(推荐)高中数学导数专题复习
高中数学专题 微专题4 导数的几何意义及函数的单调性
由 f(3x-2)<f(x2)可得x32x>-3x2->02,, 解得23<x<1 或 x>2, 因此不等式 f(3x-2)<f(x2)的解集为23,1∪(2,+∞).
跟踪训练3 (1)(2023·玉林模拟)设函数f(x)=ex-e1x-2x,若f(a-3)+ f(2a2)≤0,则实数a的取值范围是
专题一 函数与导数
微专题4
导数的几何意义及函数的单调性
考情分析
1.此部分内容是高考命题的热点内容.在选择题、填空题中多考 查导数的计算、几何意义,难度较小. 2.应用导数研究函数的单调性多在选择题、填空题靠后的位置 考查,难度中等偏上,属综合性问题.
思维导图
内容索引
典型例题
热点突破
PART ONE
则 f(x)的单调递增区间为12,-1a,单调递减区间为0,12,-1a,+∞. 2x-12
当 a=-2 时,f′(x)=- x ≤0 恒成立, f(x)的单调递减区间为(0,+∞),无单调递增区间. 当 a<-2 时,-1a<12, 由 f′(x)>0,得-1a<x<12;
由 f′(x)<0,得 0<x<-1a或 x>12,
则直线 l 的方程为 y-(3+ln x2)=x12(x-x2), 即 y=x12x+ln x2+2.
所以 ex1=x12,且 x1ex1+ex1+1=ln x2+2,
消去x2得(x1-1)( ex1-1)=0,
故x1=1或x1=0,
所以直线l的方程为y=ex+1或y=x+2.
跟踪训练1 (1)(2023·常德模拟)已知l为曲线y=a+xln x 在(1,a)处的切线,
高中数学导数知识点归纳总结及例题
高中数学导数知识点归纳总结及例题导数考试知识要点1. 导数(导函数的简称)的定义:设x0是函数y f(x)定义域的一点,如果自变量x在x0处有增量x,则函数值y也引起相应的增量y f(x0x)f(x0);比值yf(x0x)f(x0)称为函数y f(x)在点x0到x0x之间的平均变化率;如果极限x xf(x0x)f(x0)y存在,则称函数y f(x)在点x0处可导,并把这个极限叫做lim x0x x0xlim记作f’(x0)或y’|x x0,即f’(x0)=limy f(x)在x0处的导数,f(x0x)f(x0)y. lim x0x x0x注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数y f(x)定义域为A,y f’(x)的定义域为B,则A与B关系为A B.2. 函数y f(x)在点x0处连续与点x0处可导的关系:⑴函数y f(x)在点x0处连续是y f(x)在点x0处可导的必要不充分条件.可以证明,如果y f(x)在点x0处可导,那么y f(x)点x0处连续.事实上,令x x0x,则x x0相当于x0.1于是limf(x)limf(x0x)lim[f(x x0)f(x0)f(x0)] x x0x0x0 lim[x0f(x0x)f(x0)f(x0x)f(x0)x f(x0)]lim lim limf( x0)f’(x0)0f(x0)f(x0).x0x0x0x xy|x|,当x>0时,x x⑵如果y f(x)点x0处连续,那么y f(x)在点x0处可导,是不成立的. 例:f(x)|x|在点x00处连续,但在点x00处不可导,因为y y y不存在. 1;当x<0时,1,故lim x0x x x注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数y f(x)在点x0处的导数的几何意义就是曲线y f(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线y f(x)在点P(x0,f(x))处的切线的斜率是f’(x0),切线方程为y y0f’(x)(x x0).4. 求导数的四则运算法则:(u v)’u’v’y f1(x)f2(x)...fn(x)y’f1’(x)f2’(x)...fn’(x) (uv)’vu’v’u(cv)’c’v cv’cv’(c为常数)vu’v’u u(v0) 2v v’注:①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设f(x)2sinx22,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xx f(x)g(x)sinx cosx在x0处均可导.5. 复合函数的求导法则:fx’((x))f’(u)’(x)或y’x y’u u’x复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数y f(x)在某个区间内可导,如果f’(x)>0,则y f(x)为增函数;如果f’(x)<0,则y f(x)为减函数.⑵常数的判定方法;如果函数y f(x)在区间I内恒有f’(x)=0,则y f(x)为常数.注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)= 0,同样f(x)0是f(x)递减的充分非必2要条件.②一般地,如果f(x)在某区间(sinx)cosx (arcsinx)’1 x2(xn)’nxn1(n R)(cosx)’sinx (arccosx)’ 1x2 1’11’(arctanx)II. (lnx)(logax)logae xxx21’(ex)’ex (ax)’axlna (arccotx)’III. 求导的常见方法:①常用结论:(ln|x|)’1x2 1 (x a1)(x a2)...(x an)1.②形如y(x a1)(x a2)...(x an)或y两(x b1)(x b2)...(x bn)x边同取自然对数,可转化求代数和形式.③无理函数或形如y xx这类函数,如y xx取自然对数之后可变形为lny xlnx,对两边y’1lnx x y’ylnx y y’xxlnx xx. 求导可得yx 3导数中的切线问题例题1:已知切点,求曲线的切线方程曲线y x33x21在点(1,1)处的切线方程为()例题2:已知斜率,求曲线的切线方程与直线2x y40的平行的抛物线y x2的切线方程是()注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22x b0,又因为0,得b1,故选D.例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.求过曲线y x32x上的点(1,1)的切线方程.例题4:已知过曲线外一点,求切线方程1求过点(2,0)且与曲线y相切的直线方程.x4练习题:已知函数y x33x,过点A(016) ,作曲线y f(x)的切线,求此切线方程.看看几个高考题1.(2009全国卷Ⅱ)曲线y x在点1,1处的切线方程为2x 122.(2010江西卷)设函数f(x)g(x)x,曲线y g(x)在点(1,g(1))处的切线方程为y2x1,则曲线y f(x)在点(1,f(1))处切线的斜率为3.(2009宁夏海南卷)曲线y xe2x1在点(0,1)处的切线方程为。
高三数学导数的复习知识点
高三数学导数的复习知识点导数是高中数学中的一个重要知识点,它不仅在数学中有广泛的应用,还在其他科学领域中有着重要的作用。
本文将对高三数学导数的复习知识点进行详细介绍,帮助同学们巩固和加深对导数的理解。
一、导数的概念和定义导数是函数在某一点上的变化率,表示函数曲线在该点上的切线斜率。
导数的定义是函数在一点处的极限值,用极限的方式来表示变化率。
在数学符号上,函数f(x)在x=a处的导数记作f'(a),可以用极限的形式表示为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)二、导数的基本性质1. 常数函数的导数为0。
即若f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数的导数。
若f(x)=x^n,其中n为正整数,则f'(x)=n*x^(n-1)。
3. 指数函数的导数。
若f(x)=e^x,其中e为自然对数的底,则f'(x)=e^x。
4. 对数函数的导数。
若f(x)=ln(x),则f'(x)=1/x。
5. 三角函数的导数。
- sin(x)的导数为cos(x)。
- cos(x)的导数为-sin(x)。
- tan(x)的导数为sec^2(x)。
三、导数的运算法则1. 常数倍法则。
若f(x)可导,c为常数,则(cf(x))' = cf'(x)。
2. 和差法则。
若f(x)和g(x)都可导,则(f(x)+g(x))' = f'(x) + g'(x)。
3. 乘法法则。
若f(x)和g(x)都可导,则(f(x)*g(x))' = f'(x)*g(x) +f(x)*g'(x)。
4. 商法则。
若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))' =(f'(x)*g(x) - f(x)*g'(x))/(g(x))^2。
5. 复合函数法则。
若y=f(g(x)),其中f(u)和g(x)都可导,则y'=f'(g(x)) * g'(x)。
导数的专题复习-最经典最全
导数的专题复习-最经典最全
导数是微积分中的重要概念,它具有广泛的应用。
本文将对导数进行专题复,总结其中最经典、最全的内容。
1. 导数的定义
导数是描述函数在某一点处变化率的概念。
在数学上,函数
f(x)在点x=a处的导数表示为f'(a),它可以通过极限的概念进行定义。
2. 导函数的计算
导数的计算有多种方法,常用的包括求导法则、链式法则、隐函数求导法等。
这些方法能够帮助我们求出各种类型函数的导数,如常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 导数的性质
导数具有一些重要的性质,包括:
- 导数存在性:函数在某一点处可导的条件;
- 可导性与连续性的关系:函数可导的充分必要条件;
- 导数的代数运算:导数与求导函数的和差、乘积、除法的关系;
- 高阶导数:对导数的导数的概念。
4. 导数的应用
导数在科学和工程的领域中具有广泛的应用,包括但不限于以下几个方面:
- 函数的最大值与最小值问题:利用导数可以求解函数的极值问题;
- 曲线的切线与法线:导数可以帮助我们确定曲线在某一点处的切线和法线;
- 运动学中的速度与加速度:导数可以描述物体在运动过程中的速度和加速度。
总结:
本文对导数进行了最经典、最全的复习,内容涵盖了导数的定义、导函数的计算、导数的性质以及导数的应用。
通过学习导数,我们可以更好地理解函数的变化规律,并运用它们解决实际问题。
导数知识点总结大全高中
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
(完整版)高三文科数学导数专题复习
高三文科数学导数专题复习1.已知函数)(,3,sin )(x f x x b ax x f 时当π=+=取得极小值33-π。
(Ⅰ)求a ,b 的值;(Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点;(2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”.2。
设函数3221()231,0 1.3f x x ax a x a =-+-+<<(1)求函数)(x f 的极大值;(2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围.3.如图所示,A 、B 为函数)11(32≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m)(m 〉3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =;(2)求函数)(t f S =的最大值,并求出相应的点C 的坐标。
4。
已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数。
(I )求)(x f 、)(x g 的表达式;(II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围5。
已知函数32()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差.6.函数xax x f -=2)(的定义域为]1,0((a 为实数).(1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;(3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值。
(完整版)高中数学导数知识点归纳总结
§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
(完整版)高三复习导数专题
导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 2、导数的公式: 0'=C (C 为常数) 1')(-=n n nxx (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+ ( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:()k f x'=(2)导数的物理意义:()v s t'=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x'≥⇔在[a,上递增()0()b]f x f x'≤⇔在[a,上递减(2)判断或证明函数的单调性;()f x c≠(3)已知函数的单调性,求参数的取值范围。
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)
专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
高中导数知识点总结大全
高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。
那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。
高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
2024年高考数学一轮复习专题14导数与函数的单调性含解析
专题14导数与函数的单调性最新考纲1.了解函数单调性和导数的关系;能利用导数探讨函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、微小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).基础学问融会贯穿1.函数的单调性在某个区间(a,b)内,假如f′(x)>0,那么函数y=f(x)在这个区间内单调递增;假如f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①假如在x0旁边的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②假如在x0旁边的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是微小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根旁边的左右两侧导数值的符号.假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【学问拓展】1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.重点难点突破【题型一】不含参数的函数的单调性【典型例题】已知函数,则f(x)的增区间为()A.(0,1)B.(0,e)C.(1,+∞)D.(e,+∞)【解答】解:易知函数f(x)的定义域为(0,+∞),又,令f′(x)>0,解之得0<x<e,故选:B.【再练一题】用导数求单调区间f(x).【解答】解:∵f(x)1,∴f′(x)0,∴﹣1<x<1,∴函数的单调增区间是(﹣1,1),单调减区间是(﹣∞,﹣1],[1,+∞).思维升华确定函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【题型二】含参数的函数的单调性【典型例题】求下列函数的单调区间,并求[1,e]上的最值.(1)f(x)=lnx﹣ax;(2)f(x)=ax2﹣2lnx3;(3)f(x)=e x﹣ax﹣1,求单调区间.【解答】解:(1)f(x)=lnx﹣ax,∴f′(x)a,当a≤0时,f′(x)>0恒成立,∴函数f(x)在(0,+∞)上单调递增,∴函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=1﹣ae,f(x)min=f(1)=﹣a,当a>0时,f′(x)a,令f′(x)=0,解得x,当f′(x)>0,即0<x时,函数单调递增,当f′(x)<0,即x时,函数单调递减,∴函数f(x)在(0,)上单调递增,在(,+∞)上单调递减,当x时,函数有极大值,即极大值为f()=﹣1﹣lna①当1时,即a≥1时,函数f(x)在[1,e]上单调递减,∴f(x)min=f(e)=1﹣ae,f(x)max=f(1)=﹣a,②当e时,即0<a时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=1﹣ae,f(x)min=f(1)=﹣a,③1e时,即a<1时,函数f(x)在[1,)上单调递增,在(,e]上单调递减,∴f(x)max=f()=﹣1﹣lna,f(1)=﹣a,f(e)=1﹣ae,当a<1,f(1)>f(e),故f(x)min=f(e)=1﹣ae,当a时,f(1)≤f(e),故f(x)min=f(1)=﹣a;(2)f(x)=ax2﹣2lnx3=ax2﹣6lnx,∴f′(x)=2ax,当a≤0时,f′(x)<0恒成立,∴函数f(x)在(0,+∞)上单调递减,∴函数f(x)在[1,e]上单调递减,∴f(x)min=f(e)=ae2﹣6,f(x)max=f(1)=a,当a>0时,令f′(x)=0,解得x,当f′(x)<0,即0<x时,函数单调递减,当f′(x)>0,即x时,函数单调递减,∴函数f(x)在(0,)上单调递减,在(,+∞)上单调递增,当x时时,函数有微小值,即微小值为f()3ln,①当1时,即a≥3时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=ae2﹣6,f(x)min=f(1)=a,②当e时,即0<a时,函数f(x)在[1,e]上单调递减,∴f(x)max=f(1)=a,f(x)min=f(e)=ae2﹣6,③1e时,即a<3时,函数f(x)在[1,)上单调递减,在(,e]上单调递增,∴f(x)min=f()3ln,f(1)=a,f(e)=ae2﹣6,当a<3,f(1)>f(e),故f(x)max=f(1)=a,当a a<3,f(1)<f(e),故f(x)max=f(e)=ae2﹣6;(3)f(x)=e x﹣ax﹣1,∴f′(x)=e x﹣a,当a≤0时,f′(x)>0恒成立,∴函数f(x)在(0,+∞)上单调递增,∴函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=e e﹣ae﹣1,f(x)min=f(1)=e﹣a﹣1,当a>0时,f′(x)=e x﹣a,令f′(x)=0,解得x=lna,当f′(x)<0,即0<x<lna时,函数单调递减,当f′(x)>0,即x>lna时,函数单调递增,∴函数f(x)在(0,lna)上单调递减,在(lna,+∞)上单调递增,当x=lna时,函数有微小值,即微小值为f(lna)=a﹣1﹣alna①当lna≤1时,即0<a≤e时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=e e﹣ae﹣1,f(x)min=f(1)=e﹣a﹣1,②当lna≥e时,即a≥e e,函数f(x)在[1,e]上单调递减,∴f(x)max=f(1)=e﹣a﹣1,f(x)min=f(e)=e e﹣ae﹣1,③1<lna<e时,即e<a<e e时,函数f(x)在[1,lna)上单调递减,在(lna,e]上单调递增,∴f(x)min=f(lna)=a﹣1﹣alna,f(1)=e﹣a﹣1,f(e)=e e﹣ae﹣1,当a<e e,f(1)>f(e),故f(x)max=f(1)=e﹣a﹣1,当e<a,f(1)<f(e),故f(x)max=f(e)=e e﹣ae﹣1.【再练一题】已知函数f(x)=x alnx(a∈R).(1)当a>0时,探讨f(x)的单调区间;(2)设g(x)=x lnx,当f(x)有两个极值点为x1,x2,且x1∈(0,e)时,求g(x1)﹣g(x2)的最小值.【解答】解:(1)f(x)的定义域(0,+∞),f′(x)=1,令f′(x)=0,得x2﹣ax+1=0,①当0<a≤2时,△=a2﹣4≤0,此时f′(x)≥0恒成立,∴f(x)在定义域(0,+∞)上单调递增;②当a>2时,△=a2﹣4>0,x2﹣ax+1=0的两根为:x1,x2,且x1,x2>0.当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,)时,f′(x)<0,f(x)单调递减;当x∈(,+∞)时,f′(x)>0,f(x)单调递增;综上,当0<a≤2时,f(x)的递增区间为(0,+∞),无递减区间;当a>2时,f(x)的递增区间为(0,),(,+∞),递减区间为(,).(2)由(1)知,f(x)的两个极值点x1,x2是方程x2﹣ax+1=0的两个根,则,所以x2,a=(x1),∴g(x1)﹣g(x2)=x1lnx1﹣(ln)=x1alnx1=x1(x1)lnx1.设h(x)=(x)﹣(x)lnx,x∈(0,e],则(g(x1)﹣g(x2))min=h(x)min,∵h′(x)=(1)﹣[(1)lnx+(x)],当x∈(0,e]时,恒有h′(x)≤0,∴h(x)在(0,e]上单调递减;∴h(x)min=h(e),∴(g(x1)﹣g(x2))min.思维升华 (1)探讨含参数的函数的单调性,要依据参数对不等式解集的影响进行分类探讨.(2)划分函数的单调区间时,要在函数定义域内探讨,还要确定导数为零的点和函数的间断点.【题型三】函数单调性的应用问题命题点1 比较大小或解不等式【典型例题】若a∈R,且a>1,函数,则不等式f(x2﹣2x)<1的解集是()A.(0,2)B.(0,1)∪(1,2)C.(﹣∞,0)∪(2,+∞)D.【解答】解:由0,解得﹣1<x<1.可得函数f(x)的定义域为:(﹣1,1).y2在(﹣1,1)上单调递增.y1在(﹣1,1)上单调递增,a>1,∴y在(﹣1,1)上单调递增.∴f(x)在(﹣1,1)上单调递增.又f(0)=1.∴不等式f(x2﹣2x)<1即不等式f(x2﹣2x)<f(0),∴﹣1<x2﹣2x<0,解得0<x<2,且x≠1.∴不等式f(x2﹣2x)<1的解集为(0,1)∪(1,2).故选:B.【再练一题】已知奇函数f(x)的导函数为f'(x),当x>0时,xf'(x)+f(x)>0,若a=f(1),,c=﹣ef(﹣e),则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.b<a<c【解答】解:令函数g(x)=xf(x),由当x>0时,xf'(x)+f(x)>0,可知g′(x)>0,所以g(x)在(0,+∞)上为增函数.又f(x)在R上是奇函数,所以函数g(x)也为偶函数,又知a=f(1)=g(1),,c=﹣ef(﹣e)=g(﹣e)=g(e),且,所以,即c>a>b,故选:D.命题点2 依据函数单调性求参数【典型例题】若函数f(x)=x3﹣ke x在(0,+∞)上单调递减,则k的取值范围为()A.[0,+∞)B.C.D.【解答】解:∵函数f(x)=x3﹣ke x在(0,+∞)上单调递减,∴f′(x)=3x2﹣ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x),x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2),则k,故选:C.【再练一题】已知函数f(x)=(x﹣3)e x+a(2lnx﹣x+1)在(1,+∞)上有两个极值点,且f(x)在(1,2)上单调递增,则实数a的取值范围是()A.(e,+∞)B.(e,2e2)C.(2e2,+∞)D.(e,2e2)∪(2e2,+∞)【解答】解:f′(x)=(x﹣2)e x+a(1)=(x﹣2)(e x),x∈(1,+∞).∵f′(2)=0,可得2是函数f(x)的一个极值点.∵f(x)在(1,+∞)上有两个极值点,且f(x)在(1,2)上单调递增,∴函数f(x)的另一个极值点x0>2,满意:0,可得:a=x02e2,故选:C.思维升华依据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增函数的充要条件是对随意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应留意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.基础学问训练1.【河北省保定市2024-2025学年度第一学期期末调研考试高二】若函数在区间上为单调增函数,则k的取值范围是A.B.C.D.【答案】C【解析】解:,函数在区间单调递增,在区间上恒成立.在区间上恒成立,而在区间上单调递减,.故选:C.2.已知函数上单调递减,则实数的取值范围是( )A.B.C.D.【答案】A【解析】因为函数上单调递减,所以上恒成立,令,设,则上恒成立,所以,解得,所以实数的取值范围是.故选A.3.函数的单调递减区间是( )A.B.C.D.【答案】D【解析】函数的定义域为,由,得,得,即函数的单调递减区间为.故选D.4.【内蒙古集宁一中(西校区)2024-2025学年高二下学期第一次月考】假如函数y=f(x)的图象如图所示,那么导函数y=的图象可能是 ( )A.B.C.D.【答案】A【解析】由原函数图像可知单调性是先增,再减,再增,再减,可得导函数图像应当是先正,再负,再正,再负,只有选项A满意,故选A5.【广东省2024年汕头市一般高考第一次模拟考试】若函数在区间上单调递减,则实数的取值范围是()A.B.C.D.【答案】D【解析】由题意,可得,若在区间上单调递减,则在区间上恒成立,即恒成立,令,则,故的最大值为1,此时,即,所以的最大值为,所以,故选D.6.【湖南省湘潭县一中、双峰一中、邵东一中、永州四中2024-2025学年高二下学期优生联考】已知是函数的导函数,,则不等式的解集为()A. B. C. D.【答案】B【解析】由题意,函数满意已知条件,又由不等式,可变形为,构造新函数,则,由已知条件可得,即,即函数为单调递减函数,令,又由不等式,可变形为,即,由函数的单调性可得,所以不等式的解集为,故选B.7.【陕西省咸阳市2024-2025学年高二上学期期末考试】已知是可导函数,且对于恒成立,则A. B.C. D.【答案】D【解析】由,得,令,则.在R上单调递减,即,.故选:D.8.【湖南省湘西州2024-2025学年高二(上)期末】已知函数在区间上是减函数,则实数a的取值范围是()A. B. C. D.【答案】A【解析】,又上是减函数,上恒有,即上恒成立,因为,所以,所以:.实数a的取值范围是.故选:A.9.【福建省三明市2024-2025学年高二上学期期末质量检测】已知函数,若在区间上存在,使得,则实数的取值范围是()A. B. C. D.【答案】A【解析】解:由,可得,由,即:在有两个解,且,令g(x)= =,可得:,由①可得,由②可得,可得,同理由③可得,可得,由④可得a,综上所述可得:,故选A.10.【福建省福州市八县(市)协作校2024-2025学年高二上学期期末联考】已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是()A. B. C. D.【答案】D【解析】构造函数g(x),∴g′(x),∵xf′(x)﹣f(x)<0,∴g′(x)<0,∴函数g(x)在(0,+∞)单调递减.∵函数f(x)为奇函数,∴g(x)是偶函数,∴c g(﹣3)=g(3),∵a g(e),b g(ln2),∴g(3)<g(e)<g(ln2),∴c<a<b,故选:D.11.【陕西省西安市2024-2025学年高二下学期期末考试】已知奇函数的导函数为,当时,,若,则的大小关系正确的是()A. B. C. D.【答案】D【解析】由题意,令,则,因为当时,,所以当时,,即当时,,函数单调递增,因为,所以,又由函数为奇函数,所以,所以,所以,故选D。
重点高中数学导数知识点归纳总结
重点高中数学导数知识点归纳总结高中数学中的导数是一个重要的知识点,它是微积分的基础,也是日后学习数学和理工科学科的必备知识。
下面将对高中数学中的导数相关知识进行归纳总结。
一、导数的定义与基本性质1. 导数的定义:设函数y=f(x),在x=a处可导,那么函数f(x)在x=a处的导数定义为:f'(a)=lim┬(△x→0)(f(a+△x)-f(a))/(△x)。
2.函数连续与可导的关系:如果函数f(x)在x=a处可导,则函数f(x)在x=a处连续。
3.导数的几何意义:函数y=f(x)在x=a处的导数f'(a)表示了函数在该点处切线的斜率。
4.导数的性质:(1)常数函数的导数为0,即(f(x)=c,c为常数时,f'(x)=0)。
(2) 任意一次幂函数的导数为对应的幂次函数的导函数,即(f(x)=x^n,n为常数时,f'(x)=nx^(n-1))。
(3)任意两个函数的和(差)的导数等于这两个函数的导数之和(差)。
(f(x)±g(x))'=f'(x)±g'(x)。
(4)任意两个函数的积的导数等于这两个函数的导数之积加上这两个函数之积的导数。
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
(5) 任意一个函数的常数倍的导数等于它的导数的常数倍,即(cf(x))' = cf'(x),c为常数。
二、常见函数的导数1.常数函数f(x)=c的导数为f'(x)=0。
2. 幂函数f(x)=x^n,n为常数时,导数为f'(x)=nx^(n-1)。
3. 指数函数f(x)=a^x,a>0且a≠1时,导数为f'(x)=a^xlna。
4. 对数函数f(x)=logₐx,a>0且a≠1时,导数为f'(x)=1/(xlna)。
5. 正弦函数f(x)=sinx的导数为f'(x)=cosx。
(完整版)高三总复习导数——专题总结归纳
历年高考题型总结及详解——倒数内容简介:1.有关倒数考试方向及常考点.2.常考点方法总结及名师点拨.3.2014——2016各地历年高考题及解析.4.名校有关模拟题——母题.【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【考试方向】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【得分要点】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先);(2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7. 求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8. 函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9. 导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用.10. 函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数.(2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论;(3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集. 11.函数的极值与导数(1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极值点;②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x-∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在. (3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12.最值问题(1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值. (2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.(2016高考山东理数)已知()221()ln ,R x f x a x x a x-=-+∈. (Ⅰ)讨论()f x 的单调性;(II )略 考点:应用导数研究函数的单调性【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. 2.(2016高考天津理数)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(Ⅰ)求)(x f 的单调区间;(II)略;(Ⅲ)略错误!未找到引用源。
2023年高考数学总复习:导数(附答案解析)
2023年高考数学总复习:导数一.选择题(共8小题)1.(2022春•合肥期末)f(x)的导函数f'(x)的图象如图所示,则函数f(x)的图象最有可能的是图中的()A.B.C.D.2.(2022春•东城区期末)已知函数f(x)=x3﹣sin x,若对于任意x1,x2∈R,满足x1+x2=0,且x1≠x2,则一定有()A.f(x1)+f(x2)=0B.f(x1)﹣f(x2)=0C.f(x1)<f(x2)D.f(x1)>f(x2)3.(2022春•揭阳期末)函数f(x)的图象与其在点P处的切线如图所示,则f(1)﹣f'(1)等于()A.﹣2B.0C.2D.44.(2022春•丰台区校级期末)已知f(x)的导数存在,y=f(x)的图象如图所示,则在区间[a,b]上()A.f'(x)的最大值是f'(a),最小值是f'(c)B.f'(x)的最大值是f'(a),最小值是f'(b)C.f'(x)的最大值是f'(c),最小值是f'(b)D.f'(x)的最大值f'(b),最小值是f'(c)5.(2022春•顺义区期末)已知x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,则下列结论不正确的是()A.∃x∈R,f(x)>f(x0)B.f(x)一定存在极小值点C.若a=0,则﹣x0是函数f(x)的极小值点D.若b=0,则a<06.(2022春•南充期末)若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,则()A.a=﹣1,b=﹣2B.a=1,b=2C.a=1,b=﹣2D.a=﹣1,b=2 7.(2022•南京模拟)已知f(x)=(1﹣x)e x﹣1,g(x)=(x+1)2+a,若存在x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围为()A.B.C.(0,e)D.8.(2022春•丰台区校级期末)若函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,则实数a的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)二.多选题(共4小题)(多选)9.(2022•南京模拟)设函数f(x)=xe x+a+bx,曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,则()A.f(﹣2)=﹣2e﹣2B.a=2C.a=3D.f(x)在R上单调递增(多选)10.(2022•南京模拟)已知函数f(x)=x2﹣e x+a有两个极值点x1与x2,且x1<x2,则下列结论正确的是()A.a<ln2﹣1B.0<x1<1C.﹣1<f(x1)<0D.(多选)11.(2022春•石家庄期末)已知f(x)=﹣lnx,f(x)在x=x0处取得最大值,则()A.f(x0)<x0B.f(x0)=x0C.f(x0)<D.f(x0)>(多选)12.(2022春•乐昌市校级月考)已知,函数,则下列选项正确的是()A.B.C.D.三.填空题(共4小题)13.(2022春•海南期末)已知函数f(x)=alnx﹣x3,f'(x)为f(x)的导函数,若f'(1)=4,则实数a=.14.(2022春•龙岩期末)已知定义在R上的函数f(x)满足:xf′(x)+f(x)>0,且f (1)=1,则xf(x)>1的解集为.15.(2022春•沈阳期末)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),有如下定义:设f'(x)是函数y=f(x)的导函数,f''(x)是f'(x)的导函数.若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.而某同学探究发现,任何一个三次函数都有“拐点”,且“拐点”恰为该三次函数图象的对称中心.对于函数,依据上述结论,可知f(x)图象的对称中心为,而=.16.(2022春•济南期末)已知函数f(x)=log2(x+1)﹣k2kx+k(k>0),若存在x>0,使得f(x)≥0成立,则k的最大值为.四.解答题(共6小题)17.(2022春•朝阳区期末)已知函数.(Ⅰ)求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)求函数y=f(x)的单调区间.18.(2022春•达州期末)已知函数.(1)若函数f(x)在x=1处的切线是x+y﹣1=0,求a+b的值;(2)当a=1时,讨论函数f(x)的零点个数.19.(2022春•平谷区期末)已知函数在点(1,f(1))处的切线斜率为﹣6,且当x=2时,f(x)取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.20.(2022春•滨海新区校级期末)已知函数f(x)=(x﹣1)e x,g(x)=a+lnx,其中e 是自然对数的底数.(1)若对于任意实数x,不等式f(x)≥k恒成立,求实数k的取值范围;(2)设h(x)=bf(x)﹣g(x)+a,求证:当时,h(x)恰好有2个零点;(3)若曲线y=f(x)在x=1处的切线与曲线y=g(x)也相切.判断函数φ(x)=f (x)+e|g(x)|的单调性.21.(2022春•海淀区校级期末)已知函数f(x)=lnx+ax2﹣(2a+1)x+a+1,其中a∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=f′(x),求函数g(x)在区间[1,2]上的最小值;(Ⅲ)若f(x)在区间[1,2]上的最大值为2ln2﹣1,直接写出a的值.22.(2022春•朝阳区期末)已知函数f(x)=xe x﹣ax(a∈R).(Ⅰ)若y=f(x)在R上是增函数,求实数a的取值范围;(Ⅱ)当a=1时,判断0是否为函数f(x)的极值点,并说明理由;(Ⅲ)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),求实数a的取值范围.2023年高考数学总复习:导数参考答案与试题解析一.选择题(共8小题)1.(2022春•合肥期末)f(x)的导函数f'(x)的图象如图所示,则函数f(x)的图象最有可能的是图中的()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象与图象的变换.【专题】函数思想;转化法;导数的概念及应用;数学运算.【分析】先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.【解答】解:x<﹣2时,f′(x)<0,则f(x)单减;﹣2<x<0时,f′(x)>0,则f(x)单增;x>0时,f′(x)<0,则f(x)单减.则符合上述条件的只有选项A.故选:A.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.重点是理解函数图象及函数的单调性.2.(2022春•东城区期末)已知函数f(x)=x3﹣sin x,若对于任意x1,x2∈R,满足x1+x2=0,且x1≠x2,则一定有()A.f(x1)+f(x2)=0B.f(x1)﹣f(x2)=0C.f(x1)<f(x2)D.f(x1)>f(x2)【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;函数的性质及应用;数学运算.【分析】由题可得函数为奇函数可判断A,利用特值可判断BCD.【解答】解:∵f(x)=x3﹣sin x,∴f(﹣x)=﹣x3+sin x=﹣f(x),函数为奇函数,又x1+x2=0,x1≠x2,∴f(x2)=﹣f(x1),即f(x1)+f(x2)=0,故A正确;当时,,,此时f(x1)﹣f(x2)≠0,f(x1)>f(x2),当时,f(x1)<f(x2),故BCD不合题意.故选:A.【点评】本题考查了函数的单调性,奇偶性问题,考查特殊值法的应用,是基础题.3.(2022春•揭阳期末)函数f(x)的图象与其在点P处的切线如图所示,则f(1)﹣f'(1)等于()A.﹣2B.0C.2D.4【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;数形结合法;导数的概念及应用;数学运算.【分析】由图形求出切线的斜率与方程,可得f′(1)与f(1),则答案可求.【解答】解:由图可知,切线的斜率k=,即f'(1)=﹣2,切线方程为y=﹣2x+4,取x=1,得y=2.∴f(1)=2,则f(1)﹣f'(1)=2﹣(﹣2)=4.故选:D.【点评】本题考查导数的几何意义及应用,考查数形结合思想,是基础题.4.(2022春•丰台区校级期末)已知f(x)的导数存在,y=f(x)的图象如图所示,则在区间[a,b]上()A.f'(x)的最大值是f'(a),最小值是f'(c)B.f'(x)的最大值是f'(a),最小值是f'(b)C.f'(x)的最大值是f'(c),最小值是f'(b)D.f'(x)的最大值f'(b),最小值是f'(c)【考点】利用导数研究函数的单调性.【专题】对应思想;数形结合法;导数的概念及应用;直观想象.【分析】由导数的几何意义,数形结合得答案.【解答】解:由导数的几何意义,即曲线在该点处的切线的斜率可知,f'(a)>0,f'(c)=0,f'(b)<0,且在区间[a,b]上,f′(x)逐渐减小,则在区间[a,b]上,f'(x)的最大值是f'(a),最小值是f'(b).故选:B.【点评】本题考查利用导数研究函数的单调性,考查数形结合思想,是基础题.5.(2022春•顺义区期末)已知x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,则下列结论不正确的是()A.∃x∈R,f(x)>f(x0)B.f(x)一定存在极小值点C.若a=0,则﹣x0是函数f(x)的极小值点D.若b=0,则a<0【考点】利用导数研究函数的极值.【专题】函数思想;综合法;导数的综合应用;逻辑推理.【分析】根据极大值点概念,直接判断.【解答】解:选项A,∵x→+∞时,f(x)→+∞,∴∃x∈R,f(x)>f(x0),选项A正确;选项B,∵x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,∴方程f′(x)=3x2+2ax+b =0有两个不等根,∴f(x)一定存在极小值点,选项B正确;选项C,∵a=0,∴方程f′(x)=3x2+b=0有相异两根,﹣x0是f(x)的极小值点,选项C正确;选项D,∵b=0,∴方程f′(x)=3x2+2ax=0两根0或﹣,∴a<0错误,选项D 错误.故选:D.【点评】本题考查了运用导数判断函数的极值点,是中档题.6.(2022春•南充期末)若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,则()A.a=﹣1,b=﹣2B.a=1,b=2C.a=1,b=﹣2D.a=﹣1,b=2【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;综合法;导数的概念及应用;数学运算.【分析】求出原函数的导函数,利用函数在x=0处的导数值等于切线的斜率,且切点处的函数值相等列式求得a与b的值.【解答】解:由y=x2+ax+b,得y′=2x+a,∵曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,∴,即a=1,b=﹣2.故选:C.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查运算求解能力,是基础题.7.(2022•南京模拟)已知f(x)=(1﹣x)e x﹣1,g(x)=(x+1)2+a,若存在x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围为()A.B.C.(0,e)D.【考点】利用导数研究函数的最值.【专题】转化思想;分析法;导数的综合应用;数学运算.【分析】原问题等价于f(x)max≥g(x)min,利用导数求得f(x)的最大值,根据二次函数的性质求得g(x)的最小值,代入上述不等式,即可得解.【解答】解:∃x1,x2∈R,使得f(x2)≥g(x1)成立,等价于f(x)max≥g(x)min,因为f(x)=(1﹣x)e x﹣1,所以f′(x)=﹣e x﹣1+(1﹣x)e x﹣1=﹣xe x﹣1,当x<0时,f′(x)>0,f(x)在(﹣∞,0)上单调递增,当x>0时,f′(x)<0,f(x)在(0,+∞)上单调递减,所以f(x)max=f(0)=;因为g(x)min=g(﹣1)=a,所以≥a,即实数a的取值范围是(﹣∞,].故选:B.【点评】本题考查利用导数求函数的最值,理解函数的单调性与导数之间的联系,会将恒成立存在性问题转化为函数的最值问题是解题的关键,考查转化思想,逻辑推理能力和运算能力,属于中档题.8.(2022春•丰台区校级期末)若函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,则实数a的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;数学运算.【分析】求出原函数的导函数,把问题转化为a≤lnx+1在[e,+∞)上恒成立,由单调性求得lnx+1的最小值,即可得到实数a的取值范围.【解答】解:由f(x)=xlnx﹣ax+1,得f′(x)=lnx+1﹣a,∵函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,∴lnx+1﹣a≥0在[e,+∞)上恒成立,即a≤lnx+1在[e,+∞)上恒成立,∵lnx+1在[e,+∞)上单调递增,∴(lnx+1)min=2,可得a≤2.∴实数a的取值范围是(﹣∞,2].故选:B.【点评】本题考查利用导数研究函数的单调性,考查化归与转化思想,考查运算求解能力,是中档题.二.多选题(共4小题)(多选)9.(2022•南京模拟)设函数f(x)=xe x+a+bx,曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,则()A.f(﹣2)=﹣2e﹣2B.a=2C.a=3D.f(x)在R上单调递增【考点】利用导数研究曲线上某点切线方程.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】求出函数f(x)的导函数,得到函数在点(﹣2,f(﹣2))处的切线方程,结合题意可得a与b的值,得到函数解析式,然后逐一分析四个选项得答案.【解答】解:由f(x)=xe x+a+bx,得f′(x)=e x+a+xe x+a+b,∵曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,∴f′(﹣2)=e a﹣2﹣2e a﹣2+b=e﹣1,且﹣2(e﹣1)﹣4=﹣2e a﹣2﹣2b,解得a=2,b=e,∴f(x)=xe x+2+ex,则f(﹣2)=﹣2e0﹣2e=﹣2e﹣2,f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x+e x﹣1)e2﹣x,令h(x)=1﹣x+e x﹣1,则h′(x)=﹣1+e x﹣1,可得当x∈(﹣∞,1)时,h′(x)<0,h(x)单调递减,当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)≥h(1)=1>0,可得f′(x)>0,则f(x)在R上单调递增,综上可知,ABD正确.故选:ABD.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用导数求最值,考查运算求解能力,是中档题.(多选)10.(2022•南京模拟)已知函数f(x)=x2﹣e x+a有两个极值点x1与x2,且x1<x2,则下列结论正确的是()A.a<ln2﹣1B.0<x1<1C.﹣1<f(x1)<0D.【考点】利用导数研究函数的极值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】分析可知函数f'(x)有两个异号的正零点,可知直线y=a与函数g(x)=lnx ﹣x+ln2的图象有两个交点,数形结合可判断A选项;利用函数g(x)的单调性可判断B 选项;利用极值点满足的条件结合二次函数的基本性质可判断C选项;利用不等式的性质可判断D选项.【解答】解:因为f(x)=x2﹣e x+a,该函数的定义域为R,f'(x)=2x﹣e x+a,由已知可得,所以,函数f'(x)有两个异号的正零点,由2x=e x+a,其中x>0,可得x+a=ln2+lnx,可得a=lnx﹣x+ln2,构造函数g(x)=lnx﹣x+ln2,其中x>0,.当0<x<1时,g'(x)>0,此时函数g(x)单调递增,当x>1时,g'(x)<0,此时函数g(x)单调递减,所以,函数g(x)的极大值为g(1)=ln2﹣1,如下图所示:当a<ln2﹣1时,直线y=a与函数g(x)的图象有两个交点,即函数f(x)有两个极值点,A对;对于B选项,x1、x2为直线y=a与函数g(x)图象两个交点的横坐标,因为函数g(x)在(0,1)上为增函数,在(1,+∞)上为减函数,且x1<x2,故0<x1<1,x2>1,B对;对于C选项,,C对;对于D选项,因为0<x1<1,,则,因为可得,所以,,D错.故选:ABC.【点评】本题主要考查利用导数研究函数的极值,利用导数研究双变量问题等知识,属于中等题.(多选)11.(2022春•石家庄期末)已知f(x)=﹣lnx,f(x)在x=x0处取得最大值,则()A.f(x0)<x0B.f(x0)=x0C.f(x0)<D.f(x0)>【考点】利用导数研究函数的最值.【分析】,x∈(0,+∞),,令g(x)=1+x﹣xlnx,然后利用导数研究函数的单调性极值与最值,即可得出结论.【解答】解:,x∈(0,+∞),,令g(x)=1+x﹣xlnx,g'(x)=1﹣1﹣lnx=﹣lnx,可得函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.x→0+时,g(x)→1;g(x)max=g(1)=2;g(3)=4﹣3ln3>0,g(4)=5﹣4ln4<0,∴存在唯一x0∈(3,4),满足g(x0)=1+x0﹣x0lnx0=0.使得函数f(x)在(0,x0)单调递增,在(x0,+∞)上单调递减.∴函数f(x)在x=x0处取得极大值即最大值,满足,故选:BC.【点评】本题主要考查利用导数研究函数的单调性,利用导数研究函数的最值等知识,属于中等题.(多选)12.(2022春•乐昌市校级月考)已知,函数,则下列选项正确的是()A.B.C.D.【考点】利用导数研究函数的最值.【专题】整体思想;综合法;导数的综合应用;逻辑推理.【分析】先对函数求导,由导函数,确定函数在的单调性,再结合最大值,最小值即可判断.【解答】解:当时,f'(x)=1﹣sin x>0,此时f(x)在上递增,又,,所以时,恒成立.因此AC错,BD正确.故选:BD.【点评】本题主要考查了导数与单调性及最值的应用,属于中档题.三.填空题(共4小题)13.(2022春•海南期末)已知函数f(x)=alnx﹣x3,f'(x)为f(x)的导函数,若f'(1)=4,则实数a=7.【考点】导数的运算.【专题】计算题;对应思想;定义法;导数的概念及应用;数学运算.【分析】根据导数的公式即可得到结论.【解答】解:∵f(x)=alnx﹣x3,∴,∴f'(1)=a﹣3=4,解得a=7.故答案为:7.【点评】本题主要考查导数的基本运算,比较基础.14.(2022春•龙岩期末)已知定义在R上的函数f(x)满足:xf′(x)+f(x)>0,且f (1)=1,则xf(x)>1的解集为(1,+∞).【考点】利用导数研究函数的单调性.【专题】整体思想;综合法;导数的综合应用;数学运算.【分析】设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,即函数g(x)为R上的增函数,又xf(x)>1等价于g(x)>g(1),然后求解集即可.【解答】解:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,即函数g(x)为R上的增函数,又f(1)=1,即g(1)=1,则xf(x)>1等价于g(x)>g(1),则xf(x)>1的解集为(1,+∞),故答案为:(1,+∞).【点评】本题考查了导数的应用,重点考查了利用导数研究函数的单调性,属基础题.15.(2022春•沈阳期末)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),有如下定义:设f'(x)是函数y=f(x)的导函数,f''(x)是f'(x)的导函数.若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.而某同学探究发现,任何一个三次函数都有“拐点”,且“拐点”恰为该三次函数图象的对称中心.对于函数,依据上述结论,可知f(x)图象的对称中心为(,),而=1011.【考点】利用导数研究函数的极值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】根据题中结论,二次求导后可求得函数的拐点,即函数y=f(x)的对称中心;利用对称性可得所求.【解答】解:因为f'(x)=3x2﹣3x+3,f''(x)=6x﹣3,令f''(x)=6x﹣3=0,得,因为,所以f(x)图象的对称中心为,由对称性可知,所以,故答案为:,1011.【点评】本题主要考查函数的对称性,新定义知识的应用等知识,属于中等题.16.(2022春•济南期末)已知函数f(x)=log2(x+1)﹣k2kx+k(k>0),若存在x>0,使得f(x)≥0成立,则k的最大值为.【考点】利用导数研究函数的最值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】由f(x)≥0,可得,同构函数g (x)=x log2x,结合函数的单调性,转化为的最大值问题.【解答】解:由,可得,即,,构造函数g(x)=x log2x,显然在(1,+∞)上单调递增,∴x+1≥2k(x+1),即,令,即求函数的最大值即可,,∴在(1,e﹣1)上单调递增,在(e﹣1,+∞)上单调递减,∴h(x)的最大值为,∴,即k的最大值为,故答案为:.【点评】本题主要考查利用导数研究函数的性质,利用导数研究不等式能成立问题等知识,属于中等题.四.解答题(共6小题)17.(2022春•朝阳区期末)已知函数.(Ⅰ)求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)求函数y=f(x)的单调区间.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】对应思想;定义法;导数的综合应用;数学运算.【分析】(Ⅰ)求导,根据导函数在某点处的导数值是切线的斜率即可求解;(Ⅱ)根据导函数的正负即可确定y=f(x)的单调区间.【解答】解:(Ⅰ)由,得,故f'(﹣1)=0,f(﹣1)=2ln2+1,所以切线方程为y=2ln2+1.(Ⅱ)y=f(x)的定义域为(﹣∞,1),由(Ⅰ)知当x<﹣1,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增,当,f'(x)<0,f(x)单调递减,故y=f(x)的单调递增区间为,单调递减区间为.【点评】本题考查了利用导数研究函数的单调性与切线方程,属基础题.18.(2022春•达州期末)已知函数.(1)若函数f(x)在x=1处的切线是x+y﹣1=0,求a+b的值;(2)当a=1时,讨论函数f(x)的零点个数.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;转化思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)通过切点(1,f(1))在切线x+y﹣1=0上,列出方程求解a,b,即可.(2)当a=1时,化简函数的解析式,利用函数的导数,①当﹣2≤b≤2时,②当b<﹣2时,③当b>2时,判断函数的单调性求解函数的最值,推出零点个数即可.【解答】解:(1)∵切点(1,f(1))也在切线x+y﹣1=0上,∴1﹣a+1﹣1=0,即a=1.,f'(1)=1+a﹣b=﹣1,即b=3,∴a+b =4.(2)当a=1时,,∴x>0,.①∵当﹣2≤b≤2时,f'(x)≥0在x∈(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.又f(1)=0,∴f(x)在(0,+∞)上有且只有1个零点.②当b<﹣2时,设x1,x2为方程x2﹣bx+1=0的两根,x1+x2=b<0,x1x2=1>0,即x1<0,x2<0,f'(x)>0在x∈(0,+∞)上恒成立,∴f(x)在(0,+∞)上有且只有1个零点.③当b>2时,设x1,x2(x1<x2)为方程x2﹣bx+1=0的两根,x1+x2=b>0,x1x2=1>0,即0<x1<1<x2,当0<x<x1时,f'(x)>0,当x1<x<x2时,f'(x)<0,当x>x2时,f'(x)>0,∴f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.∴f(x1)>f(1)=0>f(x2),∴在b∈(2,+∞)上恒成立,∴f(x)在(0,x1)上有且只有1个零点.∵f(1)=0,∴f(x)在(x1,x2)上有且只有1个零点.∵在b∈(2,+∞)上恒成立,∴f(x)在(x2,+∞)上有且只有1个零点.综上所述,当b≤2时,f(x)在(0,+∞)上有且只有1个零点,当b>2时,f(x)在(0,+∞)上有3个零点.【点评】本题考查函数导数的应用,切线方程的求法,函数的单调性的应用,零点个数的求法,是中档题.19.(2022春•平谷区期末)已知函数在点(1,f(1))处的切线斜率为﹣6,且当x=2时,f(x)取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法.【专题】函数思想;转化法;导数的概念及应用;数学运算.【分析】(1)求出函数的导数,得到关于a,c的方程组,求出a,c的值,求出函数的解析式即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:(1)∵f(x)=x3+4cx,∴f′(x)=ax2+4c,结合题意得:f′(1)=a+4c=﹣6,f′(2)=4a+4c=0,解得a=2,c=﹣2,∴f(x)=x3﹣8x;(2)由(1)f(x)=x3﹣8x,得f′(x)=2x2﹣8,令f′(x)>0,解得x>2或x<﹣2,令f′(x)<0,解得﹣2<x<2,故f(x)的递增区间是(﹣∞,﹣2),(2,+∞),递减区间是(﹣2,2).【点评】本题考查了函数的单调性,极值问题,考查导数的意义,是基础题.20.(2022春•滨海新区校级期末)已知函数f(x)=(x﹣1)e x,g(x)=a+lnx,其中e 是自然对数的底数.(1)若对于任意实数x,不等式f(x)≥k恒成立,求实数k的取值范围;(2)设h(x)=bf(x)﹣g(x)+a,求证:当时,h(x)恰好有2个零点;(3)若曲线y=f(x)在x=1处的切线与曲线y=g(x)也相切.判断函数φ(x)=f (x)+e|g(x)|的单调性.【考点】利用导数研究函数的最值;利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;逻辑推理.【分析】(1)问题转化为只需k≤f(x)min,即可得出答案.(2)根据题意可得h(x)=b(x﹣1)e x﹣lnx,求导得h′(x)=bxe x﹣=,分析h(x)的单调性,再利用零点的存在定理证明函数h(x)的极小值小于0,即h(ln)>0,即可得出答案.(3)利用导数的几何意义求出在x=1处的切线方程,再利用切线与曲线也相切,可求得a的值,进而可得φ(x)的解析式,对绝对是内的数进行分类讨论,再利用导数分别研究分段函数的单调性.【解答】解:(1)f′(x)=e x+(x﹣1)e x=xe x,当x>0时,f′(x)>0,f(x)单调递增,当x<0时,f′(x)<0,f(x)单调递减,所以f(x)min=f(0)=﹣1,所以对于任意实数x,不等式f(x)≥k恒成立,实数k的取值范围为(﹣∞,﹣1].(2)证明:根据题意可得h(x)=bf(x)﹣g(x)+a=b(x﹣1)e x﹣lnx,所以h′(x)=bxe x﹣=,令m(x)=bx2e x﹣1,x>0,所以当0<b<时,m′(x)=(2bx+bx2)e x>0,所以m(x)在(0,+∞)上单调递增,又因为m(1)=be﹣1<0且m(ln)=b(ln)2•﹣1=(ln)2﹣1>0,所以m(x)=0在(0,+∞)上有唯一解,从而h′(x)=0在(0,+∞)上有唯一解,不妨设x0,则1<x0<ln,所以当x∈(0,x0)时,h′(x)=<=0,所以h(x)在(0,x0)上单调递减,当x∈(x0,+∞)时,h′(x)=>=0,所以h(x)在(x0,+∞)上单调递增,所以x0是h(x)的唯一极值点,令t(x)=lnx﹣x+1,所以t′(x)=﹣1=,所以当x>1时,t′(x)<0,t(x)单调递减,从而当x>1时,t(x)<t(1)=0,即lnx<x﹣1,所以h(ln)=b(ln﹣1)e﹣ln(ln)=ln﹣1﹣ln(ln)=﹣t(ln)>0,又因为h(x0)<h(1)=0,所以h(x)在(x0,+∞)上有唯一零点,又因为h(x)在(0,x0)上有唯一零点,为x=1,所以h(x)在(0,+∞)上恰有2个零点.(3)因为f(x)=(x﹣1)e x,所以f′(x)=xe x,所以切线的斜率k=f′(1)=e,因为切点为(1,0),所以切线的方程为y=e(x﹣1),设曲线y=g(x)的切点的坐标为(x1,y1),由g(x)=a+lnx得g′(x)=,所以g′(x1)==e,得x1=,所以切点坐标为(,a﹣1),因为点(,a﹣1)也在直线y=e(x﹣1)上,所以a=2﹣e.所以φ(x)=(x﹣1)e x+e|2﹣e+lnx|,当x≥e e﹣2时,φ(x)=(x﹣1)e x+e(e﹣2+lnx),φ′(x)=xe x+>0恒成立,所以φ(x)在[e e﹣2,+∞)上单调递增,当0<x<e e﹣2时,φ(x)=(x﹣1)e x﹣e(2﹣e+lnx),所以φ′(x)=xe x﹣,因为[φ′(x)]′=(x+1)e x+>0恒成立,所以φ′(x)在(0,e e﹣2)上单调递增,又φ′(1)=0,所以x∈(0,1)时,φ′(x)<0,φ(x)单调递减,x∈(1,e e﹣2)时,φ′(x)>0,φ(x)单调递增,综上所述,函数φ(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).【点评】本题考查导数的综合应用,解题中注意转化思想的应用,属于中档题.21.(2022春•海淀区校级期末)已知函数f(x)=lnx+ax2﹣(2a+1)x+a+1,其中a∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=f′(x),求函数g(x)在区间[1,2]上的最小值;(Ⅲ)若f(x)在区间[1,2]上的最大值为2ln2﹣1,直接写出a的值.【考点】利用导数研究函数的最值.【专题】分类讨论;综合法;导数的综合应用;数学运算.【分析】(Ⅰ)求导后,计算f'(1)和f(1)的值,即可得解;(Ⅱ)求导得g'(x)=﹣+2a,再分a≤0和a>0两种情况,讨论g'(x)与0的大小关系,可得g(x)的单调性,进而知其最小值,其中当a>0时,还需再分三类,结合二次函数的图象与性质,进行讨论;(Ⅲ)先猜测最大值为f(2)=2ln2﹣1,可得a=ln2,再证明当a=ln2时,f(x)在区间[1,2]上的最大值为2ln2﹣1,即可.【解答】解:(Ⅰ)因为f(x)=lnx+ax2﹣(2a+1)x+a+1,所以f'(x)=+2ax﹣(2a+1),所以f'(1)=1+2a﹣(2a+1)=0,而f(1)=ln1+a﹣(2a+1)+a+1=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=0.(Ⅱ)g(x)=f′(x)=+2ax﹣(2a+1),所以g'(x)=﹣+2a,当a≤0时,g'(x)<0恒成立,所以g(x)在[1,2]上单调递减,最小值为g(2)=+2a•2﹣(2a+1)=2a﹣;当a>0时,令g'(x)=0,则x=±,若≤1,即a≥时,g(x)在[1,2]上单调递增,所以最小值为g(1)=1+2a•1﹣(2a+1)=0;若1<<2,即<a<时,g(x)在[1,)上单调递减,在(,2]上单调递增,所以最小值为g()=+2a•﹣(2a+1)=2﹣2a﹣1;若≥2,即0<a≤时,g(x)在[1,2]上单调递增,所以最小值为g(2)=2a﹣;综上所述,当a≤时,g(x)的最小值为2a﹣;当<a<时,g(x)的最小值为2﹣2a﹣1;当a≥时,g(x)的最小值为0.(Ⅲ)因为f(1)=0,所以不妨猜测最大值为f(2)=ln2+a﹣1,因为f(x)在区间[1,2]上的最大值为2ln2﹣1,所以a=ln2,下面证明当a=ln2时,f(x)在区间[1,2]上的最大值为2ln2﹣1:因为a=ln2>ln=,所以由(Ⅱ)知,f'(x)=g(x)≥0,即f(x)在[1,2]上单调递增,所以f(x)max=f(2)=ln2+a﹣1=2ln2﹣1,符合猜想,故a=ln2.【点评】本题考查利用导数研究函数的单调性与最值,理解函数的单调性与导数之间的联系,导数的几何意义是解题的关键,考查分类讨论思想,逻辑推理能力和运算能力,属于难题.22.(2022春•朝阳区期末)已知函数f(x)=xe x﹣ax(a∈R).(Ⅰ)若y=f(x)在R上是增函数,求实数a的取值范围;(Ⅱ)当a=1时,判断0是否为函数f(x)的极值点,并说明理由;(Ⅲ)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),求实数a的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】计算题;函数思想;分析法;导数的综合应用;数学运算.【分析】(I)对函数求导,若y=f(x)在R上是增函数,即f′(x)≥0恒成立,得a ≤(1+x)e x,设g(x)=(1+x)e x,求导后利用单调性求得函数的最小值,即可求得结果;(II)对函数二次求导后求得导数的单调性即可判断出结果;(III)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),则函数f(x)存在3个单调区间,结合(I)中函数g(x)的单调性且x→﹣∞时,g(x)→0,利用单调性解得结果.【解答】解:(I)∵f(x)=xe x﹣ax(a∈R),则f′(x)=(1+x)e x﹣a,若y=f(x)在R上是增函数,即f′(x)≥0恒成立,得a≤(1+x)e x,设g(x)=(1+x)e x,g′(x)=(x+2)e x,g′(x)>0得x>﹣2,g′(x)<0得x<﹣2,即g(x)在(﹣∞,﹣2)递减,在(﹣2,+∞)递增,则,故.即a∈[﹣,+∞),(II)当a=1时,f′(x)=(1+x)e x﹣1,f′(x)=(x+2)e x,f′(x)>0得x>﹣2,则f′(x)递增,f′(0)=0,则x∈(﹣2,0)时,f′(x)<0,x∈(0,+∞)时,f′(x)>0,则f(x)在(﹣2,0)上递减,在(0,+∞)上递增,故x=0是函数的极小值点.(III)∵f′(x)=(1+x)e x﹣a,令f′(x)=0,得(1+x)e x=a,由(I)得g(x)=a,又g(x)在(﹣∞,﹣2)递减,在(﹣2,+∞)递增,则,且x→﹣∞时,g(x)→0,g(﹣1)=0,当x<﹣1时,g(x)<0,若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),故当g(x)=a有两根x4,x5使得x4<﹣2<x5<﹣1,故x<x4或x>x5时,g(x)>a,此时f(x)递增,x4<x<x5时,g(x)<a,此时f(x)递减,且x→+∞时,f(x)→+∞,则必有f(x)先增后减再增,故必存在x1<x2<x3,满足f(x1)=f(x2)=f(x3),故g(﹣2)<a<0,即.故a∈(﹣,0).【点评】本题考查利用导数研究函数的极值,考查学生的运算能力,属于难题.。
(完整版)高中导数经典知识点及例题讲解
§ 1.1 变化率与导数 1.1.1 变化率问题自学引导1.通过实例分析,了解平均变化率的实际意义.2.会求给定函数在某个区间上的平均变化率. 课前热身1.函数f (x )在区间[x 1,x 2]上的平均变化率为ΔyΔx=________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则ΔyΔx=________,表示函数y =f (x )从x 0到x 的平均变化率.1.f (x 2)-f (x 1)x 2-x 1答 案2.f (x 0+Δx )-f (x 0)Δx名师讲解1.如何理解Δx ,Δy 的含义Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1).2.求平均变化率的步骤求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f x 2-f x 1x 2-x 1.对平均变化率的认识函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在[0,π2]上的平均变化率为sin π2-sin0π2-0=2π.在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.典例剖析题型一求函数的平均变化率例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2.(1)求此物体的初速度;(2)求t=0到t=1的平均速度.分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)-S(0),再求时间改变量Δt=1-0=1.求商ΔSΔt就可以得到平均速度.解(1)由于v=St=3t-t2t=3-t.∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1∴v=ΔSΔt=21=2.∴从t=0到t=1的平均速度为2.误区警示本题1不要认为t=0时,S=0.所以初速度是零.变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则ΔyΔx=( )A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-(-2)=-(Δx)2+3Δx.∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3答案D题型二平均变化率的快慢比较例2 求正弦函数y=sin x在0到π6之间及π3到π2之间的平均变化率.并比较大小.分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小.解设y=sin x在0到π6之间的变化率为k1,则k 1=sinπ6-sin0π6-0=3π.y =sin x 在π3到π2之间的平均变化率为k 2,则k 2=sin π2-sin π3π2-π3=1-32π6=32-3π.∵k 1-k 2=3π-32-3π=33-1π>0,∴k 1>k 2.答:函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为32-3π,且3π>32-3π.变式训练2 试比较余弦函数y =cos x 在0到π3之间和π3到π2之间的平均变化率的大小.解 设函数y =cos x 在0到π3之间的平均变化率是k 1,则k 1=cos π3-cos0π3-0=-32π.函数y =cos x 在π3到π2之间的平均变化率是k 2,则k 2=cosπ2-cos π3π2-π3=-3π.∵k 1-k 2=-32π-(-3π)=32π>0,∴k 1>k 2.∴函数y =cos x 在0到π3之间的平均变化率大于在π3到π2之间的平均变化率.题型三 平均变化率的应用例3 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.分析 由物体运动方程―→写出位移变化量Δs ―→ΔsΔt解 物体在t =1到t =1+Δt 这段时间内的位移增量 Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .变式训练3 一质点作匀速直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.解 质点在[2,2+Δt ]上的平均速度为v -=s 2+Δt -s 2Δt=[2+Δt 2+1]-22+1Δt=4Δt +Δt2Δt=4+Δt .又v -≤5,∴4+Δt ≤5. ∴Δt ≤1,又Δt >0,∴Δt 的取值范围为(0,1]. § 1.1 函数的单调性与极值 1.1.2 导数的概念自学引导1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些实际背景.2.了解瞬时变化率的含义,知道瞬时变化率就是导数.3.掌握函数f (x )在某一点x 0处的导数定义,并且会用导数的定义求一些简单函数在某一点x 0处的导数.课前热身1.瞬时速度.设物体的运动方程为S =S (t ),如果一个物体在时刻t 0时位于S (t 0),在时刻t 0+Δt 这段时间内,物体的位置增量是ΔS =S (t 0+Δt )-S (t 0).那么位置增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v =S t 0+Δt -S t 0Δt.当这段时间很短,即Δt 很小时,这个平均速度就接近时刻t 0的速度.Δt 越小,v 就越接近于时刻t 0的速度,当Δt →0时,这个平均速度的极限v =lim Δt →0ΔS Δt =lim Δt →0S t 0+Δt -S t 0Δt就是物体在时刻t 0的速度即为________. 2.导数的概念.设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,这个常数A 就是函数f (x )在点x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.用符号语言表达为f ′(x 0)=lim Δx →0Δy Δx=________1.平均速度 瞬时速度 答 案2.lim Δx →0f (x 0+Δx )-f (x 0)Δx名师讲解1.求瞬时速度的步骤(1)求位移增量ΔS =S (t +Δt )-S (t );(2)求平均速度v =ΔS Δt;(3)求极限limΔt→0ΔSΔt=limΔt→0S t +Δt-S tΔt;(4)若极限存在,则瞬时速度v=limΔt→0ΔS Δt.2.导数还可以如下定义一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0f x+Δx-f x0Δx=limΔx→0ΔyΔx.我们称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f x0Δx.3.对导数概念的理解(1)“导数”是从现实生活中大量类似问题里,撇开一些量的具体意义,单纯地抓住它们数量上的共性而提取出来的一个概念,所以我们应很自然的理解这个概念的提出与其实际意义.(2)某点导数即为函数在这点的变化率.某点导数概念包含着两层含义:①limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值;②limΔx→0ΔyΔx不存在,则称f(x)在x=x0处不可导.(3)Δx称为自变量x的增量,Δx可取正值也可取负值,但不可以为0.(4)令x=x0+Δx,得Δx=x-x0,于是f′(x)=limx→x0f x-f xx-x与定义中的f′(x0)=limΔx→0f x+Δx-f x0Δx意义相同.4.求函数y=f(x)在点x0处的导数的步骤(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)求平均变化率:ΔyΔx=f x+Δx-f x0Δx;(3)取极限,得导数:f′(x0)=limΔx→0Δy Δx.典例剖析题型一物体运动的瞬时速度例1 以初速度v0(v0>0)竖直上抛的物体,t秒时高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.分析先求出Δs,再用定义求ΔsΔt,当Δt→0时的极限值.解∵Δs=v0(t0+Δt)-12g(t+Δt)2-(v0t0-12gt2)=(v0-gt0)Δt-12g(Δt)2,∴ΔsΔt=v0-gt0-12g·Δt.∴当Δt→0时,ΔsΔt→v0-gt0.故物体在时刻t0处的瞬时速度为v0-gt0.规律技巧瞬时速度v是平均速度v在Δt→0时的极限.因此,v=limΔt→0v=limΔt→0ΔsΔt.变式训练1 一作直线运动的物体,其位移s与时间t的关系是s=5t-t2,求此物体在t=2时的瞬时速度。
高三总复习导数知识点
高三总复习导数知识点导数是高中数学中的重要概念,它在微积分中扮演着至关重要的角色。
导数的概念是指函数在某一点处的变化率,也可以理解为函数的斜率。
在高三阶段的数学学习中,导数是一个重点知识点。
下面将对高三总复习导数知识点进行归纳和总结。
一、导数的定义及性质1. 导数的定义导数的定义是指函数f(x)在点x处的导数定义为极限:f'(x) = lim (h->0) [(f(x+h)-f(x))/h],其中h表示自变量x的增量。
2. 导数的几何意义导数的几何意义是函数在某一点的导数等于函数曲线在该点处的切线的斜率。
这一点非常重要,通过对导数的求解和分析,我们可以更好地理解函数曲线的特性。
3. 导数的基本性质- 导数的恒等性:若函数f(x)的导数存在,则该导数在其定义域是连续的。
- 导数的加法性:[f(x) + g(x)]' = f'(x) + g'(x)。
- 导数的乘法性:[f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)。
- 导数的链式法则:若y = f[u(x)],其中u(x)可导,y = f(u)可导,则y' = f'(u) * u'(x)。
二、导数的计算方法1. 基本函数的导数- 常数函数:常数函数f(x) = C的导数为f'(x) = 0。
- 幂函数:幂函数f(x) = x^n (n为正整数)的导数为f'(x) = nx^(n-1)。
- 指数函数:指数函数f(x) = a^x (a>0, a≠1)的导数为f'(x) = a^x * ln(a)。
- 对数函数:对数函数f(x) = log_a(x) (a>0, a≠1)的导数为f'(x) =1/(x * ln(a))。
- 三角函数:正弦函数f(x) = sin(x)的导数为f'(x) = cos(x);余弦函数f(x) = cos(x)的导数为f'(x) = -sin(x);正切函数f(x) = tan(x)的导数为f'(x) = sec^2(x)。
完整版)高中数学导数知识点归纳总结
完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。
函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。
但是,反过来并不成立,即函数在某点处连续并不一定可导。
导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。
因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。
导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。
函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。
函数的最值可以通过求导数来确定。
注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。
对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。
高中数学专题复习导数专题总结
目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (15)技法一:利用导数研究函数的单调性 (15)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (20)强化训练 (22)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (32)技法三:利用导数研究不等式恒成立问题 (35)技法四:利用导数研究存在性与任意性问题 (45)技法五:利用导数研究探究性问题 (48)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.QQ群339444963(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f (x )≤g (x ).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e0x =1-x e 0x -1-x 0e x e 0+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, QQ 群339444963 ∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例] 设函数f (x )=ae x ln x +bex -1x ,曲线y =f (x )在点(1,f (1))处的切线为y =e (x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=ae x ⎝ ⎛⎭⎪⎫ln x +1x +be x-1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2), 所以⎩⎨⎧ f 1=2,f ′1=e ,即⎩⎨⎧ b =2,ae =e ,解得⎩⎨⎧a =1,b =2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x (x >0),从而f (x )>1等价于x ln x >xe -x -2e . 构造函数g (x )=x ln x ,则g ′(x )=1+ln x , 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减, 在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, QQ 群339444963 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=xe -x-2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“ae x ln x +be x -1x >1”的证明,若直接构造函数h (x )=ae x ln x +bex -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x +be x -1x >1”合理拆分为“x ln x >xe -x -2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[对点演练] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1. 解:(1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x x +12-bx 2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x (x >0), 则h ′(x )=2x -2x 2-x 2-1x 2=-x -12x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x )-ln xx -1>0,即f (x )>ln xx -1.QQ 群339444963 技法三:“换元法”构造函数[典例] 已知函数f (x )=ax 2+x ln x (a ∈R )的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -nm .[解] (1)因为f (x )=ax 2+x ln x , 所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3, 所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -nm , 即证ln n m >m n -n m ,只需证ln n m -m n +nm >0. 令n m =x ,构造函数g (x )=ln x -1x +x (x ≥1), 则g ′(x )=1x +1x 2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x 2+1>0, 故g (x )在(1,+∞)上单调递增. 由已知n >m >0,得nm >1,所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0, QQ 群339444963即证得ln n m -m n +nm >0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +n m >0”后,观察可知,对“nm ”进行换元,变为“ln x -1x +x >0”,构造函数“g (x )=ln x -1x +x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g tln t <12.解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e1e ⎝ ⎛⎭⎪⎫1e ,+∞ f ′(x ) - 0 + f (x )极小值所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)证明:当0<x ≤1时,f (x )≤0, ∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g tln t=ln s ln f s =ln sln s 2ln s=ln s 2ln s +ln ln s =u2u +ln u,QQ 群339444963其中u =ln s . 要使25<ln g t ln t<12成立,只需0<ln u <u 2.当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e )=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12, 令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0; 当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0, 因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例] (2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m -x 3, 所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2, 所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0. 当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2. 要证e x +m -ln(x +1)-2>0, 只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=e x +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0.QQ 群339444963因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x0+1)=-(x0+1).当x∈(-1,x0)时,h′(x)<0,当x∈(x0,+∞)时,h′(x)>0,所以当x=x0时,h(x)取得最小值h(x0),所以h(x)≥h(x0)=ex0+1-ln(x0+1)-2=1x0+1+(x0+1)-2>0.综上可知,当m≥1时,f(x)>g(x)-x3.[方法点拨]本题可先进行适当放缩,m≥1时,e x+m≥e x+1,再两次构造函数h(x),p(x).[对点演练](2016·合肥一模)已知函数f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解:(1)由f(x)=ex-x ln x,知f′(x)=e-ln x-1,则f′(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+x ln x≥0对任意的x∈(0,+∞)恒成立,即t≤e x+x-ex+x ln xx2对任意的x∈(0,+∞)恒成立.令F(x)=e x+x-ex+x ln xx2,则F′(x)=xe x+ex-2e x-x ln xx3=1x2⎝⎛⎭⎪⎫e x+e-2e xx-ln x,令G(x)=e x+e-2e xx-ln x,则G ′(x )=e x -2xe x -e x x 2-1x =e x x -12+e x -xx 2>0对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0, 即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1, ∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a ,b 的值; (2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小. 解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =xe x -1(x +2)+x (3ax +2b ), 又x =-2和x =1为f (x )的极值点, 所以f ′(-2)=f ′(1)=0, 因此⎩⎨⎧-6a +2b =0,3+3a +2b =0,解得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1), 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0.所以f (x )在(-2,0)和(1,+∞)上是单调递增的; 在(-∞,-2)和(0,1)上是单调递减的. (3)由(1)可知f (x )=x 2e x -1-13x 3-x 2. 故f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ), 令h (x )=e x -1-x ,则h ′(x )=e x -1-1. 令h ′(x )=0,得x =1, 因为当x ∈(-∞,1]时,h ′(x )≤0, 所以h (x )在(-∞,1]上单调递减; 故当x ∈(-∞,1]时,h (x )≥h (1)=0; 因为当x ∈[1,+∞)时,h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增; 故x ∈[1,+∞)时,h (x )≥h (1)=0.所以对任意x ∈(-∞,+∞),恒有h (x )≥0; 又x 2≥0,因此f (x )-g (x )≥0.故对任意x ∈(-∞,+∞),恒有f (x )≥g (x ). 2.(2015·北京高考)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x )(-1<x <1), 所以f ′(x )=11+x +11-x,f ′(0)=2. 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x <4k -2k 时,h ′(x )<0, 因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减. 故当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.3.(2016·广州综合测试)已知函数f (x )=me x -ln x -1. (1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1. 解:(1)当m =1时,f (x )=e x -ln x -1, 所以f ′(x )=e x-1x .所以f (1)=e -1,f ′(1)=e -1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:当m ≥1时,f (x )=me x -ln x -1≥e x -ln x -1(x >0). 要证明f (x )>1,只需证明e x -ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x -1x . 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0,所以函数h (x )=g ′(x )=e x -1x 在(0,+∞)上单调递增. 因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x -1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以ex 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0. 所以当x =x 0时,g (x )取得最小值g (x 0). 故g (x )≥g (x 0)=ex 0-ln x 0-2=1x 0+x 0-2>0.综上可知,当m ≥1时,f (x )>1.4.(2017·石家庄质检)已知函数f (x )=a x -x 2e x (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2x 1,证明:x 1+x 2随着t 的增大而增大.解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增, 所以x =2是函数的一个极小值点,无极大值点,即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1, 32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln tt -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1xx -12.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎪⎫x -1x 2. 当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增, 故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.第二部分利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例]已知函数g(x)=ln x+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<1 2a,若12a =1,即a =12在(0,+∞)上恒有g ′(x )≥0.综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增, 在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增, 当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. [方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a =0或a >0两种情况,再比较12a 和1的大小. [对点演练](2016·太原一模)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)设函数h (x )=f (x )+1+ax ,求函数h (x )的单调区间. 解:(1)当a =2时,f (x )=x -2ln x ,f (1)=1, 即切点为(1,1),∵f ′(x )=1-2x ,∴f ′(1)=1-2=-1,∴曲线y =f (x )在点(1,1)处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由题意知,h (x )=x -a ln x +1+ax (x >0), 则h ′(x )=1-a x -1+a x 2=x 2-ax -1+ax 2=x+1[x-1+a]x2,①当a+1>0,即a>-1时,令h′(x)>0,∵x>0,∴x>1+a,令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a+1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f (x )的极大值是f (a )=-12a 2+a ln a , 极小值是f (1)=-12. ②当a =1时,f ′(x )=x -12x≥0,所以函数f (x )在定义域(0,+∞)内单调递增, 此时f (x )没有极值点,故无极值. ③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点,函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a , 极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a . [方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1) 参数是否影响f ′(x )零点的存在;(2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小; (3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论). [对点演练](2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.技法三:利用导数研究函数的最值[典例] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. [解] (1)由题意,f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a<1时,最小值为f(2)=ln 2-2a.综上可知,当0<a<ln 2时,函数f(x)的最小值是-a;当a≥ln 2时,函数f(x)的最小值是ln 2-2a.[方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点.[对点演练]1.若函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为()A.33 B.3C.3+1D.3-1解析:选D f′(x)=x2+a-2x2x2+a2=a-x2x2+a2.令f′(x)=0,得x=a或x=-a(舍去),若a≤1,即0<a≤1时,在[1,+∞)上f′(x)<0,f(x)max=f(1)=11+a=33.解得a=3-1,符合题意.若a>1,即a>1时,在[1,a)上f′(x)>0,在(a,+∞)上f′(x)<0,所以f(x)max=f(a)=a2a=33,解得a=34<1,不符合题意,综上知,a=3-1.2.已知函数f(x)=x ln x,g(x)=(-x2+ax-3)e x(a为实数).(1)当a=5时,求函数y=g(x)在x=1处的切线方程;(2)求f(x)在区间[]t,t+2(t>0)上的最小值.解:(1)当a=5时,g(x)=(-x2+5x-3)e x,g(1)=e.又g′(x)=(-x2+3x+2)e x,故切线的斜率为g ′(1)=4e . 所以切线方程为y -e =4e (x -1), 即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e 1e ⎝ ⎛⎭⎪⎫1e ,+∞f ′(x ) - 0 + f (x )极小值①当t ≥1e 时,在区间[]t ,t +2上f (x )为增函数, 所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e . 综上,f (x )min =⎩⎪⎨⎪⎧t ln t ,t ≥1e ,-1e ,0<t <1e .强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0). (1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间. 解:f ′(x )=x 1-a -axx +1,x ∈(-1,+∞). (1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13.(2)令f ′(x )=0,得x 1=0,x 2=1a -1.①当0<a <1时,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞.②当a =1时,f (x )的单调减区间是(-1,+∞).③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,a -1和(0,+∞).综上,当0<a <1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).2.已知函数f (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=3.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0; 当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2. 3.已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a , 由f ′(x )>0,得x >1a ,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a 处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.(2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2, 令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2, 故实数b 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-1e 2.4.已知方程f (x )·x 2-2ax +f (x )-a 2+1=0,其中a ∈R ,x ∈R . (1)求函数f (x )的单调区间;(2)若函数f (x )在[0,+∞)上存在最大值和最小值,求实数a 的取值范围. 解:(1)由f (x )·x 2-2ax +f (x )-a 2+1=0得f (x )=2ax +a 2-1x 2+1,则f ′(x )=-2x +a ax -1x 2+12. ①当a =0时,f ′(x )=2x x 2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下: QQ 群339444963x (-∞,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞) f ′(x ) - 0 + 0 -f (x )极小值极大值故f (x )的单调递减区间是(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间是⎝ ⎛⎭⎪⎫-a ,1a . ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,-a .(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以f (x )在[0,+∞)上存在最大值f ⎝ ⎛⎭⎪⎫1a =a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a . 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0. 若f (x )在[0,+∞)上存在最小值,必有f (0)≤0, 解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a <0时,由(1)得,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,所以f (x )在[0,+∞)上存在最小值f (-a )=-1.易知当x ≥-a 时,-1≤f (x )<0,所以若f (x )在[0,+∞)上存在最大值,必有f (0)≥0,解得a ≥1或a ≤-1.所以当a <0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(-∞,-1].综上所述,实数a 的取值范围是(-∞,-1]∪(0,1]. 5.设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足条件D ≤1时的最大值. 解:(1)由题意,f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b , 则f ′(sin x )=(2sin x -a )cos x ,因为-π2<x <π2,所以cos x >0,-2<2sin x <2. ①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值; ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值;③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b -a 24.QQ 群3 3 9 4 4 4 9 6 3(2)当-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|, 当(a 0-a )(b -b 0)≥0,x =π2时等号成立, 当(a 0-a )(b -b 0)<0时,x =-π2时等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|.(3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1. 由此可知,z =b -a 24满足条件D ≤1的最大值为1. 6.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.解:(1)由题意得F (x )=x -1x -a ln x (x >0),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0, 所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为 x 1=a -a 2-42,x 2=a +a 2-42,所以F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得, h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , 所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x -x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x , 即H ′(x )=2⎝ ⎛⎭⎪⎫1x 2-1ln x =21-x1+x ln xx 2(x >0).当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0,所以H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln 2-3.第三部分 导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例] (2016·北京高考)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [解] (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下: x (-∞,-2)-2 ⎝ ⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,+∞ f ′(x )+-+所以当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0, 使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明:当Δ=4a 2-12b <0时, f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞), 此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点. 综上所述,若函数f (x )有三个不同零点, 则必有Δ=4a 2-12b >0.故a 2-3b >0是f (x )有三个不同零点的必要条件. 当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点, 所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f (x )=(2-a )x -2(1+ln x )+a .(1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解:(1)当a =1时,f (x )=x -1-2ln x ,则f ′(x )=1-2x ,其中x ∈(0,+∞).由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f (x )=(2-a )x -2(1+ln x )+a=(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0,则f (x )=m (x )-h (x ).①当a <2时,m (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,h (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 结合图象知,若f (x )在⎝ ⎛⎭⎪⎫0,12上无零点, 则m ⎝ ⎛⎭⎪⎫12≥h ⎝ ⎛⎭⎪⎫12, 即(2-a )⎝ ⎛⎭⎪⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝ ⎛⎭⎪⎫0,12上m (x )≥0,h (x )<0, 所以f (x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,12上无零点.由①②得a≥2-4ln 2,所以a min=2-4ln 2.技法二:利用导数证明不等式[典例]设f(x)=e x-1.(1)当x>-1时,证明:f(x)>2x2+x-1x+1;(2)当a>ln 2-1且x>0时,证明:f(x)>x2-2ax.[证明](1)当x>-1时,f(x)>2x2+x-1x+1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln 2.当x∈(-∞,ln 2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln 2)上单调递减;当x∈[ln 2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln 2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以在(-1,+∞)上有g(x)≥g(ln 2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1x+1.(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln 2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln 2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.因为a>ln 2-1,所以h(ln 2)>2-2ln 2+2(ln 2-1)=0,即h(x)≥h(ln 2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln 2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln 2.所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)证明:设x>ln 2,所以2ln 2-x<ln 2,f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1=4e x+2x-4ln 2-1.令g(x)=f(x)-f(2ln 2-x)=e x-4e x-4x+4ln 2(x≥ln 2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln 2时,等号成立,所以g(x)=f(x)-f(2ln 2-x)在(ln 2,+∞)上单调递增.又g(ln 2)=0,所以当x>ln 2时,g(x)=f(x)-f(2ln 2-x)>g(ln 2)=0,即f(x)>f(2ln 2-x),所以f(x2)>f(2ln 2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln 2-x2),由于x2>ln 2,所以2ln 2-x2<ln 2,因为x1<ln 2,由(1)知函数y=f(x)在区间(-∞,ln 2)上单调递减,所以x1<2ln 2-x2,即x1+x2<2ln 2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+ae x,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-a e x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2=(-a+1)2-1≥3,所以m的取值范围为(-∞,3].[方法点拨]解决该类问题的关键是根据已知不等式的结构特征灵活选用相应的方法,由不等式恒成立求解参数的取值范围问题一般采用分离参数的方法.而第(2)问则巧妙地把直线的斜率与导数问题结合在一起,命题思路比较新颖,解决此类问题需将已知不等式变形为两个函数值的大小问题,进而构造相应的函数,通过导函数研究其单调性解决.[对点演练]已知f(x)=x ln x,g(x)=-x2+ax-3.(1)若对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.(2)证明:对一切x∈(0,+∞),ln x>1e x-2ex恒成立.解:(1)由题意知2x ln x≥-x2+ax-3对一切x∈(0,+∞)恒成立,则a≤2ln x+x+3 x,设h(x)=2ln x+x+3x(x>0),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 第5讲 导数及其应用一、选择题(每小题4分,共24分)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=A .-eB .-1C .1D .e解析 f ′(x )=2f ′(1)+1x,令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.故选B. 答案 B2.(2012·泉州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为A .3B .2C .1D.12解析 设切点为(x 0,y 0). ∵y ′=12x -3x ,∴12x 0-3x 0=12, 解得x 0=3(x 0=-2舍去). 答案 A3.(2012·聊城模拟)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y解析 两函数图象的交点坐标是(0,1),(1,1), 故积分上限是1,下限是0,由于在[ 0,1]上,x ≥x 2,故求曲线y =x 2与y =x 所围成图形的面S =⎠⎛01(x-x 2)d x .答案 B4.函数f (x )=32231,0,e , 0ax x x x x ⎧++≤⎪⎨>⎪⎩在[-2,2]上的最大值为2,则a 的取值范围是A.⎣⎢⎡⎭⎪⎫12ln 2,+∞ B.⎣⎢⎡⎦⎥⎤0,12ln 2 C .(-∞,0]D.⎝⎛⎦⎥⎤-∞,12ln 2 解析 当x ≤0时,f ′(x )=6x 2+6x ,函数的极大值点是x =-1,极小值点是x =0,当x =-1时,f (x )=2,故只要在(0,2]上e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a≤12ln 2.答案 D5.设函数f (x)=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )图象的是解析 设h (x )=f (x )e x ,则h ′(x )=(2ax +b )e x +(ax 2+bx +c )e x =(ax 2+2ax +bx +b +c )e x .由x =-1为函数f (x )e x 的一个极值点,得当x =-1时,ax 2+2ax +bx +b +c =c -a =0,∴c =a .∴f (x )=ax 2+bx +a .若方程ax 2+bx +a =0有两根x 1、x 2,则x 1x 2=aa=1,D 中图象一定不满足该条件.答案 D6.设a ∈R ,若函数f (x )=e ax +3x (x ∈R )有大于零的极值点,则a 的取值范围是A .(-3,2)B .(3,+∞)C .(-∞,-3)D .(-3,4)解析 由已知得f ′(x )=3+a e ax ,若函数f (x )在x ∈R 上有大于零的极值点,则f ′(x )=3+a e ax =0有正根.当3+a e ax =0成立时,显然有a <0,此时x =1aln ⎝ ⎛⎭⎪⎫-3a ,由x >0得到参数a 的取值范围为a <-3. 答案 C二、填空题(每小题5分,共15分)7.(2012·济南三模)曲线y =e x +x 2在点(0,1)处的切线方程为________. 解析 y ′=e x +2x ,∴所求切线的斜率为e 0+2×0=1, ∴切线方程为y -1=1×(x -0),即x -y +1=0. 答案 x -y +1=08.(2012·枣庄市高三一模)⎠⎛014-x 2d x =________.解析 ⎠⎛014-x 2d x 表示圆x 2+y 2=4中阴影部分的面积的大小,易知∠AOB =π6,OC =1, ∴⎠⎛014-x 2d x =S △OBC +S 扇形AOB =12×1×3+12×π6×22=32+π3. 答案32+π39.(2012·泉州模拟)若函数f (x )=x -a x +ln x (a 为常数)在定义域上是增函数,则实数a 的取值范围是________.解析 ∵f (x )=x -a x +ln x 在(0,+∞)上是增函数, ∴f ′(x )=1-12a x x+≥0在(0,+∞)上恒成立,即a ≤2x +2x. 而2x +2x≥222x x ⨯=4,当且仅当x =1x, 即x =1时等号成立,∴a ≤4. 答案 (-∞,4]三、解答题(每小题12分,共36分)10.(2012·泉州模拟)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析 (1)f ′(x )=3x 2+2ax +b , 则⎩⎨⎧f ′1=3+2a +b =0f 1=1+a +b +a 2=10⇒⎩⎨⎧a =4b =-11或⎩⎨⎧a =-3b =3.当⎩⎨⎧a =4b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,所以函数有极值点; 当⎩⎨⎧a =-3b =3时,f ′(x )=3(x -1)2≥0,所以函数无极值点.则b 的值为-11.(2)解法一 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立,则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)单调递增或为常数函数,所以得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max ,又-3x 2+8x =-3⎝⎛⎭⎪⎫x -432+163≤163,当x =43时,(-3x 2+8x )max =163,得b ≥163,所以b 的最小值为163. 解法二 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max ,令F (x )=-3x 2-2ax =-3⎝⎛⎭⎪⎫x +a 32+a 23.①当a ≥0时,F (x )max =0,∴b ≥0; ②当-4≤a <0时,F (x )max =a 23,∴b ≥a 23. 又∵⎝ ⎛⎭⎪⎫a 23max =163,∴b ≥163.综上,b 的最小值为163. 11.已知函数f (x )=e x ln x . (1)求函数f (x )的单调区间; (2)设x >0,求证:f (x +1)>e 2x -1;(3)设n ∈N +,求证:ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1]>2n -3.解析 (1)由题知,函数f (x )的定义域为(0,+∞), 由f ′(x )=e x ln x (ln x +1). 令f ′(x )>0,解得x >1e ;令f ′(x )<0,解得0<x <1e.故f (x )的增区间为⎝⎛⎭⎪⎫1e ,+∞,减区间为⎝⎛⎭⎪⎫0,1e . (2)证明 要证f (x +1)>e 2x -1,即证(x +1)ln(x +1)>2x -1⇔ln(x +1)>2x -1x +1⇔ln(x +1)-2x -1x +1>0.令g (x )=ln(x +1)-2x -1x +1, 则g ′(x )=1x +1-3x +12=x -2x +12,令g ′(x )=0,得x =2, 且g (x )在(0,2)上单调递减, 在(2,+∞)上单调递增, 所以g (x )min =g (2)=ln 3-1,故当x >0时,有g (x )≥g (2)=ln 3-1>0, 即f (x +1)>e 2x -1得证. (3)证明 由(2)得ln(x +1)>2x -1x +1, 即ln(x +1)>2-3x +1,所以ln[k (k +1)+1]>2-3kk +1+1>2-3kk +1,所以ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1] >⎝⎛⎭⎪⎫2-31×2+⎝ ⎛⎭⎪⎫2-32×3+…+⎣⎢⎡⎦⎥⎤2-3n n +1=2n -3+3n +1>2n -3. 12.设函数f (x )=-a x 2+1+x +a ,x ∈(0,1],a ∈R * (1)若f (x )在(0,1]上是增函数,求a 的取值范围; (2)求f (x )在(0,1]上的最大值.解析 (1)当x ∈(0,1]时,f ′(x )=-a ·xx 2+1+1.要使f (x )在x ∈(0,1]上是增函数, 需使f ′(x )=-axx 2+1+1≥0在(0,1]上恒成立. 即a ≤x 2+1x =1+1x2在(0,1]上恒成立.而1+1x2在(0,1]上的最小值为2,又a ∈R *,∴0<a ≤2为所求.(2)由(1)知:①当0<a ≤2时,f (x )在(0,1]上是增函数. ∴[f (x )]max =f (1)=(1-2)a +1; ②当a >2时,令f ′(x )=0,得x = 1a 2-1∈(0,1]. ∵0<x <1a 2-1时,f ′(x )>0; ∵1a 2-1<x ≤1时,f ′(x )<0. ∴[f (x )]max =f ⎝ ⎛⎭⎪⎫1a 2-1=a -a 2-1. 综上,当0<a ≤2时,[f (x )]max =(1-2)a +1; 当a >2时,[f (x )]max =a -a 2-1.(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。