纳米材料的制备与合成

合集下载

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。

制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。

1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。

热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。

磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。

高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。

2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。

溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。

气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。

电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。

3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。

生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。

生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。

植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。

4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。

机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。

电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。

光电化学法是通过光催化反应,在光照条件下制备纳米材料。

在纳米材料的制备过程中,还需要注意一些技巧和注意事项。

首先,要精确控制反应条件,包括温度、压力和pH值等。

不同条件对于纳米材料的形成过程和性能具有重要影响。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法纳米材料的制备方法多种多样,具体选择的方法取决于所需纳米材料的性质、应用需求以及实验条件等因素。

以下是几种常见的纳米材料制备方法:1.化学合成法:-溶液法:将适当的化学物质在溶剂中混合反应,控制反应条件如温度、pH值等,通过溶液中原子、离子或分子的自组装形成纳米结构。

常见的溶液法包括溶胶-凝胶法、共沉淀法、沉积法等。

-气相沉积法:将气态前驱物质通过化学反应沉积到基底表面,形成纳米结构。

气相沉积法包括化学气相沉积(CVD)、物理气相沉积(PVD)等。

2.物理方法:-机械球磨法:通过机械力的作用使粉末颗粒在球磨罐中产生碰撞和摩擦,从而实现颗粒的细化和形态的改变,制备纳米颗粒或纳米结构。

-溅射法:利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积到基底表面,形成纳米薄膜或纳米结构。

3.生物合成法:-利用生物体内的生物合成过程,通过调控生物体的生理条件或添加适当的试剂,使生物体产生纳米材料。

常见的生物合成法包括植物合成、微生物合成等。

4.模板法:-利用模板的空间排列结构和特定的化学性质,将原料物质定向沉积或填充到模板孔道中,通过模板的模板效应制备纳米结构。

常见的模板法包括硅模板法、自组装模板法等。

5.激光法:-利用激光束对物质进行光照,控制激光的能量和焦点位置,使材料在局部区域发生化学或物理变化,形成纳米结构。

常见的激光法包括激光烧蚀、激光诱导化学气相沉积等。

这些制备方法各有特点,可以根据纳米材料的具体要求选择适合的方法进行制备。

同时,纳米材料的制备过程中需要注意控制反应条件、纯度和结构等关键因素,以确保制备得到高质量的纳米材料。

纳米材料的制备和合成

纳米材料的制备和合成

纳米科技概念的提出与发展
n“The
principles of physics, as far as I can see, do not speak
against the possibility of maneuvering things atom by atom.”
“Put the atoms down where the chemist says, and so you make the
electron-rich interior whose effective circular van der Waals
packing just touches that of the nanotube framework.
第六页,共81页
什么是纳米材料(nanomaterial)?
纳米材料是指在三维空间中至少有一维处于纳米尺度
high-resolution, low-temperature scanning tunneling microscope (STM)
(Science----1 February 2002)
第二十四页,共81页
Nano rings
JACS 2005
第二十五页,共81页
Nano-flowers
中科院物理所先进材料与结构分析实验室李超荣
• 纳米技术是一门高新技术,它对21世纪材料科学和微型器 件技术
的发展具有重要影响,纳米技术,就是要做到,从小到大,从下到上
。要什么东西,将分子、原子搭起来,就是什么东西,原材料浪
费为零,能耗降到极低,彻底从技术上解决了环保问题。
第九页,共81页
什么是纳米技术(nanotechnology)?
纳米技术是当前全球都在谈论的热门话题。所谓纳米技术,

纳米材料的合成和表征方法技巧

纳米材料的合成和表征方法技巧

纳米材料的合成和表征方法技巧纳米材料是一种尺寸在1到100纳米之间的材料,具有独特的物理、化学和生物学性能。

纳米材料的合成和表征方法对于研究其性质和应用具有重要意义。

本文将探讨几种常见的纳米材料合成和表征方法技巧。

一、溶剂热法溶剂热法是一种常用的纳米材料合成方法,通过在高温、高压条件下进行反应,使反应物溶解在溶剂中,并逐渐形成纳米颗粒。

该方法具有反应温度和时间可控、纳米颗粒尺寸可调的优点。

在合成纳米材料的过程中,选择合适的溶剂是关键。

通常选择的溶剂应具有较高的沸点和相对较低的相对极性,具有适当的溶解性和稳定性。

常用的溶剂有乙二醇、正庚烷、N,N-二甲基甲酰胺等。

在溶剂热法中,合成剂和溶剂必须在密封容器中加热。

在合成过程中,根据不同的反应需求,可采用不同的加热方式,如水浴加热、电子源加热或高压反应釜。

二、溶胶凝胶法溶胶凝胶法是一种通过溶胶的凝胶化过程得到纳米材料的方法。

其基本原理是先制备溶胶,然后使其凝胶化。

凝胶形成后,通过干燥、热处理等方法,可以得到纳米颗粒。

在凝胶制备过程中,常用的溶胶剂有水、醇类、酸、氨等。

通过调节溶胶剂的性质和浓度,可以控制纳米颗粒的形貌和尺寸。

需要注意的是,溶胶凝胶法中的凝胶化过程对于纳米颗粒的形成至关重要。

凝胶化一般通过化学反应或物理交联实现,如水解反应、凝胶离子交换等。

三、X射线衍射(XRD)表征X射线衍射是一种常用的纳米材料表征方法,可用于分析物质的结晶性和晶格参数。

通过测量材料对入射X射线的散射角度和强度,可以推断出材料的晶体结构和晶粒尺寸。

X射线衍射实验通常使用X射线衍射仪进行。

在实验过程中,需调整X射线的入射角度和测量角度,使得出射光束和检测器的位置最佳。

同时,需选取合适的X射线波长和强度,以提高衍射信号的强度和质量。

通过对X射线衍射谱的分析,可以得到纳米材料的结晶度、晶粒尺寸、晶面方位和晶格畸变等信息。

这些信息有助于了解纳米材料的物理性质和结构特征。

四、透射电子显微镜(TEM)表征透射电子显微镜是一种常用的纳米材料表征方法,可提供纳米级别的材料结构、形貌和晶体结构等信息。

纳米材料的合成方法详解

纳米材料的合成方法详解

纳米材料的合成方法详解纳米材料的合成是现代材料科学和纳米技术领域的一个重要研究方向。

纳米材料具有独特的物理、化学和生物学特性,因此在能源、环境、医学和电子等多个领域具有广泛的应用潜力。

本文将详细介绍几种常见的纳米材料合成方法。

1. 化学气相沉积法 (Chemical Vapor Deposition, CVD)化学气相沉积法是一种将气体中的原子或分子通过化学反应转变为固态纳米材料的方法。

其基本原理是在高温和特定气氛中,将气体中的原料物质通过热解或催化反应转化成所需的纳米材料,在基底表面沉积形成薄膜或纳米颗粒。

该方法可以合成具有较高结晶度和优异性能的纳米材料,但需要精确控制反应条件和选择合适的基底材料。

2. 溶胶-凝胶法 (Sol-Gel Method)溶胶-凝胶法是一种通过将溶液中的单质或化合物逐渐凝胶成固态材料的方法。

它通常包括溶胶制备、凝胶形成和热处理三个步骤。

在溶胶制备阶段,通过水解、聚合或凝聚反应将单体或溶液中的前驱物转化为凝胶。

凝胶形成阶段通过调节反应条件和控制胶体粒子的生长来控制纳米材料的尺寸和形貌。

最后,通过高温热处理可以去除有机物,形成纯净的纳米材料。

溶胶-凝胶法可以制备各种形态的纳米材料,如纳米粒子、纳米薄膜和纳米杂化材料。

3. 高能球磨法 (High-Energy Ball Milling, HEBM)高能球磨法是一种通过球磨罐中的高能球和固体颗粒之间的碰撞和反复磨擦来实现颗粒的细化和合成的方法。

高能球磨法可以合成均匀分散的纳米颗粒和纳米复合材料,因其简单、可控性好和成本较低而广泛应用于纳米材料合成的研究中。

通过控制球磨时间、球料的比例和球料的硬度等参数,可以实现纳米颗粒尺寸的调控和纳米材料的功能化。

4. 水热法 (Hydrothermal Method)水热法是一种利用高温高压水环境下的化学反应合成纳米材料的方法。

它通过水热反应在溶液中形成晶种,并通过重结晶或晶格修饰来得到所需的纳米材料。

纳米材料制备工艺详解

纳米材料制备工艺详解

纳米材料制备工艺详解纳米材料是指在纳米尺度下具有特殊物理、化学和生物性能的材料。

纳米材料制备工艺是指通过特定的方法和工艺将原材料转变为纳米级别的材料。

本文将详细介绍纳米材料制备工艺的几种常见方法和工艺。

一、化学合成法化学合成法是一种常见的纳米材料制备工艺,它通过控制反应条件和添加特定的试剂来控制纳米颗粒的尺寸和形态。

其中最常见的方法是溶胶-凝胶法、气相合成法和水热合成法。

溶胶-凝胶法是利用溶胶在适当的温度下形成凝胶,并通过热处理和其他后续工艺步骤得到纳米颗粒。

这种方法适用于制备氧化物、金属和半导体纳米材料。

气相合成法是通过控制气相反应条件和反应物浓度来制备纳米颗粒。

常见的气相合成方法包括化学气相沉积和气相凝胶法。

这种方法适用于制备纳米粉体、纳米线和纳米薄膜等。

水热合成法利用高温高压的水环境下进行合成反应,通过溶液中的离子交换和沉淀来制备纳米颗粒。

这种方法适用于制备金属氧化物、碳化物和磷化物等纳米材料。

二、物理制备法物理制备法主要是利用物理性能的改变从宏观材料中得到纳米尺度的材料。

常见的物理制备法包括磁控溅射法、高能球磨法和激光烧结法。

磁控溅射法是通过在真空环境下,利用磁场控制离子轰击靶材溅射出材料颗粒来制备纳米材料。

这种方法适用于制备金属、合金和氧化物等纳米材料。

高能球磨法是通过使用高能的机械能,在球磨罐中将原料粉末进行碰撞、摩擦和剧烈混合,使材料粉末粒径不断减小到纳米尺度。

这种方法适用于制备金属和合金纳米材料。

激光烧结法是通过使用高功率激光束将材料粉末快速加热熔结,然后迅速冷却形成纳米颗粒。

这种方法适用于制备高熔点金属和陶瓷纳米材料。

三、生物制备法生物制备法是利用生物体内的特定酶或微生物来制备纳米材料。

这种方法具有环境友好、低成本和高度可控性的优点。

目前最常用的方法是利用微生物和植物来制备纳米材料。

微生物制备法通过利用微生物的代谢活性来合成纳米颗粒。

其中最常见的是利用细菌、酵母菌和藻类来制备金属和半导体纳米颗粒。

植物纳米材料的合成与应用

植物纳米材料的合成与应用

植物纳米材料的合成与应用植物纳米材料是指通过植物提取物,或者利用植物细胞、细胞壁、叶片、籽粒等生物材料,合成出具有纳米级尺寸的颗粒、纤维、膜等结构的材料。

相对于传统的合成方法,植物纳米材料的合成技术更为环保、可持续,且材料本身具有天然的抗氧化、抗菌、抗病毒等生物活性,被广泛用于医疗卫生、环境保护、食品安全等领域。

一、植物纳米材料的制备方法1. 生物还原法生物还原法是指通过微生物或者植物提取物将金属离子还原成纳米级颗粒。

例如将植物叶绿素与金属离子结合,经过还原反应得到具有生物活性的纳米颗粒。

这种方法具有环保、经济、易于控制尺寸等特点。

2. 激光剥离法激光剥离法是指通过激光对植物细胞、细胞壁进行切割,得到纳米级颗粒或者膜。

这种方法具有无损、高效的优点,但是需要较高的设备成本和技术要求。

3. 超声波法超声波法是指利用超声能量对植物细胞、细胞壁进行处理,使其分解成纳米级颗粒。

这种方法具有高效、低温等特点,但是需要破坏细胞壁,可能会影响材料的生物活性。

二、植物纳米材料的应用1. 医疗卫生植物纳米材料具有天然的生物活性,可以用于制备各种医疗卫生用品,例如抗菌口腔漱口水、抗氧化面膜、感染创口敷料等。

此外,植物纳米材料还可以用于制备肿瘤治疗药物的载体,提高药物的治疗效果和减少副作用。

2. 环境保护植物纳米材料可以用于环境污染治理,例如利用植物纳米材料制备出具有吸附能力和催化降解能力的吸附材料,用于处理废水和污染气体。

此外,植物纳米材料还可以用于制备具有良好防水、防尘性能的涂料,应用于建筑和交通领域。

3. 食品安全植物纳米材料可以用于食品安全保护,例如制备具有抗氧化、抗菌、防腐能力的食品包装材料,延长食品的保质期。

此外,植物纳米材料还可以用于制备高效去除有害物质的食品净化剂,提高食品的安全性和品质。

三、植物纳米材料的未来发展随着生物科技和纳米技术的不断发展,植物纳米材料将在各个领域得到更加广泛的应用。

未来,植物纳米材料的制备技术将更加先进、高效和环保,材料的性能也将更加优越。

ZnO纳米材料的合成与应用研究

ZnO纳米材料的合成与应用研究

ZnO纳米材料的合成与应用研究概述:ZnO纳米材料作为一种具有广泛应用前景的半导体材料,其合成与应用研究一直备受关注。

本文旨在探讨ZnO纳米材料的合成方法以及其在各个领域的应用,从而深入了解其在科学研究和工业应用中的潜力。

一、ZnO纳米材料的合成方法1. 水热法合成水热法是一种常用的制备ZnO纳米材料的方法。

它通过调节反应条件和反应时间,可以获得具有不同形貌和尺寸的ZnO纳米颗粒。

水热法合成ZnO纳米材料具有简单、低成本、可扩展性强等优点,因此受到了广泛关注。

2. 溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶中的化学反应和胶体形成过程制备纳米材料的方法。

在ZnO纳米材料的合成中,可以通过溶胶-凝胶法控制反应条件,如温度、浓度和PH值等,以实现获得具有不同形貌和尺寸的纳米颗粒。

3. 气相法合成气相法是制备ZnO纳米材料的一种常用方法。

它通过将金属有机化合物或金属化合物加热到高温,然后通过氧化反应生成ZnO纳米颗粒。

气相法合成的ZnO纳米材料具有高纯度、高晶度和尺寸可控性好等特点。

二、ZnO纳米材料在光电子领域的应用1. 光催化应用ZnO纳米材料具有优异的光催化性能,可以利用其吸收紫外光的特性来分解有害有机物和杀灭细菌。

因此,ZnO纳米材料被广泛应用于光催化净化空气、水处理和消毒等领域。

2. 光电器件应用由于ZnO纳米材料的特殊电学性质和优异的光电性能,它在光电器件领域具有广泛应用潜力。

例如,ZnO纳米材料可以用于制备光电传感器、光电调制器、太阳能电池等。

三、ZnO纳米材料在生物医学领域的应用1. 抗菌材料ZnO纳米材料具有较高的抗菌性能,可以通过抑制细菌的生长来达到消毒和杀菌的目的。

因此,在生物医学领域,ZnO纳米材料被广泛应用于医疗设备、外科用品和医疗纺织品等。

2. 肿瘤治疗由于ZnO纳米材料的优异光学性质,在肿瘤治疗中可以利用其光热效应。

将ZnO纳米材料注入肿瘤组织,并利用红外激光的吸收来使其产生局部高温,从而实现对肿瘤的治疗。

纳米材料的合成与制备技巧

纳米材料的合成与制备技巧

纳米材料的合成与制备技巧纳米材料作为一种具有特殊性质和应用潜力的材料,在化学、物理、生物等领域都得到了广泛的研究和应用。

合成和制备高质量的纳米材料是实现其应用的关键步骤。

本文将介绍几种常见的纳米材料合成与制备技巧。

一、溶液法合成纳米材料溶液法是一种常见且简便的纳米材料制备方法,其原理是通过适当的溶剂和前驱物,使纳米颗粒在溶液中形成。

其中,反应温度、反应时间和反应物的摩尔比例是影响纳米材料合成的重要参数。

在溶液法中,常见的合成方法包括热分解法、溶胶-凝胶法和胶体合成法。

热分解法是利用高温条件下,通过控制反应体系中的温度和时间,在溶液中形成纳米颗粒。

溶胶-凝胶法是通过控制前驱体的改性、凝胶条件和热处理过程来合成纳米材料。

胶体合成法则是利用溶胶和胶体颗粒之间的反应来制备纳米材料。

二、气相法合成纳米材料气相法是一种利用气体前驱物反应生成纳米颗粒的方法。

其基本原理是通过热分解、氧化、还原等反应机制,在高温下将气体前驱物转化为固体纳米颗粒。

气相法合成纳米材料具有高纯度、均匀性好和可扩展性等优点。

常见的气相法合成方法包括气相沉积法、熔融法和等离子体化学气相沉积法。

其中,气相沉积法是通过在高温下,使气体前驱物在基底表面形成纳米颗粒。

熔融法是将固体材料加热至熔点,通过气氛调节来获得纳米颗粒。

等离子体化学气相沉积法则是通过等离子体反应体系,在高温下合成纳米材料。

三、电化学合成纳米材料电化学合成是利用电化学方法在电解质溶液中合成纳米材料。

其操作简单,控制精度高,常用于纳米触媒、纳米传感器等领域。

在电化学合成中,电解槽和电极的设计是关键的影响因素。

常见的电化学合成方法包括阳极氧化和电沉积法。

阳极氧化是通过在阳极上加电,通过氧化反应生成纳米材料。

电沉积法则是利用电流将离子还原成金属沉积在电极表面。

四、机械法合成纳米材料机械法是一种利用机械力将大颗粒材料转化为纳米颗粒的方法。

其原理是通过高能球磨、高能喷雾等机械作用,使原料粉末破碎、溶胶化并重新凝聚成纳米颗粒。

纳米材料的合成与应用

纳米材料的合成与应用

纳米材料的合成与应用纳米材料,是指在纳米尺度范围内制备或处理的材料,其特点是尺寸小,具有一系列特殊性质。

它们具有特殊的物理、化学和生物特性,因此在材料科学、物理、化学等领域具有广泛的应用前景。

一、纳米材料的合成方法常见的纳米材料合成方法有物理法、化学法、生物法等。

其中,化学法是纳米材料的主要合成方法,具有操作简单、成本低、易于产生大量纳米材料等优点。

1. 水热法:将金属盐和还原剂混合在一起并在溶液中的高温高压条件下进行反应,形成纳米晶体。

2. 溶胶凝胶法:利用水/乙醇溶胶和金属盐反应,形成纳米材料。

3. 碳热还原法:碳材料在高温下还原金属盐,从而合成纳米材料。

4. 光化学法:利用紫外光或可见光照射,使光敏物质产生电子激增反应,形成纳米材料。

二、纳米材料的应用领域纳米技术已在材料科学、生命科学、环保、新能源等领域得到广泛的应用。

以下是纳米材料在各领域中的应用:1. 材料科学:纳米材料具有高比表面积、高活性、可调控等特性,已经成为材料科学领域的重要研究对象。

纳米材料的应用范围很广,主要有电池、光伏发电、光催化反应、氧化还原反应等方面。

2. 生命科学:纳米技术已经成为生命科学领域的重要研究手段。

例如,纳米材料可以用于精准靶向、功能化分子制药、癌症治疗等。

3. 环保:纳米技术在环保领域的应用主要包括空气污染治理、水处理、土壤修复等。

例如,纳米铁可以用于处理土壤中的有机污染物;纳米二氧化钛可以用于污水处理和空气净化。

4. 新能源:纳米材料可以用于发展新能源。

例如,利用纳米金属粒子制备太阳能电池;利用纳米光催化材料制备水解产氢催化剂等。

三、纳米材料的前景纳米材料具有广阔的应用前景,是未来材料领域的重要方向之一。

纳米技术可以为各种领域带来一系列突破及创新,其中最具有前景的应用领域包括生命科学、能源及环保等。

未来纳米功能材料将更加复杂、多样化,在应用领域中具有更大的潜力。

总之,纳米技术的快速发展,为纳米材料的合成和应用提供了广阔的发展空间。

纳米材料合成方法及其应用

纳米材料合成方法及其应用

纳米材料合成方法及其应用纳米材料是一种尺寸缩小到纳米级别的材料,具有特殊的物理、化学和生物学性质。

纳米材料合成方法的发展对于纳米科学和纳米技术的研究与应用至关重要。

本文将介绍几种常见的纳米材料合成方法,并探讨它们在不同领域的应用。

一、溶胶-凝胶法溶胶-凝胶法是一种通过溶胶的液态形态制备凝胶的方法。

常用的溶胶-凝胶法包括溶胶浸渍法、溶胶聚合法和溶胶凝聚法等。

通过调节溶液的组分、pH值以及温度等条件,可以获得不同形状和尺寸的纳米材料。

溶胶-凝胶法合成的纳米材料具有较高的比表面积和孔隙结构,广泛应用于催化剂、传感器、储能材料等领域。

二、气相法气相法是一种通过气态前驱体在高温条件下合成纳米材料的方法。

常见的气相法包括热蒸发法、烧结法和气相沉积法等。

这些方法不仅适用于金属纳米材料的合成,还可以制备复杂的纳米结构和纳米异质结构。

气相法合成的纳米材料具有较高的晶体质量和结晶度,广泛应用于微电子器件、光电器件等领域。

三、溶液法溶液法是利用溶解性前驱体在溶剂中发生化学反应制备纳米材料的方法。

常见的溶液法包括沉淀法、共沉淀法和水热法等。

通过调节反应条件、添加表面活性剂或模板剂,可以合成具有不同形貌、尺寸和结构的纳米材料。

溶液法合成的纳米材料具有较高的纯度和可控性,广泛应用于能源储存、生物传感和纳米药物等领域。

四、机械法机械法是通过机械加工或变形制备纳米材料的方法。

常见的机械法包括球磨法、压力法和拉伸法等。

这些方法通过机械力的作用将材料颗粒逐渐减小至纳米级别。

机械法合成的纳米材料具有较高的力学强度和韧性,广泛应用于材料加工、纳米传感和纳米器件等领域。

纳米材料具有许多独特的性质和潜在应用,如表面效应、量子效应和催化性能等。

在催化领域,纳米材料可用于提高化学反应速率和选择性,具有重要的应用潜力。

在材料科学领域,纳米材料的高比表面积和界面特性使其成为理想的电极材料和传感层材料,广泛用于能源存储、传感器和生物传感等方面。

在生物医学领域,纳米材料可用于药物传递、光学成像和生物传感等应用,具有广阔的发展前景。

纳米材料合成

纳米材料合成

纳米材料合成纳米材料是一种具有特殊结构和性能的材料,其在材料科学、化学、物理等领域具有广泛的应用价值。

纳米材料合成是指通过一系列化学、物理方法将原料转化为纳米级别的材料。

本文将介绍几种常见的纳米材料合成方法及其特点。

一、溶胶-凝胶法。

溶胶-凝胶法是一种常见的纳米材料合成方法。

其基本原理是将溶胶中的原料通过溶胶凝胶转化成凝胶,然后通过热处理或化学处理得到纳米材料。

该方法可以制备多种纳米材料,如二氧化硅、氧化铝等。

其优点是制备工艺简单,成本低廉,适用于大规模生产。

二、气相沉积法。

气相沉积法是一种通过气相反应合成纳米材料的方法。

其基本原理是将原料气体通过化学反应在基底表面沉积形成纳米材料。

该方法可以制备纳米碳管、纳米颗粒等材料,具有制备纯度高、晶粒尺寸可控等优点。

三、溶剂热法。

溶剂热法是一种利用有机溶剂在高温高压条件下合成纳米材料的方法。

其基本原理是将原料溶解在有机溶剂中,然后在高温高压条件下反应形成纳米材料。

该方法可以制备金属氧化物、金属硫化物等纳米材料,具有制备工艺简单、产率高等优点。

四、电化学法。

电化学法是一种利用电化学反应合成纳米材料的方法。

其基本原理是通过电极在电解液中进行氧化还原反应,从而在电极表面沉积形成纳米材料。

该方法可以制备金属纳米颗粒、纳米线等材料,具有制备工艺简单、对材料形貌有一定控制能力等优点。

五、机械合成法。

机械合成法是一种利用机械能将原料粉末在高能球磨机中进行反应合成纳米材料的方法。

其基本原理是通过高能球磨机的机械能作用使原料粉末在球磨过程中发生化学反应,从而形成纳米材料。

该方法可以制备金属、合金、陶瓷等纳米材料,具有制备工艺简单、对材料形貌有一定控制能力等优点。

总结。

纳米材料合成是一个复杂而多样化的过程,不同的合成方法适用于不同类型的纳米材料。

在实际应用中,需要根据具体的要求选择合适的合成方法,并结合实际情况进行调整和优化,以获得所需的纳米材料。

希望本文介绍的几种常见的纳米材料合成方法能够为相关研究和应用提供一定的参考和帮助。

纳米材料的化学合成法

纳米材料的化学合成法

溶胶—凝胶法的优缺点 优点: ①操作温度低,节约能源,使得材料制备过程易于控制; ②高度均匀、可变性大; ③工艺简单,易于工业化,成本低,应用灵活; ④可提高生产效率; ⑤可保证最终产品的纯度. 缺点: ①凝胶颗粒之间烧结性差,块体材料烧结性不好;
②干燥时收缩大。
基本原理:
1.4、水热法
水热法是在高压釜里的高温、高压反应环境 中,采用水作为反应介质,使得通常难溶或不溶 的物质溶解,反应还可进行重结晶。水热技术具 有两个特点,一是其相对低的温度,二是在封闭 容器中进行,避免了组分挥发。
银等
水热沉淀法 例如 KF+MnCl2 - KMnF2
设备
1.5、溶剂热合成法
基本原理:
用有机溶剂(如:苯、醚)代替水作介质, 采用类似水热合成的原理制备纳米微粉。非水溶 剂代替水,不仅扩大了水热技术的应用范围,而 且能够实现通常条件下无法实现的反应,包括制 备具有亚稳态结构的材料。
溶剂热法分类
1.9、模板合成法
基本原理:
利用基质材料结构中的空隙作为模板进行合 成。结构基质为多孔玻璃、分子筛、大孔离子交 换树脂等。例如将纳米微粒置于分子筛的笼中, 可以得到尺寸均匀,在空间具有周期性构型的纳 米材料
1.10、电解法
基本原理:
电解包括水溶液电解和熔盐电解两种。用此 法可制得很多用通常方法不能制备或难以制备 的金属超微粉,尤其是电负性较大的金属粉末。 还可制备氧化物超微粉。用这种方法得到的粉 末纯度高,粒径细,而且成本低,适于扩大和 工业生产。
溶剂热法常用溶剂
溶剂热反应中常用的溶剂有:乙二胺、甲醇、 乙醇、二乙胺、三乙胺、吡啶、苯、甲苯、 二甲苯、1. 2 - 二甲氧基乙烷、苯酚、氨水、 四氯化碳、甲酸等.

纳米材料制备技术

纳米材料制备技术

纳米材料制备技术一、溶剂热法溶剂热法是一种在高温高压条件下使用有机溶剂作为介质来制备纳米材料的方法。

通过选择不同的溶剂、温度和反应时间,可以控制纳米颗粒的尺寸、形状和分布等特性。

溶剂热法在制备纳米金属、氧化物和碳纳米材料等方面具有较高的应用潜力。

二、湿化学合成法湿化学合成法是一种通过在溶液中反应使纳米材料自组装形成的方法。

该方法使用可溶于水或有机溶剂的前体物质,在适当的温度和pH条件下进行反应。

通过调节反应物的浓度、温度和反应时间,可以控制纳米材料的形貌、大小和分布等特性。

湿化学合成法广泛用于制备金属、半导体和氧化物纳米材料。

三、气相沉积法气相沉积法是一种在高温下利用气体气泡中的前体物质通过化学反应形成纳米颗粒的方法。

该方法可分为热气相沉积法、化学气相沉积法和物理气相沉积法等。

通过调节沉积温度、压力和气体流量等参数,可以控制纳米颗粒的尺寸、形状和结构等特性。

气相沉积法特别适用于制备金属、合金和碳纳米材料。

四、电化学合成法电化学合成法是一种利用电化学反应在电极表面沉积纳米颗粒的方法。

通过调节电解质浓度、电流密度和反应时间等参数,可以控制纳米颗粒的尺寸、形貌和分布等特性。

电化学合成法在制备纳米金属、合金和氧化物等纳米材料方面具有较高的应用潜力。

总之,纳米材料制备技术是一种能够在纳米尺度上控制材料结构和性能的制备方法。

不同的制备技术可用于制备不同类型的纳米材料。

随着纳米科技的发展,纳米材料制备技术将不断得到改进与创新,为纳米材料的应用提供更多可能性。

纳米材料的合成方法和技巧

纳米材料的合成方法和技巧

纳米材料的合成方法和技巧在当今科技发展的时代,纳米材料作为一种具有特殊性能和应用潜力的材料,受到了广泛的关注和研究。

纳米材料指的是至少在一个维度上尺寸小于100纳米的材料。

因其尺寸与微观结构的调控,纳米材料呈现出与传统材料不同的优异性能,如高强度、高导电性、高热稳定性等。

本文将介绍一些纳米材料的合成方法和技巧。

一、溶剂热法合成溶剂热法是纳米材料合成中常用的一种方法,主要应用于无机纳米材料的合成,如金属、金属氧化物、金属硫化物等。

该方法的优点是简单、成本低,并且可控性强。

它的主要步骤包括溶液的制备、溶液的加热和反应的进行。

在合成过程中,需要掌握好反应物的摩尔比例、温度和反应时间等关键参数,以确保所得产物具有所期望的性能。

二、气相沉积法合成气相沉积法是一种常见的纳米材料合成方法,适用于碳纳米管、纳米颗粒等无机和有机材料的制备。

该方法基于气溶胶在气相中的沉积原理,通过在恶劣条件下使气体分子沉积在基底上,从而获得所需的纳米材料。

气相沉积法的优点包括可控性强、纯度高、晶格质量好等,但对设备要求较高,操作复杂。

三、湿法化学合成湿法化学合成是制备金属纳米颗粒最常用的方法之一,也适用于其他纳米材料的制备。

该方法的原理是通过溶剂中的化学反应生成纳米材料。

根据反应过程中的不同性质,湿法化学合成又可分为沉淀法、溶胶-凝胶法、水热法等。

其中,溶胶-凝胶法具有较高的纯度、粒径窄分布和可控性强的优点,能够制备出高质量的纳米材料。

四、电化学法合成电化学法是一种通过电极反应产生纳米材料的方法。

通过控制电极电位或电流密度,可以在电极表面沉积纳米颗粒。

电化学法合成纳米材料的优点是操作简单、环境友好,并且可以在室温下进行。

该方法适用于金属纳米颗粒、纳米线、纳米膜等的制备,如电化学沉积铜纳米颗粒在柔性基底上的应用。

在进行纳米材料的合成过程中,还需要注意一些技巧和注意事项。

首先,必须确保实验操作环境的清洁和无尘,以防止杂质的污染。

其次,对反应条件的控制非常重要,包括温度、压力、配比等。

纳米材料的制备方法和注意事项

纳米材料的制备方法和注意事项

纳米材料的制备方法和注意事项纳米材料是指至少在其中一个尺寸方向上具有100纳米以下特征尺寸的材料。

由于其特殊的尺寸效应和表现出的独特性能,纳米材料在能源、材料科学、医学、环境保护等领域有着广泛的应用前景。

然而,纳米材料的制备方法决定了其性质和应用。

本文将介绍一些常见的纳米材料制备方法,并探讨制备过程中的注意事项。

一、物理方法1. 物理气相法:物理气相法包括物理蒸发法、物理溅射法等。

其中,物理蒸发法是将纳米材料物质加热到一定温度,使其蒸发并沉积在基底上。

物理溅射法则是通过物理方法将材料溅射到基底上。

制备纳米材料时,需要控制蒸发速度、气氛压力和基底温度,以控制纳米材料的粒径和形貌。

2. 化学气相法:化学气相法是通过在一定气氛中使反应物发生气-固相反应,生成纳米材料。

常用的方法包括化学气相沉积、气体凝胶法等。

制备纳米材料时,需要控制气氛成分、温度和反应时间,以控制纳米材料的成分、形貌和尺寸。

3. 物理液相法:物理液相法包括湿化学法、溶胶-凝胶法等。

其中,湿化学法是通过沉淀、沉积和溶解等物理化学作用制备纳米材料。

溶胶-凝胶法则是通过溶胶和凝胶的形成过程得到纳米材料。

制备纳米材料时,需要控制反应物浓度、溶剂选择和温度等因素,以控制纳米材料的形貌和尺寸。

二、化学方法1. 水热合成法:水热合成法是通过在高温高压的水溶液中使反应物发生反应,并得到纳米材料。

制备纳米材料时,需要控制反应温度、压力和反应时间,以控制纳米材料的形貌和尺寸。

2. 溶剂热法:溶剂热法是通过在溶剂中将反应物置于高温高压环境下进行合成,得到纳米材料。

制备纳米材料时,需要控制溶剂选择、反应温度和时间等因素,以控制纳米材料的形貌和尺寸。

三、生物方法1. 生物合成法:生物合成法是通过使用生物体,如细菌、真菌和植物等,合成纳米材料。

这种方法具有绿色、环保的特点。

制备纳米材料时,需要优化生物合成条件,以控制纳米材料的成分和形貌。

注意事项:1. 安全性:在纳米材料制备过程中,需要严格遵守安全操作规程,确保实验操作人员的人身安全。

实验技术中的纳米材料制备与测试方法的经验总结的纳米颗粒合成与表征方法

实验技术中的纳米材料制备与测试方法的经验总结的纳米颗粒合成与表征方法

实验技术中的纳米材料制备与测试方法的经验总结的纳米颗粒合成与表征方法实验技术中的纳米材料制备与测试方法的经验总结随着纳米科技的迅猛发展,纳米材料的制备与表征成为了研究人员关注的焦点之一。

本文将从纳米颗粒合成与表征两个方面,总结实验技术中的一些常用方法与技巧。

一、纳米颗粒合成1. 溶液法合成纳米颗粒溶液法是目前最常用的纳米颗粒合成方法之一。

其中,溶剂选择很关键,常见的有水相和非水相溶剂。

对于需要控制粒径和形状的纳米颗粒,可以采用胶体溶液法或微乳液法。

在合成过程中,注意控制沉淀温度,搅拌速度和溶剂的添加速率,以获得所需的纳米颗粒。

2. 气相法合成纳米颗粒气相法合成纳米颗粒是利用气态反应物质在高温下形成微粒,然后通过冷却凝聚形成纳米颗粒。

常见的气相法有气相凝聚法和气相沉积法。

合成过程中,需控制反应温度、气体流量和压力,以及反应物质的浓度和成分,来控制纳米颗粒的尺寸和结构。

3. MOCVD法合成纳米薄膜金属有机化合物化学气相沉积(MOCVD)方法在纳米薄膜合成中被广泛应用。

该方法通过热分解有机金属化合物在基底上沉积出纳米薄膜。

在选择反应气体时,考虑到有机金属前体的热分解特性和基底的适应性,并控制反应温度和气流速度,可以得到具有高纯度和均匀性的纳米薄膜。

二、纳米颗粒表征方法1. 透射电子显微镜(TEM)TEM是一种常用的纳米颗粒形态观察技术。

通过透射电子照射样品,利用电子-物质相互作用信息,可以获得纳米颗粒的形貌、大小以及晶体结构等信息。

在样品制备过程中,需仔细控制样品的制备温度和湿度,避免因样品制备不当而引入错误。

2. 扫描电子显微镜(SEM)SEM是观察纳米颗粒表面形貌和结构的重要手段。

与TEM相比,SEM能够提供更高的分辨率和更大的观察范围。

在使用SEM时,需注意样品的制备和金属涂覆的均匀性,以及电子束的加速电压和探针电流的选择。

3. X射线衍射(XRD)XRD是用于分析纳米颗粒结构和晶体性质的主要方法之一。

纳米金属材料的制备与加工方法

纳米金属材料的制备与加工方法

纳米金属材料的制备与加工方法纳米材料是一种具有特殊性质和应用潜力的材料,其具有较大比表面积和尺寸效应,能够展现出与宏观金属材料不同的独特性能。

制备纳米金属材料是纳米科学和纳米技术的重要研究内容之一,本文将探讨纳米金属材料的制备和加工方法。

1. 物理方法物理方法是制备纳米金属材料的常用手段之一。

其中,溅射和蒸发是常见的物理方法。

溅射是一种将金属材料沉积在基底上的方法。

通过在真空条件下将金属材料置于靶上,然后用高能粒子轰击靶材,从而将金属原子抛射到基底上形成纳米金属材料。

蒸发是通过将金属材料加热至蒸发温度,然后使其在真空条件下沉积到基底上形成纳米金属材料。

该方法适用于制备单一纯金属纳米材料。

2. 化学方法化学方法是制备纳米金属材料的另一种重要手段。

最常见的化学方法包括溶胶-凝胶法、水热合成法和沉积-析出法。

溶胶-凝胶法是通过将金属的溶胶转变为凝胶,然后经过干燥和热处理,最终得到纳米金属材料。

该方法可以获得较高纯度和较大比表面积的纳米金属材料。

水热合成法是利用水热反应合成纳米金属材料的方法。

通过在高温高压的环境中,将金属盐溶液和适当的还原剂进行反应,形成纳米金属材料。

该方法适用于制备多种金属的纳米材料。

沉积-析出法是将金属盐溶液中的金属沉积到基底上,然后经过适当的处理,使其析出形成纳米金属材料。

该方法相对简单易行,适用于大规模制备。

3. 机械方法机械方法是在已有金属材料的基础上,通过机械加工手段制备纳米金属材料。

常见的机械方法包括球磨法和机械合金化法。

球磨法是将金属粉末和球磨介质放入球磨罐中,在高速旋转的球磨罐内进行球磨,使金属粉末逐渐减小为纳米尺寸。

该方法适用于制备多种金属纳米材料。

机械合金化法是通过高能球磨设备对多种金属材料进行合金化,并形成纳米晶结构。

通过机械合金化,可以制备出具有优异力学性能的纳米金属材料。

4. 生物和生物合成方法生物和生物合成方法利用生物体和生物分子对金属离子进行还原和沉淀,从而制备纳米金属材料。

纳米材料的合成与制备技术

纳米材料的合成与制备技术

纳米材料的合成与制备技术纳米科技是21世纪的热门领域之一,主要涉及纳米材料的制备与应用。

纳米材料指的是粒径在1到100纳米之间的材料,由于其独特的物理、化学、电学等性质,在能源、环境、生物医学等领域具有广泛应用前景。

本文将介绍纳米材料的合成与制备技术。

一、物理法合成纳米材料物理法主要是通过物理手段来制备纳米材料,例如气相沉积、溅射、球形率化等。

其中,气相沉积法是目前制备纳米薄膜和纳米线的常用方法。

气相沉积法具有反应速度快、制备温度低等优点。

在此法制备氧化物、合金、金属等材料。

而溅射法则主要利用高能粒子轰击固体表面来释放原子,再沉积到样品表面,制备材料的过程,可以制备单纳米晶、合金纳米晶等材料。

二、化学法合成纳米材料化学法合成纳米材料是目前制备纳米材料的主要方法之一,包括溶胶-凝胶法、水热法、水热溶剂法、胶体化学法、摩尔模模板法等。

其中最常用的是溶胶-凝胶法。

这种方法一般是先生成一种凝胶,再烘干焙烧得到粉末。

由于其操作容易、制备量大等优点,被广泛应用于制备氧化物、硅、碳等多种纳米材料。

水热法主要应用于制备氧化物、磁性材料、碲化物等。

水热溶剂法是在水热法的基础上改进而来的,它是在有机溶剂中进行水热反应制备纳米材料,改善了水热法的催化效率和反应速度,并且有较好的尺寸控制和形态控制的能力。

胶体化学法主要是利用表面活性剂或聚合物来控制纳米粒子大小和形态,其主要制备银、金、碳纳米材料。

而摩尔模具板法则主要是以有机聚合物为模板,制备出有序排列、孔径可调的纳米材料。

三、生物合成纳米材料生物合成法是利用生物体系中的生物分子如蛋白质、多肽、核酸等来合成纳米材料。

这种方法能够在温和条件下进行制备,不需要很高的温度和压力,被广泛应用于制备金纳米粒子、银纳米粒子。

此外,还有利用细胞骨架的方法,制备纳米线、纳米管等材料。

四、绿色化学法合成纳米材料绿色化学法是近年来兴起的一种新型纳米材料制备技术,其利用可再生生物质、可生物降解溶剂等天然、环保的材料,实现了制备纳米材料的环保性和可持续性。

纳米材料的制备流程和关键步骤详解

纳米材料的制备流程和关键步骤详解

纳米材料的制备流程和关键步骤详解纳米材料是具有纳米级尺寸的材料,其颗粒大小通常在1到100纳米之间。

由于其特殊的尺寸效应和表面效应,纳米材料具有许多独特的物理、化学和生物学性质,因此在各个领域具有广泛的应用前景,如能源、电子、医疗、环保等领域。

本文将详细介绍纳米材料的制备流程和关键步骤。

一、纳米材料的制备流程纳米材料的制备过程通常包括原料准备、物质合成、后处理和表征四个主要步骤。

下面将对每个步骤进行详细解释。

1. 原料准备纳米材料的制备需要精确控制原料的含量、性质和比例。

在这一步骤中,需要选择适宜的原料,进行精细的加工和处理。

2. 物质合成物质合成是纳米材料制备的核心步骤,它决定了最终产物的形貌、尺寸和性能。

纳米材料的制备方法包括物理法、化学法、生物法等多种途径。

在物质合成过程中,通常需要控制反应条件(如温度、压力、反应时间)以及添加催化剂或表面活性剂等。

3. 后处理后处理是为了提高纳米材料的纯度、分散性和稳定性。

例如,可以通过洗涤、离心、过滤、干燥等步骤去除杂质和溶剂,并使纳米材料分散均匀。

4. 表征表征是对制备得到的纳米材料进行物理、化学和结构等方面的分析和表征。

常用的表征技术包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等。

二、纳米材料制备的关键步骤纳米材料的制备过程中存在许多关键步骤,下面将重点介绍以下四个关键步骤。

1. 选择适合的合成方法纳米材料的制备方法有很多种,如溶胶凝胶法、热分解法、溶剂热法等。

对于不同的材料和性质要求,需要选择适合的合成方法。

例如,热分解法适用于金属纳米颗粒的制备,而溶胶凝胶法适用于氧化物或复合材料的制备。

2. 精确控制反应条件反应条件的选择对于纳米材料的形貌和尺寸具有重要影响。

例如,在合成纳米颗粒过程中,温度和浓度的控制可以影响纳米颗粒的尺寸分布和形貌。

因此,在反应过程中需要精确控制温度、压力、反应时间等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料的合成与制备 (1)摘要 (1)关键词 (1)The synthesis and preparation of nanomaterials (1)Abstract (1)Keywords (1)引言 (1)1纳米材料的化学制备 (1)1.1纳米粉体的湿化学法制备 (1)1.2纳米粉体的化学气相法制备 (2)1.2.1气体冷凝法 (2)1.2.2溅射法 (2)1.2.3真空蒸镀法 (2)1.2.4等离子体方法 (3)1.2.5激光诱导化学气相沉积法(LICVD) (3)1.2.6爆炸丝方法 (3)1.2.7燃烧合成法 (3)1.3纳米薄膜的化学法制备 (4)1.4纳米单相及复相材料的制备 (4)2纳米材料的物理法制备 (5)2.1纳米粉体(固体)的惰性气体冷凝法制备 (5)2.2纳米粉体的高能机械球磨法制备 (5)2.3纳米晶体非晶晶化方法制备 (6)2.4深度塑性变形法制备纳米晶体 (6)2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6)2.6纳米薄膜物理气相沉积技术 (6)3纳米材料的应用展望 (7)4 总结 (7)参考文献 (8)纳米材料的合成与制备摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。

从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。

关键词纳米材料,合成,制备The synthesis and preparation of nanomaterialsAbstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects.Keywords nano materials, synthesis, preparation引言纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。

本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。

[1]纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。

新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。

1纳米材料的化学制备1.1纳米粉体的湿化学法制备湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。

上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错超细粉体的工作中,得到了10~15nm的性能优良的纳米粉体.由于湿化学方法中对超细粒子的团聚体的形成及强度的控制是非常重要的,采用共沸蒸馏、有机溶剂洗涤等方法,有效地控制了氧化错纳米粉体的合成及硬团聚的形成.特别是有巨大比表面积的纳米粉体能达到微米粉体的素坯成型密度,并且能在比微米粉体烧结温度低500~600℃的温度下烧结致密,达到理论密度的89 5%以上,晶粒尺寸只有1 0nm左右。

其它的溶液化学方法还可包括如金属盐的还原法制备金属纳米颗粒和金属一氧化物复合材料等。

[2]1.2纳米粉体的化学气相法制备气相法制备纳米材料在较高温度下,使用固体原材料蒸发成蒸气或直接使用气体原料,经过化学反应,或者使气体直接达到过饱和状态,凝聚成固态纳米微粒并收集得到纳米材料的方法称之为气相法。

气相方法是制备纳米粉体,晶须,纤维,薄膜的主要方法,但该方法所需设备复杂,制造成本较高,气相法可以分为气体冷凝法,溅射法,真空蒸镀法,混合等离子体法,激光诱导化学气相沉积法,爆炸丝法及燃烧合成法等。

[3]1.2.1气体冷凝法气体冷凝法是在1963年由Ryozi Uyeda及其合作者提出的,即通过在纯净的惰性气体(氩,氮气)中蒸发和冷凝过程获得纳米微粒。

20世纪80年代初,Gleiter 等人提出了将该方法制备的纳米微粒在超高真空条件下紧压致密可以得到多晶体,从而进一步完善了该方法[3]。

该方法加热源有以下几种:电阻加热,等离子体喷射,高频感应,电子束,激光加热等。

该方法可以通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或者惰性气体的温度来控制纳米微粒的大小。

例如采用SiH4- CH3NH2- NH3系统制备了Si/C/N复合粉末,微粒粒径是30~72nm[5]。

1.2.2溅射法该方法采用金属板分别作为阴、阳极,阴极为蒸发用材料,在两电极间充入氩气(40~250Pa),两电极间电压范围是0.3~ 1.5kV。

由于电极间辉光放电使Ar 离子形成,在电场作用下Ar离子冲击阴极靶材表面,使靶材原子从其表面蒸发形成纳米粒子。

粒子大小及尺寸分布主要取决于两电极间的电压、电流和气体压力,靶材的表面积越大,原子的蒸发速度越高,纳米颗粒的获得量越多。

用溅射法制备纳米微粒有以下优点:(1)可制备多种纳米金属,包括高熔点和低熔点金属;(2)能制备多组元的化合物纳米微粒,例如Al52Ti48,Cu91Mn9及ZrO2等;(3)可获得较大量的纳米颗粒材料。

1.2.3真空蒸镀法该方法的原理是在高真空中采用电子束加热,使金属粒子蒸发,打开快门使粒子转入圆盘表面,从而进入圆盘表面的油膜而形成纳米粒子。

然后含微粒子的油被摔到真空室沿壁的容器中,蒸馏,浓缩溶液,得到纳米粒子的糊状物。

采用该方法制备纳米粒子有以下优点:(1)可制备单金属颗粒,例如Ag,Au,Pd,Cu,Fe,Ni,Co,Al,In 等金属粒子,粒径大约8nm。

(2)粒径分步窄,并且均匀;(3)粒径尺寸可通过调节蒸发速度,油的黏度,圆盘转速等进行控制。

1.2.4等离子体方法该方法是采用RF等离子与DC等离子组合的混和方式来获得纳米粒子的方法,该方法按照所制产物的不同又可分为如下几种方法:(1)等离子蒸发方法。

大颗粒金属和气体流入等离子室生成金属纳米颗粒;(2)反应性等离子蒸发方法。

大颗粒金属和气体流入等离子室,同时通入反应性气体,生成化合物纳米粒子;(3)等离子CVD方法。

化合物随载气流入等离子室,同时通入反应性气体,生成化合物纳米粒子。

例如吉林大学采用DC等离子体方法生产了Ti,Co,Ni,Cr,Mn等金属纳米粉;青岛化工学院采用该方法实现了年产300kg纳米材料产品的水平,可制备金属,合金,氧化物,氮化物等。

等离子体方法制备纳米粒子有以下特点:(1)可制备纯度较高的纳米粒子;(2)可以制备各种纳米粒子产品,并且可实现批量生产;(3)反应速度快,所得纳粒粒径小。

1.2.5激光诱导化学气相沉积法(LICVD)LICVD方法是一种新的制备超微颗粒的方法,其基本原理是利用反应气体分子对特定波长激光束的吸收,引起反应气体分子激光光解,激光热解,激光光敏化和激光化学合成反应,然后在一定条件下获得纳米粒子。

该方法具有制备的纳米粒子表面清洁,粒子大小可以控制,不团聚,粒度分布均匀等优点,并且可制备几到几十个纳米的非晶态或晶态纳米微粒。

目前,LICVD方法已制备出多种单质,无机化合物和复合材料纳米粉末,并已经进入规模生产阶段,例如美国麻省理工学院(MIT)在1986年建成年产几十吨的装置。

1.2.6爆炸丝方法该方法基本原理是先将金属丝固定在一个充满惰性气体(5×106Pa)的反应室内,丝两端的接头是两个电极,电极分别与大电容相连形成回路,加15kV高压,金属丝在500~800kA电流下加热,金属丝熔断后在电流中断的瞬间,接头处的高压放电,使熔融后的金属进一步加热变为蒸气,在惰性气体碰撞下形成纳米金属或合金粒子从而沉降在容器的底部。

该方法适用于工业上连续生产纳米金属,合金和金属氧化物粉体。

1.2.7燃烧合成法该方法的原理是通过金属有机先驱物分子热解获得纳米粉体或者金属与金属化合物在惰性气体的保护下混合,燃烧,发生置换反应生成金属纳米粉。

例如美国辛辛那提大学用针状或平板电极,以电力协助碳氢化合物燃烧来氧化卤化物蒸气制取了纳米相的TiO2,SnO2,SiO2晶粒。

近年来,随着纳米科技的深入发展及对纳米材料需求的不断扩大,纳米材料的规模化生产要求越来越迫切,从而相继出现了新的纳米制备技术和方法。

例如,超声等离子体粒子沉积方法,电火花侵蚀法,电子束蒸发方法等。

1.3纳米薄膜的化学法制备纳米薄膜的化学制备主要包括电化学方法和化学气相沉积方法。

电化学沉积可用于合成具有纳米结构的纯金属、合金、金属-陶瓷复合涂层以及块状材料。

其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制。

化学气相沉积包括常压、低压、等离子辅助气相沉积等。

这一工艺方法在半导体、氧化物、氮化物、碳化物纳米微粒薄膜中应用较多。

电化学沉积方法作为一种十分经济而又简单的传统工艺手段,可用于合成具有纳米结构的纯金属、合金、金属一陶瓷复合涂层以及块状材料,包括直流电镀、脉冲电镀、无极电镀、共沉积等技术.其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制.电化学方法制备的纳米材料在抗腐蚀、抗磨损、磁性、催化、储氢、磁记录等方面均具有良好的应用前景。

在Ni-P纳米涂层材料的研究中,通过材料纳米结构的控制,制备了不同粒径的纳米涂层,发现符合Hall 一Petch关系的晶粒临界尺寸为8nm。

相关文档
最新文档