矩阵单项选择题
(精选)线性代数矩阵习题
![(精选)线性代数矩阵习题](https://img.taocdn.com/s3/m/8de7482677c66137ee06eff9aef8941ea76e4b6c.png)
(精选)线性代数矩阵习题习题课一.单项选择题1. 设A 为n 阶可逆矩阵,λ为A 的一个特征根,则A 的伴随矩阵的特征根之一为( )A.n A ||1-λB. ||1A -λC. ||A λD. n A ||λ2.设λ为非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值为( )A.34B.43C.21D.413.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( )A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 4.设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ) A. B E A E -=-λλB. A 与B 有相同的特征值与特征向量C. A 与B 都相似于一对角矩阵D. 对任意常数t ,有A tE -与B tE -相似二.填空题1.若四阶矩阵A 与B 相似,矩阵A 的特征值为51,41,31,21,则行列式=--||1E B 2.设n 阶方阵A 伴随矩阵为*A ,且,0||≠A 若A 有特征值λ,则E A +2*)(的特征值为3.矩阵=1111111111111111A 的非零特征值为 4.n 阶矩阵A 的元素全是1,则A 的n 个特征值为三、计算题1.设=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件. 2.设三阶实对称矩阵A 的特征值为1,2,3;矩阵A 的属于特征值1,2,的特征向量分别为,)1,2,1(,)1,1,1(21T T --=--=αα(1)求A 的属于特征值3的特征向量; (2)求矩阵A .3.设T)1,1,1(-=ξ为---=2135112b a A 的一特征向量. (1)求b a ,及特征值ξ; (2) A 可否对角化?4.设三阶矩阵 A 满足),3,2,1(==i i A i i αα其中,)2,1,2(,)1,2,2(,)2,2,1(321TT T --=-==ααα 试求矩阵A .5.设矩阵,3241223----=k k A 问k 为何值时,存在可逆矩阵P ,使得AP P 1-为对角矩阵?并求出P 和相应的对角矩阵.答案一.单项选择题 1、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则ξλξ**A A A =,即ξλξ*||A A =, 从而ξλξ|)|(1*A A -=.注:一般地,我们有:若λ为A 的一个特征根,则 (1)T A 的特征根为λ;(2)k A 的特征根为kλ; (3)aA 的特征根为λa ;(4)若A 可逆,则1-A 的特征根为λ1; (5)若0≠λ,则*A 的特征根为||1A -λ; (6)kE A +的特征根为k +λ.2、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则,,2222ξλξξλξa aA A ==(a 为实数), 所以, 12)31(-A 的一个特征值为12)231(-?=43. 3、解: B. 4、解: D. 二.填空题 1、解: 24.设ξλξξ(=A 为A 的属于λ的一个特征向量), A 可逆, 则ξλξ1 1--=A ,ξλξ)1()(11-=---E A ,即 E A--1的特征值为1-λ-1, 从而=--||1E A (2-1)(3-1)(4-1)(5-1)=24.另一方面, A 与B 相似,所以,存在可逆矩阵P 使得 B AP P =-1 , 即P A P B111---=,P E A P EP P P A P E B )(111111-=-=-------,所以E B--1与E A --1相似,相似矩阵有相同的行列式,因此, =--||1E B 24.2、解:.1||22+λA若A 的特征值为λ,则*A 的特征值为λ||A ,2*)(A 的特征值为22||λA ,所以, E A +2*)(的特征值为.1||22+λA3、解: 4.计算特征行列式λλλλλλλλλ01010010001)4(1111111111111111||-=----------------=-A E 0)4(3=-=λλ .所以,非零特征值为4.4、解:n,0,其中0为n-1重根.(计算方法如上)。
国开《工程数学(本)》形成性考核作业1-4参考答案(1)
![国开《工程数学(本)》形成性考核作业1-4参考答案(1)](https://img.taocdn.com/s3/m/9d31d55703768e9951e79b89680203d8ce2f6a31.png)
国家开放大学《工程数学(本)》形成性考核作业 1-4 参考答案15501-1.n阶行列式中元素的代数余子式与余子式之间的关系是(A).a.b.c.d.正确答案是:1-2. 三阶行列式的余子式M23=(B).a.b.c.d.正确答案是:2- 1.设A为3×4 矩阵,B为4×3 矩阵,则下列运算可以进行的是(C) .a. A+Bb. B+Ac. ABd. BA'正确答案是:AB2-2. 若A为3×4 矩阵,B为2×5 矩阵,且乘积AC'B'有意义,则C为 (B) 矩阵.a. 2×4b. 5×4c. 4×2d. 4×5正确答案是:5×43-1.设,则BA-1(B) .a.b.c.d.正确答案是:3-2.设,则 (A) .a.b.c.d.正确答案是:4- 1.设A,B均为n阶可逆矩阵,则下列运算关系正确的是(C).a.b.c.d.正确答案是:4-2.设A,B均为n阶方阵,k>0且,则下列等式正确的是(A).a.b.c.d.正确答案是:5-1.下列结论正确的是(C).a. 若A,B均为n阶非零矩阵,则AB也是非零矩阵b. 若A,B均为n阶非零矩阵,则c. 对任意方阵A,A+A'是对称矩阵d. 若A,B均为n阶对称矩阵,则AB也是对称矩阵正确答案是:对任意方阵A,A+A'是对称矩阵5-2.设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是(A).a.b.c.d.正确答案是:6-1.方阵A可逆的充分必要条件是(B).a.b.c.d.正确答案是:6-2.设矩阵A可逆,则下列不成立的是(C).a.b. c. d.正确答案是:7-1.二阶矩阵(B).a.b.c.d.正确答案是:7-2.二阶矩阵(B)..... dc b a正确答案是:的秩是(D).a. 1b. 2c. 4d. 3正确答案是: 3的秩为(C).a. 2b. 4c. 3d. 5正确答案是: 39-1.设向量组为组.a.b.c. ,则(B)是极大无关8-2.向量组8-1.向量组d.正确答案是:9-2.向量组的极大线性无关组是(D).a.b.c.d.正确答案是:10-1.方程组的解为(A).a.b.c.d.正确答案是:的解为(C).10-2.用消元法得a.b.c.d.正确答案是:11-1.行列式的两行对换,其值不变.(×)11-2.两个不同阶的行列式可以相加.(×)12-1.同阶对角矩阵的乘积仍然是对角矩阵.( √ )12-2.设A是对角矩阵,则A=A'.( √ )13-1.若为对称矩阵,则a=-3.(×)13-2. 若为对称矩阵,则x=0.( √ )14-1.设,则.(×)14-2. 设,则.( √ )15-1.设A是n阶方阵,则A可逆的充要条件是r(A)=n.( √ )15-2.零矩阵是可逆矩阵.(×)16-1.设行列式,则 -6 .正确答案是: -616-2. 7 .正确答案是: 7是关于 x 的一个一次多项式,则该多项式一次项的系数是 .正确答案是: 217-2. 若行列式 ,则 a= 1 .正确答案是: 118-1.乘积矩阵 中元素 C 23= 10 .正确答案是: 1018-2. 乘积矩阵 中元素 C 21= -16 .正确答案是: -1619-1.设 A,B 均为 3 阶矩阵,且正确答案是: -7219-2. 设 A,B 均为 3 阶矩阵,且正确答案是: 920-1.矩阵的秩为 2 .正确答案是: 217-1.29 .-72 .,则 ,则20-2. 矩阵的秩为 1 .正确答案是: 12设线性方程组的两个解,则下列向量中(B)一定是的解.a.b.c.d.设线性方程组的两个解,则下列向量中 (B ) 一定是的解.a.b.c.d.设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D).a.b.c..设与分别代表非齐次线性方程组个方程组有解,则(A).a. b. c. d.以下结论正确的是(D).a. 方程个数小于未知量个数的线性方程组一定有解b. 方程个数等于未知量个数的线性方程组一定有唯一解c. 方程个数大于未知量个数的线性方程组一定有无穷多解d. 齐次线性方程组一定有解若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(D).a. 有无穷多解b. 有唯一解c. 无解d. 可能无解若 向量组线性无关,则齐次线性方程组(D).a. 有非零解b. 有无穷多解d 的系数矩阵和增广矩阵,若这2c. 无解d. 只有零解若向量组线性相关,则向量组内 (D) 可被该向量组内其余向量线性表出.a.至多有一个向量b. 任何一个向量c. 没有一个向量d. 至少有一个向量矩阵A的特征多项式,则A的特征值为(B).a.b.c.d.,,矩阵的特征值为(A).a. -1,4b. -1,2c. 1,4d. 1,-1已知可逆矩阵A的特征值为-3,5 ,则A-1的特征值为 (C) .....的特征值为 0,2,则 3A 的特征值为 (D) .a. 2,6b. 0,0c. 0,2d. 0,6 设是矩阵 A 的属于不同特征值的特征向量,则向量组秩是(D).a. 不能确定b. 1c. 2d. 3设 A ,B 为 n 阶矩阵, 既是 A 又是 B 的特征值,x 既是 A 又是 B 的特征向 量,则结论(A)成立.a. x 是 A+B 的特征向量d c b a 设矩阵 的b. 是A-B的特征值c. 是A+B的特征值d. 是AB的特征值设A,B为两个随机事件,下列事件运算关系正确的是(C).a.b.c.d.设A,B为两个随机事件,则(B)成立.a.b.c.d.若事件A,B满足,则A与B一定(B).a. 互不相容b. 不互斥c. 相互独立d. 不相互独立如果(B)成立,则事件A与B互为对立事件.a.b. 且c. A 与 互为对立事件.袋中有 5 个黑球, 3 个白球, 一次随机地摸出 4 个球, 其中恰有 3 个白球 的概率为(D).....某购物抽奖活动中,每人中奖的概率为 0.3. 则 3 个抽奖者中恰有 1 人中奖的概率为(A).a. b.c. d. 0.3非齐次线性方程组 相容的充分必要条件是 . ( √ )线性方程组 可能无解.(×)当 1 时,线性方程组 只有零解.( √ )当 1 时,线性方程组 有无穷多解.(×)d c b a d 2设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(× )设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.( √ )若向量组线性相关,则也线性相关.(×)若向量组线性无关,则也线性无关.( √ )若A矩阵可逆,则零是A的特征值.(×)特征向量必为非零向量.( √ )当 1 时,齐次线性方程组有非零解.若线性方程组有非零解,则 -1 .一个向量组中如有零向量,则此向量组一定线性相关 .向量组线性相关.向量组的秩与矩阵的秩相等.设齐次线性方程组的系数行列式,则这个方程组有非零解。
自学考试-线性代数试卷及答案集合
![自学考试-线性代数试卷及答案集合](https://img.taocdn.com/s3/m/c89bd5ff336c1eb91b375da0.png)
2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】A.1-B.0C.1D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
矩阵论试题
![矩阵论试题](https://img.taocdn.com/s3/m/06b98a7e168884868762d6ad.png)
《矩阵论》 试题11姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦ C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题3分,共15分)1. 设220A A -=,则cos 2A = [ ]。
2.已知n n A C ⨯∈,并且()1A ρ<,则矩阵幂级数0kk kA ∞=∑=[ ]。
3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ=[ ]。
4. 设(,)m nHom R R σ∈,则dim(Im )dim(ker )σσ⊥⊥+= 。
5. 设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= [ ].三、(8分)利用初等变换求1BA -,其中450231271A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 4 5 0 2 3 1 2 7 92 3 7B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦。
《管理线性规划入门》考试资料
![《管理线性规划入门》考试资料](https://img.taocdn.com/s3/m/efb39a3f9ec3d5bbfc0a74aa.png)
《管理线性规划入门》 一、单项选择题 1.已知矩阵1212377x x ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A B ,,并且A B =,则x =(C )。
A 。
0 B 。
2C。
32D.32.建立线性规划模型时.首先应(B ). A .确定目标函数 B .设置决策变量 C .列出约束条件 D .写出变量的非负约束3.在MATLAB 软件中,乘法运算的运算符是(A)。
A .^ B ./ C .* D .+4.在MATLAB 软件的命令窗口(command window )中矩阵114321002B -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的正确输入方式为(A)。
A .>>B=[—1 1 4;3 —2 1;0 0 2]B .〉>B=[—1 3 0;1 —2 1;4 1 2]C .>〉B=[-1 1 4 3 -2 1 0 0 2]D .>>B=[-1 1 ;4 3 ; -2 1 ;0 0 2] 5.在MATLAB 软件中,命令函数clear 的作用为(D)。
A .关闭MATLAB B .查询变量的空间使用情况 C .清除命令窗口的显示内容 D .清除内存中变量(D)2.线性规划模型的标准形式要求约束条件(D)。
A .只取大于等于不等式 B .只取小于等于不等式 C .没有限制D .取等式或小于等于不等式3.在MATLAB 软件中,乘法运算的运算符是(C)。
A .A B ./ C .* D .+4.用MATLAB 软件计算矩阵2A+B T输入的命令语句为(A)。
A .>>2*A+B ’B .〉〉2*A+B TC .〉〉2A+BTD .〉〉2A+B'5.在MATLAB 软件的命令窗口(command window)中输入的命令语句为:〉〉rref(A ),则进行的运算为(B ). A .求矩阵A 的逆B .将矩阵A 化为行简化阶梯型矩阵C .将矩阵A 化为单位矩阵D .求矩阵A 的乘方( B )2.线性规划模型的标准形式中,要求( A ) A .目标函数取最小值 B .目标函数取最大值C .约束条件取大于等于不等式D .约束条件只取等式3.在MATLAB 软件中,运算符”/"表示( B )运算. A .乘方 B .除法 C .矩阵转置 D .乘法 4.在MATLAB 软件的命令窗口(command window )中矩阵101221A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的输入方式为(D )。
线性代数练习题及答案10套
![线性代数练习题及答案10套](https://img.taocdn.com/s3/m/1305557b5acfa1c7aa00cc4a.png)
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线代作业答案
![线代作业答案](https://img.taocdn.com/s3/m/b13c008b561252d381eb6eb3.png)
--线性代数期中温习答案一、选择题(1)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).(2) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 bAx =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ B ]【分析】 要肯定基础解系含向量的个数, 实际上只要肯定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r按照已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).(3)设A 是3阶方阵,将A 的第1列与第2列互换得B,再把B 的第2列加到第3列得C, 则知足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积。
矩阵试题及答案
![矩阵试题及答案](https://img.taocdn.com/s3/m/03df4c33f11dc281e53a580216fc700abb685239.png)
矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。
答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。
答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。
答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。
答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。
答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。
(完整版)线性代数试题和答案(精选版)
![(完整版)线性代数试题和答案(精选版)](https://img.taocdn.com/s3/m/baeaa2bb767f5acfa0c7cdf7.png)
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
2020年矩阵论试题
![2020年矩阵论试题](https://img.taocdn.com/s3/m/d8e3f54e2cc58bd63086bd13.png)
太原理工大学矩阵分析试卷(A)
题号
一
二
三
四
总 分
得分
适用专业:2015级硕士研究生考试日期:时间:120分钟 共8页
得分
1、填空选择题(每小题3分,共30分)
1-5题为填空题:
1.已知 , ,则 , , 。
2.若矩阵 ,则矩阵 的谱半径
3.已知矩阵函数 ,则
4.设矩阵 ,则
5.若矩阵 ,且列向量组是两两正交的单位向量,则
得分
五.解答题(每小题10分,共20分)
16.已知 .
(1)求 的Smith标准型 ;(2)求 的Jordan标准型 .
17.已知 ,
(1)求 ;(2)求解微分方程组 ,
11.设 ,判断 是否收敛,若收敛求其和.
得分
三、证明题(每小题10分,共20分)
12.设 是线性空间 的基, 是 上的两个线性变换: ,且 .
(1)证明: .
(2)如果 也是线性空间 的一个基,证明 到 的过度矩阵A等于 在基 下的矩阵B,也等于于 中的列向量 ,定义映射 ,其中 表示向量2-范数,
(A) (B)
(C) 但 (D)
9.设 是线性空间 上的一个线性变换,则下列命题正确的是 ( )
(A) (B)
(C) (D) .
10.与命题“ 阶矩阵 相似”不等价的命题是()
(A) 具有相同的特征多项式(B) 具有相同的初级因子
(C) 具有相同的不变因子(D) 的特征矩阵 等价
得分
二、解答题(10分)
6-10题为单项选择题:
6.设 是正规矩阵,则下列说法不正确的是().
(A) 一定可以对角化;(B) 的特征值全为实数
线性代数试题精选与精解(含完整试题与详细答案,2020考研数学基础训练)
![线性代数试题精选与精解(含完整试题与详细答案,2020考研数学基础训练)](https://img.taocdn.com/s3/m/16c59aff50e2524de4187e05.png)
线性代数试题精选与精解(含完整试题与详细答案,2020考研数学基础训练)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6D.12【答案】C【解析】本题考查了矩阵行列式的性质。
有性质可知,行列式的任意一列(行)的(0)k k ≠倍加至另一列(行),行列式的值不变。
本题中,B 是由A 的第二列的2倍加到了第一列形成的,故其行列式不变,因此选C 。
【提醒】行列式的性质中,主要掌握这几条:(1)互换行列式的两行或两列行列式要变号;(2)行列式的任意一行(列)的(0)k k ≠倍加至另一行(列),行列式的值不变;(2)行列式行(列)的公因子(公因式)可以提到行列式的外面。
【点评】本题涉及内容是每年必考的,需重点掌握。
热度:☆☆☆☆☆;可出现在各种题型中,选择、填空居多。
【历年考题链接】 (2008,4)1.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .-15 B .-6 C .6D .15答案:C 。
2.计算行列式32 3 20 2 0 0 05 10 2 0 2 0 3 ----=( )A.-180B.-120C.120D.180 【答案】A【解析】本题考查了行列式的计算。
行列式可以根据任意一行(列)展开。
一般来说,按含零元素较多的行或列展开计算起来较容易。
本题,按第三列展开,有:441424344433313233 3 0 2 03022 10 5 000033(1)21050 0 2 00022 3 2 3303(002)6(1) =630180. 210A A A A A A A ++--=⋅+⋅+⋅+⋅=-----=⋅+⋅-=---⨯=-【提醒】还要掌握一些特殊矩阵的行列式的计算,如对角矩阵,上(下)三角矩阵,还有分块矩阵。
(完整版)线性代数试题套卷及答案
![(完整版)线性代数试题套卷及答案](https://img.taocdn.com/s3/m/5313c47b5fbfc77da369b1bc.png)
(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的n m A ⨯0=Ax )(A A T(A) 充分条件; (B) 必要条件; (C) 充要条件;(D) 无关条件。
2.已知为四维列向量组,且行列式 ,32121,,,,αααββ4,,,1321-==βαααA ,则行列式1,,,2321-==βαααB =+B A (A) ;(B) ;(C) ;(D) 。
4016-3-40-3.设向量组线性无关,且可由向量组线s ααα,,, 21)2(≥s s βββ,,, 21性表示,则以下结论中不能成立的是(A) 向量组线性无关;s βββ,,, 21(B) 对任一个,向量组线性相关;j αs j ββα,,, 2(C) 存在一个,向量组线性无关;j αs j ββα,,, 2(D) 向量组与向量组等价。
s ααα,,, 21s βββ,,, 214.对于元齐次线性方程组,以下命题中,正确的是n 0=Ax (A) 若的列向量组线性无关,则有非零解;A 0=Ax (B) 若的行向量组线性无关,则有非零解;A 0=Ax (C) 若的列向量组线性相关,则有非零解;A 0=Ax (D) 若的行向量组线性相关,则有非零解。
A 0=Ax 5.设为阶非奇异矩阵,为的伴随矩阵,则A n )2(>n *A A 题 号一二三总 分总分人复分人得 分得分评卷人√√(A) ;(B) ;A A A 11||)(-*-=A A A ||)(1=*-(C) ;(D) 。
111||)(--*-=A A A 11||)(-*-=A A A 二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
(完整版)线性代数试题套卷及答案
![(完整版)线性代数试题套卷及答案](https://img.taocdn.com/s3/m/b95140b45901020206409c2d.png)
(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。
2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。
3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。
5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。
二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。
线性代数习题1(附答案)
![线性代数习题1(附答案)](https://img.taocdn.com/s3/m/483d8d1555270722192ef73e.png)
线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。
线性代数考试题库及答案(一)
![线性代数考试题库及答案(一)](https://img.taocdn.com/s3/m/68dfd53e773231126edb6f1aff00bed5b9f37316.png)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
线性代数考试练习题带答案大全
![线性代数考试练习题带答案大全](https://img.taocdn.com/s3/m/a9cbda945727a5e9846a6136.png)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
数值分析试题及答案
![数值分析试题及答案](https://img.taocdn.com/s3/m/7658ef4fcec789eb172ded630b1c59eef8c79aef.png)
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
2023年04月04184线性代数真题及答案
![2023年04月04184线性代数真题及答案](https://img.taocdn.com/s3/m/425f9f455bcfa1c7aa00b52acfc789eb172d9e1d.png)
2023年4月《线性代数》真题说明:在本卷中,A T表示矩阵A的转置矩阵,A∗表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.设A=(a11a12a21a22),M ij为元素a ij(i,j=1,2)的余子式,M21=4,M22=5,则A=()A.(5−4−32)B.(5−3−42)C.(53 42)D.(54 32)【答案】D2.设A=(12−30),则A∗中位于第1行第2列的元素是()A.-3B.-2C.2D.3【答案】B3.已知3×4矩阵A的行向量组线性无关,则r(A)=()A.1B.2C.3D.4【答案】C4.设2阶矩阵A满足|2E+3A|=0,|E−4|=0,则|A−1+E|=()A.-lB.−23C.23D.1【答案】A5.二次型f(x1,x2,x3)=2x12−3x22+5x32的正惯性指数是()A.0B.1C.2D.3【答案】C第二部分非选择题二、填空题:本大题共10小题,每小题2分,共20分。
6.行列式|a1+b1a1+b2a1+b3a2+b1a2+b2a2+b3a3+b1a3+b2a3+b3|=_________。
【答案】07.设矩阵A=(1−4−10),B=(1024),则AB=_________。
【答案】(−7−16−10)8.设A为2阶矩阵,若存在矩阵C=(1−201),使得C T AC=(−1002),则A=_________。
【答案】(−1−2−2−2)9.设A 为3阶矩阵,且|A |=2,则|−2A −1|=_________。
【答案】-410.已知向量组a 1=(1,k,−3)T ,a 2=(2,4,−6)T ,a 3=(0,0,1)T 的秩为2,则数k =_________。
【答案】211.齐次线性方程组{x 1+2x 2+3x 3 =0x 2−x 3+x 4=0的基础解系所含解向量的个数为__________。
线性代数选择填空试题及答案
![线性代数选择填空试题及答案](https://img.taocdn.com/s3/m/cdbe1b7f650e52ea54189865.png)
一. 填空题(每小题3分,共15分)1. 设4512312123122,x x x D x x xx==则的系数2. 设10243 2 02013,,,A R(A)=B ⎡⎤⎢⎥⨯=⎢⎥⎢⎥⎣⎦是矩阵且A 的秩而=R(AB)则 23. 321 2, -1, 5,,A B A A =-已知三阶矩阵的特征值为 B则= 2884. 齐次线性方程组12312312300 , 0,x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩只有零解则满足 λ=0或25. 当n 元二次型正定时, 二次型的秩为 n二. 选择题(每小题3分,共15分)1. 设0,A n A =为阶方阵则的必要条件是( B )(a) A 的两行(或列)元素对应成比例 (b) A 中必有一行为其余行的线性组合 (c) A 中有一行元素全为零 (d) 任一行为其余行的线性组合 2. 设n 维行向量112200 2 (,,,,),,,T TA EB E ααααα==-=+矩阵 ,E n AB =其中为阶单位矩阵则( B )(a) 0 (b) E (c) –E (d) E+Tαα3. 设0 ,,,A B n AB =为阶方阵满足等式则必有( C )(a) 00A B ==或 (b) 0A B +=(c)00A B ==或 (d) 0A B +=4.s 维向量组12,,,n ααα(3n s ≤≤)线性无关的充分必要条件是( C )(a) 存在一组不全为零的数12,,,n k k k , 使得11220n n k k k ααα+++≠(b) 12,,,n ααα中存在一个向量, 它不能由其余向量线性表出 (c) 12,,,n ααα中任意一个向量都不能由其余向量线性表出 (d) 12,,,n ααα中任意两个向量都线性无关5. 设A 为n 阶方阵, 且秩121 ,0(),R A n Ax αα=-=是的两个不同的解,则0Ax =的通解为( AB )(a)1k α (b) 2k α (c) 12()k αα- (d) 12()k αα+1.下列矩阵中,( )不是初等矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵单项选择题
1. 设A、B为同阶可逆矩阵, 则
(A) AB = BA (B) 存在可逆矩阵P, 使
(C) 存在可逆矩阵C, 使(D) 存在可逆矩阵P和Q, 使解. 因为A可逆, 存在可逆.
因为B可逆, 存在可逆.
所以= . 于是
令, . (D)是答案.
2. 设A、B都是n阶可逆矩阵, 则等于
(A) (B) (C) (D)
解. . (A)是答案.
3. 设A、B都是n阶方阵, 下面结论正确的是
(A) 若A、B均可逆, 则A + B可逆. (B) 若A、B均可逆, 则AB可逆.
(C) 若A + B可逆, 则A-B可逆. (D) 若A + B可逆, 则A, B均可逆.解. 若A、B均可逆, 则. (B)是答案.
4. 设n维向量, 矩阵, 其中E为n阶单位矩阵, 则AB =
(A) 0 (B) -E (C) E (D)
解. AB ==+ 2-2
= E. (C)是答案.
5. 设, , , 设有P2P1A = B, 则P2 =
(A) (B) (C) (D)
解. P1A表示互换A的第一、二行. B表示A先互换第一、二行, 然后将互换后的矩阵的
第一行乘以(-1)加到第三行. 所以P2 = .(B)是答案.
6. 设A为n阶可逆矩阵, 则(-A)*等于
(A) -A* (B) A* (C) (-1)n A* (D) (-1)n-1A*
解. (-A)* =. (D)是答案.
7. 设n阶矩阵A非奇异(n2), A*是A的伴随矩阵, 则
(A) (B)
(C) (D)
解.
(C)是答案.
8. 设A为m×n矩阵, C是n阶可逆矩阵, 矩阵A的秩为r1, 矩阵B = AC的秩为r,则
(A) r > r1 (B) r < r1 (C) r = r1 (D) r与r1的关系依C而定
解. , 所以
又因为, 于是
所以. (C)是答案.
9. 设A、B都是n阶非零矩阵, 且AB = 0, 则A和B的秩
(A) 必有一个等于零(B) 都小于n (C) 一个小于n, 一个等于n (D) 都等于n
解. 若, 矛盾. 所以. 同理. (B)是答案.。