概率论常用统计分布共62页
第四章 常用概率分布 .doc
![第四章 常用概率分布 .doc](https://img.taocdn.com/s3/m/3778fd380740be1e650e9ab1.png)
第四章常用概率分布为了便于读者理解统计分析的基本原理,正确掌握和应用以后各章所介绍的统计分析方法,本章在介绍概率论中最基本的两个概念——事件、概率的基础上,重点介绍生物科学研究中常用的几种随机变量的概率分布——正态分布、二项分布、波松分布以及样本平均数的抽样分布和t分布。
第一节事件与概率一、事件(一)必然现象与随机现象在自然界与生产实践和科学试验中,人们会观察到各种各样的现象,把它们归纳起来,大体上分为两大类:一类是可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生(或必然不发生)。
例如,在标准大气压下,水加热到100℃必然沸腾;步行条件下必然不可能到达月球等。
这类现象称为必然现象(inevitable phenomena)或确定性现象(definite phenomena)。
另一类是事前不可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果未必相同。
例如,掷一枚质地均匀对称的硬币,其结果可能是出现正面,也可能出现反面;孵化6枚种蛋,可能“孵化出0只雏”,也可能“孵化出1只雏”,…,也可能“孵化出6 只雏”,事前不可能断言其孵化结果。
这类在个别试验中其结果呈现偶然性、不确定性现象,称为随机现象(random phenomena)或不确定性现象(indefinite phenomena)。
人们通过长期的观察和实践并深入研究之后,发现随机现象或不确定性现象,有如下特点:在一定的条件实现时,有多种可能的结果发生,事前人们不能预言将出现哪种结果;对一次或少数几次观察或试验而言,其结果呈现偶然性、不确定性;但在相同条件下进行大量重复试验时,其试验结果却呈现出某种固有的特定的规律性——频率的稳定性,通常称之为随机现象的统计规律性。
例如,对于一头临产的妊娠母牛产公犊还是产母犊是事前不能确定的,但随着妊娠母牛头数的增加,其产公犊、母犊的比例逐渐接近1:1的性别比例规律。
常用概率分布课件
![常用概率分布课件](https://img.taocdn.com/s3/m/dc73c51f28ea81c759f578c4.png)
常用概率分布
1
内容
• 二项分布 • Poisson分布 • 正态分布
•分布的概念 •分布的条件 •分布的特征 •分布的应用
常用概率分布
2
概率的意义及相关的一些概念
• 考虑: • 确定n之后,阳性数目的概率分布(随机 变量X=阳性数目) • 掷一枚均匀钱币:P(正面朝上)=0.5, P(正面朝下)=0.5 • 掷一枚均匀骰子:P(1朝上)=P(2朝上) =…=P(6朝上)=1/6
• P(正面朝上)=0.50;
• 一般地,一个随机变量含两个要素:
• 1.它是一个变量;
• 2.这个变量可能值的出现各具有一定的 概率。
常用概率分布
5
概 念与定理:
• 组合(combination):从几个元素中抽取x 个元素组成一组(不考虑其顺序) 的组合方式个数,记Cnx
•几个相互独立事件同时发生的概率 等于各独立事件的概率之积。
-5
1
-4
-3
-2
-1
μ 0
1
3
2
3
4
5
6
12 3
σ1
σ3
-3
-2
-1
0
1
2
1
2
3
3
常用概率分布
41
4、正态分布曲线下面积的分布规律
• 面积的分布规律由两个参数决定; • 横轴上、曲线下的面积为1;曲线下的面 积就是概率。 • 曲线下,横轴上对称于0的面积相等。
常用概率分布
42
正态曲线下面积分布可用公式求得:
• 又称Gauss分布,正态分布曲线是 一条高峰位于中央(均数所在处), 两侧完全对称,两端永远不与横轴 相交的钟型曲线。
概率论与数理统计常用的统计分布
![概率论与数理统计常用的统计分布](https://img.taocdn.com/s3/m/43876975366baf1ffc4ffe4733687e21af45ffc8.png)
n(
)2
X
)2
概率论与数理统计i 1
抽样分布定理 最重要的总体: X ~ N (, 2 )
如何由样本 X1, X2,...X n 推断 , 2 ?
分析:
对 , 2 的推断是通过构造统计量实现的
(1)如何构造“好”的统计量 (X1, X2,...Xn ) (2) g(X1, X2,...Xn ) 服从什么分布?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
❖要求由样本构造一个以较大的概率包含真 实参数的一个范围或区间,这种带有概率 的区间称为置信区间,通过构造一个置信 区间对未知参数进行估计的方法
称为区间估计。
概率论与数理统计
设总体X的分布函数形式已知, 但它的一 个或多个参数为未知, 借助于总体X的一个样 本来估计总体未知参数的问题称为点估计问 题.
Review
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
F
U /n1 V /n2
称 F 服从自由度为 (n1, n2) 的 F 分布,记为 F ~ F (n1, n2).
F(n1, n2 )的上侧分位点记为F (n1, n2 )
O
F (n1 , n2)
抽样分布的途径: (1) 精确地求出抽样分布,并称相应的统
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
常用概率分布.ppt
![常用概率分布.ppt](https://img.taocdn.com/s3/m/4c3fb373dd88d0d232d46ab9.png)
表4—1 抛掷一枚硬币发生正面朝上的 试验记录
上一张 下一张 主 页 退 出
从表4-1可看出,随着实验次数的增多, 正面朝上这个事件发生的频率越来越稳定地接 近0.5,我们就把0.5作为这个事件的概率。
在一般情况下,随机事件的概率p是不可 能准确得到的。通常以试验次数n充分大时随机 事件A的频率作为该随机事件概率的近似值。
上一张 下一张 主 页 退 出
二、概 率
(一)概率的统计定义 研究随机试验,仅知道可能发生哪些随机
事件是不够的,还需了解各种随机事件发生的 可能性大小,以揭示这些事件的内在的统计规 律性,从而指导实践。这就要求有一个能够刻 划事件发生可能性大小的数量指标,这指标应 该是事件本身所固有的,且不随人的主观意志 而改变,人们称之为概率(probability)。 事件A的概率记为P(A)。
P(x=xi)=pi i=1,2,… (4—3) 则称 (4—3)式为离散型随机变量x的概 率分布或分布。常用 分 布 列 (distribution series)来表示离散型随机变量:
上一张 下一张 主 页 退 出
x1 x2 … xn …. p1 p2 … pn … 显然离散型随机变量的概率分布具有pi≥0 和Σpi=1这两个基本性质。 三、连续型随机变量的概率分布
第一节 事件与概率
一、事 件 (一)必然现象与随机现象 在自然界与生产实践和科学试验中,人 们会观察到各种各样的现象,把它们归纳起 来,大体上分为两大类:
上一张 下一张 主 页 退 出
一类是可预言其结果的,即在保持条件不 变的情况下,重复进行试验,其结果总是确定 的,必然发生(或必然不发生)。这类现象称 为必然ite phenomena)。
这样定义的概率称为 统计概率 (statistics probability),或者称后验概 率(posterior probability)。
13种常见的统计分布ppt课件
![13种常见的统计分布ppt课件](https://img.taocdn.com/s3/m/554254b9afaad1f34693daef5ef7ba0d4a736db9.png)
属性
✓ 连续型分布 ✓ 用于描述以方向、位置、周期性(环形)时间、角度等为测度
单位的数字特征
应用
✓ 医学领域内一些现象是以方向或时间度量,具有周期性特点, 如某疾病在一年内各月份的发生数、胎儿在一昼夜间各时点 分娩的频度
✓ 有些数据本身就是以角度来表示:如脑电阴图的上升角,气 象环境的风向玫瑰图
✓ 这些数据不能用通常的均数、标准差描述
1 二项分布 Binomial Distribution
应用 条件
✓ 各观察单位只能具有相互对立的一种结果,如阳性或阴 性,生存或死亡等,属于两分类资料
✓ 已知发生某一结果(阳性)的概率为π,其对立结果的概 率为1-π,实际工作中要求π是从大量观察中获得比较稳 定的数值。
✓ n次试验在相同条件下进行,且各个观察单位的观察结果 相互独立,即每个观察单位的观察结果不会影响到其他观 察单位的结果。如要求疾病无传染性、无家族性等。
9 F分布 F Distribution
属性
✓ 连续型分布 ✓ 用于方差Γ分布 Γ Distribution or Gamma Distribution
属性
✓ 连续型分布 ✓ 正偏态分布,常用于正偏态分布的拟合
11 圆形分布 Circular Distribution
5 均匀分布 Uniform Distribution
属性
✓ 连续型分布 ✓ 数值计算的误差分析 ✓ 任意分布的随机数
理解
✓ 均匀分布在自然情况下极为罕见,而人工栽培的有一定株 行距的植物群落即是均匀分布
✓ 均匀,表示可能性相等的含义
6 正态分布 Normal Distribution
属性
✓ 连续型分布 ✓ 自然界、人类社会、心理和教育中大量现象均按正态形式分布,
《常用统计分布 》课件
![《常用统计分布 》课件](https://img.taocdn.com/s3/m/b0563efb1b37f111f18583d049649b6648d7092d.png)
泊松分布
用来描述单位时间内随机事件发生次数的概率 分布。
常用连续分布
正态分布
在自然界和社会科学中广泛 出现的连续概率分布。
t 分布
用于小样本情况下,对总体 均值的推断。
F 分布
用于分布
用于连续随机变量的简单和平均分布。
《常用统计分布 》PPT课件
本课程介绍了常用统计分布和数据分析中的应用。旨在帮助学生打好统计学 基础,理解各种常用分布的概念及实际应用。
统计学基础
统计学概述,基本统计方法及相关概念的介绍。
统计分布介绍
离散随机变量
离散型随机变量的定义和特征。
连续随机变量
连续型随机变量的定义和性质。
常用离散分布
二项分布
2 指数分布
用来描述事件间的时间间隔的概率分布。
数据分析应用
统计分布在数据分析中的应用
解释了统计分布在实际数据分析中的重要性 和应用场景。
常见统计分布实验操作
介绍了如何利用统计分布进行实验和数据收 集。
总结
对常用统计分布进行回顾,并讨论了如何基于这些分布进行数据分析。
常用统计分布
![常用统计分布](https://img.taocdn.com/s3/m/295046b60c22590102029dc3.png)
X5
X6
~
N (0,4), 则
X3
X4
X5 4
X6
~
N (0,1)
且 X1 X 2 与 X3 X 4 X5 X6 相互独立
2
4
所以( X1 X 2 )2 ( X 3 X 4 X 5 X 6 )2 ~ 2 (2)
2
4
则C1 1 2 ,C2 1 4 .
F0.05 (30,14) 2.31 . 附表5-2
F分布的上分位点具有如下性质 :
证明
F1
( n1 ,
n2 )
F
1 (n2 ,
. n1 )
因为F ~ F (n1, n2 ),
所以 1 P{F F1 (n1 , n2 )}
P
1 F
F1
1 ( n1 ,
则1 F
~
F (n2 , n1 ).
(2)
E(F ) n2 , n2 2
(n2 2),
演示
D(F
)
2n22(n1 n2 2) n1(n2 2)2(n2 4)
,
(n2 4)
(3) 设F ~ F (n1, n2 ),则 当n2 4时, 对 任 意x有
F E(F )
设 X 服从标准正态分布N (0,1), N (0,1) 的上
分位点 u 满足 P{ X u }
1
x2
e 2 dx
2π u
1 P{ X u } 1 (u )
即
(u ) 1 给定 ,由附表2可查得u的值.
u0.05 1.645,
常用概率分布
![常用概率分布](https://img.taocdn.com/s3/m/f3d79a15c950ad02de80d4d8d15abe23482f0387.png)
• 每次试验的条件不变,各事件发生
的概率不变。
二项概率分布
▲二项概率分布:如果一个事件A,在n次独
立试验中,每次试验都具有概率π,那么这一 事件A将在n次试验中出现k次的概率为:
▲
P( X ) CnX X (1 )n X
其中:
C
X n
n! X !(n X )!
(三)二项分布的特征
1、二项分布的图形特征
由此可见:
1、二项分布的图形取决于两个参数
与n ,高峰在= n 处。
2、当接近0.5时,图形是对称的;
离0.5愈远,对称性愈差。
3、当n 时,只要不太靠近0或1,
特别是nP和n(1-P)都大于5时,二项分 布则近似于正态分布。
• 正态分布曲线下的面积分布规律,可
以写成
• ±s ; ±1.96s; ±2.58s 。
xx
x
正态分布和标准正态分布曲线下面积分布规律
正态分布
标
准-正1 态~ 分+1布
-1 面~ 积+(1或6概8率.2)7%
~ -1.96 +1.96
-1.96~+1.9965.00%
~ 2.58
-
+2.58
均数作为总体均数的估计。
Poisson 分布在λ≥20时,近似于正态分布。
Poisson分布的特点:
•1、Poisson 分布的总体均数与总体方
差相等,均为。
•2、 Poisson 分布的观察结果有可加
性。如水样的细菌培养。
Poisson 分布的应用
• 一、概率估计 • 见例4-7 • 二、单侧累计概率计算
概率统计分布表(常用)
![概率统计分布表(常用)](https://img.taocdn.com/s3/m/bc03ca54551810a6f52486c9.png)
页脚标准正态表x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.81330.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.83891.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545页脚n\p 0.005 0. 0.025 0.050 0.100 0.250 0.750 0.900 0.950 0.975 0.990 0.9951 0.0000 0.0002 0.0010 0.0039 0.0158 0.1015 1.3233 2.7055 3.8415 5.0239 6.6349 7.87942 0.0100 0.0201 0.0506 0.1026 0.2107 0.5754 2.7726 4.6052 5.9915 7.3778 9.2103 10.59663 0.0717 0.1148 0.2158 0.3518 0.5844 1.2125 4.1083 6.2514 7.8147 9.3484 11.3449 12.83824 0.2070 0.2971 0.4844 0.7107 1.0636 1.9226 5.3853 7.7794 9.4877 11.1433 13.2767 14.86035 0.4117 0.5543 0.8312 1.1455 1.6103 2.6746 6.6257 9.2364 11.0705 12.8325 15.0863 16.74966 0.6757 0.8721 1.2373 1.6354 2.2041 3.4546 7.8408 10.6446 12.5916 14.4494 16.8119 18.54767 0.9893 1.2390 1.6899 2.1673 2.8331 4.2549 9.0371 12.0170 14.0671 16.0128 18.4753 20.27778 1.3444 1.6465 2.1797 2.7326 3.4895 5.0706 10.2189 13.3616 15.5073 17.5345 20.0902 21.95509 1.7349 2.0879 2.7004 3.3251 4.1682 5.8988 11.3888 14.6837 16.9190 19.0228 21.6660 23.589410 2.1559 2.5582 3.2470 3.9403 4.8652 6.7372 12.5489 15.9872 18.3070 20.4832 23.2093 25.188211 2.6032 3.0535 3.8157 4.5748 5.5778 7.5841 13.7007 17.2750 19.6751 21.9200 24.7250 26.756812 3.0738 3.5706 4.4038 5.2260 6.3038 8.4384 14.8454 18.5493 21.0261 23.3367 26.2170 28.299513 3.5650 4.1069 5.0088 5.8919 7.0415 9.2991 15.9839 19.8119 22.3620 24.7356 27.6882 29.819514 4.0747 4.6604 5.6287 6.5706 7.7895 10.1653 17.1169 21.0641 23.6848 26.1189 29.1412 31.319315 4.6009 5.2293 6.2621 7.2609 8.5468 11.0365 18.2451 22.3071 24.9958 27.4884 30.5779 32.801316 5.1422 5.8122 6.9077 7.9616 9.3122 11.9122 19.3689 23.5418 26.2962 28.8454 31.9999 34.267217 5.6972 6.4078 7.5642 8.6718 10.0852 12.7919 20.4887 24.7690 27.5871 30.1910 33.4087 35.718518 6.2648 7.0149 8.2307 9.3905 10.8649 13.6753 21.6049 25.9894 28.8693 31.5264 34.8053 37.1565 页脚页脚页脚T分布n\p 0.750 0.800 0.850 0.900 0.950 0.975 0.990 0.995 0.9975 0.9990 0.99951 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 127.3213 318.3088 636.61922 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 14.0890 22.3271 31.59913 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 7.4533 10.2145 12.92404 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 7.1732 8.61035 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 5.8934 6.86886 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 4.3168 5.2076 5.95887 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.0293 4.7853 5.40798 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 3.8325 4.5008 5.04139 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 3.6897 4.2968 4.780910 0.6998 0.8791 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693 3.5814 4.1437 4.586911 0.6974 0.8755 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058 3.4966 4.0247 4.437012 0.6955 0.8726 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545 3.4284 3.9296 4.317813 0.6938 0.8702 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123 3.3725 3.8520 4.220814 0.6924 0.8681 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768 3.3257 3.7874 4.140515 0.6912 0.8662 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467 3.2860 3.7328 4.0728页脚页脚76 0.6777 0.8464 1.0436 1.2928 1.6652 1.9917 2.3764 2.6421 2.8913 3.2010 3.423277 0.6777 0.8463 1.0435 1.2926 1.6649 1.9913 2.3758 2.6412 2.8902 3.1995 3.421478 0.6776 0.8463 1.0434 1.2925 1.6646 1.9908 2.3751 2.6403 2.8891 3.1980 3.419779 0.6776 0.8462 1.0433 1.2924 1.6644 1.9905 2.3745 2.6395 2.8880 3.1966 3.418080 0.6776 0.8461 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387 2.8870 3.1953 3.416381 0.6775 0.8461 1.0431 1.2921 1.6639 1.9897 2.3733 2.6379 2.8860 3.1939 3.414782 0.6775 0.8460 1.0430 1.2920 1.6636 1.9893 2.3727 2.6371 2.8850 3.1926 3.413283 0.6775 0.8460 1.0429 1.2918 1.6634 1.9890 2.3721 2.6364 2.8840 3.1913 3.411684 0.6774 0.8459 1.0429 1.2917 1.6632 1.9886 2.3716 2.6356 2.8831 3.1901 3.410285 0.6774 0.8459 1.0428 1.2916 1.6630 1.9883 2.3710 2.6349 2.8822 3.1889 3.408786 0.6774 0.8458 1.0427 1.2915 1.6628 1.9879 2.3705 2.6342 2.8813 3.1877 3.407387 0.6773 0.8458 1.0426 1.2914 1.6626 1.9876 2.3700 2.6335 2.8804 3.1866 3.405988 0.6773 0.8457 1.0426 1.2912 1.6624 1.9873 2.3695 2.6329 2.8795 3.1854 3.404589 0.6773 0.8457 1.0425 1.2911 1.6622 1.9870 2.3690 2.6322 2.8787 3.1843 3.403290 0.6772 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 2.8779 3.1833 3.4019 100 0.6770 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.1737 3.3905 120 0.6765 0.8446 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 2.8599 3.1595 3.3735F分布n\m 1 2 3 5 6 7 8 10 15 20 301 39.86 49.50 53.59 55.83 57.24 58.91 59.44 59.86 61.22 61.74 62.262 8.53 9.00 9.16 9.24 9.29 9.35 9.37 9.38 9.42 9.44 9.46 页脚P= 0.99页脚页脚页脚页脚页脚页脚页脚页脚页脚Excel公式1.正态分布函数Excel计算正态分布时,使用NORMDIST函数,其格式如下:NORMDIST(a,μ,σ,累积)其中,“累积”:若为TRUE,则输出分布函数值,即P{X≤a};若为FALSE,则为概率密度函数值.示例:已知X服从正态分布,μ=600,σ=100,求P{X≤500}.输入公式NORMDIST(500, 600, 100, TRUE)得到的结果为0.158655,即P{X≤500}=0.158655.2、正态分布函数的反函数Excel计算正态分布函数的反函数使用NORMINV函数,格式如下:NORMINV(p,μ,σ),此公式计算a,使P{X ≤a}=p3标准正态分布反函数=NORMSINV(0.975)3、t分布Excel计算t分布的值,采用TDIST函数,格式如下:TDIST(a,自由度,侧数)其中,“侧数”:指明分布为单侧或双侧:若为1,为单侧;此命令输出P{ T >a }页脚若为2,为双侧.此命令输出P{ |T| >a}示例:设T服从自由度为24的t分布,求P(T>1.711).已知t=1.711,df=24,采用单侧,则T分布的值:TDIST(1.711,24,1)得到0.05,即P(T > 1.711)=0.05.4. t分布的反函数Excel使用TINV函数得到t分布的反函数,格式如下:TINV(α,自由度)输出T 分布的α / 2 分位点:t_α/2_(n)若求临界值tα(n),则使用公式=TINV(2*α, n)5.返回F分布的函数是FDISTFDIST(x,degrees_freedom1,degrees_freedom2)函数FDIST 的计算公式为FDIST=P( F>x ),5.F分布的反函数FINV(probability,deg_freedom1,deg_freedom2)已知probability=P( F>x ),求x页脚。
概率论与数理统计常用的统计分布资料讲解
![概率论与数理统计常用的统计分布资料讲解](https://img.taocdn.com/s3/m/201ea98fbb4cf7ec4afed07c.png)
设 X~N(0,1),Y~2(n),且 X , Y 相互独立,令
t X Y /n
称 t 服从自由度为 n 的 t 分布,记为 t ~ t (n ) . t ( n ) 的上侧分位点记为 t ( n )
t ( n ) 的双侧分位点记为t / 2 (n)
t /2 (n)
O
t / 2 (n )
2020/4/3概0 率论与数理统计
Review
2
设 X1,X2,,Xn是来自总体 X~N(0,1)的样本,令
2X12X2 2Xn2
称 2 服从自由度为 n 的 2 分布,记为 2 ~ 2(n).
2
E(2 ) n
D(2) 2n
2 ( n ) 的上侧分位点记为2 (n)
2020/4/3概0 率论与数理统计
O
2
(
n
)
Review
10
P |X| P 3 | 1 X0.1 0 0 |P { 3nX | 9| 9.0 7.%0.}3 9.7 9 %.
2020/4/3概0 率论与数理统计
• 例3 在设计导弹发射装置时, 重要事情之
一是研究弹着点偏离目标中心的距离的方 差.对于一类导弹发射装置, 弹着点偏离目标 中心的距离服从正态分布N(μ,100), 现在进 行了25次发射试验, 用S2记这25次试验中弹 着点偏离目标中心的距离的样本方差. 试求 S2超过50的概率.
• 例1 设 X~N(21,22), X1,X2,,X25 为X的一个样本,求: (1) 样本均值的数学期望与方差; (2) P{|X21|0.24}.
解(1)由 X: N(,2), 得
n
E ( X ) 2 1 ,D ( X ) 2 /n 2 2 /2 5 0 .4 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
概率论常用统计分布
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢你的阅读