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C=AHBH=34,∴AH=3,AB=AC=√AH2+BH2=√32+42=5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ ∥BC , ∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5, ∴S △APQ S △ABC =(APAB)2=49,∴AP AB=23,∴AP =103, ∴PM =AP =AM =103−2=43.(3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC , ∴AP AB =PQ BC,∠AQP =∠C , ∴x+25=PQ 8,∴PQ =85(x +2), ∵sin ∠AQP =sin ∠C =35, ∴PJ =PQ •sin ∠AQP =2425(x +2). 当3<x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .。
中考数学试题汇编及解析动态几何型综合题课标试题
2021年中考数学试题汇编及解析动态几何型综合题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
纵观近5年全国各地的中考数学试卷,动态几何型综合题常常出如今一张试卷的压轴题位置,估计这一趋势在今后几年的中考中会越来越明显,这类试题往往综合性较强,往往涉及到函数、直线型、圆等初中数学的重点考察对象中的好几个,应加大训练的力度。
1、〔2021〕如图①,有两个形状完全一样的直角三角形ABC和EFG叠放在一起〔点A与点E重合〕,AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.如图②,假设整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停顿运动,△EFG也随之停顿平移.设运动时间是为x〔s〕,FG的延长线交 AC于H,四边形OAHP 的面积为y〔cm2)〔不考虑点P与G、F重合的情况〕.〔1〕当x为何值时,OP∥AC ?〔2〕求y与x 之间的函数关系式,并确定自变量x的取值范围.〔3〕是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?假设存在,求出x的值;假设不存在,说明理由.〔参考数据:1142=12996,1152=13225,1162=13456或者4.42=19.36,4.52=20.25,4.62=21.16〕[解析]〔1〕∵Rt△EFG∽Rt△ABC ,∴BC FG AC EG =,684FG =. ∴FG =864⨯=3cm .∵当P 为FG 的中点时,OP ∥EG ,EG ∥AC , ∴OP ∥AC .∴ x =121FG=21×3=1.5〔s 〕.∴当x 为1.5s 时,OP ∥AC .〔2〕在Rt △EFG 中,由勾股定理得:EF =5cm . ∵EG ∥AH , ∴△EFG ∽△AFH .∴FH FG AF EF AH EG ==. ∴FHx AH 3554=+=. ∴ AH =54〔 x +5〕,FH =53〔x +5〕.过点O 作OD ⊥FP ,垂足为 D . ∵点O 为EF 中点, ∴OD =21EG =2cm . ∵FP =3-x ,∴S 四边形OAHP =S △AFH -S △OFP=21·AH ·FH -21·OD ·FP =21·54〔x +5〕·53〔x +5〕-21×2×〔3-x 〕 =256x 2+517x +3 〔0<x <3).〔3〕假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13∶24.那么S 四边形OAHP =2413×S △ABC∴256x 2+517x +3=2413×21×6×8 ∴6x 2+85x -250=0 解得 x 1=25, x 2= -350〔舍去〕. ∵0<x <3, ∴当x =25〔s 〕时,四边形OAHP 面积与△ABC 面积的比为13∶24. 2、〔2021〕如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停顿运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间是为t 〔秒〕.〔1〕设四边形PCQD 的面积为y ,求y 与t 的函数关系式; 〔2〕t 为何值时,四边形PQBA 是梯形?〔3〕是否存在时刻t ,使得PD ∥AB ?假设存在,求出t 的值;假设不存在,请说明理由; 〔4〕通过观察、画图或者折纸等方法,猜测是否存在时刻t ,使得PD ⊥AB ?假设存在,请估计t的值在括号中的哪个时间是段内〔0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4〕;假设不存在,请简要说明理由.[解析] 〔1〕由题意知 CQ =4t ,PC =12-3t ,∴S △PCQ =t t CQ PC 246212+-=⋅.∵△PCQ 与△PDQ 关于直线PQ 对称,∴y=2S △PCQ t t 48122+-=. 〔2〕当CQCP CA CB=时,有PQ ∥AB ,而AP 与BQ 不平行,这时四边形PQBA 是梯形, ∵CA =12,CB =16,CQ =4t , CP =12-3t , ∴16412312tt =-,解得t =2.PCQB∴当t =2秒时,四边形PQBA 是梯形.〔3〕设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如下列图,假设PD ∥AB ,那么∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC , 从而ACQDAB QM =, ∵QD =CQ =4t ,AC =12,AB=20,∴QM =203t . 假设PD ∥AB ,那么CP CMCA CB=,得20412331216t t t +-=, 解得t =1211. ∴当t =1211秒时,PD ∥AB .〔4〕存在时刻t ,使得PD ⊥AB .时间是段为:2<t ≤3.3、〔2021〕如图1所示,一张三角形纸片ABC ,∠ACB=90°11AC D ∆和22BC D ∆两个三角形〔如图2所示〕.将纸片11AC D ∆沿直线2D B 〔AB 〕方向平移〔点12,,,A D D B 始终在同一直线上〕,当点1D 于点B 重合时,停顿平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图3所示的位置时,猜测图中的1D E 与2D F 的数量关系,并证明你的猜测; (2) 设平移间隔 21D D 为x ,11AC D ∆与22BC D ∆重叠局部面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;〔3〕对于〔2〕中的结论是否存在这样的x 的值,使重叠局部的面积等于原ABC ∆面积的14. 假设存在,求x 的值;假设不存在,请说明理由.PCQ BM[解析] 〔1〕12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =〔2〕因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x ==在22BC D ∆中,2C 到2BD 的间隔 就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=-又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- CB D A 图1PE FAD 1BC 1D 2C 2图3C 2D 2C 1BD 1A图2PCQB所以21824(05)255y x x x =-+≤≤(3) 存在. 当14ABC y S ∆=时,即218246255x x -+=整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或者5x =时,重叠局部的面积等于原ABC ∆面积的14.4、〔2021〕如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . 〔1〕求点1B 的坐标与线段1B C 的长;〔2〕将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停顿.设点P 运动的间隔 为x ,矩形222PA B C 与原矩形OABC 重叠局部的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;〔3〕如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你考虑如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.[解析]〔1〕如图1,因为15OB OB ===,所以点1B 的坐标为(05),. 11541B C OB OC =-=-=.1C 3C 图1图2图3〔2〕在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC 的边BC 上时,求得P 点挪动的间隔 115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△,得1334x CM +=,此时,2221113334(1)224B A P B CM xy S S x +=-=⨯⨯-⨯+△△.即23(1)68y x =-++〔或者23345848y x x =--+〕.当自变量x 的取值范围为1145x ≤≤时,求得122(4)3PCM y S x '==-△〔或者221632333y x x =-+〕. 〔3〕局部参考答案:①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度. ③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.5、〔2021〕如图1,Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . 〔1〕求PA 的长;〔2〕以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;〔3〕如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .假设r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相切..,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.CCD[解析] 〔1〕在Rt ABC △中,305CAB BC ∠==,,210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△.::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. 〔2〕BE 与⊙A 相切.在Rt ABE △中,53AB =15AE =,tan 353AE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.〔3〕因为553AD AB ==,,所以r 的变化范围为553r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为10535R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为151053R <<+6、〔2021〕如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式;(2)假设S 梯形OBCD 43,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.假设存在,恳求出所有符合条件的点P 的坐标;假设不存在,请说明理由.[解析] 〔1〕直线AB 解析式为:y=33-x+3. 〔2〕方法一:设点C坐标为〔x ,33-x+3〕,那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x 〔舍去〕 ∴ C〔2,33〕 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C 〔2,33〕. 〔3〕当∠OBP =Rt ∠时,如图①假设△BOP ∽△OBA ,那么∠BOP =∠BAO=30°,BP=3OB=3,∴1P 〔3,33〕. ②假设△BPO ∽△OBA ,那么∠BPO =∠BAO=30°,OP=33OB=1. ∴2P 〔1,3〕. 当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P 〔43,433〕.方法二:设P〔x ,33-x+3〕,得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P 〔43,433〕. ④假设△POB ∽△OBA(如图),那么∠OBP=∠BAO =30°,∠POM =30°.∴ PM =33OM =43. ∴ 4P 〔43,43〕〔由对称性也可得到点4P 的坐标〕.7、〔2021课改〕图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格〔每个小方格的边长均为1个单位长〕,其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大〔即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……〕,直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开场,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 挪动〔即正方形MNPQ 从点P 与点A 重合位置开场,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平图14-7B ADQ移,到达起始位置后仍继续按上述方式挪动〕.正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开场运动,设运动时间是为x 秒,它们的重叠局部面积为y 个平方单位.〔1〕请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠局部〔重叠局部用阴影表示〕,并分别写出重叠局部的面积;〔2〕①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②≤x ≤7时,求y 与x 的函数关系式;③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④≤x ≤13时,求y 与x 的函数关系式.〔3〕对于正方形MNPQ 在正方形ABCD 各边上挪动一周的过程,请你根据重叠局部面积y 的变化情况,指出y 获得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.[解析] 〔1〕相应的图形如图2-1,2-2.图14-6B A DQ图14-2图14-3B A D B AD 图14-4 BADQ图14-1 (P ) D 图14-5 B A DQ当x=2时,y=3;当x=18时,y=18.〔2〕①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,那么MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-〔7-x 〕= x -1.∴y=MT ·MS =〔x -1〕〔2x -1〕=2x 2-3x +1. ②≤x ≤7时,如图2-4,设FG 与MQ 交于T ,那么TQ =7-x ,∴MT =MQ -TQ =6-〔7-x 〕=x -1.∴y=MN ·MT =6〔x -1〕=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,那么TQ=x -7,∴MT =MQ -TQ =6-〔x -7〕=13-x .∴y = MN ·MT =6〔13-x 〕=78-6x .④≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,那么MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =〔13-x 〕〔27-2x 〕=2x 2-53x +351.图2-4BA D图2-5BA D 图2-6BAD图2-3BADQ图2-2BA D 图2-1 BA DQ〔3〕对于正方形MNPQ,①在AB边上挪动时,当0≤x≤1及13≤x≤14时,y获得最小值0;当x=7时,y获得最大值36.②在BC边上挪动时,当14≤x≤15及27≤x≤28时,y获得最小值0;当x=21时,y获得最大值36.③在CD边上挪动时,当28≤x≤29及41≤x≤42时,y获得最小值0;当x=35时,y获得最大值36.④在DA边上挪动时,当42≤x≤43及55≤x≤56时,y获得最小值0;当x=49时,y获得最大值36.本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
(2021年整理)初三数学综合试题动点问题答案
初三数学综合试题动点问题答案
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学综合试题动点问题答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学综合试题动点问题答案的全部内容。
初三数学综合试题动点问题答案1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
13、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. D.
【分析】根据Rt△ABC中,∠ACB=90°,AC=BC=2 ,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.
C. D.
【分析】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.
【解析】由题意当0≤x≤4时,
y AD×4=14﹣2x.
故选:D.
2.(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为( )
∵直线BE平行直线y=x,
∴BM=EM ,
∴平行四边形ABCD的面积是:AD•BM=3 3 .
故选:B.
5.(2020•辽阳)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2 ,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是( )
A. B.
C. D.
【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【解析】如图1所示:当0<x≤2时,过点G作GH⊥BF于H.
∵△ABC和△DEF均为等边三角形,
∴△GEJ为等边三角形.
∴GH EJ x,
∴y EJ•GH x2.
∴ ,
解得
∴直线A'B'的表达式为y=x+1,
故选:B.
4.(2020•衡阳)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么▱ABCD的面积为( )
A. B.
C. D.
【分析】分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.
【解析】①当点P在AB上运动时,
y AH×PH APsinA×APcosA x2 x2,图象为二次函数;
②当点P在BC上运动时,如下图,
由①知,BH′=ABsinA=4 2,同理AH′=2 ,
2021年中考数学真题分项汇编(全国通用)
专题26动点综合问题【共45题】
一.选择题(共11小题)
1.(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
当x=2时,y ,且抛物线的开口向上.
如图2所示:2<x≤4时,过点G作GH⊥BF于H.
y FJ•GH (4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.
故选:A.
3.(2020•江西)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为( )
∵四边形CEPF的面积为y,
∴当点P从点A出发,沿A→D路径运动时,
即0<x<2时,
y=PE•CE
x(2 x)
x2+2x
(x﹣2)2+2,
∴当0<x<2时,抛物线开口向下;
当点P沿D→C路径运动时,
即2≤x<4时,
∵CD是∠ACB的平分线,
∴PE=PF,
∴四边形CEPF是正方形,
∵AD=2,PD=x﹣2,
【解析】∵在Rt△ABC中,∠ACB=90°,AC=BC=2 ,
∴AB=4,∠A=45°,
∵CD⊥AB于点D,
∴AD=BD=2,
∵PE⊥AC,PF⊥BC,
∴四边形CEPF是矩形,
∴CE=PF,PE=CF,
∵点P运动的路程为x,
∴AP=x,
则AE=PE=x•sin45° x,
∴CE=AC﹣AE=2 x,
∴CP=4﹣x,
y (4﹣x)2 (x﹣4)2.
∴当2≤x<4时,抛物线开口向上,
综上所述:能反映y与x之间函数关系的图象是:A.
故选:A.
6.(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是( )
A.y=xB.y=x+1C.y=x D.y=x+2
【分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.
【解析】如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,
A.3B.3 C.6D.6
【分析】根据函数图象中的数据可以分别求得平行四边形的边AD的长和边AD边上的高BM的长,从而可以求得平行四边形的面积.
【解析】过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,如图1所示,
由图象和题意可得,
AE=6﹣4=2,DE=7﹣6=1,BE=2,
∴AB=2+1=3,
则y AH×PH (2 x﹣4)×2=2 4+x,为一次函数;
令y=0,解得x=﹣1或3,
令x=0,求得y=﹣3,
∴A(3,0),B(0,﹣3),
∵抛物线y=x2﹣2x﹣3的对称轴为直线x 1,
∴A′的横坐标为1,
设A′(1,n),则B′(4,n+3),
∵点B'落在抛物线上,
∴n+3=16﹣8﹣3,解得n=2,
∴A′(1,2),B′(4,5),
设直线A'B'的表达式为y=kx+b,