利用法向量求二面角的正负

合集下载

法向量求二面角余弦值公式

法向量求二面角余弦值公式

法向量求二面角余弦值公式二面角余弦值公式是一种计算二面角的方法,也是数学中最重要的理论之一。

它是基于三角函数的概念而演变而来。

今天,我们将介绍法向量求二面角余弦值公式,它是求解二面角余弦值的简便方法。

法向量求二面角余弦值公式可以用来求解任意给定的二面角的余弦值。

首先,我们需要求出每个角的法向量,比如,角A的法向量是(1, 0, -1),角B的法向量是(2, 1, -1)。

然后,我们可以使用下面的公式计算它们之间的余弦值:cos = (A B)/ (|A| |B|)其中A、B表示两个角的法向量,AB表示A、B的点积,而|A|和|B|表示A、B的模。

由此,我们可以使用以上公式来求解任意二面角之间的余弦值。

举例来说,若要计算角A(1,0,-1)和角B(2,1,-1)的余弦值,我们只需要将之前的公式中的A、B分别换成这两个角的法向量即可:cos = (12 + 01 + (-1)*(-1))/ (|1|× |2,1,-1|)cos = 3 / (√63)cos = 0.948因此,角A(1,0,-1)和角B(2,1,-1)之间的余弦值为0.948。

通过以上的计算,我们可以得出结论:法向量求二面角余弦值公式是一种用来求解任意二面角之间的余弦值的简便方法。

它也是利用三角函数基础概念而演变而来的基本计算公式之一。

由于它的方法简单易行,所以,它在很多领域,如几何学、地理学、机械工程、电子工程等,都有着广泛的应用。

综上所述,法向量求二面角余弦值公式是一个简单而实用的求解方法,它不仅可以求出二面角之间的余弦值,而且还可以用于几何学、地理学、机械工程、电子工程等多个领域。

它对于改善人们的生活、发展科学技术具有重要意义,为我们现在的生活带来了无穷的便利。

法向量求二面角正弦值公式

法向量求二面角正弦值公式

法向量求二面角正弦值公式首先,我们需要了解一些基本的向量和二面角的知识。

在三维空间中,一个向量可以用它的坐标表示为V=(x,y,z),其中x、y和z分别是向量在x、y和z轴上的分量。

向量的模(或长度)可以通过勾股定理计算得出:,V,=√(x^2+y^2+z^2)。

两个平面的法向量可以用来确定它们之间的夹角。

设P1和P2是两个平面,它们的法向量分别为N1和N2、我们可以计算它们的夹角θ,其中0≤θ≤π。

在这种情况下,不同方向的夹角θ可能有相同的正弦值,因此我们只考虑θ在0到π之间的情况。

假设θ是二面角的夹角,则它们的法向量可以表示为:N1=(x1,y1,z1)N2=(x2,y2,z2)两个向量的内积(点积)可以定义为:N1·N2=x1*x2+y1*y2+z1*z2同时,我们还可以使用向量的模来计算它们之间的夹角的余弦值:cos(θ) = N1·N2 / (,N1, * ,N2,)这就是求两个向量夹角余弦的公式。

然而,我们的目标是求得夹角的正弦值。

为了得到它,我们需要利用一些三角恒等式。

正弦函数(sin)和余弦函数(cos)之间有一个很重要的关联:sin(θ) = √(1 - cos^2(θ))我们可以将上述的夹角余弦值代入这个公式,得到夹角正弦值的公式:sin(θ) = √(1 - (N1·N2 / (,N1, * ,N2,))^2)这就是求二面角正弦值的公式。

值得注意的是,由于两个法向量的方向不同,它们之间的夹角的正弦值可能有两个值。

例如,在0到π之间的夹角的正弦值和在π到2π之间相同。

因此,在计算二面角正弦值时,我们需要考虑这两个可能的值。

这是关于法向量求二面角正弦值公式的详细解释。

我们可以使用这个公式在三维空间中计算平面之间的夹角。

二面角法向量求法

二面角法向量求法
空间角的大小与两条直线的方向有关,与直线 的长度无关。
二面角的表示方法
二面角是由两个半平面所组成 的图形,其大小由两个半平面
的夹角决定。
二面角可以用角度制或弧度制 来表示,与平面角和空间角类
似。
二面角的大小与两个半平面的 方向有关,与半平面的大小无 关。
在求解二面角的大小时,通常 需要先找到两个半平面的法向 量,然后计算两个法向量之间 的夹角即可得到二面角的大小 。
二面角法向量求法
汇报人:XX 2024-01-23
• 引言 • 二面角的表示方法 • 法向量的求解方法 • 二面角法向量的性质 • 二面角法向量的应用 • 总结与展望
01
引言
二面角的定义
二面角是由两个半平面所组成的 图形,其大小由这两个半平面的
夹角决定。
二面角的大小范围在0°到180°之 间,当两个半平面重合时,二面 角为0°;当两个半平面形成一条
面积射影定理
根据面积射影定理,二面角的余弦值等于两个半 平面在棱上的投影面积之比。因此,可以通过求 出两个半平面在棱上的投影面积,然后利用面积 射影定理求出二面角的大小。
三垂线定理及其逆定理法
利用三垂线定理或其逆定理,可以构造出与二面 角的棱垂直的线段,进而通过解三角形求出二面 角的大小。
空间向量夹角公式
03
法向量的求解方法
平面法向量的求解方法
直接法
如果平面上的一个向量 已知,则该向量即为平 面的法向量。
待定系数法
设平面的法向量为 n=(x,y,z),根据平面的 方程可以列出关于x,y,z 的方程组,通过求解方 程组得到法向量。
向量积法
如果平面上有两个不共 线的向量a和b,则平面 的法向量n可以通过计 算向量a和b的向量积得 到,即n=a×b。

利用法向量求二面角

利用法向量求二面角
转 转 转
2
课前热身
在正方体ABCD A1B1C1D1中,求锐二面角A1 DB A的余弦值。
解:作DB的中点O, 连结AO 1 , AO 在正方体中A1D AB, AD AB AO BD, AO BD 1
AOA 为二面角A1 DB A的平面角 1 A1 不妨设AA 2,则AO 2,
7
课后练习
在三棱锥P-ABC中,AB=AC,D为BC的中点,PO ⊥面ABC,垂足O落在线段AD上,已知BC=8, PO=4,AO=3,OD=2. 在线段AP上是否存在点M,使得二面角A-MC-B为直二 面角?若存在,求出AM的长;若不存在,请说明理 由。
P
A O Bห้องสมุดไป่ตู้D
C
课堂总 结
思想方法
1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、 面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、 利用数量积的夹角公式计算. 2.合理建立空间直角坐标系 (1)使用空间向量解决立体几何问题的关键环节之一就是建立空间直角坐标系, 建系 方法的不同可能导致解题的简繁程度不同. (2)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就 以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽 可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建 立时以其中的垂直相交直线为基本出发点. (3)建系的基本思想是寻找其中的线线垂直关系, 在没有现成的垂直关系时要通过其 他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系.
课题:利用法向量求二面角
——小越中学 章惠芳
1
复习回顾

用向量求二面角4例

用向量求二面角4例

坐标法求二面角例举 高二数学 陈作美求两平面所成的二面角是立体几何的基本问题,也是核心问题,更是考试的重点所在。

传统几何方法求二面角,一般都要经历“寻找二面角的平面角、证明是二面角的平面角,计算二面角的三角函数值”的过程,而这往往需要添加较多的辅助线,这给解题带来一定的困难。

坐标法给出一种通过空间向量求二面角的简便方法,不需要“找、证”,只需“算”。

当二面角所处的图形适合建立空间直角坐标系时,十分凑效。

1. 求二面角的公式如图1,两平面,向量是它们的法向量,设平面所成的二面角为θ,向量所成的为,则cos θ=-1212n n n n ∙(注意:二面角的两个法向量都必须指向二面角的内部) 2. 平面的法向量求法在空间直角坐标系O -xyz 中,已知不平行的向量,在平面π上,设向量是平面π的法向量,则即,因为法向量有无数个,故可以通过任意取定的一个分量来确定一个特殊的法向量(但不能是零向量)。

特别地,当平面π在三个坐标轴上的交点分别是A(a、0、0)、B(0、b、0)、C(0、0、c)(abc≠0)时,易证是它的一个法向量。

3. 应用例举例1. 如图2,正方形ABCD,ADEF的边长都是1,而且平面ABCD,ADEF互相垂直,点M在AC上移动,点N在BF上移动,若。

(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成的二面角的大小的余弦值。

(02年全国高考改编)解(仅解(3))由(2)可知,当M,N分别为AC,BF的中点时,MN的长最小。

如图2,以线段AB的中点为原点建立空间直角坐标系,则M、,故分别是面MNA与面MNB的法向量,设面MNA与面MNB所成的二面角是θ,则,因此cos =-1/3.例2. 如图3,四棱锥P-ABCD的底面是边长为a的正方形PB⊥面ABCD。

(1)略;(2)证明无论四棱锥的高怎样变化,面PAD与面PCD的所成的二面角恒大于90°。

法向量求二面角正弦值公式

法向量求二面角正弦值公式

法向量求二面角正弦值公式
正弦值公式指的是物理中求取二面角正弦值的公式,它由一般正弦函
数发展而来,是一个关于二面角α和β的关系式。

公式表示为:sinα=sinβ*cosγ-cosα*sinγ。

其中,γ表示两方向向量α和β的夹角,α和β分别代表两边的
方向向量,当γ求出时,就可以据此求出α和β的正弦值。

该公式可以应用于求解各种二面角的正弦值,从而解决复杂的物理问题。

它的用途非常广,可以用在电磁学、传播学、声学、流体力学、热学
等方面。

同时,该公式也可以用于求解多边形的内角和。

这样可以更高效地求
解多边形的内角和,其思想是,从一个多边形顶点出发,求解出其与相邻
顶点的夹角γ,然后根据正弦值公式求解出相应的内角和,重复该操作,就可以求解出所有内角和。

法向量求二面角公式

法向量求二面角公式

法向量求二面角公式在几何学中,二面角是一种重要的概念,它由两条相交的平面构成。

此外,当两条相交的直线所在的平面具有相同的法向量时,它们构成的夹角叫做二面角。

而要求出两个法向量构成的二面角,可以采用“法向量求二面角公式”。

“法向量求二面角公式”可以用下面的公式表示:α = arccos (N1 . N2 / (|N1| |N2|))其中,N1、N2分别是两个法向量,“.”表示内积,“|N1| |N2|”表示两个法向量的向量积,α表示由N1、N2两个法向量构成的夹角。

要用“法向量求二面角公式”求出N1、N2两个法向量的夹角,第一步是求出N1、N2的值。

N1、N2的值可以用下面的公式求得: N1 = (x1, y1, z1)N2 = (x2, y2, z2)其中,(x1, y1, z1)和(x2, y2, z2)分别表示两个法向量在三个坐标方向上的值,x1、y1、z1是N1在三个坐标方向上的值,x2、y2、z2是N2在三个坐标方向上的值。

第二步,根据求得的N1、N2值,就可以用“法向量求二面角公式”求出N1、N2所构成的夹角,具体公式如上所述。

以上就是“法向量求二面角公式”的介绍,它可以帮助我们快速确定两个法向量构成的夹角。

这种公式的优点在于它可以简单快速地求得椭圆夹角、圆柱夹角、椎体夹角等复杂夹角,为几何学研究带来了方便。

当然,如果希望用“法向量求二面角公式”求出精确的夹角,需要准确求出N1、N2的值,还需要采用精度更高的计算机程序。

另外,在计算N1、N2的值时,也要注意两个法向量的向量积及其长度是否相等,不然就会得到错误的结果。

本文介绍了“法向量求二面角公式”,它可以用于求出相交的两个法向量构成的夹角,使几何学研究变得更加容易简单。

然而,为了保证计算出来的结果准确无误,求值时需要考虑到N1和N2之间的向量积及长度等因素。

向量法求面面角正负判定

向量法求面面角正负判定

向量法求面面角正负判定1.引言1.1 概述概述部分的内容可以如下所示:引言部分的目的是介绍本文将要讨论的主题——向量法求面面角的正负判定。

面面角是几何学中的一个重要概念,它描述了两个相交平面之间的夹角,正面面角表示这两个平面的法向量之间的夹角,负面面角则表示这两个平面的法向量之间的补角。

本文的结构主要分为三个部分。

第一部分是引言部分,概述了本文的研究背景和目的。

第二部分是正文部分,主要介绍了向量法求面面角的定义和计算方法。

在这部分中,我们将详细阐述了如何利用向量的性质来求解面面角,并给出了具体的计算步骤。

最后一部分是结论部分,我们将讨论如何通过计算得到的面面角的数值来判定其正负。

我们将提供针对正面面角和负面面角的判定方法,并对求解过程进行总结和归纳。

通过本文的研究,读者将能够深入了解向量法求解面面角的原理和计算方法,以及如何根据计算结果进行正负判定。

这对于几何学的研究和实际应用都具有重要意义,例如在计算机图形学、物体建模和机器视觉等领域的应用中,面面角的正负判定都是必不可少的一步。

希望通过本文的阅读,读者能够掌握向量法求解面面角的基本原理和方法,并能够灵活运用于实际问题的求解中。

1.2文章结构文章结构部分应包含如下内容:本文共分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个部分。

概述部分旨在介绍文章要讨论的主题——向量法求面面角正负判定,并简要概括文章的内容和重要性,引起读者的兴趣。

文章结构部分即本文的目录,详细列出了各个章节的标题和子标题,以帮助读者了解整篇文章的结构和章节安排。

目的部分说明了本文的写作目的,即介绍和解释向量法求面面角正负判定的定义、计算方法以及对应的判定方法,为读者提供清晰的指导和理解。

正文部分是本文的主体部分,包括向量法求面面角的定义和计算方法的详细介绍。

结论部分总结了本文的主要内容,重点概括了正面面角和负面面角的判定方法。

通过以上结构,本文将全面、系统地介绍向量法求面面角正负判定的相关内容,为读者提供理论基础和实际应用的指导。

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。

法向量法求二面角

法向量法求二面角
求侧面SCD与面SBA所成的二面角的大小。 z B 图5 y
S
x
D
A
C
解: 以A为原点如图建立空间直角坐标系,

1 SA (0, 0, ), 2
1 1 SD ( , 0, ), 2 2
1 1 S 0,0, , A 0,0,0 , B 0,1,0 , C 1,1,0 , D ,0,0 , 2 2

DA AB
1 SA , 2
∠DFA即为侧面SCD与面SBA所成的二面角的平面角.
在RT△SAE中,
AF SA EA SE 1 1 SA EA 5 2 5 5 SA2 EA2 2
2
在RT△AFD中,
1 1 3 5 DF DA AF 4 5 10
n2 (a1 , a1 ,2a1 )
则 n2 (1,1, 2),
. n1 n2
令a1=1,
6 cos n1 , n2 6 n1 n2 1 6
1

二面角的平面角为锐角
6 arccos 6
∴二面角A—A1D—Q的大小为
例5 如图5,在底面是直角梯形的四棱锥S—ABCD 中,AD//BC,∠ABC=900,SA⊥面ABCD, 1 1 SA , AB=BC=1, AD . 2 2
z (1,0,0)
A1
D1 B1 D
设面A1DQ的法向量为
C1
n2 (a1 , a2 , a3 ),2 Nhomakorabeay
Q
C B
4 2
O(A)
x

n2 A1Q 2a1 2a2 2a3 0, n2 QD 2a1 2a2 0,

二面角的正弦值怎么求

二面角的正弦值怎么求

二面角的正弦值怎么求
二面角的正弦值的求法是先建立直角坐标系,求出各点坐标,设面S1的法向量,用sin²+cos²=1即可计算正弦值,且为正值,二面角就是该夹角或其补角。

从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角介绍
平面内的一条直线,把这个平面分为两部分,每一部分都叫作半平面。

从一条直线出发的两个半平面所组成的图形叫作二面角。

这条直线叫作二面角的棱,这两个半平面叫作二面角的面。

二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度。

二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。

二面角的平面角的大小,与其顶点在棱上的位置无关。

如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。

反之,相等二面角的平面角相等。

例说用向量方法求二面角

例说用向量方法求二面角

例说用向量方法求二面角一、平面法向量的2种算法在空间平面法向量的算法中,普遍采用的算法是设(,,)n x y z =,它和平面内的两个不共线的向量垂直,数量积为0,建立两个关于x ,y ,z 的方程,再对其中一个变量根据需要取特殊值,即可得到法向量.还有一种求法向量的办法也比较简便:若平面ABC 与空间直角坐标系x 轴、y 轴、z 轴的交点分别为A (a ,0,0)、B (0,b ,0)、C (0,0,c ),定义三点分别在x 轴、y 轴、z 轴上的坐标值x A = a , y B = b , z C = c (a ,b ,c 均不为0),则平面ABC 的法向量为111(,,)(0)n a b cλλ=≠ .参数λ 的值可根据实际需要选取.这种方法非常简便,但要注意几个问题:(1)若平面和某个坐标轴平行,则可看作是平面和该坐标轴交点的坐标值为∞,法向量对应于该轴的坐标为0.比如若和x 轴平行(交点坐标值为∞),和y 轴、z 轴交点坐标值分别为b 、c ,则平面法向量为11(0,,)n b cλ= ;若平面和x ,y 轴平行,和z 轴交点的坐标值为c ,则平面法向量为1(0,0,)n cλ= .(2)若平面过坐标原点O ,则可适当平移平面.例1.如图,在四棱锥S -ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点。

设SD = 2CD ,求二面角A -EF -D 的大小;解:不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.平面AEFG 与x 轴、z 轴的交点分别为A (1,0,0)、G (0,0,1),与y 轴无交点,则法向量1(1,0,1)n =,在CD 延长线上取点H ,使DH =AE ,则DH ∥ AE ,所以AH ∥ED ,由(1)可知AG ∥EF ,所以平面AHG ∥平面EFD ,平面AHG 与x 轴、y 轴、z 轴的交点分别为A (1,0,0)、H (0,- 12,0)、G (0,0,1),则法向量2(1,2,1)n =-,设二面角A -EF -D 的大小为α ,则1212cos 3n n n n α⋅==⋅ ,即二面角A -EF -D的大小为. 二、用向量法求解二面角的两种途径 (一)用法向量解二面角用法向量求解二面角时遇到一个难题:二面角的取值范围是[0, π ],而两个向量的夹角取值范围也是[0, π ],那用向量法算出的角是二面角的平面角呢还是它的补角?如果是求解异面直线所成的角或直线与平面所成的角,只要取不超过 π2 的那个角即可,但对二面角却是个难题. 笔者经过思考,总结出一个简单可行的方法,供读者参考.用法向量解二面角首先要解决的问题就是:两个法向量所夹的角在什么情况下与二面角大小一致?其次,如何去判断得到的法向量是否是我们需要的那个方向?对第一个问题,我们用一个垂直于二面角棱的平面去截二面角(如图一),两个平面的法向量12,n n则应分别垂直于该平面角的两边. 易知,当12,n n 同为逆时针方向或同为顺时针方向时,它们所夹的解即为θ . 所以,我们只需要沿着二面角棱的方向观察,选取旋转方向相同的两个法向量即可. 或者可以通俗地理解,起点在半平面上的法向量,如果指向另一个半平面,则称为“向内”的方向;否则称为“向外”的方向. 两个法向量所夹的角与二面角大小相等当且仅当这两个法向量方向一个“向内”,而另一个“向外”.对第二个问题,我们需要选取一个参照物. 在空间直角坐标系中,我们可以选择其中一个坐标轴(如z 轴),通过前面的办法,可以确定法向量的方向,再观察该法向量与xOy 平面的关系,是自下而上穿过xOy 平面呢,还是自上而下穿过xOy平面?若是第一种情形,y图二图一则n 与→ OZ 所夹的角是锐角,只需取法向量的z 坐标为正即可;若是第二种情形,则n 与→OZ 所夹的角是钝角,只需取法向量的z 坐标为负即可.若法向量与xOy 平面平行,则可以选取其它如yOz 平面、zOx 平面观察.例2 已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90︒,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点. (1)求二面角C -AM -B 的大小; (2)求二面角A -MC -B 的大小.分析:如图建立空间直角坐标系,则对二面角C -AM -B 而言,→AD 是平面AMB 的法向量(向内),易知平面ACM 符合“向外”方向的法向量是自下而上穿过xOy 平面,所以与→ AZ 所夹的角是锐角. 对二面角A -MC -B 而言,平面ACM 选取上述法向量,则为“向外”的方向,平面BCM 就应选取“向内”的方向,此时是自上而下穿过xOy 平面,与z 轴正向所夹的角是钝角.(1)解:如图三,以AD 为x 轴,AB 为y 轴,AP 为z轴建立空间直角坐标系,则平面AMB 的法向量为1n=(1,0,0), 设平面ACM 的法向量为2n=(x ,y ,z ).由已知C (1, 1, 0), P (0, 0, 1), B (0, 2, 0),则M (0, 1, 12 ),∴ → AC =(1, 1, 0), → AM =(0, 1, 12).由220,0,10.0.2x y n AC y z n AM +=⎧⎧⋅=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩取y = -1,则x =1, z =2, ∴ 2n =(1, -1, 2). (满足2n ·→AZ >0).设二面角C -AM -B 的大小为θ ,则cos θ=1212n n n n ⋅=⋅, ∴ 所求二面角的大小为arccos6. (2)解:选取(1)中平面ACM 的法向量2n=(1, -1, 2),设平面BCM 的法向量为y图三3n= (x ,y ,z ).→ BC = (1, -1, 0), → BM = (0, -1, 12),由330,0,10.0.2x y n BC y z n BM -=⎧⎧⋅=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩ 取z =-2,则y =-1, x =-1,3n = (-1, -1, -2),则2n ,3n所夹的角大小即为二面角A -MC -B的大小,设为ϕ ,cos ϕ =23233n n n n ⋅=⋅, ∴ 所求二面角的大小为π - arccos 63.(二)用半平面内的向量解二面角由二面角的平面角定义,由棱上一点分别在两个半平面内作棱的垂线,这样构成的角即为二面角的平面角.如果分别在两个半平面内作两个向量(如图四),起点在棱上且均垂直于棱,可以看出,这两个向量所夹的角,与二面角的大小是相等的.这种方法与用法向量解二面角相比,其优点是向量的方向已经固定,不必考虑向量的不同方向给二面角大小带来的影响.例3 如图五,已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是BB 1的中点.(1)求二面角E -AC 1-B 的大小; (2)求二面角C 1-AE -B 的大小.分析:在第(1)题中,只需在AC 1上找到两点G 、H ,使得→ GB 、→ HE 均与→ AC 1 垂直,则→ GB 、→HE 的夹角即为所求二面角的大小.如何确定G 、H 的位置呢?可设1GA AC λ=,1GB GA AB AC AB λ=+=+ ,这样向量→ GB 就用参数λ 表示出来了,再由→ GB ·→AC 1 =0求出λ 的值,则向量→GB 即可确定,同理可定出H 点.第(2)题方法类似.图四图五解:以B 为坐标原点,BC 为x 轴,BA 为y 轴建立空间直角坐标系,则B (0,0,0), A (0,1,0), C (1,0,0), B 1(0,0,2), C 1(1,0,2), E (0,0,1).→ AC 1 = (1, -1, 2), →AB = (0, -1, 0).(1)设1(,,2)GA AC λλλλ==-,则 (,1,2),GB GA AB λλλ=+=--由→ GB · → AC 1 =0 ⇒ λ +(λ +1)+4λ =0,解得:16λ=-,∴ → GB = (151,,663---).同理可得:→ HE = (11,,022--),→ HE ·→ AC 1 = 0.→ GB 、→ HE 的夹角等于二面角E -AC 1-B 的平面角. cos <→ GB ,→ HE > =62562GB HE GB HE GB HE GB HE⋅⋅==⋅⋅ , ∴ 二面角E -AC 1-B 的大小为(2)→AE = (0, -1, 1), 在AE 上取点M 、N ,设(0,,)MA AE γγγ==-,则(0,1,)MB MA AB γγ=+=--,由→ MB ·→ AE = 0得:γ +1+γ = 0,解得:γ = 12-, ∴ → MB =11(0,,)22--.同理可求得:→ NC 1 = ( 1, 12, 12), → NC 1 · →AE = 0. ∴ → MB 、→NC 1 的夹角等于二面角C 1-AE -B 的平面角.cos <→ MB , → NC 1> = 11113MB NC MB NC --⋅=-⋅ , xyzGHxyMN图七图六). ∴二面角C1-AE-B的大小为arccos(3。

利用法向量求二面角5则

利用法向量求二面角5则

利用法向量求二面角5则以下是网友分享的关于利用法向量求二面角的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

关于利用法向量求二面角的问题(一)关于利用法向量求二面角的问题我们知道法向量是解决立体几何问题的有力工具,但是在利用法向量在求二面角的时候,求出的两个法向量的夹角是与所求二面角相等还是互补,却没有认真思考过,这个还得从两个向量的外积说起.两个向量外积的定义:两个向量a与b的外积(也称向量积)是一个向量,即为a b,它的长度(模)为| |=||||,它的方向与和都垂直,并且按,, 的顺序构成右手标架(如下图所示)若是 ,则所得向量长度与 相等,但是方向却刚好相反,所以向量外积不满足交换律.我们可以根据这个定义来确定平面法向量的方向.设平面内有三个点A(x1y1,z1),B(x2,y2,z2),C(x3,y3,z3),则(x2 x1,y2 y1,z2 z1), (x3 x1,y3 y1,z3 z1),所以y2 y1y3 y1z2 z1z3 z1z2 z1z3 z1x2 x1x3 x1x2 x1x3 x1y2 y1y3 y1(,,),很明显,向量 可以为平面 的法向量.此时 的方向应该是垂直平面 并且向上.我们利用这个结论来求二面的大小. 说明:行列式abcdad b c,上面有关内容请参考高等代数的相关内容.如图所示,设平面 与平面 所成的二面角为 ,法向量分别为,,显然与所成的角为 ,且 ,即此时与所成的角 就是平面 与平面 所成的二面角为 ,从这里我们可以看出,只要平面 与平面 的法向量,方向一个朝向二面角的里面,一个朝向二面角的外面,求出的法向量的夹角即为所求二面角.那怎样做到这一点呢?那就要用到我们前面所讲到的右手标架.如图,我们来求平面与平面 所成的二面角 ,设 (x1,y1,z1),AC (x2,y2,z2),x1y1z1x1y1z1,且设z若x1y1x2y2,yz1x1z2x2,xy1z1y2z2x2y2z2x2y2z2则平面 的一个法向量 (x,y,z),根据右手标架应该是竖直向上,即朝向这个二面角的外面,此时我们求平面 的法向量方向应该是朝向二面角的里面.设 (x3,y3,z3), (x4,y4,z4),要使平面 的法向量方向朝向二面角的里面,根据右手标架,我们计算应该是 ,若x4y4z4x4y4z4x3y3z3x3y3z3,并且设cx4y4x3y3b ,x4y4x3y3,ay4z4y3z3,则平面 的一个法向量 (a,b,c)根据右手标架,此时n的方向就是朝向二面角的外面.那么m与n的夹角即为所求二面角.cosxa y b z cx y z a b c22222当然,这里需要注意的是,我们这里建立的空间直角坐标系一定要是右手直角坐标系.利用向量求二面角大小的又一方法(二)利用向量求二面角大小的又一方法福建南安国光中学黄耿跃文[1]给出一种判定“二面角的平面角与其面的法向量夹角的关系”,读完这篇文章后,获益匪浅.笔者通过研究给出另一种利用向量求二面角大小的可行性方法,此法可以避免产生二面角的平面角与其面的法向量夹角的关系误判,而且思路更直观、清晰.定理1如下左图已知二面角αLβ的平面角为θ,A∈α且AL,B∈β且BL,AM⊥L于MJJJ,BNGJJJ⊥L于N,则cosθ=|JJJJGMANBMA||JJJJNBG|.由二面角的平面角的定义易证定理1.定理2如上右图,空间任意一条直线L,A,B是直线L上的两个点,M是空间任意一点,MN⊥L于N,则JJJJNMG=JJJJAMGJJJJAGJJJG|JJJJMABJJJGABG|2AB.证明∵向量JJJGAN为JJJJAMG在JJJABG影向量,设GJJJ方向上的投e=JJJJJABGJJJGJJJJG|ABG|为AB方向的单位向量,JJJJ∴JJJGAN=AMJJJABGGAMGJJJABGJJJ|JJJJABG|e=ABG,|JJJJJABG2∴JJJJNMG=JJJJAMGJJJGJJJJ|GJJJGAN=JJJJAMGAMABJJJG|JJJJJAB.ABG|2例1(2004湖南理19)如图,在底面是菱形的四棱锥PABCD 中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(I)证明:PA⊥平面ABCD;(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;(III)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.解(I)略;(II)以A为坐标原点,直线AD、AP分别为y轴、z轴,过点A垂直平面PAD的直线为x轴,建立空间直角坐标系如右图.则A(0,0,0),c(32a,12a,0),JDJG=(0,a,0),E(0,2JJJ3a,13a),于是AEG=(0,23a,13a),JJJGAC=(31JJJG2a,2a,0),AD=(0,a,0).作EM⊥AC于M,DN⊥AC于N,则由定理1JJJJ得MEG:与JJJGND所成的角的大小为EAC与DAC为面的二面角θ的大小.由定理2可得JJJJMEG=JJJAEGJJJJAMG=JJJAEGJJJAEGJJJG|JJJACGACJJJG|2AC121a2=(0,a,a)3333a2(12a,2a,0)=(36a,12a,13a).JJJGND=JJJGADJJJGAN=JJJGJJJADADGJJJG |JJJACGACJJJG|2AC12=(0,a,0)2aa2(32a,12a,0)=(34a,34a,0),JJJJG∴cosθ=MEJJJNDG|JJJMEJG||JJJGND|293a2+3a2=248342=2.6a34a∴以AC为棱,EAC与DAC为面的二面角θ的大小为30°.例2(2004浙江)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(I)求证AM⊥平面BDF;(II)求二面角ADFB的大小.解(I)略.(II)如图建立空间直角坐标Cxyz,∵A(2,2,0),B(0,2,0),D(2,0,0),F(2,∴JJJG2,1).DF=JJJDBGJJJDA=G(0,2,1),(0,2,0),JJJG=(2,2,0),DF=(0,2,1).作AM⊥DF于M,BN⊥DF的延长线于N,JJJG则由定理1得:MA与JJJNBG所成的解θ的大小为二面角ADFB的大小.由定理2可得:JJJGMA=JJJDAGJJJJDMG=JJJDAGJJJDAGJJJG DFJJJG|JJJGDF|2DF=(0,2,0)23(0,2,1)=(0,2,2),JJJNBG=JJJGDBJJJJDNGJJJG 3JJJG3=JJJDBGDBDFJJJG|JJJGDF|2DF=(2,2,0)2(0,2,1)/3=(2,JJJG2JJJ/3,2/3),cosθ=MANBG|JJJGMA||JJJNBG|6=91(6/3)(24/3)=2.∴二面角ADFB的大小为60°.例3(2005福建)如图,直二面角30DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(I)求证:AE⊥平面BCE;(II)求二面角BACE的大小;(III)求点D到平面ACE的距离.解(I)略;(Ⅱ)如图所示,以线段AB的中点原点O,OE所在的直线为x 轴,AB所在的直线为y轴,过O作平行于AD的直线为z轴,建立空间直角坐标系Oxyz,则A(0,1,0),E(1,0,0),C(0,1,2)B(0,1,0)JJJG=JJJ(0,2,2),JJJAEG,AC=(1,1,0),ABG=(0,2,0).作BM⊥AC于M,EN⊥AC理1得,JJJ于NEGN,则由定与JJJGMB所成的角θ的大小为二面角BACE的大小由定理JJJ2得NEG=JJJAEGJJJG=JJJAEGJJJANAEGJJJG|JJJACGACJJJ|2ACG=(1,1,0)2(0,2,2)=11JJJG2),MB=JJJ8(0,2,ABGJJJJGJJJAGMJJJG=JJJABGAB|JJJACJJJGACG|2AC=(0,2,0)4(0,2,2)=(0,1,1)JJJGJJJG8,cosθ=NEMB13|JJJNEG||JJJGMB|=3=3,22∴二面角BACE的大小为arccos33.参考文献[1]郑剑晖,郑毓青.二面角的平面角与其面的法向量夹角的关系判定.2005.1.利用空间向量求二面角的判定方法(三)利用空间向量求二面角的判定方法法一:若点A、B分别为二面角α−l−β的两个半平面α与β上的任两点,且A∉l,B∉l,n1、n2分别为平面α、β的法向量,则(1)当(ABn1)(ABn2)>0 时,二面角α−l−β的大小与两个法向量夹角相等;(2)当(ABn1)(ABn2)互补;l法二:若点P为二面角α−l−β的棱l上的任一点,Q 为两个二面角α−l−β内的任一点, n1、n2分别为平面α、β的法向量,则(1)当(PQn1)(PQn2)相等;(1)当(PQn1)(PQn2)>0 时,二面角α−l−β的大小与两个法向量夹角互补;l利用法向量求二面角的正负(四)利用法向量求二面角的平面角授课教师:陈诚班级:高二(14)班时间:2010-01-14 【教学目标】1、让学生初步理解二面角的平面角与半平面法向量的关系,并能解决与之有关的简单问题。

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。

用法向量求二面角时法向量方向的判断

用法向量求二面角时法向量方向的判断

用法向量求二面角时法向量方向的判断贺年成摘要:在求二面角时如何判断法向量的方向关键词:法向量 二面角 方向 判断 借助法向量求二面角的平面角时,二面角的平面角θ的大小与法向量的所成角α(=α12<,>n n )相等或互补,当二面角两个法向量都指向二面角的内部或外部时,θπα=-(图1);当两个法向量一个指向二面角的内部而另一个指向二面角的外部时,θα=(图2)。

对于法向量的方向的判断一直是个难点,其实我们可以借助空间坐标系的坐标原点就可以判断法向量的方向,具体方法如下:面ABC 与空间直角坐标系的坐标轴分别交于A,B,C 三点,不妨设A(a ,0,0), B(0, b ,0), C(0,0, c ),坐标原点O 在面ABC 上的射影为D 点,容易证明:ABC ∆是锐角三角形,而且D 点为ABC ∆的垂心1,也就可以知道D 点在ABC ∆的内部,设D (x,y,z ),也即向量OD =(x,y,z ),则知x ,y ,z 分别与a ,b ,c 同号,此时取平面ABC 的一个法向量n =(111,,x y z ),若n 与向量OD 的对应的一个坐标同号,1容易证明三侧棱两两垂直的三棱锥的性质:顶点在底面上的射影为底面三角形的垂心,底面为锐角三角形,锐角三角形的垂心在三角形的内部。

z xyDOCBA则另外两个也必然对应同号,也即111,,x y z 与a ,b ,c 对应同号,这样,只要111,,x y z 与对应的a ,b ,c 有一个同号,则可知n 与OD 同向,从而可进一步判断出n 的方向为指向平面ABC 异于原点O 的一侧,否则就指向原点所在的那一侧,这样一来我们可以很容易地判断法向量到底指向二面角的内部还是外部。

若二面角的一个半平面过坐标原点,则可以通过平移半平面,让坐标原点置于二面角的内部或外部,再用上面的方法判断。

例. 如右图在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E ,F 分别是PC,PD 的中点,(1)求二面角F —BE —C 的大小,(2)求二面角D —BE —C 的大小。

利用法向量求二面角的正负

利用法向量求二面角的正负

利用法向量求二面角的平面角授课教师:陈诚班级:高二(14)班时间:2010-01-14【教学目标】1、让学生初步理解二面角的平面角与半平面法向量的关系,并能解决与之有关的简单问题。

2、通过本节课的学习,培养学生观察、分析与推理从特殊到一般的探究能力和空间想象能力。

3、培养学生主动获取知识的学习意识,激发学生学习兴趣和热情,获得积极的情感体验。

【教学重点】利用法向量计算二面角的大小。

【教学难点】求两个面的法向量及判断二面角大小与两个面的法向量的夹角的关系。

【课时安排】1课时【教学过程】一、内容回顾求二面角的平面角的方法:定义法、三垂线法、向量法。

前两种方法是空间立体的方法,难度较大,都涉及到要在两半平面内找棱的垂线,或是找点在平面内的射影,再算边长,通过解三角形来解决。

而向量法也是要找两个与棱垂直的且和半平面延伸方向一致的向量来计算夹角。

所以这些方法都涉及到了找垂线,再说明,再计算的过程,都需要逻辑推理。

而如果解决二面角的平面角也能像前面解决线线角或线面角问题一样,能通过空间向量的方法来解决,那么这些逻辑推理过程,我们能通过利用空间向量的程式化计算来转化。

因为空间中平面的位置可以用平面的法向量来表示,所以二面角的平面角可以用平面的法向量的夹角来解决,那么向量的夹角与二面角的平面角有着一种什么样的联系呢?二、新课讲授如图,二面角为l αβ--1、记121212,,C =A,=B.l l l l l l αβαβ⊥⊥ 且与相交于,2、过B 作,()BO l AO AOB ⊥∠连下面说明即是二面角的平面角11,,.,.l l BO l l BOC l OC l l l AOC l AOAOB ⊥⊥∴⊥∴⊥⊥∴⊥∴⊥∴∠ 面面是二面角的平面角(一找、二证、三计算)3、,l AOC BOC ⊥面和面0=360.AOC BOC AOBC AOBC ∴ 又过空间一点有且只有一个平面和已知直线垂直。

面和面重合。

即四点共面,即有平面四边形内角和4、在12 l l ,上分别取直线的方向向量12,,n n,事实上,由于线面垂直,两方向向量即是两平面的法向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用法向量求二面角的平面角
授课教师:陈诚班级:高二(14)班时间:2010-01-14
【教学目标】
1、让学生初步理解二面角的平面角与半平面法向量的关系,并能解决与之有关
的简单问题。

2、通过本节课的学习,培养学生观察、分析与推理从特殊到一般的探究能力和
空间想象能力。

3、培养学生主动获取知识的学习意识,激发学生学习兴趣和热情,获得积极的
情感体验。

【教学重点】利用法向量计算二面角的大小。

【教学难点】求两个面的法向量及判断二面角大小与两个面的法向量的夹角的关系。

【课时安排】1课时
【教学过程】
一、内容回顾
求二面角的平面角的方法:定义法、三垂线法、向量法。

前两种方法是空间立体的方法,难度较大,都涉及到要在两半平面内找棱的垂线,或是找点在平面内的射影,再算边长,通过解三角形来解决。

而向量法也是要找两个与棱垂直的且和半平面延伸方向一致的向量来计算夹角。

所以这些方法都涉及到了找垂线,再说明,再计算的过程,都需要逻辑推理。

而如果解决二面角的平面角也能像前面解决线线角或线面角问题一样,能通过空间向量的方法来解决,那么这些逻辑推理过程,我们能通过利用空间向量的程式化计算来转化。

因为空间中平面的位置可以用平面的法向量来表示,所以二面角的平面角可以用平面的法向量的夹角来解决,那么向量的夹角与二面角的平面角有着一种什么样的联系呢?
二、新课讲授
如图,二面角为l αβ--
1、记121212,,C =A,=B.l l l l l l αβαβ⊥⊥ 且与相交于,
2、过B 作,()BO l AO AOB ⊥∠连下面说明即是二面角的平面角
11,,.,.l l BO l l BOC l OC l l l AOC l AO
AOB ⊥⊥∴⊥∴⊥⊥∴⊥∴⊥∴∠ 面面是二面角的平面角(一找、二证、三计算)
3、,l AOC BOC ⊥面和面
0=360.
AOC BOC AOBC AOBC ∴ 又过空间一点有且只有一个平面和已知直线垂直。

面和面重合。

即四点共面,即有平面四边形内角和
4、在12 l l ,上分别取直线的方向向量12,,n n
,事实上,由于线面垂直,两
方向向量即是两平面的法向量。

①0
01212,,180,180.ACB n n ACB AOB AOB n n ∠=<>∠+∠=⇒∠+<>=
②00
1212,180,180,.ACB n n ACB AOB AOB n n ∠+<>=∠+∠=⇒∠=<> 由①②分别可得1212,,COS AOB COS n n COS AOB COS n n ∠=-<>
∠=<>
5、总结。

计算二面角的平面角,可先找两平面的法向量的夹角。

即计算法
向量的数量积。

可求出法夹角的余弦值,继而得到平面角的余弦值。

注释: 这里不能像解决线线角或线面角那样,对向量夹角的余弦值套上绝对值。

因为前两种角都是在00090-之间,所以前两种角的正(余)弦值一定是一个正数。

而二面角的平面角在000180-,所以余弦值有可能会是负值。

正负的选取要通过对图形的观察得到。

无论法向量的夹角余弦值求出来是正还是负,如果观察得到的二面角的平面角是个锐角,则平面角的余弦值取正的。

三、例题 例1、
,2,4,ABC B SA ABC SA BC AB M N AB BC S NM A ∆∠⊥===--是以为直角的直角三角形。

平面、分别是、的中点。

求二面角的余弦值。

解:如图,以B 为原点,,BA BC x y
为、轴建系,
则A (4,0,0),S (4,0,2),M (2,0,0),N (0,1,0)
12(0,0,2)
,,SA AMN
AS AMN AMN n AS SMN n x y z ⊥∴∴===
面可作为平面的一个法向量。

平面一个法向量为设平面的一个法向量为()
220(,,)(2,0,2)0220
0(,,)(4,1,2)0420
n SM x y z x z n SN x y z x y z ⎧∙=⇒∙--=⇒--=⎪⎨∙=⇒∙--=⇒-+-=⎪⎩
2
12
=1 2.1,2,1
,
x z y n
COS n n
=-=∴=-
∴<>===
令,则1,()
6
COSθ
∴=
可观察二面角的平面角是锐角,
注释:引导学生总结用法向量求解二面角的平面角问题的一般步骤。

Step1 建系
Step2 表示相应点的坐标
Step3 设平面的法向量分别为
12
,n n
Step4 列方程求出法向量
Step5 用数量积公式求法向量的余弦值
Step6 根据图形判断锐角或钝角
例2
、0
1111
160
ABC A B C AB AC AA ABC
-==∠=在直三棱柱中,,.
1
1
.
AB AC
A AC B

--
(1)证明
(2)求二面角的平面角的余弦值。

1
1
11
12
11
,sin30
sin sin sin sin602
90.
(0,0,0),(1,0,0),
(1,0,0)
AB AC
ABC C C
C B C
BAC AB A C
A B C A
AB AA C n
A BC n
∆==∴=∴=
∴∠=⇒⊥
∴=
解:如图
(1)中,即,,
(2)如图建系,
是平面的一个法向量。

设平面
的法向量为
21
21
2
12
(,,)
(,,)(1,0,0
(,,)0
,
x y z
n A B x y z x
n A C x y z
n
n n
A A
=
⎧∙⇒∙⇒-=


∙⇒∙⇒-=
⎪⎩
=
∴==
-
令z=1,可得
COS<
观察可知二面角
1
1
C B
A A C B
-
∴--
的平面角为锐角,
二面角的平面角的余弦值
四、小结
本节课主要学习了利用法向量求二面角的平面角的大小,并通过两个例题熟悉了利用法向量求二面角大小的主要步骤。

五、作业布置(P112,第6题)。

相关文档
最新文档