数据结构 栈

合集下载

数据结构-栈与队列

数据结构-栈与队列

栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=

1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。

栈和队列数据结构的特点

栈和队列数据结构的特点

栈和队列数据结构的特点栈和队列是常用的数据结构,它们在程序设计和算法实现中有着重要的作用。

下面将分别介绍栈和队列的特点。

一、栈(Stack)的特点:1.先进后出(FILO):栈是一种只允许在栈顶进行插入和删除操作的线性数据结构。

元素的插入和删除都只能在栈顶进行,最后插入的元素是第一个被删除的元素。

2.后进先出(LIFO):栈中最后一个进栈的元素是第一个出栈的元素。

3.只能在栈顶进行操作:栈的操作局限于栈顶,在栈顶可以执行的操作有入栈和出栈操作,其他位置的元素无法直接访问和操作。

4.压入和弹出操作:在栈中,我们只能在栈的一端(通常是栈顶)进行数据的插入和删除操作,分别称为“压入”和“弹出”。

5.递归的应用:栈的结构特点使得它在递归算法的实现中非常有用。

递归函数调用时,每次进入一层递归都需要保存当前的状态,包括参数、局部变量等信息,在递归返回时再恢复状态。

6.存储空间的限制:栈的存储空间是有限的,当栈的元素数量超过了栈的容量时,就会发生栈溢出错误。

7.实现方式:栈可以使用数组或链表来实现。

栈的典型应用场景包括函数调用、表达式求值、括号匹配、迷宫求解等。

二、队列(Queue)的特点:1.先进先出(FIFO):队列是一种只允许在队尾插入操作,在队头删除操作的线性数据结构。

最先插入的元素是第一个被删除的元素,最后插入的元素是最后被删除的元素。

2.队头和队尾操作:队列的操作局限于队头和队尾,在队头可以执行的操作有删除,称为“出队”操作;在队尾可以执行的操作有插入,称为“入队”操作。

3.可用空间有限:队列的存储空间是有限的,当队列的元素数量超过了队列的容量时,就会无法再插入新的元素,即发生队列溢出错误。

4.实现方式:队列可以使用数组或链表来实现。

若使用链表实现的队列,可实现动态调整队列的大小。

队列的典型应用场景包括多线程任务调度、缓冲队列、消息队列等。

栈和队列都是特殊的线性数据结构,它们各自的特点使它们在不同的应用场景下得到广泛的应用。

数据结构栈说课稿

数据结构栈说课稿

数据结构栈说课稿数据结构栈是计算机科学中一种重要的数据结构,它具有先进后出(Last-In-First-Out)的特点。

在本篇文章中,我将从深度和广度两个角度出发,对数据结构栈进行评估,并深入探讨它的多个方面。

一、基础知识介绍1.1 栈的定义栈是一种线性数据结构,具有一端插入和删除操作的特点。

插入操作称为进栈(push),删除操作称为出栈(pop)。

栈从一端进行操作,该端通常被称为栈顶(top),另一端称为栈底(bottom)。

1.2 栈的应用栈在计算机科学和实际应用中经常被使用,其中一些典型的应用场景包括:- 括号匹配:利用栈来判断表达式中的括号是否配对合法。

- 函数调用:函数调用时,需要在内存中保存当前函数的执行上下文等信息,通常使用栈来实现函数调用的过程。

- 浏览器的前进和后退功能:浏览器通过使用栈来记录用户的浏览历史,以便可以回退到先前访问过的页面。

二、深入探讨栈2.1 栈的实现方式栈可以通过数组或链表来实现。

使用数组实现的栈称为顺序栈,使用链表实现的栈称为链式栈。

2.2 栈的操作复杂度分析栈的基本操作包括进栈和出栈,它们的时间复杂度都是O(1),即常数时间。

这是因为栈的操作只涉及栈顶元素,而不需要遍历整个栈。

2.3 栈的扩展功能除了基本的进栈和出栈操作,栈还可以拥有一些扩展功能,例如:- 获取栈顶元素:通过查看栈顶元素,可以获取当前栈中最新的数据。

- 判断栈是否为空:可以通过判断栈是否为空来检查是否需要进行出栈操作。

- 获取栈中元素的个数:通过统计栈中元素的个数,可以了解栈的大小。

三、对栈的观点和理解数据结构栈在计算机科学中的应用非常广泛,对于理解许多算法和问题解决方法都起到了关键作用。

它的先进后出的特点使得栈在模拟现实世界的某些场景时非常方便,例如函数的调用和括号的匹配等。

在实际编程中,栈的应用也非常常见,比如使用栈可以实现逆序输出一个字符串、判断一个字符串是否为回文字符串等等。

栈还可以作为其他数据结构的辅助结构,例如在图算法中使用深度优先搜索(DFS)时,可以使用栈来保存搜索路径。

数据结构 课件 第3章 栈

数据结构 课件 第3章 栈
实用数据结构基础
第3章 栈
第 3 章 栈

识点
栈的定义和特点 栈的基本运算和算法 栈的典型应用


后缀表达式的算法 数制的换算 利用本章的基本知识设计相关的应用问题


掌握栈的特点 掌握栈的基本运算 熟悉栈的各种实际应用 能设计栈应用的典型算法 了解栈的运算时间复杂度分析
第3章 目录

2.顺序栈运算的基本算法 (1)置空栈 首先建立栈空间,然后初始化栈顶指针。 SeqStack *Snull( ) { SeqStack *s; s=new (SeqStack);
// 在C语言中用s=malloc(sizeof(SeqStack)) ;
s->top= –1; return s; }
3-1 栈的定义与运算 3-2 栈的存储和实现 3-3 栈的应用举例 小 结 验证性实验3: 栈子系统 自主设计实验3:后缀表达式求值 单元练习3
3-1 栈的定义和运算
3-1-1 栈(Stack)的定义
1. 栈的定义 栈是限制在表尾进行插入和删除的线性表。 进栈 出栈
an …… a3 a2 a1
图3-1栈的 示意图
3-3.
3-3-1 数制转换
栈的应用举例
数值进位制的换算是计算机实现计算和处理的 基本问题。比如将十进制数N转换为j进制的数,其 解决的方法很多,其中一个常用的算法是除j取余法。 将十进制数每次除以j,所得的余数依次入栈,然后 按“后进先出”的次序出栈便得到转换的结果。 其算法原理是: N =(N / j)* j + N % j
由于栈的操作只能在栈顶进行的,所以用链表的头部做
栈顶是最合适的。链栈结构如图3-4所示。

大学数据结构课件--第3章 栈和队列

大学数据结构课件--第3章 栈和队列
top top 栈空 F E D C B A
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0

栈和队列先进先出和后进先出的数据结构

栈和队列先进先出和后进先出的数据结构

栈和队列先进先出和后进先出的数据结构栈和队列是常用的数据结构,它们分别以先进先出(FIFO)和后进先出(LIFO)的方式来组织和管理数据。

在许多编程语言中,栈和队列被广泛应用于解决各种问题。

本文将从定义、特点、应用和实现这几个方面来介绍栈和队列。

一、定义栈(Stack)是一种只允许在固定一端进行插入和删除操作的线性数据结构。

这一端被称为栈顶,而另一端被称为栈底。

栈的特点是先进后出。

队列(Queue)是一种先进先出的线性数据结构,允许在一端进行插入操作,而在另一端进行删除操作。

插入操作在队列的尾部进行,删除操作则在队列的头部进行。

二、特点2.1 栈的特点(1)插入和删除操作只能在栈顶进行,保证数据的顺序。

(2)栈是一种后进先出(LIFO)的数据结构,也就是最后插入的元素最先被删除。

(3)栈只能在栈顶进行插入和删除操作,不允许在中间或者底部进行操作。

2.2 队列的特点(1)插入操作只能在队列的尾部进行,保证数据的顺序。

(2)删除操作只能在队列的头部进行,始终删除最先插入的元素。

(3)队列是一种先进先出(FIFO)的数据结构,也就是最先插入的元素最早被删除。

三、应用3.1 栈的应用(1)函数调用和递归:栈被用于保存函数调用时的局部变量和返回地址。

(2)表达式求值:使用栈来实现中缀表达式转换为后缀表达式,然后计算结果。

(3)括号匹配:通过栈检查括号是否配对合法。

(4)浏览器的前进和后退:把浏览器的访问记录保存在栈中,方便前进和后退操作。

3.2 队列的应用(1)任务调度:使用队列管理任务,在现有任务执行完毕后按照先后顺序执行新任务。

(2)缓存管理:常用的缓存淘汰策略是先进先出,即最早进入缓存的数据最早被淘汰。

(3)消息队列:实现进程间的异步通信,提高系统的并发性和可扩展性。

(4)打印队列:打印任务按照先后顺序排队执行,保证打印的顺序。

四、实现栈和队列可以通过数组或链表来实现。

使用数组实现的栈和队列称为顺序栈和顺序队列,而使用链表实现的栈和队列称为链式栈和链式队列。

栈的共享数据结构

栈的共享数据结构

栈的共享数据结构栈(Stack)是一种数据结构,用于在计算机科学中管理和组织数据。

它遵循先进后出(LIFO)的原则,即最后进入堆栈的元素最先出来。

栈可以通过数组或链表实现,但无论如何实现,栈都具有一些共享的数据结构。

在栈的实现中,通常有两个主要操作:push(入栈)和pop(出栈)。

push操作将一个元素添加到栈的顶部,而pop操作则从栈顶移除元素。

此外,栈还有一个peek操作,它返回栈顶的元素,但不对栈做任何修改。

对于栈的实现,有两种常见的共享数据结构,它们是数组和链表。

1.数组实现栈:数组实现栈时,最简单的方式是使用固定大小的数组。

我们需要一个指针来跟踪栈顶元素在数组中的位置。

当执行push操作时,只需将元素添加到当前栈顶指针的下一个位置,并更新栈顶指针。

当执行pop操作时,只需将栈顶指针向下移一位,并返回该位置的元素。

限制性固定大小的数组实现栈的一个问题是可能会溢出。

当栈已满时,尝试push新元素将导致溢出。

为了解决这个问题,通常我们会使用动态大小的数组。

当栈满时,我们会先创建一个更大的数组,并将现有元素复制到新数组,然后继续push新元素。

数组实现栈的优点是简单且常数时间(O(1))的push和pop操作。

然而,其缺点是动态分配内存时可能会导致性能下降。

2.链表实现栈:链表实现栈的常见方法是使用单链表。

我们需要一个指针来跟踪栈顶元素,同时该指针将指向单链表的头。

当执行push操作时,我们只需要创建一个新节点,并将其插入到链表的头部。

当执行pop操作时,只需将栈顶指针指向下一个节点,并返回当前节点的值。

链表实现栈的优点是可以动态添加节点而无需担心溢出问题。

除此之外,链表实现栈的内存分配比数组实现更灵活,因为它只在需要时分配新节点。

与数组实现相比,链表实现栈的缺点是可能导致内存分配更频繁,并且每个节点需要存储额外的指针。

除了数组和链表之外,栈的共享数据结构还可以使用动态数组(Vector)或双链表(Double Linked List)等其他数据结构来实现。

数据结构第3章栈

数据结构第3章栈
Elemtype pop(sqstack *s) { /*若栈s不为空,则删除栈顶元素*/ Elemtype x; if(s->top<0) return NULL; /*栈空*/ x=s->stack[s->top]; s->top--; return x; }
13
(4)取栈顶元素操作
Elemtype gettop(sqstack *s) { /*若栈s不为空,则返回栈顶元素*/ If(s->top<0) return NULL; /*栈空*/ return (s->stack[s->top]); }

29
算术表达式求值
在计算机中,任何一个表达式都是由: 操作数(operand)、运算符(operator)和 界限符(delimiter)组成的。 其中操作数可以是常数,也可以是变量或常量的 标识符;运算符可以是算术运算体符、关系运算符和 逻辑符;界限符为左右括号和标识表达式结束的结束 符。
30
6
存储结构
栈是一种特殊的线性表,有两种存储方式: 顺序存储结构存储
链式存储结构存储。


7
顺序栈的数组表示
与第二章讨论的一般的顺序存储结构的线性表 一样,利用一组地址连续的存储单元依次存放自 栈底到栈顶的数据元素,这种形式的栈也称为顺 序栈。 使用一维数组来作为栈的顺序存储空间。 设指针top指向栈顶元素的当前位置,以数组 小下标的一端作为栈底。 top=0时为空栈,元素进栈时指针top不断地 加1,当top等于数组的最大下标值时则栈满。
5)假如读出的运算符的优先级不大于运算符栈栈顶运算符
的优先级,则从操作数栈连续退出两个操作数,从运算符栈中 退出一个运算符,然后作相应的运算,并将运算结果压入操作 数栈。此时读出的运算符下次重新考虑(即不读入下一个符号 )。

数据结构-栈

数据结构-栈

数据结构-栈⼀、栈1. 1. 为什么要学习栈?栈是什么?为什么要学习它?现在先来说说栈的辉煌作⽤吧!在计算机领域中,栈是⼀种不可忽略的概念,⽆论从它的结构上,还是存储数据⽅⾯,它对于学习数据结构的⼈们来说,都是⾮常重要的。

那么就会有⼈问,栈究竟有什么作⽤,让我们这么重视它?⾸先,栈具有⾮常强⼤的“记忆”功能,它可以保存对你有作⽤的数据,也可以被叫做保存现场;其次,当咱们调⽤⼀个带参函数时候,被调⽤的函数的形参,在编译器编译的时候,这些形参都需要⼀定的空间存放他们,这时计算机就会默认帮你保存到栈中了!1. 2. 栈的定义栈的作⽤,这是⼀个咱们⽣活中处处⽤到,但是却⼜没发现的⼀种现象,例如当你拿个篮⼦去买苹果,那么你最先挑选的苹果就是在篮⼦的最底下,最后挑选的苹果就在篮⼦的最上边,那么这就造成了这么⼀种现象:先拿进篮⼦的苹果,要最后才能取出来;相反,最后拿进篮⼦的苹果,就能最先取出来!栈是限定只能在表尾进⾏插⼊和删除的线性表。

我们把允许插⼊和删除的⼀端称作栈顶(Top),另⼀端称作栈底(bottom)。

不含任何数据元素的栈被称作空栈,栈也被称为先进后出的线性表(具有线性关系)。

⽽栈的特殊性,就是在表中想进⾏插⼊和删除的操作,只能在栈顶进⾏。

这也就使得了:栈底是⾮常稳定的,因为先进来的元素都被放在了栈底。

栈的插⼊操作:叫做进栈,也叫作压栈,⼊栈。

栈的删除操作:叫做出栈,也叫弹栈。

1. 3. 进栈出栈变化形式现在请⼤家思考这样的⼀个问题:最先进栈的元素,是不是只能最后才能出来呢?答案是不⼀定的,这个问题就要细分情况了。

栈对线性表的插⼊和删除的位置进⾏了限制,并没有对元素的进出时间进⾏限制,这也就是说,在不是所有元素都进栈的情况下,事先进去的元素也可以先出站,只要确保⼀点:栈元素是从栈顶出栈就可以了!举例来说,现在有3个整型数元素1、2、3依次进栈,会有哪些出栈次序呢?第⼀种:1、2、3依次进,再3、2、1依次出栈。

数据结构栈实验心得体会

数据结构栈实验心得体会

数据结构栈实验心得体会心得体会是一种产生感想之后写下的文字,主要作用是用来记录自己的所思所感,是一种读书和学习实践后所写的感受文字下面是作者精心整理的数据结构栈实验心得体会(通用6篇),仅供参考,大家一起来看看吧。

第一篇: 数据结构栈实验心得体会通过两周的课程设计,完成了预定的目标,其中有很多的随想。

老师的题目发下来的很早,大概提前了3周,当时就着手搜索有关线索二叉树的思想,思路,借了一本《数据结构-c语言描述》,在大体上就有了一个轮廓,先是输入二叉树,在对二叉树进行线索化,依次往下,但在具体实现时,遇到了很多问题:首先是思想的确定,其非常重要,以前有了这个想法,现在愈加清晰起来,因此,花了大量的时间在插入删除的具体操作设计上,大概三个晚上的时间,对其中什么不清晰明确之处均加以推敲,效果是显著的,在上机上相应的节约了时间。

通过具体的实验编码,思路是对的,但是在小问题上摔了一次又一次,大部分时间都是花在这方面,这个节点没传过来啊之类的,以后应该搞一个小册子,记录一些错误的集合,以避免再犯,思想与C语言联系起来,才是我们所需要的,即常说的理论与实践的关系。

数据结构是基础的一门课,对于有过编程经验的人,结合自己的编程体会去悟它的思想;而且我觉得随着编程经历的丰富对它的体会越深入,最初接触是对一些思想可能只是生硬的记忆,随着学习的深入逐渐领悟了很多。

看了这次课程设计的题目,虽然具体要求没有看清,但是总结一下,可以看出,其需要我们能把一个具体案例或一件事情反映为程序来表达,数据结构就是桥梁,通过自己的设计,使应用能力得以融汇,对与问题,具有了初步的分析,继而解决之的能力,感觉对以后的学习会有很大的帮助,学习无非是用于实践。

认识到自己的不足,希望能有进一步的发展。

第二篇: 数据结构栈实验心得体会做了一个星期的程序设计终于做完了,在这次程序设计课中,真是让我获益匪浅,我突然发现写程序还挺有意思的。

由于上学期的c语言跟这学期的数据结构都算不上真正的懂,对于书上的稍微难点的知识就是是而非的,所以我只是对老师的程序理解,我也试着去改变了一些变量,自己也尽量多的去理解老师做程序的思路。

数据结构中栈的介绍

数据结构中栈的介绍

数据结构中栈的介绍1.栈的概念栈(Stack )是一种特殊的表,这种表只在表的一端进行插入和删除操作。

允许插入和 删除数据元素的这一端称为栈顶;而另一固定的一端称为栈底。

不含任何元素的栈称为空栈。

栈的修改是按后进先出的原则进行的。

栈又称为后进先出 (Last In First Out ) 表,简 称为LIFO 表。

如图1所示:假设一个栈 S 中的元素为a n ,a n-1,..,a 1,则称a 1为栈底元素,a n 为栈顶元由于栈是一个特殊的表,可以用一维数组来实现栈。

同时设立指针 来指示栈顶元素的当前位置。

我们用一个数组s[1..m]来表示一个栈时,将栈底固定在数组的底部,即s[1]为最早入 栈的元素,并让栈向数组上方 (下标增大的方向)扩展。

当t=0时,表示这个栈为一个空栈。

当t=m 时,表示这个栈已满。

可以用下列方式定义栈:con stm 我表目数的上限; typestack=array[1..m] of stype; { var s:stack;t:integer; { 栈顶指针}进栈、出栈操作的过程和函数(假设栈元素的数据类型为整型):(1)进栈过程(push )① 若t >m 时,则给出溢出信息,作出错处理(进栈前首先检查栈是否已满,满则溢 出;不满则作②);② 置t=t+1 (栈指针加1,指向进栈地址); ③ S (t )=x ,结束(x 为新进栈的元素);P rocedure p ush (var s:stack; x:i nteger;var t:i nteger ); begin if t=m the n write In ('overflow') else begint (称为栈顶指针)栈的数据类型}入ft2.栈的存储与操作图2t:=t+1;s[t]:=x; end end;⑵退栈函数(pop )① 若t < 0,则给出下溢信息,作出错处理(退栈前先检查是否已为空栈, 空则下溢;不空则作②);② x=s(t),(退栈后的元素赋给 x ); ③ t=t-1,结束(栈指针减1,指向栈顶)。

数据结构说课稿——栈

数据结构说课稿——栈

数据结构说课稿——栈欢迎大家,今天我非常高兴的为大家说话,我的话题是《数据结构说课稿栈》。

首先,让我们先了解什么是栈。

栈,也叫做堆栈,是一种先进后出(FILO)和后进先出(LIFO)的抽象数据类型,只允许在表的一端进行插入和删除操作。

它也是一种特殊的线性表,它的特点是只能在表的一端进行操作,这一端叫作栈顶,另一端叫作栈底。

它有着比较高的性能,一般用于存储临时数据。

栈的用法十分广泛,它可以用来管理一些中断服务,比如实现多重任务的调度,还可以用来实现,实现局部变量和参数的保存,实现程序中的子例程,并记录其局部状态,实现编译器中的中间代码等多种目的。

其次,我们来讲解栈的实现方法。

栈的实现可以用顺序表、链表或者数组等多种方式来实现,其中顺序表的实现方法比较简单易懂,是一般实现栈的有效方式。

其实就是使用一个顺序表,然后只使用顺序表的末端,即顺序表末端为栈顶,从表尾向表头逐步插入或删除元素,这样就可以实现栈的操作了。

另外,一种特殊的栈,叫做“操作系统栈”,是一种特殊的堆栈,它用于存储操作系统控制块中的一些必要信息,以实现操作系统中进程的切换,比如保存页表的页表索引等。

最后,我们讨论一下栈的应用。

栈在计算机科学中的应用非常广泛,比如用于复杂算法的计算,用于编译器的中间代码中,用于函数调用的参数传递,用于深度优先搜索算法中,用于排序和筛选等。

简而言之,栈在计算机科学中的应用非常多,几乎没有什么不能用栈来实现。

以上就是本次说课稿中关于栈的介绍,栈是一种抽象数据类型,它可以用来实现多重任务的调度,实现局部变量和参数的保存,实现程序中的子例程以及实现操作系统栈等多种用途,它还用于各种复杂算法的计算,用于函数调用的参数传递,用于深度优先搜索算法中,用于排序和筛选等,栈的实现方法多种多样,其中顺序表的实现方法比较为实用。

本次讲解到此结束,谢谢大家!。

大学《数据结构》第三章:栈和队列-第一节-栈

大学《数据结构》第三章:栈和队列-第一节-栈

第一节栈
一、栈的定义及其运算
1、栈的定义
栈(Stack):是限定在表的一端进行插入和删除运算的线性表,通常将插入、删除的一端称为栈项(top),另一端称为栈底(bottom)。

不含元素的空表称为空栈。

栈的修改是按后进先出的原则进行的,因此,栈又称为后进先出(Last In First Out)的线性表,简称为LIFO表。

真题选解
(例题·填空题)1、如图所示,设输入元素的顺序是(A,B,C,D),通过栈的变换,在输出端可得到各种排列。

若输出序列的第一个元素为D,则输出序列为。

隐藏答案
【答案】DCBA
【解析】根据堆栈"先进后出"的原则,若输出序列的第一个元素为D,则ABCD入栈,输出序列为DCBA
2、栈的基本运算
(1)置空栈InitStack(&S):构造一个空栈S。

数据结构实验报告栈及其应用docx

数据结构实验报告栈及其应用docx

引言概述:正文内容:一、栈的概念和基本特性1.1栈的定义栈是一种操作受限的线性表,只允许在一端进行插入和删除操作,该端称为栈顶,另一端称为栈底。

栈的特点是“后进先出”(LIFO,LastInFirstOut)。

1.2栈的基本操作栈包含几个基本操作,如入栈(Push)、出栈(Pop)、判空(IsEmpty)、判满(IsFull)等。

二、栈的顺序存储结构实现方式2.1顺序存储结构的定义栈的顺序存储结构是利用一组地质连续的存储单元依次存储栈中的元素。

数组可以作为栈的顺序存储结构进行实现。

2.2顺序存储结构的入栈操作入栈操作需要将新元素插入栈顶,并更新栈顶指针。

2.3顺序存储结构的出栈操作出栈操作需要删除栈顶元素,并更新栈顶指针。

三、栈的链式存储结构实现方式3.1链式存储结构的定义栈的链式存储结构是利用链表实现栈的存储结构。

每个链表节点包含存储元素的数据域和指向下一个节点的指针域。

3.2链式存储结构的入栈操作入栈操作需要创建一个新节点并插入到链表头部,并更新栈顶指针。

3.3链式存储结构的出栈操作出栈操作需要删除链表头节点,并更新栈顶指针。

四、栈的应用4.1递归算法栈常用于实现递归算法,通过将递归函数的参数和局部变量保存在栈中,实现递归函数的调用和返回。

4.2括号匹配栈可以判断表达式中的括号是否匹配,通过入栈和出栈操作进行括号的匹配过程。

4.3后缀表达式求值栈可以用来实现后缀表达式的求值过程,通过入栈和出栈操作计算后缀表达式的值。

五、总结本文详细讨论了栈的概念、特性、实现方式和应用。

通过了解栈的基本操作,我们可以更好地理解栈的原理和使用。

栈在计算机科学领域具有广泛的应用,对于实现递归算法、括号匹配和后缀表达式求值等问题都有重要作用。

对于进一步的学习和实践,我们需要深入理解栈的原理和实现方式,并能熟练运用栈解决问题。

希望本文能为读者对栈及其应用有一个清晰的认识。

数据结构栈和队列实验报告

数据结构栈和队列实验报告

数据结构栈和队列实验报告实验目的:掌握数据结构栈和队列的基本概念和操作,通过实验加深对栈和队列的理解。

1.实验原理1.1 栈的原理栈是一种具有后进先出(LIFO)特点的数据结构。

在栈中,只允许在栈顶进行插入、删除和访问操作,并且这些操作仅限于栈顶元素。

1.2 队列的原理队列是一种具有先进先出(FIFO)特点的数据结构。

在队列中,元素的插入操作只能在队列的一端进行,称为队尾。

而元素的删除操作只能在队列的另一端进行,称为队头。

2.实验要求2.1 实现栈和队列的基本操作●栈的基本操作:压栈、弹栈、获取栈顶元素和判断栈是否为空。

●队列的基本操作:入队、出队、获取队头元素和判断队列是否为空。

2.2 进行相应操作的测试●对栈进行插入、删除、访问等操作的测试,并输出测试结果。

●对队列进行插入、删除、访问等操作的测试,并输出测试结果。

3.实验环境●操作系统:Windows 10●开发工具:C++编译器4.实验步骤4.1 栈的实现步骤1:定义栈的结构体,包含栈的容量和栈顶指针。

步骤2:根据栈的容量动态分配内存。

步骤3:实现栈的基本操作函数:压栈、弹栈、获取栈顶元素和判断栈是否为空。

步骤4:进行栈的相关测试。

4.2 队列的实现步骤1:定义队列的结构体,包含队列的容量、队头和队尾指针。

步骤2:根据队列的容量动态分配内存。

步骤3:实现队列的基本操作函数:入队、出队、获取队头元素和判断队列是否为空。

步骤4:进行队列的相关测试。

5.实验结果与分析5.1 栈的测试结果●压栈操作测试:将若干元素压入栈中。

●弹栈操作测试:依次弹出栈中的元素。

●获取栈顶元素测试:输出栈顶元素。

●判断栈是否为空测试:输出栈是否为空的结果。

5.2 队列的测试结果●入队操作测试:将若干元素入队。

●出队操作测试:依次出队元素。

●获取队头元素测试:输出队头元素。

●判断队列是否为空测试:输出队列是否为空的结果。

6.结论通过本次实验,我们掌握了栈和队列的基本概念和操作。

计算机数据结构知识点梳理 栈的基本概念及应用

计算机数据结构知识点梳理		栈的基本概念及应用

2、进栈和出栈是栈的最基本操作,要能灵活运用后进先出原则解决实际问题。其中, 经典选择题的题型是考查出栈顺序的可能性,用排除法很容易解决此类问题。
另外,对于顺序存储结构的栈还需注意: (1)进栈时要判断栈是否满; (2)出栈时要判断栈是否空。
[题1] 设n个元素进栈序列是p1,p2,p3,…,pn,其输出序列是1,2,3,…,n,若 pn=1,则pi(1≤i≤n-1)的值是( )。
A.可能是2 B.一定是2 C.不可能是2 D.不可能是3
分析:当p3=1时,进栈序列是p1,p2,p3,…,pn,由输出序列可知,p1,p2,p3 都进栈,出栈p3,此后紧跟着出栈的一个元素是2,而p1不可能紧跟着p3出栈, 因为栈中前面有p2,因此p1不可能是2。
解答:C。
知识点3:栈的基本概念及应用
1、栈是运算受限(限制在表的一端进行插入和删除)的线性表,允许插入、删除的这一 端称为栈顶,另一个固定端称为栈底。栈是一种先进后出的线性结构。
一串数据依次通过一个栈,并不能保证出栈数据的次序总是倒置,可以产生多种出栈 序列。一串数据通过一个栈后的次序由每个数据之间的进栈、出栈操作序列决定,只 有当所有数据“全部进栈后再全部出栈”才能使数据倒置。事实上,存在一种操作序 列——“进栈、出栈、进栈、出栈……”——可以使数据通过栈后仍然保持次序不变。
A.n-i+1
B.n-i
C.i
D.有多种可能
分析:本题主要考查栈的先进后出的特性。当pn=1时,进栈序列是p1,p2, p3,…,1,由输出序列可知,p1,p2,p3,…,pn进栈,然后依次出栈,即pn1=2,pn-2=3,…,p1=n,也就是说pi是p1,p2,p3,…,pn,其输出序列是1,2,3,…,n,若 p3=1,则p1(1≤i≤n-1)的值是( )。

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。

栈有两个基本操作:入栈(push)和出栈(pop)。

入栈指将元素压入栈中,出栈指将最近压入的元素弹出。

二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。

2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。

3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。

四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。

队列有两个基本操作:入队(enqueue)和出队(dequeue)。

入队指将元素加入到队列尾部,出队指从队列头部删除元素。

五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。

2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。

3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。

七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。

2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。

3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。

八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。

解决方法包括增加栈空间大小、减少递归深度等。

2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。

数据结构栈实验报告总结

数据结构栈实验报告总结

数据结构栈实验报告总结数据结构栈实验是一个比较复杂的过程,对于我来说,这也是一个很大的挑战。

因为这个实验是我设计和实现数据结构栈的一个过程。

数据结构栈是一个由复杂程序模块构成的。

它是一个能把抽象出来的抽象程序逻辑表象转化为一个简单方便的实际程序代码块的过程。

它还是一个数据结构和数据包分离的过程。

比如把数据包放到单独的文件夹里,然后用不同的方法把数据包从文件夹中提取出来进行封装;把数据包放到同一个文件夹中,再把数据包放回数据包里等。

最后将结果应用到实际工作中,再修改。

一、建立一个复杂的数据结构栈首先我们要明确一件事,我们所学的专业的编程语言在一般情况下是比较难解决这些问题的。

所以,我们要想能够很好地解决这些问题,就必须有一个强大的工具来帮助我们解决问题。

为了建立一个强大的工具,我们需要将编程语言中抽象出来的程序逻辑表象转换成一个简单方便,使用的程序代码块。

这样就可以很好地解决这些问题。

为了能帮助我们建立起复杂体系结构,我们需要建立一个文件模型,一般都是包含很多个抽象关系式,而我们只有知道这些结构,才能将这些抽象关系式转化为一个简单易用的代码块。

然后,我们把这个抽象程序模型封装在文件夹里后再用一些方法提取出一个实例化数据结构,并且可以通过实验来验证自己设计代码时对复杂度的一个把握。

所以我们需要建立一种完善的软件系统来解决以上问题。

另外,我们还需要用到一些简单易学但是又要复杂度很高的方法来提高自己制作模型的速度。

二、数据结构栈的原理一般地说,要实现一个软件系统,需要解决两个重要的问题:一是如何将抽象出的各种事物的逻辑表象转化为一个简单方便的实际程序代码块;二是如何将程序中那些简单的抽象事物转化为一些具有较高复杂度的实际程序代码块。

这些问题都要求我们设计一个程序结构,即用程序来处理抽象出来的问题。

因此,研究一种能把抽象出来的思想表象转化为易于操作的实际程序代码块(又称代码块)的方法是很有意义的。

首先,我们要知道计算机中的实际程序是用来执行程序设计上一些逻辑复杂且数量庞大的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章栈
【上机练习】
1、表达式括号匹配(stack)
【问题描述】
假设一个表达式有英文字母(小写)、运算符(+,—,*,/)和左右小(圆)括号构成,以“@”作为表达式的结束符。

请编写一个程序检查表达式中的左右圆括号是否匹配,若匹配,则返回“YES”;否则返回“NO”。

表达式长度小于255,左圆括号少于20个。

【输入文件】
输入文件stack.in包括一行数据,即表达式,
【输出文件】
输出文件stack.out包括一行,即“YES”或“NO”。

【输入输出样例】
【样例输入1】【样例输出1】【样例输入2】【样例输出2】
2*(x+y)/(1-x)@YES(25+x)*(a*(a+b+b)@NO
2、括弧匹配检验(check)
【问题描述】
假设表达式中允许包含两种括号:圆括号和方括号,其嵌套的顺序随意,如([]())或[([][])]等为正确的匹配,[(])或([]()或( ( ) ) )均为错误的匹配。

现在的问题是,要求检验一个给定表达式中的括弧是否正确匹配?
输入一个只包含圆括号和方括号的字符串,判断字符串中的括号是否匹配,匹配就输出“OK” ,不匹配就输出“Wrong”。

输入一个字符串:[([][])],输出:OK
【输入格式】
输入仅一行字符(字符个数小于255)
【输出格式】
匹配就输出 “OK” ,不匹配就输出“Wrong”。

【输入样例】
[(])
【输出样例】
Wrong
3、字符串匹配问题(strs)
【问题描述】
字符串中只含有括号 (),[],<>,{},判断输入的字符串中括号是否匹配。

如果括号有互相包含的形式,从内到外必须是<>,(),[],{},例如。

输入: [()] 输出:YES,而输入([]),([)]都应该输出NO。

【输入格式】
文件的第一行为一个整数n,表示以下有多少个由括好组成的字符串。

接下来的n行,每行都是一个由括号组成的长度不超过255的字符串。

【输出格式】
在输出文件中有n行,每行都是YES或NO。

【输入样例】
5
{}{}<><>()()[][]
{{}}{{}}<<>><<>>(())(())[[]][[]]
{{}}{{}}<<>><<>>(())(())[[]][[]]
{<>}{[]}<<<>><<>>>((<>))(())[[(<>)]][[]]
><}{{[]}<<<>><<>>>((<>))(())[[(<>)]][[]]
【输出标例】
YES
YES
YES
YES
NO
4、计算(calc)
【问题描述】
小明在你的帮助下,破密了Ferrari 设的密码门,正要往前走,突然又出现了一个密码门,门上有一个算式,其中只有“(”,“)”,“0-9”,“+”,“-”,“*”,“/”,“^”,求出的值就是密码。

小明数学学得不好,还需你帮他的忙。

(“/”用整数除法)
【输入】
输入文件calc.in 共1行,为一个算式。

【输出】
输出文件calc.out 共1行,就是密码。

【输入输出样例】 calc.in calc.out
1+(3+2)*(7^2+6*9)/(2) 258
【限制】
100%的数据满足:算式长度<=30 其中所有数据在231-1的范围内。

5、车厢调度(train)
【问题描述】
1 2 3 4
5 4 3 2 1 有一个火车站,铁路如图所示,每辆火车从A 驶入,再从B 方向驶出,同时它的车厢可以重
新组合。

假设从A 方向驶来的火车有n 节
(n<=1000),分别按照顺序编号为1,2,3,…,
n 。

假定在进入车站前,每节车厢之间都不是连着
的,并且它们可以自行移动到B 处的铁轨上。


外假定车站C 可以停放任意多节车厢。

但是一旦
进入车站C ,它就不能再回到A 方向的铁轨上了,
并且一旦当它进入B 方向的铁轨,它就不能再回
到车站C 。

负责车厢调度的工作人员需要知道能否使它
以a1,a2,…,an 的顺序从B 方向驶出,请来判断能
否得到指定的车厢顺序。

【输入】
输入文件的第一行为一个整数n,其中n<=1000,表示有n节车厢,第二行为n个数字,表示指定的车厢顺序。

【输出】
如果可以得到指定的车厢顺序,则输出一个字符串”YES”,否则输出”NO”(注意要大写,不包含引号)。

【输入样例】
5
5 4 3 2 1
【输出样例】
YES
6、中缀表达式值(expr)
【问题描述】
输入一个中缀表达式(由0-9组成的运算数、加+减—乘*除/四种运算符、左右小括号组成。

注意“—”也可作为负数的标志,表达式以“@”作为结束符),判断表达式是否合法,如果不合法,请输出“NO”;否则请把表达式转换成后缀形式,再求出后缀表达式的值并输出。

注意:必须用栈操作,不能直接输出表达式的值。

【输入文件】
输入文件的第一行为一个以@结束的字符串。

【输出文件】
如果表达式不合法,请输出“NO”,要求大写。

如果表达式合法,请输出计算结果。

【输入样例】
1+2×8―9
【输出样例】
8。

相关文档
最新文档