工程热力学第3章.
工程热力学-03 理想气体u、h、s的计算
11
5、理想气体比定容热容cV0和比定压热容cp0的关系
(1) c=p0
d=h dT
d (u += pv) dT
d dT
(u
+
RgT=)
du dT
+
d dT
(RgT )
c p0 = cV 0 + Rg
(2)比热容比:比定压热容和比定容热容之比,符号 γ
γ = cp0
cV 0
cV 0
=
γ
1 −
1
Rg
(3-13a)
p
s= 2 − s1
cV 0 ln
p2 p1
+ cp0
ln
v2 v1
(3-14b)
19
若把理想气体的比热容看作定值:
= ds
cV 0
dT T
+
Rg
dv v
= ds
cp0
dT T
−
Rg
dp p
= ds
cV
0
dp p
+
cp0
dv v
s2= − s1
cV 0
ln T2 T1
+
Rg
ldu dT
(3-5)
任何过程中,单位质量的理想气体的温度升高1K时,比 热力学能增加的数值即等于其比定容热容cV0的值。
9
3、任意气体的比定压热容cp
按照比定压热容的定义式:cp
=
( δq dT
)p
设h=f (T , p)
δ=q
dh − vdp
=
(
∂h ∂T
1、分压力:混合物中的某种组成气体单独占有混合物的容积, 并具有与混合物相同温度时的压力。
工程热力学第三章热力学第一定律教案
第三章 热力学第一定律热力学第一定律是研究热力学的主要基础之一,也是分析和计算能量转化的主要依据,并且在我们以后的几章分析中也离不开它。
对其他热力学理论的建立也起着非常重要的作用。
热一律的建立1840—1851年间,迈耶、焦耳、赫尔姆霍茨建立了热力学第一定律,它指出了能量转化的数量关系,随着分子运动论的建立和发展,肯定了热能与机械能相互转化的实质是热能与机械能都是物质的运动,其相互转化就是物质由一种运动形态转变为另一种运动形态的运动且转化时能量守恒,把能量守恒定律应用于热力学,就叫做热力学第一定律,至此热力学第一定律完全建立。
本章重点:1 讨论热力学第一定律的实质。
2 能量方程的建立及工程实际中的应用。
3—1 热力学第一定律的实质实质:热一律的实质是能量转化与守恒定律在热现象上的应用。
能量转化守恒定律指出:在自然界中,物质都具有能量,能量有各种不同的形式,既不能创造,也不能随意消失,而只能从一种形态转化成另一种形态。
由一个系统转逆到另一个系统。
在能量转化和传递过程中,能量的总和保持不变,这个定律对任何一个系统都可写成∆⇒⇒//系统进入 离开即输入系统的能量-输出系统的能量=系统储存的能量的变化量。
能量守恒定律不适从任何理论推导出来的,而是人类在长期的生产斗争和科学实验中积累的丰富经验的总结,并为无数实践所证实。
它是自然界中最普遍、最基本的规律之一。
普遍适用于机械的、热能的、电磁的、原子的、化学的等多变过程。
物理学中的功能原理、工程力学中的机械能守恒定律等。
其实质都是能量守恒与转化定律,热一律就是能量转化与守恒定律在热现象上的应用。
这个定律指出,热能与其它形式的能量相互转化和总能量守恒。
机械能 热能 化学能 电磁能在本课程范围内主要是热能与机械能的相互转化,因此:热一律也可表示为:热→功,功→热。
一定量热消失时,必产生与之数量相当的功。
消耗一定量的功时,必产生相当数量的热。
用数学形式表示:Q AW = 1427kcalA kg m =⋅W TQ = 1kg m J kcal A⋅=Q W = kJ这一关系表明,热一律确立了热与机械能相互转化时,热量与功量在数量上的关系。
工程热力学思考题答案,第三章
工程热力学思考题答案,第三章TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第三章理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。
理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。
判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。
若为理想气体则可使用理想气体的公式。
2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。
只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异?答:摩尔气体常数不因气体的种类及状态的不同而变化。
4.如果某种工质的状态方程式为pv =R g T,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。
5.对于一种确定的理想气体,()p v C C -是否等于定值?p v C C 是否为定值?在不同温度下()p v C C -、pv C C 是否总是同一定值?答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。
在不同温度下()p v C C -为定值,pv C C 不是定值。
6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。
7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。
工程热力学 第三章 气体和蒸汽的性质.
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p
dh vdp dT
p
h T
p
cV
q
dT
V
du
pdv dT
V
u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。
工程热力学第3章课件
沸腾:液体表面和内部的汽化过程,只能在达到沸
点温度时才发生
汽化速度的大小取决于液体温度的高低
液化 物质从气态变为液态的相变过程,也称为凝结,液
化与汽化是物质相变的两种相反过程 凝结速度的大小取决于蒸汽的压力
饱和状态
水蒸气在密闭容器中,汽、液两相平衡共存的状 态.此时的平衡共存其实是一种汽化速度和凝结速度相 等的动态平衡.处于饱和状态的蒸汽为饱和蒸汽,液态 水为饱和水.
定容比热容(cv):在定容情况下,单位质量的气体,温 度升高1K所吸收的热量
q du pdv,q dh vdp dv 0
cV
q dT v
du pdv dT v
u T v
cv
du dT
理想 气体
定压比热容(cp):在定压情况下,单位质量的气体,温
度升高1K所吸收的热量
工质处于饱和状态时的压力和温度分别称为饱和压 力与饱和温度.饱和温度和饱和压力是一一对应的关 系,饱和压力愈高,对应的饱和温度也愈高.
➢ 水蒸气的定压产生过程
工程上所用的水蒸气是由锅炉在压力不变的情况下 产生的,水蒸气的发生过程,即是水的定压汽化过程. 在此过程中,工质会经过三个阶段、五种状态的变化.
➢ 理想气体的比热容
一.热容的定义及单位
物体温度升高1K所吸收的热量,用C表示,单位
J/K
C Q dT
分类:
质量比热:单位质量物质的热容量,用c表示,单位为 J/(kg·K);
摩尔比热:单位mol物质的热容量,用cm表示,单位为 J/(mol·K);
体积比热:标准状态下1m3物质的热容量,用c’表示, 单
t1
t2
q cdT
q c t2 t1
t2
高等工程热力学第三章
第三章 热力学函数与普遍关系式根据:热力学第一、第二定律 连续可微函数的数学性质 推导:各种热力学函数的微分性质 各种热力学函数的微分关系式适用于:状态连续变化的一切系统以及系统的全部状态 热力学普遍关系式作用:推导或者检验,内查或者外推 范围:简单可压缩系统§1 热力学特征函数及其在描述系统热力学性质中的意义一、热力学特征函数的概念由自然的或者适当的独立变量所构成的一些显函数,他们能够全面而确定地描述热力系统的平衡状态。
热力学特征函数:具有明确的物理意义、连续可微如:以S、V 为独立变量描述内能函数U=U(S,V)就是一个特征函数 全微分dU=TdS-pdV TdS 方程dV VU dS S U dU S V )()(∂∂+∂∂= 可知:p VUT S U S V −=∂∂=∂∂)( , )(则:s u h u pv u v v ∂⎛⎞=+=−⎜⎟∂⎝⎠ v u f u Ts u s s ∂⎛⎞=−=−⎜⎟∂⎝⎠ s vu u g h Ts u v s v s ∂∂⎛⎞⎛⎞=−=−−⎜⎟⎜⎟∂∂⎝⎠⎝⎠热力学能函数只有在表示成S 和V 的函数时才是特征函数。
U=U(T,V)不能全部确定其他平衡性质,也就不是特征函数。
二、勒让德变换是否还有其他不同于S、V 的独立变量的特征函数吗?有,找出的方法 勒让德变换 设有函数:Y=Y(x 1,x 2,……,x m )全微分:dY=X 1dx 1+X 2dx 2+……+X m dx m 其中:m m x Y X x Y X x Y X ∂∂=∂∂=∂∂=, , , 2211这些偏导数都独立变量是x 1, x 2, ……, x m 的函数 引入函数:Y 1=Y-X 1x 1于是:dY 1=dY-X 1dx 1-x 1dX 1将dY代入:dY 1=-x 1dX 1+X 2dx 2+……+X m dx m 也是一个全微分:Y 1=Y 1(X 1, x 2, ……, x m ) 独立变量中用X 1取代了x 1可以证明:函数Y1和函数Y 具有同样多的信息 对比两个全微分:j i j i 11x 111() , ()Y YX x x X ≠≠∂∂==−∂∂x (互为负逆变换) 如果要互换独立变量和非独立变量的地位,只要应用式: ()i i i i i i X dx d X x x dX =−即可。
工程热力学第三章 热力学第一定律
进入控制体的能量Q(h11 2c12gz1)m1
离开控制体的能量W s(h21 2c2 2gz2)m 2
控制体储存能变化: dE cv(EdE )cvE cv 根据热力学第一定律建立能量方程
Q(h11 2c1 2gz1)m 1(h21 2c2 2gz2)m 2W sdEcv Q(h21 2c2 2gz2)m 2(h11 2c1 2gz1)m 1W sdEcv
可逆过程能量方程
可逆过程能量方程 以下二式仅适用可逆过程:
q du pdv
2
q u pdv 1
闭口系统能量方程反映了热功转换的实质,是热 力学第一定律的基本方程式,其热量、内能和膨 胀功三者之间的关系也适用于开口系统
二、热力学第一定律在循环过程中的应用
q12 u2 u1 w12 q23 u3 u2 w23 q34 u4 u3 w34 q41 u1 u4 w41
h g i hi i 1
n
H n H i i 1
只有当混合气体的组成成分一定时,混合气体 单位质量的焓才是温度的单值函数
第六节 稳态稳流能量方程的应用
一、动力机
利用工质在机器中膨胀获得机械功的设备
由q
(h2
h1)
1 2
(c22
c12
)
g(z2
z1)
ws
g(z2 z1) 0
1 2
(c22
pv
对 移 动 1kg工 质 进 、 出 控 制 净 流 动 功
w
=
f
p 2 v 2-
p1v1
流动功是一种特殊的功,其数值取决于控制体进出口
界面工质的热力状态
工程热力学第3章习题答案
1
第 3 章 理想气体的性质
解:根据理想气体状态方程,初态时 p1V = mRgT1 ;终态时 p2V = mRgT2
( ) 可得 p1 = T1 , ( ) p2 T2
0.1×106 − 60×103 0.1×106 − 90×103
=
273.15 +100 T2
,得 T2
=
93.29K
需要将气体冷却到−179.86℃
解:根据 ∆u = cV ∆T = 700kJ/kg ,得 cV = 1129.0J/ (kg ⋅ K)
Rg
=
R M
=
8.3145 29 ×10−3
= 286.7J/ (kg ⋅ K) ,得 cp
= 1415.7J/ (kg ⋅ K)
∆h = cp∆T = 877.7kJ/kg
∫ ∆s =
c T2
T1 V
可得
p1V1 p0V0
=
T1 T0
,
0.1×106 ×V1
1.01325×105 × 20000 ×10
=
273.15 +150 273.15
,得
V1
= 87.204m3/s
3600
由
π 4
D2
×c
= V1 ,可得烟囱出口处的内径
D
=
3.725m
3-4 一封闭的刚性容器内贮有某种理想气体,开始时容器的真空度为 60kPa,温度 t1=100 ℃,问需将气体冷却到什么温度,才可能使其真空度变为 90kPa。已知当地大气压保持为 pb=0.1MPa。
,可得 cp
= 5.215kJ/ (kg ⋅ K)
(3)根据 cp − cV = Rg ,可得 cp = 2.092kJ/ (kg ⋅ K )
工程热力学思考题答案,第三章
第三章 理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。
理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。
判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。
若为理想气体则可使用理想气体的公式。
2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。
只有在标准状态下摩尔体积为 0.022414m 3 /mol3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异 答:摩尔气体常数不因气体的种类及状态的不同而变化。
4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。
5.对于一种确定的理想气体,()p v C C 是否等于定值pv C C 是否为定值在不同温度下()p v C C -、pv C C 是否总是同一定值答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。
在不同温度下()p v C C -为定值,pv C C 不是定值。
6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。
7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。
但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾为什么答:不矛盾。
工程热力学课件第三章
,
C
' p
及
cV CV ,m , CV'
二、理想气体比定压热容,比定容热容和迈耶公式
1.比热容一般表达式
c δq du δw du pdv
( A)
dT dT dT dT
u u T,v
du
u T
v
dT
u v
T
dv
代入式(A)得
8
c
9
3. cp
据一般表达式
cp
u T
v
u v
T
p
dv dT
cV
u v
T
p
dv dT
若为理想气体
u f T
u
v
T
0
dp 0
dv du pdv d h pv pdv dh vdp
2
s 1 ds
2
1 cp
dT T
Rg
ln
p2 p1
2
1 cp
dv v
2
1 cV
dp p
定比热
cV
ln
T2 T1
Rg
ln
v2 v1
cp
ln
T2 T1
Rg
ln
p2 p1
cp ln
v2 v1
cV
ln
p2 p1
26
3.零点规定: 通常取基准状态(P0=101325Pa、T0=0K)下气 体的熵 S00K 0
工质的热力学温度;ds是此微元过程中1kg工质的熵变,称为比熵变。
工程热力学 第3章 理想气体的热力性质
分子运动论
运动自由度
Um
i 2
RmT
C v,m
dU m dT
i 2 Rm
C p,m
dH m dT
d (U m RmT ) dT
i2 2 Rm
单原子 双原子 多原子
Cv,m[kJ/kmol.K]
3 2
Rm
Cp,m [kJ/kmol.K]
5 2
Rm
k
ห้องสมุดไป่ตู้1.67
5 2 Rm
7 2
Rm
1.4
u是状态量,设 u f (T , v)
u
u
du (T )v dT ( v )T dv
q
( u T
)v
dT
[
p
( u v
)T
]dv
定容
q
(
u T
)v
dT
cv
(
q
dT
)v
( u T
)v
物理意义: v 时1kg工质升高1K内能的增加量
2020/1/10
2020/1/10
20/97
比热容是过程量还是状态量?
T
(1)
1K
(2)
c q
dT
c1
c2
s
定容比热容 用的最多的某特定过程的比热容
定压比热容
2020/1/10
21/97
1. 定容比热容( cv ) 和定压比热容(cP ) 定容比热容cv
任意准静态过程 q du pdv dh vdp
第3章 理想气体的热力性质
工程热力学-第三章作业答案
p1 = 2068.4kPa,V1 = 0.03m3
T1
=
p1V1 mR
=
2068.4×103 × 0.03 1× 287
= 216.2K
由题意,可知:
p2 = p1 = 2068.4kPa,T2 = 2T1 = 2× 216.2 = 432.4K
根据理想气体状态方程,可得:
V2 = T2 = 2 V1 T1
第三章作业答案
3-1 解: (1)取礼堂中的空气为热力系统,此时为闭口系 根据闭口系统能量方程
Q = ΔU +W
因为没有作功故 W=0;热量来源于人体散热;热力学能的增加等于人体散热。
ΔU = Q = 2000× 400× 20 = 2.67 ×105 KJ 60
(2)取礼堂中的空气和人为热力系统,此时为闭口绝热系 根据闭口系统能量方程
3-10
解:
(1)设风机的出口温度为 tout ,取风机为控制体,属稳定流动开口系统 由稳定流动系统能量方程:
Q
=
ΔH
+
1 2
mΔc2
+
mgΔz
+ Ws
忽略风机动能、位能的变化,可得:
Q = ΔH +Ws
由题意,可知: Q = 0,Ws = −1kW
•
即 m cp (tout − t1) −1000 = 0
系统储存能增量: uδ m
可得: dU = hinδ min − δWg
积分得: (m2u2 − m1u1) + Wg = minhin
因容器开始时为真空,则有 m1 = 0;u1 = 0; min = m2 可知: m2u2 + Wg = m2hin KK(1) Wg = pAL = p2V2 = m2RT2 KK(2)
工程热力学-第三章热力学第一定律-焓
CONTENTS
01. 焓之缘起 02. 焓之表达 03. 焓之特性
01. 焓之缘起
随物质流传递的能量 01
储存能
流动功
流动工质本身所具有的 内能、宏观动能、重力位 能,随工质流进(出)控 制体而带进(出)控制体。
E =U+mc2/2+mgz J e=u+ c2/2+gz J/Kg
带的、取决于热力状态的 能量。
03. 焓之特性
03
特性
焓是状态量
H为广延参数 对流动工质,焓
H=U+pV = m(u+pv) = mh
h为比参数
代表能量(内能+ 推进功) 对静止工质,焓 不代表能量
THANK YOU
可理解为:由于工质的进出,外界与系统之
间所传递的一种机械功,表现为流动工质进 出系统使所携带和所传递的一种能量
02. 焓之表达
02
焓 e=u+ c2/2+gz+pvu+pv 单位:J(kJ) J/kg(kJ/kg)
物理意义: 属于引进或排出工质而输
入或排出系统的能量。 开口系中随工质流动而携
系统引进或排出工质传递 的功量。
pAH pv
01 净流动功:系统维持 流动所花费的代价。
p2v2 p1v1( [ pv])
流动功在p-v图上的表 示
01
对流动功的说明
1、与宏观流动有关,流动停止,流动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、wf=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界(泵与风机)做出,流动工质所携带的能量
工程热力学_第3章——【精品资源汇】
t/ ℃ p/ MPa
0
20
50
100
120
0.0 006 112 0.0 023 385 0.0 123 446 0.1 013 325 0. 198 483
150 0.47 571
19
3–5 水定压加热汽化过程
一、水定压加热汽化过程
预热
汽化
过热
t < ts (a)
t = ts (b)
t = ts (c)
4
摩尔质量和摩尔容积 摩尔质量:1mol物质的质量,M。 摩尔容积:1mol物质占有的体积,Vm。 阿伏加德罗定律:在同稳同压下,各种气体的摩尔体积都 相等。
5
若以摩尔为单位,则状态方程式为: 对于1mol气体,有: PVm= RT R=Mr/1000*Rg,对于任何气体都相等,称为摩尔气体常数 。 R=8.314J/(mol•K) 对于n摩尔气体,有: PV=nRT。
2) h u pv u RgT
h hT dh cp dT
12
讨论: 如图:
Tb Tc Td
uab uac uad hab hac had
13
2. 热力学能和焓零点的规定 可任取参考点,令其热力学能为零,但通常取 0 K。
u
uT uT0 uT cV
T 0
T
h
hT
蒸发:在液体表面进行的汽化过程 沸腾:在液体表面及内部进行
的强烈汽化过程。
液化:由气相到液相的过程
17
二、饱和状态
当汽化速度=液化速度时,系统 处于动态平衡,宏观上气、液两相 保持一定的相对数量—饱和状态。
饱和状态的温度—饱和温度, ts(Ts) 饱和状态的压力—饱和压力,ps
工程热力学第三章习题参考答案
第三章 热力学第一定律 习题参考答案思考题3-1门窗紧闭的房间……答:按题意,以房间(空气+冰箱)为对象,可看成绝热闭口系统,与外界无热量交换,Q=0电冰箱运转时,有电功输入,即W 为负值,按闭口系统能量方程:WU +Δ=0 或即热力学能增加,温度上升。
0>−=ΔW U 3-6 下列各式,适用于何种条件? 答:答案列于下表公式适用条件w du q δδ+= 闭口系统,任何工质,任何过程,不论可逆与不可逆 pdv du q +=δ 闭口系统,任何工质,可逆过程 pdv dT c q v +=δ闭口系统,理想气体,可逆过程dh q =δ 闭口系统,定压过程; 或开口系统与环境无技术功交换。
vdp dT c q v −=δ开口系统,理想气体,稳态稳流,可逆过程3-10 说明以下结论是否正确: (提示:采用推理原则,否定原则) ⑴ 气体吸热后一定膨胀,热力学能一定增加。
答:错误,如等容过程吸热后不膨胀;如不是等容过程吸热后热力学能也不一定增加,当对外净输出功量大于吸热量时,则热力学能不增加。
⑵ 气体膨胀一定对外作功。
答:错误,如气体向真空膨胀则不作功,另外气体膨胀对外作膨胀功的充要条件是:气体膨胀和要有功的传递和接受机构。
⑶ 气体压缩时,一定消耗外功。
答:错误,如处于冷却过程的简单可压缩系统,则会自发收缩(相当于被压缩),并不消耗外功。
⑷ 应设法利用烟气离开锅炉时带走的热量。
答:错误不应说设法利用烟气离开锅炉时带走的热量。
因为热量是过程量,不发生则不存在。
应该说设法利用烟气离开锅炉时带走的热能(或热焓)。
习 题3-1 已知:min 202000/400===time N hkJ q 人人求:?=ΔU 解:依题意可将礼堂看作绝热系统,思路:1、如何选取系统?2、如何建立能量方程? ⑴ 依题意,选取礼堂空气为系统,人看作环境,依热力学第一定律,建立能量方程:kJ time N q Q U W W Q U 51067.2602020004000×=××=⋅⋅==Δ∴=−=Δ人Q⑵ 如选“人+空气”作系统, 依据热力学第一定律:W Q U −=Δ0,0,0=Δ∴==U Q W Q如何解释空气温度升高:该系统包括“人+空气”两个子系统 ,人散热给空气,热力学能降低,空气吸热,能内升高,二者热力学能代数和为零。
工程热力学名词解释(第三章)
工程热力学名词解释(部分三)
3.1
1、理想气体:分子是某些不具体积的质点,分之间没有相互作用力的可压缩流体。
2、Rg:气体常数,它只与气体种类有关,而与气体所处状态无关的物理量。
3.2
1、比热容:单位量物质在某个特定的无摩擦的准静态的过程中。
做单位温度改变时所吸收或放出的热量。
3.3
1、理想气体的热力学能和焓都只是温度的单值函数。
3.4
1、饱和状态:液相和气相处于动态平衡的状态。
2、饱和液体:处于饱和状态的液体(t = t s)
3、饱和蒸汽:处于饱和状态的蒸汽。
4、干饱和蒸汽:处于饱和状态的蒸汽:t = t s
5、未饱和液:温度低于所处压力下饱和温度的液体:t < t s
6、过热蒸汽:温度高于饱和温度的蒸汽:t > t s, t –t s = d 称过热度
7、湿饱和蒸汽:饱和液和干饱和蒸汽的混合物:t = t s
3.5
1、一点、三区、两线、五态:临界点、过冷水区湿蒸汽区过热蒸汽区、饱和水线饱和蒸汽线、未饱和水饱和水湿饱和蒸汽干饱和
蒸汽过热蒸汽。
3.6
1、零点:273.16K的液相水作为基准点,规定在该点状态下的液相水的热力学能和熵为零。
2、干度:在1Kg湿蒸汽中含x Kg的饱和蒸汽,而余下的(1-x)Kg 则为饱和水。
工程热力学第三章气体和蒸气的性质
•
capacity per unit of mass)
•质量定容热容(比定容热容)
•及
•(constant volume specific heat
• capacity per unit of mass)
•二、理想气体比定压热容,比定容热容和迈耶公式
•1.比热容一般表达式
•代入式(A)得
•2. cV
h’=191.76, h”=2583.7
s’=0. 649 0, s”=8.1481
t
v
h
s
v
h
s
v
h
s
℃ m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg·
K)
K)
K)
0 0.0010002 -0.05 -0.0002 0.0010002 -0.05 -0.0002 0.0010002 -0.04 -0.0002 10 130.598 2519.0 8.9938 0.0010003 42.01 0.1510 0.0010003 42.01 0.1510
•本例说明:低温高压时,应用理想气体假设有较大误差。
•例A411133
•讨论理想气体状态方程式
•3–2 理想气体的比热容
•一、比热容(specific heat)定义和分类 •c与过程有关
•定义: •分类:
•c是温度的函数
•按物 量
•质量热容(比热容)c J/(kg·K)
•(specific heat capacity per unit of mass)
• 干饱和蒸汽(dry-saturated vapor; dry vapor )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质量热容(比热容)c J/(kg·K) (specific heat capacity per unit of mass)
体积热容 C' J/(标准m3·K) (volumetric specific heat capacity)
摩尔热容 Cm J/(mol·K) (mole specific heat capacity)
二、利用气体热力性质表计算热量
q u w
qv u u2 u1 u T2 u T1
q h wt
qp h h2 h1 hT2 hT1
附表7 例A411197
25
三、理想气体的熵 (entropy)
1. 定义
ds δq T rev
J/(kg K) J /(mol K)
一、理想气体的热力学能和焓
1. 理想气体热力学能和焓仅是温度的函数 1) 理想气体分子间无作用力
u uk uT du cVdT
2) h u pv u RgT
h hT dh cp dT
21
讨论: 如图
Tb Tc Td
uab uac uad
hab hac had
.b
d
u v T
0,
u T
v
du dT
dp 0
d h pv pdv dh vdp
dT
dT
cp
dh dT
cp cp (T ) cp 是温度函数
dh cpdT
10
4. 迈耶公式(Mayer’s formula)
dh du cp cV dT
du pv du
dT
d u RgT dT
1
第3章
本章学习目标
复述理想气体模型,说明实际气体简化为理想气体条件; 描述气体比热容与过程及温度的关系,写出迈耶公式, 利用气体比热容资料计算不同过程的热量; 说明理想气体热力学能、焓和熵与温度、压力的关系, 利用解析式、图表和电子文档计算理想气体过程中热力学 能、焓和熵的改变量;
说明饱和状态的特性、指出临界状态的属性; 描述并在 p-v 图和 T-s 图上画出水的定压加热汽化过程; 利用热力性质表、 图及电子文档确定水蒸气状态参数。
2
1 cV
dT T
Rg
ln
v2 v1
2
1 cp
dT T
Rg ln
p2 p1
2 dv 2 dp
1 cp v 1 cV p
cV
ln
T2 T1
Rg
ln
v2 v1
定比热
cp
ln
T2 T1
Rg
ln
p2 p1
cp
ln
v2 v1
cV
ln
p2 p1
至第4章
27
3. 零点规定: 通常取标准状态下气体的熵为零 例A9101331
3) 气体常数 Rg 的物理意义
cp cV qp qv pvc va wp Rg
Rg是1 kg某种理想气体定压升高1 K对外作的功。
12
三、理想气体的比热容比
(specific heat ratio;ratio of specific heat capacity)
cp
cV
f (T )
oC 42
oC
2)取0 K为基点 h cpT u cV T
T2
'
cp cV
T
1.005 0.718
kJ/(kg K) 303 kJ/(kg K)
K
424
K
151
oC
情况1)实际上有两个矛盾的参考点:u 0oC 0 h 0oC 0
h u pv
h 0oC u 0oC RgT 0.287kJ/(kg K) 273.15K 0 24
o
T1 T T2
T
对cn作不同的技术处理可得精度不同的热量计算方法: 真实比热容积分
利用平均比热表
利用平均比热直线
定值比热容
14
1. 利用真实比热容(true specific heat capacity)积分
q
T2 T1
cndT
Aamnba
附表4
2. 利用平均比热容表(mean
specific heat capacity)
对于理想气体一切同温限之间的过程Δu及Δh相同,且均可
用cV ΔT 及cp ΔT 计算; 对于实际气体Δu及Δh不仅与ΔT 有关,还与过程有关且只
有定容过程Δu = cVΔT,定压过程Δh = cp ΔT。 2. 热力学能和焓零点的规定
可任取参考点,令其热力学能为零,但通常取 0 K。
u
uT uT0 uT cV
Pa m3
p0V0 RT0
1mol 标准状态
气体常数,单位为J/(kg·K) R = MRg = 8.314 5 J/(mol·K)
4
考察按理想气体状态方程求得的空气在表列温度、压力条件下
的比体积v,并与实测值比较。空气气体常数Rg = 287.06 J/(kg·K)
T/K p/atm
v v / m3/kg
单原子误差较小
双原子常温常压误差尚可接受
多原子误差更大
19
单原子气体 i=3
CV ,mJ /(mol K) 3 R 2
双原子气体 i=5
5R 2
Cp,mJ /(mol K)
5R 2
7R 2
Cp,m
CV ,m
1.67
1.40
多原子气体 i=6
7R 2 9R 2
1.29
20
3–3 理想气体的热力学能、焓和熵
2.99
压力较高 温度降低 压力较低
计算依据
v RgT 287.06 300 0.84992m3 / kg
p
101325
相对误差= v vtest 0.84992 0.84925 0.02%
vtest
0.84925
5
(1)温度较高,随压力增大,误差增大; (2)虽压力较高,当温度较高时误差还不大,但温度较低,
本章教学内容
3-1 理想气体 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 饱和状态、饱和温度和饱和压力 3-5 水的定压加热汽化过程 3-6 水和水蒸气状态参数 3-7 水蒸气图表和图 3–8 水和水蒸气热力性质程序简介
教学参考资料:工程热力学(第五版)
3
3-1 理 想 气 体
2.理想气体的熵是状态参数
ds δq T rev
du pdv dT p
T
cV
T
dv T
dT dv cV T Rg v
d u cV dT
pv
RgT
p T
Rg v
26
ds
cV
dT T
Rg
dv v
s
2
ds
1
2
1 cV
dT T
Rg
ln v2 v1
f [(T1, v1), (T2 , v2 )] f (T1,T2 ) f (v1, v2 )
T
11
qv uab
qp uac wac uac p vc va
b 与c 同为(T+1)K
uab uac
vc va pvc va 0
qp qv
而 qp cp Tc Ta cp T 1 T cp
> >
qv cV Tb Ta cV T 1 T cV
cp cV
du Rg
cp cV Rg
迈耶公式
5. 讨论
1)cp 与cV 均为温度函数, 但cp – cV 恒为常数:Rg
2) (理想气体)cp恒大于cV 。
.b
物理解释: a vb;a p c
定容
qv uab wab 0
.
a
定压 qp uac wac uac p vc va
.c T+1
q T
T2 0
cndT
T1 0
cn
dT
T2 T1
cn
T T2
02
cn
T T1
01
T2 T1
附表5
16
附:线性插值
x
x1
x2
x3
x4
x5
x6
y
y1
y2
y3
y4
y5
y6
x1< x < x2, y = ?
y
y = f (x)
y2
2.
y’ y
.. y2 y1
y1
.1
y ' y1
x x1
x2 x1
. . . a
c T =常数
0
uab wab qab
uab cV (Tb Ta ) uac uad
0
hac wt ac qac
hac cp (Tc Ta ) hab had
22
若为任意工质
? uab ? cV Tb Ta uac, uad
hac ? cp (Tc Ta ) hab , had
cp
1
Rg
cp cV Rg
cV
1
1
Rg
注:理想气体可逆绝热过程的绝热指数
至第4章
(adiabatic exponent; isentropic exponent)
例A902355
13
三、利用比热容计算热量
cn
原理: c δq dT
cn2 cn
cn1
δq cdT
q
T2 T1
cndT
y ' y1 x x1 y2 y1 x2 x1
y'
y1
x x1 x2 x1