高中数学难题100道教师版(1-10题)
高中数学三角函数(经典难题)
三角函数一、 选择题1.已知34sin 2cos tan 2,5cos 3sin ααααα-=+则的值为( )2A. 5 5B. 11 3C. 5 7D. 112. 4cos50tan 40︒-︒的值为( )1 3.已知0w >,函数()sin()4f x wx π=+在(,)2ππ上单调递减,则w 的取值范围是( )15A. ,24⎡⎤⎢⎥⎣⎦ 13B. ,24⎡⎤⎢⎥⎣⎦ 1C. 0,2⎛⎤⎥⎝⎦(]D. 0,24.若21sin ,sin ,,0,332πβααβ⎛⎫==∈ ⎪⎝⎭,则()()sin 22cos sin αβαβα+-+的值为( ) A. 2 1B. 2 C. 3 1D. 35. 已知33()sin cos 4,(,0)f x a x x a b =++≠且为实常数,若(sin10)5f ︒=,则(cos100)f ︒的值为( )A. 1B. 2C. 3D. 46.在平面直角坐标系中,ABC ∆的顶点(5,0),C(5,0)A -,顶点B 在椭圆2213611x y += 上,sin sin ,sin A CB+则的值为( )5645A. B. C. D. 65547.平面内不共线的向量,,a b c 两两所成的角相等,且1,2,3a b c ===,则a b c ++与a 的夹角为( )A. 30B. 60C. 120D. 150︒︒︒︒8. 2sin 20log cos50︒的值为( )11A. B. - C. 2 D. -2229.已知1cos(),cos cos()633x x x ππ-=-+-则的值为( )10.如图为函数()2sin(),(0,0)f x wx w ϕϕπ=+>≤≤的部分图像,其中,A B 的距离为5,则(1)f -为( )二、 填空题11.点O 和(2,0)F -分别为2221(0)x y a a-=>的中心和左焦点,点P 为此双曲线右支上任意一点,则OP FP ⋅的范围为____________。
数学最难试题及答案高中
数学最难试题及答案高中一、选择题(每题5分,共20分)1. 若函数\( f(x) = x^3 - 3x + 1 \)在区间\( [a, b] \)上单调递增,则\( a \)的取值范围是:A. \( a < -2 \)B. \( a \leq -2 \)C. \( a > -2 \)D. \( a \geq -2 \)2. 已知一个等差数列的前三项依次为\( a, a+d, a+2d \),若该数列的前三项和为9,则\( a \)和\( d \)的值分别为:A. \( a=1, d=2 \)B. \( a=2, d=1 \)C. \( a=3, d=0 \)D. \( a=0, d=3 \)3. 圆\( x^2 + y^2 - 4x - 6y + 9 = 0 \)的圆心坐标是:A. \( (2, 3) \)B. \( (2, -3) \)C. \( (-2, 3) \)D. \( (-2, -3) \)4. 函数\( f(x) = \sin(x) + \cos(x) \)在区间\( [0, \pi] \)上的最大值是:A. \( \sqrt{2} \)B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{1}{\sqrt{2}} \)D. 1二、填空题(每题5分,共20分)1. 若\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \)的值为______。
2. 已知\( \tan(\alpha) = 2 \),且\( \alpha \)为锐角,则\( \sin(\alpha) \)的值为______。
3. 一个等比数列的第二项为4,第四项为16,则该数列的公比为______。
4. 函数\( f(x) = x^2 - 6x + 8 \)的零点为______。
三、解答题(每题15分,共30分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求该函数在\( x=2 \)处的切线方程。
高中数学难题集锦
高一、高二难题A 类1,f (x )=ax 2+bx +c (a 0),f (x )=x 无实数解,求f [f (x )]=x 解的个数。
2,设f (x )=ax 2+bx +c (a>0),f (x )-x =0两根x 1x 2,有0<x 1<x 2<,当x (0,x 1)时,证明x<f(x)<f(x 1).3,f(x)定义域D,x 1x 2d,当x 1<x 2,f(x 1)f(x 2),则f(x)在D 上为非减函数且○1f(0)=0,○2f()=,○3f(1-x)=1-f(x),则f ()+f()=. 4,A n ={X R/X n =2n },B n ={X R/X 2n =9n }C n ={Z R/Z=x+y,X A n ,Y B n+1}n N ○1A k =A k+2对k N +成立 ○2不存在正整数m ,n 使B 2m+1=B 2n ○3存在唯一一个自然数n 使A n =B n ○4如果n 为奇C n ={5,-1}如果n 为偶C n ={-5,-1,1,5} ○5存在自然数K 0对n N 有(A n b n )C k0且(A n b n )C k0 5,直线系m ;xcos q +(y-2)sin q =1(0£q £2p ),判断: ○1。
M 中所有直线均过一定点。
○2。
存在定点p 不在M 中任意一条l 上。
○3。
"n (n ³3且n ÎZ +),存在正n 边形,其所有边均在M 中l 上。
○4。
M 中l 所能围成的正 △面积都相等。
6,ABCD 是正方形,PA ^面ABCD ,PA =AB ,MN =PD ,PB 中点AM 与CN 所成角余弦值:¹1aÎ"Σx 3f (x )21318ÎÎÎÎÎÎ"Î"Îȣȹ7,四面体顶点和棱中点共10点,取四个不共面点,then ?8,甲、乙、丙、丁、戊每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少一人参加,甲、乙不会开车,但能从事其他三项工作,丙、丁、戊均可,求种数? 9,是定义在上的非负可导函数,且满足,对任意正数a ,b ,若,则必有( )。
高中数学-高考圆锥曲线-难题-17道-教师版
高中数学-高考圆锥曲线-难题-17道-教师版一、单选题1.(2011·湖北高考真题(文))(2011•湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n=0B .n=1C .n=2D .n≥3 【答案】C2.(2013·全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .112⎛⎫-⎪ ⎪⎝⎭, C .113⎛⎤-⎥ ⎝⎦, D .1132⎡⎫⎪⎢⎣⎭,【答案】B二、解答题3.(2014·上海高考真题(文)) 在平面直角坐标系中,对于直线:0ax by c和点记1122)().ax by c ax by c η=++++(若<0,则称点被直线分隔.若曲线C 与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C 的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明轴为曲线E的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-⋃+∞;(3)证明见解析. 4.(2014·福建高考真题(文))已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.【答案】(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析.5.(2011·山东高考真题(文))在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.【答案】(1)2 (2)见解析6.(2013·浙江高考真题(理))图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【答案】(1)(2)7.(2013·湖北高考真题(文))(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.【答案】(1)(2)见解析8.(2011·广东高考真题(理))在平面直角坐标系xOy 中,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记(){}12,max ,p q x x φ=(1)过点()20001,04A P P P ⎛⎫≠ ⎪⎝⎭作L 的切线交y 轴于点B ,证明:对线段AB 上的任一点(),Q p q ,均有()0,2P p q φ=; (2)设(,)M a b 是定点,其中,a b 满足2400a b a ->≠,,过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E P P E P P ,12,l l 与y 轴分别交于,'F F ,线段EF 上异于两端点的点集记为X ,证明:112(,)(,)2P M a b X P P a b φ∈⇔>⇔=;(3)设()21(,)|15144y x D x y y x ⎧⎫≤-⎧⎪⎪⎪=⎨⎨⎬≥+-⎪⎪⎪⎩⎩⎭,当点(),p q 取遍D 时,求(),p q φ的最小值(记为min ϕ)和最大值(记为max ϕ).【答案】(1)见解析;(2)见解析;(3)min 1ϕ=,max 54ϕ=. 9.(2019·全国高考真题(理))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)⎡⎢⎣⎦.11.(2017·山东高考真题(理))在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(1)2212x y += (2)SOT ∠ 的最大值为π3 ,取得最大值时直线l 的斜率为1k = . 12.(2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值 【答案】(I )(-1,1);(II )2716. 13.(2014·重庆高考真题(理))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆的面积为2. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 14.(2015·湖北高考真题(文))一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内作往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 15.(2014·重庆高考真题(文))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 16.(2015·江苏高考真题)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)x 22+y2=1(2)y=x−1或y=−x+1.17.(2015·重庆高考真题(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且34≤λ≤43,试确定椭圆离心率的取值范围.【答案】(Ⅰ)x 24+y2=1,(Ⅱ)√22<e≤√53.。
高中数学《数列》100题(问题+答案)
数列一、单选题1.在ABC 中,AB,45C =︒,O 是ABC 的外心,若OC AB CA CB ⋅+⋅的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =()A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-2.将等比数列{}n b 按原顺序分成1项,2项,4项,…,12n -项的各组,再将公差为2的等差数列{}n a 的各项依次插入各组之间,得到新数列{}n c :1b ,1a ,2b ,3b ,2a ,4b ,5b ,6b ,7b ,3a ,…,新数列{}n c 的前n 项和为n S .若11c =,22c =,3134S =,则S 200=()A .3841117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦B .3861113032⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦C .3861117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦D .38411302⎛⎫- ⎪⎝⎭3.在ABC 中,AB =,45C =︒,O 是ABC 的外心,若21OC AC ⋅-的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =().A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-4.设数列{}n a 的通项公式为()()()*121cos 1N 2nn n a n n π=--⋅+∈,其前n 项和为n S ,则120S =()A .60-B .120-C .180D .2405.已知等差数列{}n a 的前n 项和为n S ,满足190S >,200S <,若数列{}n a 满足10m m a a +⋅<,则m =()A .9B .10C .19D .206.已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =()A .13n -B .12n -C .21n -D .32n -7.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项8.已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a使得14a =,则122n m n+++的最小值为()A.118+B .2615C .74D .28159.设数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,则下列说法正确的是()A .202120221a a ⋅<B .202120221a a ⋅>C.2022a <-D.2022a >10.数列{}n a 满足11a =,且对于任意的*N n ∈都有11n n a a a n +=++,则122015111a a a +++= ()A .10071008B .20151008C .1007504D .2015201611.在数列{}n a 中,12a =,22a =且21(1)(N )nn n a a n ++-=+-∈,100S =()A .0B .1300C .2600D .265012.童谣是一种民间文学,因为常取材于现实生活,语言幽默风趣、朗朗上口而使少年儿童易于接受,从而成为了重要的传统教育方式.有一首童谣中唱到:“玲珑塔上琉璃灯,沙弥点灯向上行.首层掌灯共三盏,明灯层层更倍增(意为:每上一层,灯的数量增加一倍).小僧掌灯到塔顶,心中默数灯几重.玲珑塔上灯火数,三百八十一盏明.灯映湖心点点红,但问塔顶几盏灯?”童谣中的玲珑塔的顶层灯的盏数为()A .96B .144C .192D .23113.已知无穷等比数列{}n a 中12a =,22a <,它的前n 项和为n S ,则下列命题正确的是()A .数列{}n S 是递增数列B .数列{}n S 是递减数列C .数列{}n S 存在最小项D .数列{}n S 存在最大项14.已知等差数列{}n a 中,前4项为1,3,5,7,则数列{}n a 前10项的和10S =()A .100B .23C .21D .1715.已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =()A .54-或54B .54-C .45D .5416.在等比数列{}n a 中,已知对*n N ∈有1221n n a a a ++⋯+=-,那么22212n a a a ++⋯+=()A .2(21)n -B .21(21)3n -C .41n -D .1(41)3n-17.设等比数列{}n a 的各项均为正数,已知237881a a a a =,则267a a a +的最小值为()AB.C.D.18.已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为()A .12B .36C .78D .15619.设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n -中,14a =,211a =,则()4a Ω=()A .21B .20C .41D .4020.已知数列1,12-,14,18-,….则该数列的第10项为()A .1512-B .1512C .11024-D .1102421.有一个非常有趣的数列1⎧⎫⎨⎬⎩⎭n 叫做调和数列,此数列的前n 项和已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式.某数学探究小组为了探究调和数列的性质,仿照“杨辉三角”.将1,12,13,14, (1),…作为第一行,相邻两个数相减得到第二行,依次类推,得到如图所示的三角形差数列,则第2行的前100项和为()A .100101B .99100C .99200D .5010122.等差数列{}n a 的前n 项和为n S ,若1a ,2020a 满足12020OA a OB a OC =+,其中A 为OBC边BC 上任意一点,则2020S =().A .2020B .1010C .1020D .223.一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图,根据前三个点阵图形的规律,第四个点阵表示的三角形数是()A .1B .6C .10D .2024.数列{}n a 的前4项为:1111,,,25811,则它的一个通项公式是()A .121n -B .121n +C .131n -D .131n +25.已知数列1,3-,5,7-,9,…,则该数列的第10项为()A .21-B .19-C .19D .2126.在等差数列{}n a 中,若47101102a a a ++=,则311a a +=()A .2B .4C .6D .827.等差数列{}n a 中,若14a =,公差2d =,则5a =()A .10B .12C .14D .22二、多选题28.在平面四边形ABCD 中,ABD △的面积是BCD △面积的2倍,又数列{}n a 满足12a =,当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,设{}n a 的前n 项和为n S ,则()A .{}n a 为等比数列B .2n n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等差数列D .()152210n n S n +=--29.已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为*,n T n N ∈,则下列选项正确的为()A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <30.已知等差数列{}n a 的前n 项和为n S ,公差为d ,若10911S S S <<,则()A .0d >B .10a >C .200S <D .210S >31.记n S 为等差数列{}n a 的前n 项和,已知342,14a S ==,则()A .{}n a 是递增数列B .18a =C .523S a a =D .n S 的最小值为332.已知数列{}n a 中,13a =,()1*11N n na n a +=∈-,下列选项中能使3n a =的n 有()A .22B .24C .26D .2833.对任意数列{}n a ,下列说法一定正确的是()A .若数列{}n a 是等差数列,则数列{2}n a 是等比数列B .若数列{}n a 是等差数列,则数列{2}n a 是等差数列C .若数列{}n a 是等比数列,则数列{lg |}|n a 是等比数列D .若数列{}n a 是等比数列,则数列{lg |}|n a 是等差数列三、填空题34.在数列{}n a 及{}n b 中,1n n n a a b +=++,1n n n b a b +=+,11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2018项和为_________35.已知数列{}n a 的通项为21n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥且12b a =,则123...n b b b b ++++=________.36.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一个数列:1,1,2,3,5,8,13,21,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列称为“斐波那契数列”,记为{}n F .利用下图所揭示的{}n F 的性质,则在等式()222220221220212022m F F F F F F -++⋅⋅⋅+=⋅中,m =______.37.将公差不为零的等差数列1a ,2a ,3a 调整顺序后构成一个新的等比数列i a ,j a ,k a ,其中{,,}{1,2,3}i j k =,试写出一个调整顺序后成等比数列的数列公比:_____.(写出一个即可).38.已知()f x 为R 上单调递增的奇函数,在数列{}n a 中,120a =,对任意正整数n ,()()130n n f a f a ++-=,则数列{}n a 的前n 项和n S 的最大值为___________.39.给定正整数n 和正数b ,对于满足条件211n a a b +-=的所有无穷等差数列{}n a ,当1n a +=________时,1221n n n y a a a +++=+++ 取得最大值.40.在我国南宋数学家杨辉所著作的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律,下面的数字三角形可以看做当n 依次取0、1、2、3、L 时()na b +展开式的二项式系数,相邻两斜线间各数的和组成数列{}n a ,例11a =,211a =+,312a =+,L ,设数列{}n a 的前n 项和为n S .若20243a m =+,则2022S =___________.41.已知数列{}n a 的前n 项和343n n nS -=,记n b =,则数列{}n b 的前n 项和n T =_______.42.现有一根长为81米的圆柱形铁棒,第1天截取铁棒长度的13,从第2天开始每天截取前一天剩下长度的13,则第5天截取的长度是______米.43.已知数列{}n a 满足112,,n n a a a n +==-则求100a =___________44.已知等差数列的前n 项和为n S ,且13140,0S S ><,则使n S 取得最大值的n 为__________.45.在等差数列{}n a 中,710132a a =+,则该数列的前7项和为_________.46.已知等比数列{}n a 的前n 项和为n S ,公比1q >,且21a +为1a 与3a 的等差中项,314S =.若数列{}n b 满足2log n n b a =,其前n 项和为n T ,则n T =_________.47.已知数列{}n a 是递增数列,且满足121n n a a +=+,且1a 的取值范围是___________.48.已知等比数列{}n a 的公比为2,前n 项和为n S ,则lim nn nS a →∞=__________.49.已知数列{}n a 的首项12a =,且对任意的*n N ∈,都有122nn n a a a +=+,则lim n n a →+∞=______.50.数列{}n a 满足12a =,2111a a =-,若对于大于2的正整数n ,111n n a a -=-,则102a =__________.51.若n a 为()1nx +的二项展开式中2x 项的系数,则2limnn a n →+∞=_________.52.联合国教科文组织将3月14日确定为“国际数学日”,是因为3.14是圆周率数值最接近的数字.我国数学家刘徽首创割圆术,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.步骤是:第1步,计算圆内接正六边形的周长;第2步,计算圆内接正12边形的周长;第3步,计算圆内接正24边形的周长;以此类推,第6步,需要计算的是正______边形的周长.53.已知数列{}n a 满足11n nna a +=+,且46a =,则1a =___________.54.已知无穷数列{}n a 满足12a =,25a =,318a =,写出{}n a 的一个通项公式:______.(不能写成分段函数的形式)55.数列{}n a 的前几项和为n S ,且111,2n n a a a +==,则,4S =__________.56.若等差数列{}n a 满足202220221a a a =+=,则1a 的值为___________.57.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.58.已知数列{}n a 中,11a =,13n n a a +=-,则5S =_________四、解答题59.已知正项数列{}n a 的前n 项和为n S 满足12311111n n S S S S n +++⋯+=+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22na nb =,记n T 为数列{}n b 的前n 项和,()x Ω表示x 除以3的余数,求()21n T +Ω.60.已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<.61.若有穷数列A :1a ,2a ,…,()*,3n a n n ∈≥N ,满足()1121,2,,2i i i i a a a a i n +++-≤-=- ,则称数列A 为M 数列.(1)判断下列数列是否为M 数列,并说明理由;①1,2,4,3②4,2,8,1(2)已知M 数列A :1a ,2a ,…,9a ,其中14a =,27a =,求349a a a +++ 的最小值.(3)已知M 数列A 是1,2,…,n 的一个排列.若1112n k k k a a n -+=-=+∑,求n 的所有取值.62.已知数列{}n a 的前n 项和为n S ,且211122n S n n =++,*N n ∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-,*N n ∈,求数列{}n b 的前n 项和n T .63.已知数列{}n a 满足12a =,{}n a 的前n 项和为n S ,()()121n n a S n n ++=++∈N ,令1n n b a =+.(1)求证:{}n b 是等比数列;(2)记数列{}n nb 的前n 项和为n T ,求n T ;(3)求证:123111156n a a a a ++++<L .64.对于有限数列()12:3n A a a a n ≥ ,,,,如果()12121ni a a a a i n n +++<=- ,,,,则称数列A 具有性质P .(1)判断数列1:2323A ,,,和2:3456A ,,,是否具有性质P ,并说明理由;(2)求证:若数列12:n A a a a ,,,具有性质P ,则对任意互不相等的{}12i j k n ∈ ,,,,,,有i j k a a a +>;(3)设数列122022:A a a a ,,,具有性质P ,每一项均为整数,()1122021i i a a i +≠= ,,,,求122022a a a +++ 的最小值.65.已知数列{}n a 满足11a =,1,,2,.n n n a n a a n +⎧=⎨⎩为奇数为偶数(1)令2n n b a =,求1b ,2b 及{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .66.已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列.(1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列;(3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k = 是公差为(0)d d >等差数列,求d 所有可能的值67.设数列{}n a 的前n 项和n S 满足121n n S S n +-=+(N n *∈),且11a =.(1)求证:数列{}1n a +是等比数列;(2)若()22log 1nn n b a =⋅+,求数列{}n b 的前n 项和nT 68.设数列{}n a 的前n 项和为n S ,已知13n n a a +=,且3431S S +=.(1)求{}n a 的通项公式;(2)设()()311log 3n n n b a n a =++,求数列{}n b 的前n 项和n T.69.(1)已知数列{}n a 是正项数列,12a =,且2211122n n n n n n a a a a a a +++-+=+.求数列{}n a 的通项公式;(2)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式.70.已知数列{}n a 和{}n b 的通项公式:21n a n =-,2n n b =(1)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(2)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .71.已知公差不为零的等差数列{}n a 的前n 项和为n S ,12a =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若11n n b S +=,数列{}n b 的前n 项和为n T ,证明:12n T <.72.设正项数列{}n a 的前n 项和为n S ,且()()647n n n S a a =-+.(1)求{}n a 的通项公式;(2)设1133nn nn n n a a b a a ++-=⋅,求数列{}n b 的前n 项和n T .73.已知数列{}{},n n a b 满足111a b ==.数列{}n n a b +是公差为q 的等差数列,数列{}n n a b 是公比为q 的等比数列,,n n a b n *≥∈N .(1)若1q =,求数列{}n a 的通项公式;(2)若01q <<,证明:12231,1n n qa b a b a b n q*++++<∈-N .74.已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n ++++= .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a -+,求数列{bn }的前n 项和为Tn .75.已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23333123123()n n a a a a a a a a ++++=++++ .(1)写出数列的前三项(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{}n a ,使得20172016a =-?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记n a 的所有取值构成的集合为n A ,求集合n A 中所有元素之和.(结论不要求证明)76.已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .77.设各项均不等于零的数列{}n a 的前n 项和为n S ,已知1114,42n n n a S a a a +=+=.(1)求23,a a 的值,并求数列{}n a 的通项公式;(2)证明:1211121n nS S S a +++<- .78.已知{}n a 是等差数列,{}n b 是等比数列,且22b =,516b =,112a b =,34a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n S .79.已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =;数列{}n b 满足11222n n b b b ++++=- .(1)求数列{}n a 和{}n b 的通项公式;(2)记tan()n n n c b a π=⋅,求数列{}n c 的前3n 项和.80.已知数列{an }的前n 项和为n S ,*1(N )22n n a n S -∈=,数列{bn }满足b 1=1,点P(bn ,bn +1)在直线x ﹣y +2=0上.(1)求数列{an },{bn }的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和Tn ;(3)若0λ>,求对所有的正整数n 都有222nnb k a λλ-+>成立的k 的取值范围.81.已知等比数列{}n a 的公比1q >,且45656a a a ++=,54a +是4a ,6a 的等差中项.(1)求数列{}n a 的通项公式;(2)数列{}1n n a a λ+-的前n 项和为n S ,若()*21n n S n =-∈N ,求实数λ的值.82.已知数列{}n a 的前n 项和为n S ,若n n S na =,且246601860S S S S ++++= ,求1a .83.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:()221n n n S S S n N *++<∈;(3)对任意的正整数n ,设()21132,,,,n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.84.在数列{}n a 中,()*112,21n n a a a n n +==-+∈N ,数列{}n a 的前n 项和为n S .(1)证明:数列{}n a n -是等比数列,并求数列{}n a 的通项公式;(2)求n S .85.设数列{}n a 的前n 项和为n S ,若对任意的正整数n ,都有23n n S a n =-.(1)求{}n a 的通项公式;(2)求数列{(1)}n n a +⋅的前n 项和n T .86.已知数列{}n a 是等差数列,{}n b 是等比数列,且111a b ==,322b b =,441a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的n *∈N 恒成立,求实数λ的取值范围.87.甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.88.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项.(1)求,n n a b ;(2)设22121n n n n n c b a a ++=+⋅,求{}n c 的前n 项和n S .89.治理垃圾是改善环境的重要举措.A 地在未进行垃圾分类前每年需要焚烧垃圾量为200万吨,当地政府从2020年开始推进垃圾分类工作,通过对分类垃圾进行环保处理等一系列措施,预计从2020年开始的连续5年,每年需要焚烧垃圾量比上一年减少20万吨,从第6年开始,每年需要焚烧垃圾量为上一年的75%(记2020年为第1年).(1)写出A 地每年需要焚烧垃圾量与治理年数()*n n N∈的表达式;(2)设n A 为从2020年开始n 年内需要焚烧垃圾量的年平均值....,证明数列{}n A 为递减数列.90.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列111a b ==,22a b =,3342a b a +=.(1)求{}n a 和{}n b 的通项公式;(2)记,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .91.已知{}n a 是递增的等差数列,13a =,且13a ,4a ,1a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:11156n T ≤<.92.设等差数列{}n a 的前n 项和为n S ,且126a =-,1215S S =.(1)求{}n a 的通项公式;(2)求数列{}2nn a -的前n 项和n T .93.设数列{}n a 是等比数列,其前n 项和为n S .(1)从下面两个条件中任选一个作为已知条件,求{}n a 的通项公式;①{}11,2n a S =-是等比数列;②233421,61S a S a =+=+.(2)在(1)的条件下,若31n n b a -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别作答,按第一个解答计分.94.已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=.(1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.95.已知数列{}n a 的通项公式为2n a n n λ=+,若数列{}n a 为递增数列,求λ的取值范围.96.设{}{}n n a b 、是两个数列,()()12122n n n n M A a B n n -⎛⎫⎪⎝⎭,,,,,为直角坐标平面上的点.对*N n n n M A B ∈,、、三点共线.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:1122212log n nn na b a b a b c a a a +++=+++ ,其中{}n c 是第三项为8,公比为4的等比数列.求证:点列()()()11221,2,,n n P b P b P n b 、、、在同一条直线上;(3)记数列{}{}n n a b 、的前m 项和分别为m A 和m B ,对任意自然数n ,是否总存在与n 相关的自然数m ,使得n m n m a B b A =若存在,求出m 与n 的关系,若不存在,请说明理由.97.已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .98.在等差数列{}n a 中,已知1210a a +=,34530a a a ++=.(1)求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n S .五、双空题99.“一尺之棰,日取其半,万世不竭”出自我国古代典籍《庄子·天下》,其中蕴含着等比数列的相关知识.已知长度为4的线段AB ,取AB 的中点C ,以AC 为边作等边三角形(如图①),该等边三角形的面积为1S ,在图①中取CB 的中点1C ,以1CC 为边作等边三角形(如图②),图②中所有的等边三角形的面积之和为2S ,以此类推,则3S =___________;1nii iS==∑___________.100.已知[]x 表示不超过x 的最大整数,例如:[]2.32=,[]1.72-=-.在数列{}n a 中,[]lg n a n =,记n S 为数列{}n a 的前n 项和,则2022a =______;2022S =______.参考答案:1.A 【解析】【分析】先由正弦定理得到2sin b B =,02b <≤2211122a b =+-,由向量数量积的几何意义,得22122b AC OC AC =⋅= ,22122CB OC CB a ⋅=-=- ,进而计算出3m =,再使用构造法求解通项公式【详解】设BC a =,AC b =,AB c =,则在ABC 中,由正弦定理sin sin c bC B=及c 45C =︒,得2sin b B =,∵0180B ︒<<︒,∴0sin 1B <≤,∴02b <≤.在ABC 中,由余弦定理及2222cos c a b ab C =+-及c =45C =︒,2211122a b =+-.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得22122b AC OC AC =⋅=,22122CBOC CB a ⋅=-=- ,()OC AB CA CB OC AC CB CA CB OC AC OC CB CA CB⋅+⋅=⋅++⋅=⋅+⋅+⋅ 222222211111111222222b a b a a b b =-+=-++-=-.∵02b <≤,∴2113b -<-≤,所以OC AB CA CB ⋅+⋅的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 【点睛】构造法求解数列的通项公式,是经常考查的知识点,要结合递推数列的结构特点,选择合适的方法进行构造,常见的构造类型有()11n n a pa q p +=+≠和()11nn n a pa q p +=+≠等.2.A 【解析】【分析】由已知求得等比数列的首项和公比,以及等差数列的首项,再求得数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,运用分组求和的方法可求得答案.【详解】解:由已知得11b =,12a =,2331214b c S c c ==--=,等比数列{}n b 的公比14q =.令21122221nn n T -=++++=- ,则663T =,7127T =,8255T =所以数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,故()()20012181292S b b b a a a =+++++++ 1933841176112472172123214⎛⎫- ⎪⎡⎤⨯⎛⎫⎝⎭=++⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-⨯.故选:A .3.A 【解析】【分析】设AC b =,AB c =,由正余弦定理可得2sin b B =,结合三角形外心性质、向量数量积的几何意义求得21OC AC ⋅-的最大值为3,进而可得()1131n n a a ++=+,利用等比数列的定义写出通项公式.【详解】设AC b =,AB c =,在ABC 中,由sin sin c bC B=及c =45C =︒,得2sin b B =,∵0180B ︒<<︒,则0sin 1B <≤,∴02b <≤.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得222111OC AC AC b ⋅-=-=- ,而2113b -<-≤,所以21OC AC ⋅-的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 4.D 【解析】【分析】分别取43n k =-,42k -,41k -和4k ,*k N ∈,可验证出43424148k k k k a a a a ---+++=,利用周期性可验算得到结果.【详解】当43n k =-,*N k ∈时,cos 02n π=,431k a -=;当42n k =-,*N k ∈时,1os 2c n π=-,()()4224211186k a k k -=⨯--⨯-+=-+⎡⎤⎣⎦;当41n k =-,*N k ∈时,cos 02n π=,411k a -=;当4n k =,*N k ∈时,cos12n π=,424118k a k k =⨯-+=.()4342414186188k k k k a a a a k k ---∴+++=+-+++=,12012082404S ∴=⨯=.故选:D 5.B 【解析】【分析】根据给定条件,利用等差数列的前n 项和结合等差数列性质,求出异号的相邻两项即可作答.【详解】等差数列{}n a 的前n 项和为n S ,则1191910191902a a S a +=⨯=>,有100a >,1202010112010()02a a S a a +=⨯=+<,有11100a a <-<,显然数列{}n a 是递减的,且10110a a ⋅<,因10m m a a +⋅<,所以10m =.故选:B 6.C 【解析】【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a .【详解】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= ,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C.【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列.7.B 【解析】【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.8.B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m n m n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B 9.A 【解析】【分析】根据()2*1n n na S n N a +=∈求出1a 的值,判断数列{}2n S 是等差数列,求出n S 的通项公式,再求出n a ,然后逐个分析判断即可【详解】因为数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,所以当1n =时,()211*112a S n N a +=∈,解得11a =或11a =-,当2n ≥时,()2111112n n n n n n n n n a S a S S a a S S --+==+=-+-,整理得2211n n S S --=,所以数列{}2nS 是以1为公差的等差数列,当11a =±时,21(1)n S n n =+-=,所以=n S 或n S=所以1-=-=n n n a S S 11a =满足此式,或1n n n a S S -=-=11a =-满足此式,所以2022a =或2022a =,所以CD 错误,当=n a20212022a a ⋅=1<,当n a =20212022a a ⋅=1<,所以A 正确,B 错误,故选:A 10.B 【解析】【分析】先利用累加法求得数列{}n a 的通项公式,再利用裂项相消法去求122015111a a a +++ 的值.【详解】由11a =,11n n a a a n +=++,可得11n n a a n +-=+则2n ≥时,()()11232211()()n n n n n a a a a a a a a a a ---=-+-++-+-+ ()1321(1)2nn n n =+-++++=+ 又11122a ==⨯,则数列{}n a 的通项公式为(1)2n n a n =+则()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则122015111a a a +++ 1111111201522112232015201620161008⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎣=⎭⎦ 故选:B 11.D 【解析】【分析】分n 为奇数和n 为偶数两种情况讨论,再利用分组求和法及等差数列前n 项和的公式,即可得出答案.【详解】解:当n 为奇数时,20n n a a +-=,所以数列{}n a 的奇数项是以0为公差的等差数列,当n 为偶数时,22n n a a +-=,所以数列{}n a 的偶数项是以2为公差的等差数列,所以2,,n n a n n ⎧=⎨⎩为奇数为偶数,所以()()10050210025024610010026502S +=⨯+++++=+=L .故选:D.12.C 【解析】【分析】由条件可得玲珑塔的灯盏数从首层到顶层为等比数列,由条件列方程求玲珑塔的顶层灯的盏数.【详解】由题意可得玲珑塔的灯盏数从首层到顶层为等比数列,设其首层为1a ,公比q ,顶层为n a ,前n 项和为n S 由已知可得13a =,2q =,381n S =,由等比数列的前n 项和公式可得132********n nn a a q a a q --==-=--,所以192n a =.故玲珑塔的顶层灯的盏数为192,故选:C.13.C 【解析】【分析】对AB ,举公比为负数的反例判断即可对CD ,设等比数列{}n a 公比为q ,分0q >和0q <两种情况讨论,再得出结论即可【详解】对AB ,当公比为12-时,2311,,2a a =-=此时12332,1,2S S S ===,此时{}n S 既不是递增也不是递减数列;对CD ,设等比数列{}n a 公比为q ,当0q >时,因为22a <,故22q <,故01q <<,此时()2122111n nn q q S qq q-==----,易得n S 随n 的增大而增大,故{}n S 存在最小项1S ,不存在最大项;当0q <时,因为22a <,故22q -<,故10q -<<,2211nn q S q q =---,因为1q <,故当n 为偶数时,2211nn q S q q =---,随着n 的增大而增大,此时222111nn q S q q q =-<---无最大值,当2n =时有最小值222S q =+;当n 为奇数时,2211nn q S q q=+--,随着n 的增大而减小,故222111nn q S q q q=+>---无最小值,有最大值12S =.综上,当0q <时,因为22221q q +<<-,故当2n =时有最小值222S q =+,当1n =时有最大值12S =综上所述,数列{}n S 存在最小项,不一定有最大项,故C 正确;D 错误故选:C 14.A 【解析】【分析】先求出公差,再由等差数列求和公式求解即可.【详解】设公差为d ,则312d =-=,则1010910121002S ⨯=⨯+=.故选:A.15.D 【解析】【分析】由等差数列求和公式求出35a =,由等比数列通项公式基本量计算得到公比,进而求出6714b b q ==,从而求出结果.【详解】由题意得:()155355252a a S a +===,解得:35a =,设等比数列{}n b 的公比是q ,因为1132,8b b ==,所以1228q =,解得:124q =,显然60q >,所以62q =,所以6714b b q ==,所以3754a b =故选:D 16.D 【解析】【分析】利用“1n =时,11a S =;当2n时,1n n n a S S -=-”即可得到n a ,进而得到数列2{}n a 是等比数列,求出公比和首项,再利用等比数列的前n 项和公式即可得出.【详解】设等比数列{}n a 的公比为q ,1221n n n S a a a =++⋯+=- ,∴当2n 时,1112121n n n S a a a ---=++⋯+=-,111222n n n n n n a S S ---∴=-=-=.∴2122221(2)4(2)n n n n a a ---==,当1n =时,11211a =-=,21221a a +=-,解得22a =,22214a a =.也符合2214n n a a -=,∴数列2{}n a 是等比数列,首项为1,公比为4.∴22212411(41)413n n na a a -++⋯+==--.故选:D 17.C 【解析】【分析】设等比数列{}n a 的公比为(0)q q >,根据题意得到2673339q a a qa +=+,结合基本不等式,即可求解.【详解】设等比数列{}n a 的公比为(0)q q >,因为23784581a a a a a ==,所以53a =,又因为235553326739,a a a a a q a q q q q===⋅=,所以3267339q a a q a +=+≥=当且仅当3339q q =时,即613q =时,等号成立,所以267a a a +的最小值为.故选:C.18.C 【解析】【分析】利用已知等式可求得等差数列的公差d 和首项1a ,由等差数列求和公式可求得结果.【详解】设等差数列{}n a 公差为d ,13512a a a ++= ,10111224a a a ++=,()1011121352412a a a a a a d ∴++-++==,解得:12d =,135********a a a a d a ∴++=+=+=,解得:13a =,{}n a ∴的前13项的和为11312131213397824a d ⨯⨯+=+=.故选:C.19.C 【解析】【分析】设{}n a n -的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果.【详解】设{}n a n -的公比为q ,则2121123141a q a --===--,所以111(1)(41)33n n n n a n a q---=-⋅=-⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=.故选:C 20.A 【解析】【分析】根据规律可得数列通项,再求其中的项即可.【详解】通过观察可知该数列的通项公式为()1112n n n a +--=,所以()11109112512a -==-.故选:A 21.A 【解析】【分析】利用裂项相消法求和即可;【详解】解:由题可知,第2行的前100项和10011111261210012010S +++++⨯= 1111111100122334100101101=-+-+-++-= .故选:A 22.B 【解析】【分析】根据三点共线可得120201a a +=,结合等差数列的前n 项和公式求解.∵,,A B C 三点共线且12020OA a OB a OC =+,则120201a a +=∴()120202020202010102a a S +==故选:B .23.C 【解析】【分析】根据规律求得正确答案.【详解】根据规律可知,第四个点阵表示的三角形数为:123410+++=.故选:C 24.C 【解析】【分析】根据规律可得结果.【详解】将1111,,,25811可以写成1111,,,311321331341⨯-⨯-⨯-⨯-,所以{}n a 的通项公式为131n -;故选:C 25.B 【解析】【分析】由数列的前几项可得数列的一个通项公式,再代入计算可得;【详解】解:依题意可得该数列的通项公式可以为()()1121n n a n +=-⋅-,所以1019a =-.故选:B 26.D 【解析】根据等差数列的下标和性质即可解出.【详解】因为4710771110222a a a a a +=+=+,解得:74a =,所以311728a a a +==.故选:D .27.B 【解析】【分析】根据等差数列的性质直接计算即可.【详解】由等差数列的性质可知:51444212a a d =+=+⨯=;故选:B.28.BD 【解析】【分析】连AC 交BD 于E ,根据面积关系推出2AE EC =,根据平面向量知识推出BE = 1233BA BC +,结合()()1122n n n n BD a BA a BC --=-++ ,推出1122(2)n n n n a a --+=-,11222nn n n a a ---=-,求出232nn a n =-+,(23)2n n a n =-+⋅,根据等比数列的定义可判断A ;根据等差数列的定义可判断C ,根据数列的单调性可判断B ;利用错位相减法求出n S ,可判断D.【详解】如图,连AC 交BD 于E ,则1sin 21sin 2ABD BD AE AEB S S BD EC CED ⋅⋅=⋅⋅△△BCD ÐÐ=2AEEC=,即2AE EC =,所以2AE EC =,所以()2BE BA BC BE -=- ,所以BE = 1233BA BC +,设BD tBE =(1)t >,因为当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,所以()()111122n nn n BE a BA a BC t t--=-++ ,()()1111231223n n n na t a t--⎧-=⎪⎪⎨⎪+=⎪⎩,所以当2n ≥时,恒有1122(2)n n n n a a --+=-,所以11222n n n n a a --=-,即11222n n n n a a ---=-,又12a =,所以112a =,所以12(1)232nn a n n =--=-+,所以(23)2n n a n =-+⋅,因为11(21)242(23)223n n n n a n n a n n ++-+⋅-+==-+⋅-+不是常数,所以{}n a 不为等比数列,故A 不正确;因为11(21)(23)2022n n n n a a n n ++-=-+--+=-<,即1122n n n n a a ++<,所以2n n a ⎧⎫⎨⎬⎩⎭为递减数列,故B 正确;因为1n n a a +-=1(21)2(23)2n n n n +-+⋅--+⋅=(21)2n n --⋅不是常数,所以{}n a 不为等差数列,故C 不正确;因为12312(1)2(3)2(23)2nn S n =⨯+-⋅+-⋅++-+⋅ ,所以2341212(1)2(3)2(23)2n n S n +=⨯+-⋅+-⋅++-+⋅ ,所以12341122(2222)(23)2n n n S n +-=⨯-++++--+⋅ ,所以114(12)22(23)212n n n S n -+--=-⨯--+⋅-110(52)2n n +=--⋅,所以1(52)210n n S n +=-⋅-,故D 正确.故选:BD 29.BCD【解析】【分析】由题知121n n a a +=+,进而得数列{1}n a +是首项为2,公比为2的等比数列,再结合通项公式和裂项求和求解即可.【详解】由121n n n S S a +=++得1121n n n n a S S a ++=-=+,即121n n a a +=+所以112(1)n n a a ++=+,由111S a ==,所以数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;所以12nn a +=,即21n n a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,所以22311111111111212*********n n n n T ++=-+-+⋯+-=-<------,故D 正确.故选:BCD 30.AD 【解析】【分析】对AB ,根据通项n a 与n S 的关系可得100a <,110a >即可判断;对CD ,根据等差数列前n 项和的公式,结合等差数列的性质判断即可【详解】因为109S S <,1011S S <,所以109100S S a -=<,1110110a S S =>-,故等差数列首项为负,公差为正,所以0d >,10a <,故A 正确,B 错误;由911S S <,可知11910110S S a a -=+>,所以()()20120101110100S a a a a =+=+>,故C 错误;因为110a >,所以2111210S a =>,故D 正确.故选:AD 31.BCD 【解析】【分析】设等差数列{}n a 的公差为d ,再根据n S 与n a 的公式可得d ,进而求得n S 与n a 的通项公式,再逐个判定即可【详解】设等差数列{}n a 的公差为d ,则11224614a d a d +=⎧⎨+=⎩,解得183a d =⎧⎨=-⎩,故311n a n =-+,()()311819232n n n S n n ==-+-.故{}n a 是递减数列,A 错误;18a =,B 正确;()535191250S -⨯==,235210a a =⨯=,故C 正确;()1932n n n S =-,当1,2,3...6n =时,()1932n n n S -=,因为函数()193y x x =-的对称轴为196x =,开口向下,故当6n =时,n S 取得最小值()66193632S -⨯==;当7,8,9...n =时,()3192n n n S -=,函数()319y x x =-的对称轴为196x =,开口向上,故当7n =时,nS 取得最小值()77371972S ⨯-==,综上有n S 的最小值为3,故D 正确;故选:BCD 32.AD 【解析】【分析】由递推公式可得数列为周期数列,即得答案.【详解】解:因为13a =,()1*11N n na n a +=∈-,所以23412,,323a a a =-==,所以数列{}n a 是周期为3的数列,所以132(N )n a a n *-=∈,故122283a a a ===.故选:AD.33.AD 【解析】【分析】根据等差数列和等比数列的定义逐一判断可得选项.【详解】。
高三数学难题及答案
1.在平面上向量AB1垂直向量AB2,向量OB1的模等于向量OB2的模=1,向量AP等于向量AB1+向量AB2,若向量OP的模<1/2,则向量OA的模的取值范围是解:以点O为圆心,分别以1为半径作单位圆大⊙O、以1/2为半径作小⊙O,线段B1B2是大⊙O的一条弦,以B1B2为直径的圆是⊙C,由向量AB1⊥向量AB2知点A在⊙C上,由向量AP等于向量AB1+向量AB2知点P也在⊙C上,且点P和点A关于点C对称(即PA是⊙C的直径)。
设⊙C与小⊙O的公共点为D.令⊙C半径为r=|B1B2|/2(即半弦长),|OC|=d(即弦心距),则考虑到|OP|<1/2,于是⊙C的圆周上必须有点落在小⊙O内部,由图1可知,当⊙C和小⊙O外切时,r最小(即图1中⊙C);当⊙C和小⊙O内切时,r最大(即图1中⊙C‘)。
(取开值)下面先求出最值,由图1——r²+d²=1d=r±1/2(外切时,d=|OC|=|CD|+|OD|=r+1/2;内切时,d=|OC’|=|C‘D|-|OD|=r-1/2.)于是r²+(r±1/2)²=1整理得8r²±4r-3=0解得r=(√7±1)/4(负根已舍去)于是(√7-1)/4<r <(√7+1)/4,以此为前提(重点),我们来研究|OA|的取值——【易得此前提即(√7-1)/4<d<(√7+1)/4)】先研究最大值,由图1,直线OC与⊙C有两个交点,取近O的一个为P,P必在小⊙O内部满足题设要求,这时远O的一个为A,最大值必在此时取得,此时|OA|=d+r.(参见图1和图2)由r²+d²=1,令r=sina,d=cosa,a为锐角,于是|OA|=d+r=sina+cosa=√2sin(a+b)=√2sin(a+45°),tanb=1可取b=45°.(辅助角公式)a+45°=90°时取最大值,即a=45°,此时r=sina=√2/2,d=cosa=√2/2.r=√2/2满足(√7-1)/4<r <(√7+1)/4,此时|OA|=d+r=√2取最大值,即|OA|≤√2.再研究最小值,如图2,P的范围是图2中弧D1D2,于是A的范围是图2中弧AA',过A 作OA垂线,垂线在⊙C内部,以OA为半径O为圆心的圆还在垂线内部,故|OA|最小值必在图2中A(或A')处,通过计算得知此时|OA|是定值√7/2(与图2中d或r的取值无关).在△OCD2中,|OC|=d,|OD2|=1/2,|CD2|=r,于是cos∠OCD2=(d²+r²-1/4)/(2dr)=(1-1/4)/(2dr)=3/(8dr)|EC|=|CD2|·cos∠OCD2=r·3/(8dr)=3/(8d)|AF|²=|ED2|²=|CD2|²-|EC|²=r²-9/(64d²)|OF|=|OC|+|CF|=|OC|+|EC|=d+3/(8d)|OA|²=|AF|²+|OF|²=r²-9/(64d²)+[d+3/(8d)]²=r²-9/(64d²)+d²+3/4+9/(64d²)=r²+d²+3/4=1+3/4= 7/4|OA|=√7/2段首已证无论d或r如何取值,A点在图2中的A点位置时,|OA|最小(取开值),于是|OA|>√7/2.综合上述,由连续性可知|OA|属于(√7/2,√2].。
高中数学导数难题练习题带答案
高中数学导数难题一.选择题(共20小题)1.对于任意的x∈[0,],总存在b∈R,使得|sin2x+a sin x+b|≤1恒成立,则实数a的取值范围是()A.[﹣3,1]B.[﹣1,3]C.[﹣3,3]D.[﹣1,1]2.设k,b∈R,若关于x的不等式ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e﹣13.设k,b∈R,若关于x的不等式kx+b+1≥lnx在(0,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e4.已知曲线在x=x1处的切线为l1,曲线y=lnx在x=x2处的切线为l2,且l1⊥l2,则x2﹣x1的取值范围是()A.B.(﹣∞,﹣1)C.(﹣∞,0)D.5.若对任意的a∈R,不等式e2a+a2+b2﹣2ab≥20恒成立,则实数b的取值范围是()A.b B.b≥3+ln2C.b≥4+ln2D.b≥5+ln26.已知曲线f(x)=lnx+ax+b在x=1处的切线是x轴,若方程f(x)=m(m∈R)有两个不等实根x1,x2,则x1+x2的取值范围是()A.(0,)B.(0,1)C.(2,+∞)D.(4,+∞)7.已知a∈R,函数f(x)=,则下列说法正确的是()A.若a<﹣1,则y=f(x)(x∈R)的图象上存在唯一一对关于原点O对称的点B.存在实数a使得y=f(x)(x∈R)的图象上存在两对关于原点O对称的点C.不存在实数a使得y=f(x)(x∈R)的图象上存在两对关于y轴对称的点D.若y=f(x)(x∈R)的图象上存在关于y轴对称的点,则a>18.定义在R上的函数f(x)满足e4(x+1)f(x+2)=f(﹣x),且对任意的x≥1都有f'(x)+2f(x)>0(其中f'(x)为f(x)的导数),则下列一定判断正确的是()A.e4f(2)>f(0)B.e2f(3)<f(2)C.e10f(3)<f(﹣2)D.e6f(3)<f(﹣1)9.已知a,b∈R且ab≠0,对于任意x≥0均有(x﹣a)(x﹣b)(x﹣2a﹣b)≥0,则()A.a<0B.a>0C.b<0D.b>010.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.D.11.已知函数y=f(x)在R上的图象是连续不断的,其导函数为f'(x),且f'(x)>﹣f(x),若对于∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,则实数a的最小值为()A.e B.C.D.e212.若对任意的x∈R,都存在x0∈[ln2,2],使不等式+4x+m≥0成立,则整数m的最小值为()(提示:ln2≈0.693)A.3B.4C.5D.613.已知函数f(x)=e x﹣ax﹣1,g(x)=lnx﹣ax﹣1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f (x0)g(x0)>0,则实数a的取值范围是()A.B.C.D.14.已知函数f(x)=ae x﹣x(a∈R)有两个零点x1,x2,且x1<x2则下列结论中不正确的是()A.B.0<x1<1C.x1+x2>2D.lnx1﹣x1<lnx2﹣x215.已知函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),则下列说法错误的是()A.B.x1+x2<2e C.有极大值点x0,且x1+x2>2x0D.16.已知函数f(x)=,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则最小值为()A.B.﹣C.D.﹣17.已知不等式e x﹣x﹣1>m[x﹣ln(x+1)]对一切正数x都成立,则实数m的取值范围是()A.B.C.(﹣∞,1]D.(﹣∞,e]18.已知函数f(x)是定义在(﹣,)上的奇函数.当时,f(x)+f′(x)tan x>0,则不等式cos x •f(x+)+sin x•f(﹣x)>0的解集为()A.(,)B.(﹣,)C.D.19.若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是()A.0B.1C.2D.320.已知可导函数f(x)的导函数f'(x),若对任意的x∈R,都有f(x)>f'(x)+2,且f(x)﹣2020为奇函数,则不等式f(x)﹣2018e x<2的解集为()A.(﹣∞,0)B.(0,+∞)C.D.二.填空题(共10小题)21.已知函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则实数t的取值范围.22.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2,其导数f′(x)满足xf′(x)<2f′(x),若f(3)=0,则不等式xf(x)>0的解集为.23.已知函数f(x)=,则过原点且与“曲线y=f(x)在y轴右侧的图象”相切的直线方程为,若f(x)=mx有两个不同的根,则实数m的取值范围是.24.已知函数f(x)=axlnx+(a>0).(1)当a=1时,f(x)的极小值为;(2)若f(x)≥ax在(0,+∞)上恒成立,则实数a的取值范围为.25.若不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,则实数b的最大值为.26.若函数f(x)=x3﹣ax﹣2(a∈R)在(﹣∞,0)内有且只有一个零点,则f(x)在[﹣1,2]上的最小值为.27.过曲线上一点P作该曲线的切线l,l分别与直线y=x,y=2x,y轴相交于点A,B,C.设△OAC,△OAB的面积分别为S1,S2,则S1=,S2的取值范围是.28.当x∈[0,+∞)时,不等式x2+3x+2﹣a≥0恒成立,则a的取值范围是.29.若不等式x2﹣|x﹣2a|≤a﹣3在x∈[﹣1,1]上恒成立,则正实数a的取值范围是.30.已知函数,若直线y=2x﹣b与函数y=f(x),y=g(x)的图象均相切,则a的值为;若总存在直线与函数y=f(x),y=g(x)图象均相切,则a的取值范围是.三.解答题(共10小题)31.已知函数f(x)=ax﹣lnx.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值为4?若存在,求出实数a,若不存在说明理由.32.已知函数f(x)=x sin x+cos x+ax2,x∈[﹣π,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.33.已知函数f(x)=e x+,其导函数为f′(x),函数g(x)=,对任意x∈R,不等式g(x)≥ax+1恒成立.(Ⅰ)求实数a的值;(Ⅱ)若0<m<2e,求证:x2g(x)>m(x+1)lnx.34.设函数f(x)=e x﹣ax﹣1,a∈R.(Ⅰ)讨论f(x)在(0,+∞)上的单调性;(Ⅱ)当a>1时,存在正实数m,使得对∀x∈(0,m),都有|f(x)|>x,求a的取值范围.35.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求证:.36.已知函数f(x)=.(1)求函数f(x)的极值;(2)令h(x)=x2f(x),若对∀x≥1都有h(x)≥ax﹣1,求实数a的取值范围.37.已知函数f(x)=lnx﹣.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)存在两个极值点x1,x2,求实数a的取值范围,并证明:f(x1),f(1),f(x2)成等差数列.38.已知函数f(x)=alnx(a≠0)与的图象在它们的交点P(s,t)处具有相同的切线.(1)求f(x)的解析式;(2)若函数g(x)=(x﹣1)2+mf(x)有两个极值点x1,x2,且x1<x2,求的取值范围.39.已知函数f(x)=﹣x+(x+1)ln(x+1)(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),求实数a的取值范围.40.已知实数a≥﹣1,设f(x)=(x+a)lnx,x>0.(1)若a=﹣1,有两个不同实数x1,x2不满足|f'(x1)|=|f'(x2)|,求证:x1+x2>2;(2)若存在实数,使得|f(x)|=c有四个不同的实数根,求a的取值范围.参考答案与试题解析一.选择题(共20小题)1.【解答】解:令t=sin x∈[0,1],则f(t)=t2+at+b,t∈[0,1].由已知得:①当,即a≥0时,则,整理得0≤a≤1;②当,即﹣1<a<0时,则,即,显然始终存在符合题意的b,使原式成立;③当,即﹣2<a≤﹣1时,则,显然符合题意的b存在;④当,即a≤﹣2时,则,即,可得始终存在b,且﹣3≤a≤﹣2.综上可知,a的取值范围是[﹣3,1].故选:A.2.【解答】解:ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,即为ln(x﹣1)+x﹣kx≤b对x>1恒成立,可令t=x﹣1,t>0,则lnt+t+1﹣k(t+1)≤b,令f(t)=lnt+(1﹣k)t+1﹣k,f′(t)=+1﹣k,若k≤1,则f′(t)>0,可得f(t)在t>1递增,当t→∞时,f(t)→∞,不等式不能成立;故k>1,当=k﹣1时,f(t)取得最大值f(t)max=f()=ln﹣1+1﹣k=﹣ln(k﹣1)﹣k,即﹣ln(k﹣1)﹣k≤b,所以ln(k﹣1)+k﹣1≥﹣2﹣(b﹣1),则≥﹣﹣1,可令k﹣1=u,g(u)=﹣﹣1,g′(u)=﹣=,可得当lnu=﹣1时,u=,g(u)min=﹣2e+e﹣1=﹣e﹣1,则的最小值是﹣e﹣1.故选:D.3.【解答】解:kx+b+1≥lnx在(0,+∞)上恒成立,即为lnx﹣kx﹣1≤b在(0,+∞)上恒成立,令f(x)=lnx﹣kx﹣1,f′(x)=﹣k,若k≤0,则f′(x)>0,可得f(x)在(0,+∞)递增,当x→∞时,f(x)→∞,不等式不能成立;故k>0,当=k时,f(x)取得最大值f(x)max=f()=ln﹣2=﹣lnk﹣2,即﹣lnk﹣2≤b,则≥﹣﹣,k>0,可令g(k)=﹣﹣,k>0,g′(k)=﹣=,可得当lnk=﹣1时,k=,g(k)min=﹣2e+e=﹣e,则的最小值是﹣e.故选:D.4.【解答】解:由,得,则,由y=lnx,得y′=,则,∵l1⊥l2,∴,即.∵x2>0,∴x1>1,又,令h(x)=,x>1.则h′(x)=.当x∈(1,+∞)时,y=2﹣x﹣e x为减函数,故2﹣x﹣e x<2﹣1﹣e<0.∴h′(x)<0在(1,+∞)上恒成立,故h(x)在(1,+∞)上为减函数,则h(x)<h(1)=﹣1.又当x>1时,<,∴h(x)的取值范围为(﹣∞,﹣1).即x2﹣x1的取值范围是(﹣∞,﹣1).故选:B.5.【解答】解:令f(x)=e2x+x2+b2﹣2bx﹣20,f′(x)=2e2x+2x﹣2b,f″(x)=4e2x+2>0,所以f′(x)在R上单调递增,又∵,所以存在x0使得f′(x0)=0,代入化简可得,那么f(x)在(﹣∞,x0)单调递减,在(x0,+∞)上单调递增.∴=,又∵f(x0)≥0,即.令,则t2+t≥20,解得:t≤﹣5 (含去),t≥4,即x0≥ln2,∴,故选:C.6.【解答】解:易知,切点为(1,0),切线斜率为0,而.∴,解得a=﹣1,b=1.∴f(x)=lnx﹣x+1(x>0).∵,易知f′(1)=0,且当x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,故若方程f(x)=m(m∈R)有两个不等实根x1<x2,则必有0<x1<1<x2,则2﹣x1>1.∵f(x1)=f(x2),∴f(x2)﹣f(2﹣x1)=f(x1)﹣f(2﹣x1),令g(x)=f(x)﹣f(2﹣x)=lnx﹣x﹣1﹣[ln(2﹣x)﹣(2﹣x)﹣1]=lnx﹣ln(2﹣x)﹣2x+2,x∈(0,1),∵(0<x<1),∴g(x)在(0,1)上单调递增,而g(1)=0,故g(x)<0在(0,1)上恒成立,∴f(x2)﹣f(2﹣x1)<0恒成立,即f(x2)<f(2﹣x1)恒成立而此时x2,2﹣x1∈(1,+∞),且f(x)在(1,+∞)上是减函数,∴x2>2﹣x1,即x1+x2>2.故选:C.7.【解答】解:由关于原点对称的点的特点,可将x换为﹣x,y换为﹣y,可得f(x)=﹣x2﹣2x+a(x≤0)关于原点O对称的解析式g(x)=x2﹣2x﹣a(x≥0),令h(x)=e x﹣x2+2x+a(x>0),则h'(x)=e x﹣2x+2,h''(x)=e x﹣2,由x>ln2可得h′(x)递增;0<x<ln2时,h′(x)递减,所以h'(x)≥h′(ln2)=4﹣2ln2>0,因此,h(x)是单调递增的,且h(x)=e x﹣x2+2x+a≥h(0)=1+a,故当a<﹣1,h(x)有唯一零点,当a≥﹣1时,h(x)不存在零点,故A正确;B不正确;由关于y轴对称的点的特点,可将x换为﹣x,y不变,可得f(x)=﹣x2﹣2x+a(x≤0)关于y轴对称的解析式m(x)=﹣x2+2x+a(x≥0),令n(x)=e x+x2﹣2x﹣a(x>0),n′(x)=e x+2x﹣2,n″(x)=e x+2,所以n″(x)>0,n′(x)递增,n′(x)≥n′(0)=﹣1,因此,n(x)不单调,当a<0时,n(x)有零点,当a=1时,n(x)存在两对零点,故C,D都不正确.故选:A.8.【解答】解:设F(x)=e2x•f(x),则F'(x)=2e2x f(x)+e2x f'(x)=e2x[2f(x)+f'(x)],∵对任意的x≥1都有f′(x)+2f(x)>0;则F'(x)>0,则F(x)在[1,+∞)上单调递增;F(x+2)=e2(x+2)•f(x+2);F(﹣x)=e﹣2x•f(﹣x);因为e4(x+1)f(x+2)=f(﹣x),∴e2(x+2)•e2x•f(x+2)=f(﹣x);∴e2(x+2)•f(x+2)=e﹣2x•f(﹣x)∴F(x+2)=F(﹣x),所以F(x)关于x=1对称,则F(﹣2)=F(4),∵F(x)在[1,+∞)上单调递增;∴F(3)<F(4)即F(3)<F(﹣2),∴e6•f(3)<e﹣4•f(﹣2);即e10•f(3)<f(﹣2)成立.故C正确;F(3)=F(﹣1),F(0)=F(2)故A,D均错误;F(3)>F(2)∴e2f(3)>f(2).B错误.故选:C.9.【解答】解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),由题意知,f(0)≥0在x≥0上恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,综上b<0恒成立.故选:C.10.【解答】解:当x≥1时,f(x)=x2﹣x+4=(x﹣2)2+>0,当x<1时,f(x)=﹣x3+x2﹣x+,则f′(x)=﹣x2+2x﹣1<0,故f(x)在(﹣∞,1)递减,f(x)>f(1)=3>0,若关于x的不等式在R上恒成立,则﹣x2+x﹣4≤x﹣a≤x2﹣x+4且x3﹣x2+x﹣≤x﹣a≤﹣x3+x2﹣x+恒成立,即﹣x2+x﹣4≤a≤x2﹣x+4且x3﹣x2+x﹣≤a≤﹣x3+x2﹣x+恒成立,所以(﹣x2+x﹣4)max≤a≤(x2﹣x+4)min且(x3﹣x2+x﹣)max≤a≤(﹣x3+x2﹣x+)min,对于y=﹣x2+x﹣4(x≥1),对称轴是x=,故x=时y取最大值﹣,对于y=x2﹣x+4(x≥1),对称轴是x=,故x=时y取最小值,故﹣≤a≤①,对于y=x3﹣x2+x﹣(x<1),y′=x2﹣2x+>0,函数在(﹣∞,1)递增,故y<y|x=1=﹣,对于y=﹣x3+x2﹣x+(x<1),y′=﹣(x﹣1)2+,令y′>0,解得<x<1,令y′<0,解得x<,故函数在(﹣∞,)递减,在(,1)递增,y min=y|x==,故﹣≤a≤②,综合①②,得﹣≤a≤.故选:B.11.【解答】解:根据題意,令F(x)=e x•f(x),则F'(x)=e x[f(x)+f'(x)]>0,故函数F(x)在R上单调递增,F(lnx)=e lnx f(lnx)=xf(lnx),F(ax)=e ax f(ax),又∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,所以F(lnx)≤F(ax)在(0,+∞)恒成立.从而lnx≤ax,即在(0,+∞)恒成立.令,,令g'(x)=0,则x=e,所以在(0,e)单调递增,在(e,+∞)单调递减.所以,故.则实数a的最小值为,故选:B.12.【解答】解:设,由题意可知f(x)≥0对x∈R恒成立,则在x0∈[ln2,2]上有解,即在x0∈[ln2,2]上有解.设g(x)=x2+2x﹣e x﹣m+4,∴h(x)=g'(x)=2x﹣e x+2,则h'(x)=2﹣e x,∵x∈[ln2,2],∴h'(x)≤h'(ln2)=2﹣e ln2=0,则g'(x)在[ln2,2]上单调递减.∵g'(ln2)=2ln2>0,g'(2)=6﹣e2<0,∴∃x1∈(ln2,2),g'(x1)=0,则g(x)在[ln2,x1)上单调递增,在(x1,2]上单调递减.∵g(ln2)=(ln2)2+2ln2+2﹣m,g(2)=12﹣e2﹣m,∴g(2)﹣g(ln2)=10﹣e2﹣(ln2)2﹣2ln2>0,则g(ln2)≤0,即(ln2)2+2ln2+2﹣m≤0,故m≥(ln2)2+2ln2+2,∵m∈Z,∴m的最小值是4.故选:B.13.【解答】解:由e x﹣ax﹣1,得f′(x)=e x﹣a,∵0<a<1,∴当x∈(0,+∞)时,f′(x)=e x﹣a>0恒成立,则f(x)在(0,+∞)上单调递增,则f(x)>f(0)=0;若∃x0∈(0,+∞),使f(x0)g(x0)>0,则∃x0∈(0,+∞),使g(x0)>0,即∃x0∈(0,+∞),使lnx0﹣ax0﹣1>0,∴∃x0∈(0,+∞),a<,令h(x)=,则h′(x)==,当x∈(0,e2)时,h′(x)>0,h(x)单调递增,当x∈(e2,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)有极大值也是最大值为h(e2)=,则a<,∴实数a的取值范围是,故选:A.14.【解答】解:f′(x)=ae x﹣1,当a≤0时,f′(x)<0在x∈R上恒成立,此时f(x)在R上单调递减,不合题意;当a>0时,由f'(x)=0,解得x=﹣lna,当x<﹣lna时,f'(x)<0,f(x)单调递减,当x>﹣lna时,f'(x)>0,f(x)单调递增,∴当a>0时,f(x)单调减区间为(﹣∞,﹣lna),单调增区间为(﹣lna,+∞),可知当x=﹣lna时,函数取得极小值为f(﹣lna)=ae﹣lna+lna=lna+1,又当x→﹣∞时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使函数f(x)有两个零点,则,得0<a<,故A正确;由f(0)=a>0,极小值点x=﹣lna>0,可得0<x1<x2.∵x1,x2是f(x)的两个零点,∴,.可得lnx1=lna+x1,lnx2=lna+x2.故lnx1﹣x1=lnx2﹣x2,故D错误;由lnx1﹣x1=lnx2﹣x2=lna,设g(x)=lnx﹣x﹣lna,则x1,x2为g(x)的两个零点,g′(x)=﹣1=,得g(x)在(0,1)上单调增,在(1,+∞)上单调减,∴0<x1<1<x2,故B正确;设h(x)=g(x)﹣g(2﹣x),(0<x<1),则h(x)=lnx﹣ln(2﹣x)+2﹣2x(0<x<1),h′(x)=+﹣2=>0恒成立,则h(x)在(0,1)上单调增,∵h(x)<h(1)=0,∴h(x1)=g(x1)﹣g(2﹣x1)<0,即g(x1)<g(2﹣x1),得g(x2)<g(2﹣x1).又g(x)在(1,+∞)上单调减,x2,2﹣x1∈(1,+∞),∴x2>2﹣x1,即x1+x2>2,故C正确.综上,错误的结论是D.故选:D.15.【解答】解:由f(x)=lnx﹣ax,可得,当a≤0时,f′(x)>0,∴f(x)在x∈(0,+∞)上单调递增,与题意不符;当a>0时,可得当,解得:,可得当时,f′(x)>0,f(x)单调递增,当时,f′(x)<0,f(x)单调递减,可得当时,f(x)取得极大值点,又因为由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得,可得,综合可得:,故A正确;由上可得f(x)的极大值为,设,设,其中,可得,可得,可得,易得当时,g′(x)=0,当,g′(x)≤0,故,,故,,由,易得,且,且时,f′(x)<0,f(x)单调递减,故由,可得,即,即:有极大值点,且,故C正确,B不正确;由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得lnx1=ax1,lnx2=ax2,可得,,可得,由前面可得,,可得,故D正确.故选:B.16.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,又f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0,同时g(x)===f(e x),若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且f(x1)=g(x2)=f(),所以x1=,即x2=lnx1,又k=,所以==k,故e k=k3e k,令h(k)=k3e k,k<0,则h′(k)=k2(k+3)e k,令h′(k)<0,解得k<﹣3,令h′(k)>0,解得:﹣3<k<0,∴h(k)在(﹣∞,﹣3)单调递减,在(﹣3,0)单调递增,∴h(k)min=h(﹣3)=﹣,故选:D.17.【解答】解:由题意可知:当x>0时,e x﹣x﹣1﹣m[x﹣ln(x+1)]>0恒成立,设f(x)=e x﹣x﹣1﹣m[x﹣ln(x+1)],则f′(x)=e x﹣1﹣m(1﹣),f″(x)=e x﹣,①m≤0时,f″(x)>0恒成立,∴f′(x)递增,∵f′(0)=0,∴x>0时,f′(x)>f′(0)=0,f(x)递增,又∵f(0)=0,∴x>0时,f(x)>f(0)=0,符合题意,②m>0时,f″′(x)=e x+,∴f′″(x)>0恒成立,f″(x)递增,f″(0)=1﹣m,(i)1﹣m≥0即0<m≤1时,与①同理,m符合题意,(ii)1﹣m<0,即m>1时,f″(0)<0,另一方面,显然当x→+∞时,f″(x)>0,且f″(x)连续,∴由零点定理,存在x0∈(0,+∞),使得f″(x0)=0,∴0<x<x0时,f″(x)<0,f′(x)递减,又∵f′(0)=0,∴0<x<x0时,f′(x)<0,f(x)递减,f(0)=0,∴0<x<x0时,f(x)<0,不合题意,综上,m的范围是(﹣∞,1],故选:C.18.【解答】解:令g(x)=f(x)sin x,g′(x)=f(x)cos x+f′(x)sin x=[f(x)+f′(x)tan x]•cos x,当x∈[0,)时,f(x)+f′(x)tan x>0,∴g′(x)>0,即函数g(x)单调递增.又g(0)=0,∴时,g(x)=f(x)sin x>0,∵f(x)是定义在(﹣,)上的奇函数,∴g(x)是定义在(﹣,)上的偶函数.不等式cos x•f(x+)+sin x•f(﹣x)>0,即sin(x+)f(x+)>sin xf(x),即g(x+)>g(x),∴|x+|>|x|,∴x>﹣①,又﹣<x+<,故﹣π<x<0②,由①②得不等式的解集是(﹣,0).故选:C.19.【解答】解:若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,问题等价于a≥在(0,+∞)恒成立,令g(x)=,则g′(x)=,令h(x)=﹣x﹣lnx,(x>0),则h′(x)=﹣﹣<0,故h(x)在(0,+∞)递减,不妨设h(x)=0的根是x0,则lnx0=﹣x0,则x∈(0,x0)时,g′(x)>0,g(x)递增,x∈(x0,+∞)时,g′(x)<0,g(x)递减,∴g(x)max=g(x0)===,∵h(1)=1>0,h(2)=﹣ln2<0,∴1<x0<2,<<1,∴a≥1,a的最小整数值是1,故选:B.20.【解答】解:设g(x)=,由f(x)>f′(x)+2,得:g′(x)=<0,故函数g(x)在R递减,由f(x)﹣2020为奇函数,得f(0)=2020,∴g(0)=f(0)﹣2=2018,即g(0)=2018,∵不等式f(x)﹣2018e x<2,∴<2018,即g(x)<g(0),结合函数的单调性得:x>0,故不等式f(x)﹣2018e x<2的解集是(0,+∞),故选:B.二.填空题(共10小题)21.【解答】解:函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则(x+t)3﹣3(x+t)>x3﹣3x+t,即x3+3x2t+3xt2+t3﹣3x﹣3t>x3﹣3x+t,所以3x2t+3xt2+t3﹣4t>0(t≠0)恒成立,所以t>0,且△=(3t2)2﹣4•3t•(t3﹣4t)=﹣3t4+48t2<0,解得t>4,又t<0时,不等式不恒成立.综上,t的范围是(4,+∞).22.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)<2f′(x)⇔f′(x)(x﹣2)<0,∴当x>2时,f′(x)<0,f(x)在(2,+∞)上的单调递减;同理可得,当x<2时,f(x)在(﹣∞,2)单调递增;∵f(3)=0,∴f(1)=0,即当1<x<3时,f(x)>0,当x>3或x<1时,f(x)<0,即f(x)的草图如右:则不等式xf(x)>0等价为或,即1<x<3或x<0,即不等式的解集为(﹣∞,0)∪(1,3),故答案为:(﹣∞,0)∪(1,3).23.【解答】解:设切点为(x0,lnx0),由f(x)=lnx,得f′(x)=,则f′(x0)=,∴曲线y=f(x)在y轴右侧的图象在切点处的切线方程为y﹣lnx0=,把原点代入,可得﹣lnx0=﹣1,即x0=e.则切线方程为y﹣1=(x﹣e),即y=;作出函数f(x)=的图象如图:若f(x)=mx有两个不同的根,则m≤0或<m<1.∴m的取值范围为(﹣∞,0]∪(,1).故答案为:y=;(﹣∞,0]∪(,1).24.【解答】解:(1)a=1时,f(x)=xlnx+,(x>0),f′(x)=lnx+1﹣,f″(x)=+>0,故f′(x)在(0,+∞)递增,而f′(1)=0,故x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,故f(x)极小值=f(1)=1;(2)若f(x)≥ax在(0,+∞)上恒成立,即a(1﹣lnx)≤在(0,+∞)恒成立,①1﹣lnx≤0即x≥e时,∵a>0,(1﹣lnx)≤0,>0,故a(1﹣lnx)≤在(0,+∞)恒成立,②1﹣lnx>0即0<x<e时,问题转化为a≤在(0,+∞)恒成立,即a≤[]min,只需求出g(x)=x2(1﹣lnx)的最大值即可,(0<x<e),g′(x)=x(1﹣2lnx),令g′(x)>0,解得:0<x<,令g′(x)<0,解得:<x<e,故g(x)在(0,)递增,在(,e)递减,故g(x)max=g()=,故a≤=,综上,a∈(0,].故答案为:1,(0,].25.【解答】解:由x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,得﹣x2+x﹣2≤ax+b≤4lnx﹣x2对任意的x∈[1,e]恒成立,令f(x)=﹣x2+x﹣2,g(x)=4lnx﹣x2.由g(x)=4lnx﹣x2,得g′(x)=(1≤x≤e).当x∈(1,)时,g′(x)>0,g(x)单调递增,当x∈()时,g′(x)<0,g(x)单调递减.在同一平面直角坐标系内,作出函数y=f(x)与y=g(x)的图象如图:设过(1,﹣1)与f(x)=﹣x2+x﹣2相切的直线方程为y+1=k(x﹣1),联立,消去y得x2+(k﹣1)x+1﹣k=0.由△=(k﹣1)2﹣4(1﹣k)=0,解得k=﹣3或k=1.当k=﹣3时,直线方程为y=﹣3x+2.由图可知,满足不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立的实数b的最大值为2.故答案为:2.26.【解答】解:∵f(x)=x3﹣ax﹣2(a∈R),∴f′(x)=3x2﹣a(x<0),①当a≤0时,f′(x)=3x2﹣a>0,函数f(x)在(﹣∞,0)上单调递增,又f(0)=﹣2<0,∴f(x)在(﹣∞,0)上没有零点;②当a>0时,由f′(x)=3x2﹣a>0,解得x<或x>(舍).∴f(x)在(﹣∞,﹣)上单调递增,在(,0)上单调递减,而f(0)=﹣2<0,要使f(x)在(﹣∞,0)内有且只有一个零点,∴f()=,解得a=3,f(x)=x3﹣3x﹣2,f′(x)=3x2﹣3=3(x+1)(x﹣1),x∈[﹣1,2],当x∈(﹣1,1)时,f′(x)<0,f(x)单调递减,当x∈(1,2)时,f′(x)>0,f(x)单调递增.又f(﹣1)=0,f(1)=﹣4,f(2)=0,∴f(x)min=f(1)=﹣4.故答案为:﹣4.27.【解答】解:由y=x+,得y′=1﹣,设P()(x0>0),则,∴曲线在P处的切线方程为.分别与y=x与y=2x联立,可得A(2x0,2x0),B(,),取x=0,可得C(0,),又O(0,0),∴△OAC的面积S1=;OA=,点B到直线x﹣y=0的距离d==.∴△OAB的面积S2===∈(0,2).故答案为:2;(0,2).28.【解答】解:可设t=,由x≥0可得t≥1,由x=,可得不等式恒成立,即为()2+3()+2﹣at﹣a2≥0对t≥1恒成立,化为a2+at﹣(t2+3)(t2+1)≤0对t≥1恒成立,设f(t)=a2+at﹣(t2+3)(t2+1),f′(t)=a﹣(t3+2t),由题意可得f(t)的最大值小于等于0,若f(x)不单调,可得a≥3,再由t≥1时,f(t)=(t3+2t)2+t(t3+2t)﹣﹣(t2+3)(t2+1)的导数为f′(t)=6t5+19t3+10t>0,即有f(t)≥f(1)=10>0,不等式不恒成立,可得f(x)单调,且f(x)在[1,+∞)递减,可得a﹣(t3+2t)≤0,即a≤3;又a2+a﹣×(1+3)×(1+1)≤0,解得﹣2≤a≤1,即a的范围是[﹣2,1].故答案为:[﹣2,1].29.【解答】解:x2﹣|x﹣2a|≤a﹣3即|x﹣2a|≥x2﹣a+3,可得x﹣2a≥x2﹣a+3,或x﹣2a≤﹣x2+a﹣3,即为a≤x﹣x2﹣3或3a≥x2+x+3在﹣1≤x≤1恒成立,由y=x﹣x2﹣3在[﹣1,1]的最小值为﹣1﹣1﹣3=﹣5,可得a≤﹣5;由y=x2+x+3在[﹣1,1]的最大值为1+1+3=5,可得3a≥5,即a≥;由a>0,可得a≥.故答案为:a≥.30.【解答】解:设直线y=2x﹣b与函数y=f(x)的图象相切的切点为(m,2lnm),由f′(x)=,可得=2,即m=1,切点为(1,0),则b=2,切线的方程为y=2x﹣2,联立y=g(x)=ax2﹣x﹣,可得ax2﹣3x+=0,由题意可得△=9﹣4a•=0,解得a=;设y=f(x)与y=g(x)的图象在交点处存在切线y=kx+t,且切点为(n,2lnn),由f′(x)=,g′(x)=2ax﹣1,可得=k=2an﹣1,2lnn=kn+t=an2﹣n﹣,化为kn=2,an2=,则2lnn=,即4lnn+n=1,设h(n)=4lnn+n,h′(n)=+1>0,可得h(n)在(0,+∞)递增,由h(1)=1,可得4lnn+n=1的解为n=1,则a=,由y=ax2﹣x﹣(a>0)的图象可得,当a越大时,抛物线的开口越小,可得此时y=f(x)和y=g(x)的图象相离,总存在直线与它们的图象都相切,则a的范围是[,+∞).故答案为:,[,+∞).三.解答题(共10小题)31.【解答】解:(1)f′(x)=a ﹣=(x>0),当a≤0时,f′(x)<0,∴f(x)递减,当a>0时,令f′(x)<0,得0<x <;令f′(x)>0,得x >,综上:a≤0时减区间为(0,+∞),a>0,时减区间为(0,);增区间为[,+∞);(2)a≤0时,f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =>0,舍去,a>0时①若≥e即a ≤时f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =,舍去,②若<e即a >时f(x)在(0,)上递减,在(,e]上递增,∴f(x)min=f ()=1﹣ln=4,∴a=e3.32.【解答】解:(1)当a=0时,f(x)=x sin x+cos x,x∈[﹣π,π].f'(x)=sin x+x cos x﹣sin x=x cos x.当x在区间[﹣π,π]上变化时,f'(x),f(x)的变化如下表x﹣π(﹣π,﹣)﹣(﹣,0)0(0,)(,π)πf'(x)+0﹣0+0﹣f(x)﹣1极大值极小值1极大值﹣1∴f(x)的单调增区间为(﹣π,﹣),(0,);f(x )的单调减区间为(﹣,0),(,π).(2)任取x∈[﹣π,π].∵f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)+a(﹣x)2=x sin x+cos x +ax2=f(x),∴f(x)是偶函数.f′(x)=ax+x cos x=x(a+cos x).当a≥1时,a+cos x≥0在[0,π)上恒成立,∴x∈[0,π)时,f′(x)≥0.∴f(x)在[0,π]上单调递增.又∵f(0)=1,∴f(x)在[0,π]上有0个零点.又∵f(x)是偶函数,∴f(x)在[﹣π,π]上有0个零点.当0<a<1时,令f′(x)=0,得cos x=﹣a.由﹣1<﹣a<0可知存在唯一x0∈(,π)使得cos x0=﹣a.∴当x∈[0,x0)时,f′(x)≥0,f(x)单调递增;当x∈(x0,π)时,f′(x)<0,f(x)单调递减.∵f(0)=1,f(x0)>1,f(π)=aπ2﹣1.①当aπ2﹣1>0,即<a<1时,f(x)在[0,π]上有0个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有0个零点.②当aπ2﹣1≤0,即0<a≤时,f(x)在[0,π]上有1个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有2个零点.综上,当0<a≤时,f(x)有2个零点;当a>时,f(x)有0个零点.33.【解答】解:(Ⅰ)f′(x)=e x﹣e﹣x,g(x)=e x,h(x)=e x﹣ax﹣1,h′(x)=e x﹣a,(1)a≤0时,h′(x)>0,h(x)在R递增,又h(﹣1)=﹣1+a<0,与题意不符,舍去,(2)a>0时,由h′(x)>0,解得:x>lna,由h′(x)<0,解得:x<lna,故h(x)在(﹣∞,lna)递减,在(lna,+∞)递增,故h(x)min=h(lna)=a﹣alna﹣1,由已知得e x﹣ax﹣1≥0恒成立,故只需h(x)min≥0,故只需a﹣alna﹣1≥0①,设g(x)=a﹣alna﹣1,g′(x)=﹣lna,由g′(x)>0,解得:0<x<1,由g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,故g(x)max=g(1)=0,即a﹣alna﹣1≤0②,由①②得实数a的值为1,综上:a=1;证明:(Ⅱ)由(Ⅰ)得:当x>0时,e x﹣x﹣1>0即e x>x+1,x2e x>x2(x+1),欲证x2e x>m(x+1)lnx,x>0,即证x2(x+1)>m(x+1)lnx,即证x2>mlnx(x>0),①当x∈(0,1]时,x2>0>mlnx,②当x∈(1,+∞)时,令F(x)=,则F′(x)=,由F′(x)>0,解得:x>,由F′(x)<0,解得:1<x<,故F(x)在(1,)递减,在(,+∞)递增,故x>1时,F(x)≥F()=2e,由已知0<m<2e,故m<F(x),即当x∈(1,+∞)时,m<,故x∈(1,+∞)时,x2>mlnx,综上,x>0时,x2>mlnx恒成立,故x2(x+1)>m(x+1)lnx,x2e x>m(x+1)lnx成立.34.【解答】解:(Ⅰ)由f(x)=e x﹣ax﹣1,得f′(x)=e x﹣a,∵x∈(0,+∞),∴e x>1,当a>1时,由f′(x)=e x﹣a>0,得x>lna,即函数y=f(x)在(lna,+∞)上单调递增,由f′(x)<0,得0<x<lna,即函数y=f(x)在(0,lna)上单调递减;当a≤1时,f′(x)>0在(0,+∞)上恒成立,即函数y=f(x)在(0,+∞)上单调递增.综上所述,当a≤1时,函数y=f(x)在(0,+∞)上单调递增;当a>1时,函数y=f(x)在在(0,lna)上单调递减,(lna,+∞)上单调递增.(3分)(Ⅱ)f(0)=0,当a>1时,由(1)结合函数y=f(x)的单调性知,∃x0>0,使得对任意x∈(0,x0),都有f(x)<0,则由|f(x)|>x得(a﹣1)x+1﹣e x>0.设t(x)=(a﹣1)x+1﹣e x,则t′(x)=a﹣1﹣e x,由t′(x)>0得x<ln(a﹣1),由t′(x)<0得x>ln(a﹣1).(1)若1<a≤2,则ln(a﹣1)≤0,故(0,x0)⊆(ln(a﹣1),+∞),即函数y=t(x)在(0,x0)上单调递减,∵t(0)=0,∴对任意x∈(0,x0),都有t(x)<0,不合题意;(2)若a>2,则ln(a﹣1)>0,故(0,ln(a﹣1))⊆(﹣∞,ln(a﹣1)),∴y=t(x)在(0,ln(a﹣1))上单调递增,∵t(0)=0,∴对任意x∈(0,ln(a﹣1)),都有t(x)>0,符合题意,此时取0<m≤min{x0,ln(a﹣1)},可使得对∀x∈(0,m),都有|f(x)|>x.综上可得a的取值范围是(2,+∞).(12分)35.【解答】解:(1)因为,所以当时,f′(x)=﹣≤0,f(x)在R递减,当时,时,时,f′(x)<0,f(x)在上单调递增,在上单调递减,当时,时,时,f′(x)<0,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减,综上,时,f(x)在R递减,当时,f(x)在(2,)递增,在(﹣∞,2),(,+∞)递减,a>时,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减;证明:(2)由>0,(x>0)知:ax2﹣x+1>0在(0,+∞)上恒成立,即a>﹣+在(0,+∞)上恒成立,∵﹣+=﹣+≤,故a>,又1﹣2a>0,故<a<,由(1)知:<a<时,f(x)在(,)递减,故f(a)<f()=<=.36.【解答】解:(1)由题意,函数f(x)=,则f′(x)=,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)递减,当x=e时,f(x)取得极大值,没有极小值;(2)h(x)=x2f(x)=xlnx,对∀x≥1,有xlnx≥ax﹣1,即a≤=lnx+,令g(x)=lnx+,则g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增,故g(x)min=g(1)=1,故a≤1,即实数a的取值范围是(﹣∞,1].37.【解答】解:(1)由f(x)=lnx﹣得f′(x)=+,故切线斜率k=f′(1)=1+,又f(1)=﹣,故切线方程为:y+=(1+)(x﹣1),即(4+a)x﹣4y﹣4﹣3a=0;(2)f′(x)=+=(x>0),由题意知:x1,x2是方程f′(x)=0在(0,+∞)内的两个不同实数解,令g(x)=x2+(2+a)x+1(x>0),注意到g(0)=1>0,其对称轴为直线x=﹣2﹣a,故只需,解得:a<﹣4,即实数a的取值范围是(﹣∞,﹣4),由x1,x2是方程x2+(2+a)x+1=0的两根,得:x1+x2=﹣2﹣a,x1x2=1,故f(x1)+f(x2)=(lnx1﹣)+(lnx2﹣)=ln(x1x2)﹣a•=﹣a•=﹣a,又f(1)=﹣,即f(x1)+f(x2)=2f(1),故f(x1),f(1),f(x2)成等差数列.38.【解答】解:(1)根据题意,函数f(x)=alnx(a≠0)与y=x2可知f′(x)=,y′=x,两图象在点P(s,t)处有相同的切线,所以两个函数切线的斜率相等,即•s=,化简得s=①,将P(s,t)代入两个函数可得=alns②,综合上述两式①②可解得a=1,所以f(x)=lnx.(2)函数g(x)=(x﹣1)2+mf(x)=(x﹣1)2+mlnx,定义域为(0,+∞),g′(x)=2(x﹣1)+=,因为x1,x2为函数g(x)的两个极值点,所以x1,x2是方程2x2﹣2x+m=0的两个不等实根,由根与系数的关系知x1+x2=1,x1x2=,(*),又已知x1<x2,所以0<x1<<x2<1,=,将(*)式代入得==1﹣x2+2x2lnx2,令h(t)=1﹣t+2tlnt,t∈(,1),h′(t)=2lnt+1,令h′(t)=0,解得:t=,当t∈(,)时,h′(t)<0,h(t)在(,)单调递减;当t∈(,1)时,h′(t)>0,h(t)在(,1)单调递增;所以h(t)min=h()=1﹣=1﹣,h(t)<max{h(),h(1)},h()=﹣ln2<0=h(1),即的取值范围是[1﹣,0).39.【解答】解:(1)f(x)=﹣x+(x+1)ln(x+1)的导数为f′(x)=a•﹣1+ln(x+1)+1=ln(x+1)﹣,当a=1时,f′(x)=ln(x+1)﹣,可得曲线y=f(x)在x=1处的切线的斜率为k=ln2﹣,又f(1)=﹣1+2ln2,则曲线y=f(x)在x=1处的切线方程为y﹣(﹣1+2ln2)=(ln2﹣)(x﹣1),化为(ln2﹣)x﹣y+﹣1+ln2=0;(2)f(x)的导数f′(x)=ln(x+1)﹣,由∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),可得f(x)在(0,+∞)递增,则f′(x)≥0在(0,+∞)内恒成立,即为a≤在(0,+∞)内恒成立,设g(x)=,由于x>0,所以e x>1,ln(x+1)>0,g(x)>0,设h(x)=g(x)﹣1=,由y=e x ln(x+1)﹣x的导数为y′=e x(ln(x+1)+)﹣1,且y″=e x(ln(x+1)+﹣)=e x[ln(x+1)+]>0,可得函数y′=e x(ln(x+1)+)﹣1在x>0递增,即有y′>0,可得函数y=e x ln(x+1)﹣x在x>0递增,可得e x ln(x+1)>x恒成立,则h(x)>0恒成立,可得g(x)>1,则a≤1.40.【解答】解:(1)证明:a=﹣1时,f(x)=(x﹣1)lnx(x>0),.因为f'(x)在x∈(0,+∞)上单调递增,故f'(x1)+f'(x2)=0(即)以下主要有三种做法:法一:由基本不等式得:(等号可不写)因此.令,可知f'(t)≥0.因为f'(t)在x>0上单调递增,且f'(1)=0,因此.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法二:先证明:x1x2≥1.因为f'(1)=0,故不妨x1>1,0<x2<1.设.由基本不等式知:.因为f'(x)在x>0上单调递增且f'(x1)+f'(x2)=0,所以x1>x2′即x1x2≥1.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法三:因为f'(1)=0,故不妨x1>1,0<x2<1.设x2′=2﹣x2>1.由基本不等式得:(即x2x2′<1).因为f'(x)在x>0上单调递增,且f'(1)=0,因此f'(x2′)+f'(x2)<0.所以x1+x2>x2′+x2>2.((6分),若写x1+x2≥2不得分)(2)原题即f(x)=±c共有四个不同的实数根..①﹣1≤a≤0,因为f'(x)在x>0上单调递增,且当x→0时f'(x)→﹣∞,当x→+∞时f'(x)→+∞,故存在唯一实数x0>0,使得f'(x0)=0,即a=﹣x0(lnx0+1).因此f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.由﹣1≤a≤0可知.把a=﹣x0(lnx0+1)代入得:f(x)的极小值.令h(x)=﹣x(lnx)2,h'(x)=﹣lnx(lnx+2).当时,h′(x)<0;当时,h′(x)>0.因此h(x)在上单调递减,在上单调递增.故,所以f(x)=c上至多有两个不同的实数根,f(x)=﹣c上至多有一个的实数根,故不合题意.②a>0,当x→0时f'(x)→+∞,当x→+∞时f'(x)→+∞,.当x∈(0,a)时,f''(x)<0;当x∈(a,+∞)时,f''(x)>0,f'(a)=2+lna.因此f'(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(i)若a≥,则f'(x)≥0(当且仅当时取等),故f(x)在x>0上单调递增.因此f(x)=±c上至多有两个不同的实数根,故不合题意.(ii)若,则f'(a)<0,故存在x1∈(0,a)和,使得f'(x1)=f'(x2)=0.因此f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.因为当x→0时f(x)→﹣∞,当x→+∞时f'(x)→+∞,且,故f(x)=c上有且仅有一个实数根.由①的h(x)可知:,.故存在﹣c∈(f(x2),f(x1)),使得.此时f(x)=﹣c上恰有三个不同的实数根.此时f(x)=±c共有四个不同的实数根.综上:满足条件.。
高中数学必修一难题个人整理的,里面有详细答案的,供大家看看推荐一下吧!
三、解答题1. 判断一次函数,b kx y +=反比例函数xk y =,二次函数c bx ax y ++=2的 单调性.2. 已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围.3. 利用函数的单调性求函数x x y 21++=的值域;4. 已知函数[]2()22,5,5f x x ax x =++∈-.① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.1. 解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;当0k >,ky x =在(,0),(0,)-∞+∞是减函数, 当0k <,ky x=在(,0),(0,)-∞+∞是增函数;当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a -+∞是增函数,当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a -+∞是减函数.2. 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,∴01a <<3. 解:1210,2x x +≥≥-,显然y 是x 的增函数,12x =-,min 1,2y =- 1[,)2y ∴∈-+∞ 4. 解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f =====∴max m ()37,()1in f x f x ==(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤-.17. 已知函数f(x)=x 2+2ax+2, x []5,5-∈.(1)当a=-1时,求函数的最大值和最小值;(2) 若y=f(x)在区间[]5,5- 上是单调 函数,求实数 a 的取值范围。
高中数学《三角函数与解三角形》解答题100题(教师版)
最新数学三角函数与解三角形解答题100题一、解答题1.(2020·山西高三期末(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()sin cos 2sin sin cos B A C A B =-.(1)求B ;(2)若5b =,且AC 边上的中线长为3,求ABC ∆的面积. 【答案】(1)3π;(22.(2018·江苏高三期末(理))已知ABC ∆中,a ,b ,c 分别为三个内角A ,B ,Csin cos +C c B c =, (1)求角B ; (2)若2b ac =,求11tan tan A C +的值. 【答案】(1)3B π=;. 3.(2020·广东高一期末)已知02πα<<,且513sin α=. ()1求tan α的值; ()2求()222222sin sin sin cos sin απααπαα--⎛⎫++ ⎪⎝⎭的值. 【答案】(1)512;(2)7174.(2020·广东高三期末(理))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin sin sin sin c B A a b B C-=+-. (1)求角A ; (2)若3,cos a B ==,求ABC 的面积.【答案】(1)60A ︒=;(2)ABC S =△5.(2017·江苏高考模拟)已知向量()3cos ,1m x =-,()2sin ,cos n x x =.(1)当3x π=时,求m n ⋅的值;(2)若0,4x π⎡⎤∈⎢⎥⎣⎦,且3132m n ⋅=-,求cos2x 的值. 【答案】(1)12(2)66.(2016·安徽高一期末)若函数2cos 2sin y x p x q =++有最大值9,最小值6,求实数,p q 的值. 【答案】,.7.(2017·广西南宁三中高一期末(理))已知向量a =(cos 32x ,sin32x),b =(-sin2x ,-cos 2x ),其中x ∈[2π,π]. (1)若|a +b |x 的值; (2)函数f(x)=a ·b +|a +b |2,若()c f x >恒成立,求实数c 的取值范围.【答案】(1)712π或1112π;(2)()5,+∞. 8.(2020·四川高一期末)已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭. (1)化简()fα;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值. 【答案】(1)()cos f αα=-;(2)5. 9.(2019·上海市南洋模范中学高一期末)已知小岛A 的周围38海里内有暗礁,船正向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后在C 处测得小岛A 在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?【答案】继续向南航行无触礁的危险.10.(2011·辽宁高一期末(理))已知函数22()3sin cos2sin0)12f x x x x xπωωωωω⎛⎫=+->⎪⎝⎭的最小正周期为π(1)求()f x的递增区间(2)在∆ABC中,角A,B,C的对边分别为a,b,c,已知1,()1a b f A===求C∠的大小【答案】(1)5,,1212k k k Zππππ⎡⎤-+∈⎢⎥⎣⎦;(2)712Cπ=或12π.11.(2019·福建高二期末(理))在ABC∆中,角,,A B C所对的边分别是,,a b c,cos sinB b A=.(1)求角B的大小;(2)AD是BC边上的中线,若AD AB⊥,2AB=,求AC的长.【答案】(1)3π(2)12.(2020·浙江高二期末)如图,在四棱锥P−ABCD中,底面ABCD为梯形,AD//BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.(Ⅰ)求证:PD//平面OCM;(Ⅱ)若AP与平面PBD所成的角为60∘,求线段PB的长.【答案】(Ⅰ)见解析; (Ⅱ)PB=√33.13.(2019·吉林长春市实验中学高一期末)已知函数sin(),(0))4(f x xπωω=+<的最小正周期为π.(1)求函数()f x的单调递增区间;(2)说明如何由函数siny x=的图象经过变换得到函数()f x的图象.【答案】(1)3[,]()88k k kππππ-+∈Z(2)详见解析14.(2014·浙江高考模拟(理))已知函数()f x xω=(0,0)Aω>>的部分图像如图所示.P、Q分别是图像上的一个最高点和最低点,R为图像与x轴的交点,且四边形OQRP为矩形.(Ⅰ)求()f x 的解析式; (Ⅱ)将()y f x =的图像向右平移12个单位长度后,得到函数()y g x =的图像.已知35(,)22α∈,()3g α=,求()f α的值.【答案】(1)()3sin2f x x π=;(2).15.(2019·湖南高一期末)已知α,,2πβπ⎡∈⎤⎢⎥⎣⎦,且3cos 5α=-(Ⅰ)求tan 4πα⎛⎫- ⎪⎝⎭的值;(Ⅱ)若()3sin 5αβ-=,求sin β的值. 【答案】(Ⅰ) 7-;(Ⅱ) 116.(2019·上海市嘉定区第二中学高二期末)已知a b 、是两个不平行的向量,()()cos sin cos sin a b ααββ==,,,.(1)求证:()()a b a b +⊥-; (2)若3•4445a b πππαβ⎛⎫∈-== ⎪⎝⎭,,,,求sin 4πα⎛⎫- ⎪⎝⎭的值【答案】(1)见详解 (2)45-17.(2019·安徽亳州二中高二期末(理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)sin 213°+cos 217°-sin13°cos17° (2)sin 215°+cos 215°-sin15°cos15° (3)sin 218°+cos 212°-sin18°cos12° (4)sin 2(-18°)+cos 248°- sin 2(-18°)cos 248°(5)sin 2(-25°)+cos 255°- sin 2(-25°)cos 255° Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论 【答案】见解析【考点定位】本题主要考察同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化思想 18.(2020·内蒙古高一期末)已知函数()()()()()3ππsin πcos 2cos sin 222sin 2πcos πx x x x f x x x ⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=-+.(1)化简()f x ; (2)若tan 4α=,求()fα的值.【答案】(1)22sin 2cos 2sin cos x xx x+⋅;(2)94.19.(2018·江苏高一期末)已知3sin 5α=-,3,2παπ⎛⎫∈ ⎪⎝⎭.(1)求sin 4πα⎛⎫+⎪⎝⎭的值; (2)求cos 24πα⎛⎫- ⎪⎝⎭的值.【答案】(1)10-;(2)50. 20.(2020·广东高三期末(理))在ABC ∆中,角A ,B ,C 的对应边分别为a ,b ,c ,已知22A B C =≠,且2222sin a c b ac C +=+.(1)求A ;(2)若ABC ∆的面积为2,求a . 【答案】(1)4A π=(2)a =21.(2020·河南高二期末(理))在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知()223a b c ab +=+.(1)求C 的值; (2)若ABC ∆的面积为2,c =a 、b 的值.【答案】(1)3C π=;(2)23a b =⎧⎨=⎩或32a b =⎧⎨=⎩.22.(2018·吉林高考模拟(理))已知函数()22cos 2sin cos 3f x x x x π⎛⎫=-+-+ ⎪⎝⎭(Ⅰ)求函数()f x 的最小正周期和单调递增区间; (Ⅱ)若存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()()20f t t m ⎡⎤-->⎣⎦,求实数m 的取值范围. 【答案】(1)(),k Z 63T k k πππππ⎡⎤=-+∈⎢⎥⎣⎦,单调递增区间为(2)(),1-∞-23.(2018·上海高二期末)如图1,点A 为半径为2千米的圆形海岛的最东端,点B 为最北端,在点A 的正东4千米C 处停泊着一艘缉私艇,某刻,发现在B 处有一小船正以速度v (千米/小时)向正北方向行驶,已知缉私艇的速度为3v (千米/小时) . (1)为了在最短的时间内拦截小船检查,缉私艇应向什么方向行驶? (精确到1) (2)海岛上有一快艇要为缉私艇送去给养,问选择海岛边缘的哪一点M 出发才能行程最短? (如图2建立坐标系, 用坐标表示点M 的位置)【答案】(1)缉私艇应向西偏北36.8的方向行驶;(2)68,55⎛⎫ ⎪⎝⎭M24.(2020·河北高一期末)在平面直角坐标系xOy中,已知向量2,22m ⎛⎫=- ⎪ ⎪⎝⎭,(),n sin cos αα=,0,2πα⎛⎫∈ ⎪⎝⎭.(1)若m n ⊥,求tan α的值;(2)若m 与n 的夹角为3π,求α的值.【答案】(1)tan 1α=;(2)512πα=25.(2020·河南高二期末(文))在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且(2)cos cos a c B b C -=. (1)求角B 的大小; (2)若,24A a π==,求△ABC 的面积.【答案】(1)3B π=.(2. 26.(2018·北京高一期末)已知向量()sin ,1a x =,()1,b k =,()f x a b =⋅. (Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 【答案】(1) []0,2(2) tan 44α=-27.(2017·河南高一期末)已知函数())cos cos f x x x x =+,x ∈R .(1)求函数()f x 的最大值; (2)若324f θ⎛⎫=⎪⎝⎭,R θ∈,求3f πθ⎛⎫+ ⎪⎝⎭的值.【答案】(1)()max 13122f x =+=;(2)11.828.(2015·四川高考模拟(理))已知向量p =(2sin x),q =(-sin x,2sinx ),函数f (x )=p ·q (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =且a>b ,求a ,b 的值.【答案】(1)f (x )的单调增区间是[,]()36k k k Z ππππ-+∈.(2)a =2,b29.(2020·云南昆明一中高三期末(理))在ABC 中,内角,,A B C所对的边分别为,,,cos 3a b c A B C ==.(1)求tan C ;(2)若ABC,求b . 【答案】(1;(2)b .30.(2019·天津高三期末(文))在ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c,已知c =πC 3=. ()1若2sinA 3sinB =,求a ,b ; ()2若cosB =,求sin2A 的值. 【答案】(1)?a 3=,b 2=. ; (2 31.(2019·玉溪市民族中学高一期末) 已知函数()2sin(2)6f x x π=-。
高三数学试卷难题汇总
一、函数与导数1. 已知函数$f(x)=x^3-3x^2+4$,求函数的极值点。
2. 设函数$f(x)=\ln(x^2+1)$,求函数的导数$f'(x)$。
3. 已知函数$f(x)=\frac{x}{x^2+1}$,求函数的导数$f'(x)$。
4. 设函数$f(x)=x^3-3x^2+2$,求函数的单调区间。
5. 已知函数$f(x)=x^3-3x^2+4$,求函数的图像。
二、立体几何1. 已知一个正方体的边长为a,求其对角线的长度。
2. 已知一个长方体的长、宽、高分别为a、b、c,求其体积。
3. 已知一个圆锥的底面半径为r,高为h,求其体积。
4. 已知一个球体的半径为R,求其表面积。
5. 已知一个长方体的长、宽、高分别为a、b、c,求其表面积。
三、概率与统计1. 已知某班级有50名学生,其中有30名男生,20名女生,求班级中男生和女生人数的概率。
2. 已知某次考试的成绩服从正态分布,平均分为70分,标准差为10分,求考试成绩在60分至80分之间的概率。
3. 已知某次考试的成绩服从二项分布,试验次数为10次,每次成功的概率为0.3,求考试至少成功6次的概率。
4. 已知某班级有50名学生,其中有30名男生,20名女生,求班级中男生和女生人数的期望。
5. 已知某次考试的成绩服从正态分布,平均分为70分,标准差为10分,求考试成绩的方差。
四、解析几何1. 已知直线方程为$x+y=2$,求该直线与坐标轴的交点。
2. 已知圆的方程为$(x-2)^2+(y-3)^2=16$,求圆心坐标和半径。
3. 已知两条直线的方程分别为$x+y=1$和$x-y=2$,求两条直线的交点。
4. 已知椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{9}=1$,求椭圆的长轴和短轴。
5. 已知双曲线的方程为$x^2-4y^2=1$,求双曲线的渐近线方程。
五、复数1. 已知复数$z=3+4i$,求$|z|$。
高一数学必修一经典高难度测试题含答案
高中数学必修1复习测试题(难题版)1.设5log 31=a ,513=b ,3.051⎪⎭⎫⎝⎛=c ,则有( )A .a b c <<B .c b a <<C .c a b <<D .b c a <<2.已知定义域为R 的函数)(x f 在),4(∞+上为减函数,且函数()y f x =的对称轴为4x =,则( )A .)3()2(f f >B .)5()2(f f >C .)5()3(f f >D .)6()3(f f >3.函数lg y x = 的图象是( )4.下列等式能够成立的是( )A .ππ-=-3)3(66B =C =34()x y =+5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<-B .)1()23()2(-<-<f f fC .)23()1()2(-<-<f f fD .)2()23()1(f f f <-<-6.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 A . ()(2)f x x x =-+ B .()||(2)f x x x =- C .()(||2)f x x x =- D. ()||(||2)f x x x =-7.已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞解: 先求函数定义域: 由2-ax >0,得ax <2, 又a 是对数的底数,∴a >0且a≠1.∴x <.由递减区间[0,1]应在定义域内,可得>1,∴a <2.又2-ax 在x ∈[0,1]上是减函数,∴在区间[0,1]上也是减函数.由复合函数单调性可知a >1, ∴1<a <2.8.已知(31)4,1()log ,1aa x a x f x x x -+<=>⎧⎨⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )A (0,1)B 1(0,)3C 11[,)73D 1[,1)79.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当x ∈[1,0]-时()1xf x ⎛⎫= ⎪,则2(log 8)f 等于 ( )A . 3B . 18C . 2-D . 210.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )11.已知f(x)= ⎩⎨⎧>≤+)0(2)0(12x x x x 若()10f x =,则x = .12.1x≤,则x 的取值范围是____________13. 设函数()x f 在)2,0(上是增函数,函数()2+x f 是偶函数,则()1f 、⎪⎭⎫ ⎝⎛25f 、⎪⎭⎫⎝⎛27f 的大小关系是.___________14.若f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的增区间是.∵函数f(x)=(a-2)x2+(a-1)x+3是偶函数,∴a-1=0∴f(x)=-x2+3,其图象是开口方向朝下,以y轴为对称轴的抛物线故f(x)的增区间(-∞,0]故答案为:(-∞,0]15.已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.15.(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a 因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ;另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a .所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2).16.试用定义讨论并证明函数11()()22ax f x a x +=≠+在(),2-∞-上的单调性17.已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
高中数学经典高考教学难题集锦
2021年10月18日姚杰的高中数学组卷一.〔共15小〕1.〔2021?阳模〕定在[0,+∞〕上的函数f〔x〕足f〔x〕=3f〔x+2〕,当x∈[0,2+ 2〕,f〔x〕=x+2x,f〔x〕在[2n2,2n〕上的最大an〔n∈N〕且{an}的前n和Sn,=〔A.3B.C.2D.2.〔2021?安徽〕{an}是任意等比数列,它的前n和,前2n和与前3n和分X,Y,Z,以下等式中恒成立的是〔〕A.X+Z =2YB.Y〔YX〕=Z〔ZX〕C.Y2=XZD.Y〔YX〕=X〔ZX〕3.〔2005?广〕数列{xn}足x2=,xn=〔xn﹣1+xn﹣2〕,n=3,4,⋯.假设=2,x1=〔〕A.B.3C.4D.54.〔2021?上海〕an=sin,Sn=a1+a2+⋯+an,在S1,S2,⋯S100中,正数的个数是〔〕A.25B.50C.75D.105.〔2007?西〕出如下三个命:①a,b∈R,且ab≠0,假设>1,<1;②四个非零数a、b、c、d依次成等比数列的充要条件是ad=bc;③假设f〔x〕=logix,f〔|x|〕是偶函数.其中正确命的序号是〔〕A.①②B.②③C.①③D.①②③6.〔2006?北京〕4703n+10〕f〔n〕=2+2+2+2+⋯+2〔n∈N〕,f〔n〕等于〔A.B.C.D .7.〔2005?江西〕将1,2,⋯,99个数平均分成三,每的三个数都可以成等差数列的概率〔〕A.B.C.D.8.〔2005?黑江〕如果a1,a2,⋯,a8各都大于零的等差数列,公差d≠0,〔〕A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a59.〔2004?湖南〕民收入由工性收入和其它收入两局部构成.2003年某地区民人均收入3150元〔其中工性收入1800元,其它收入1350元〕,地区自2004年起的5年内,民的工性收入将以每年6%的年增率增,其它收入每年增加160元.根据以上数据,2021年地区民人均收入介于〔〕A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元10.〔2002?北京〕假设一个等差数列前3的和34,最后3的和146,且所有的和390,个数列有〔〕A.13B.12C.11D.1011.〔2000?北京〕等差数列{an}足a1+a2+⋯+a101=0,有〔〕A.a1+a101>0B.a2+a102<0C.a3+a99=0D.a51=5112.〔2021?上海〕在数列〔n行12列的矩的第i行第j列的元an〕中,an=21,假设一个7素c ij=a i?a j+a i+a j〔i=1,2,⋯,7;j=1,2,⋯,12〕,矩元素能取到的不同数的个数〔〕A .18B.28C.48D.6313.〔2021?上海〕成的区域〔含界〕Ωn〔n=1,2,⋯〕,当点〔x,y〕分在Ω1,Ω2,⋯上,x+y的最大分是M1,M2,⋯,Mn=〔〕A .0B.C.2D.214.〔2005?上海〕用n个不同的数a1,a2,⋯,an可得到n!个不同的排列,每个排列一行写成一个n!行的数,第ni行ai1,ai2,⋯,ain,bi=ai1+2ai23ai3++〔1〕nain,i=1,2,3,⋯,n!,例如:用1,2,3可得数如,由于此数中每一列各数之和都是12,所以,b1+b2+⋯+b6=12+2×123×12=24,那么,在用1,2,3,4,5形成的数中,b1+b2+⋯+b120等于〔〕A.3600B.1800C.1080D.72015.〔2001?北京〕根据市果,某种家用商品从年初开始的n个月内累的需求量Sn〔万件〕近似地足关系式Sn=〔21nn25〕〔n=1,2,⋯,12〕,按此,在本年度内,需求量超万件的月份是〔〕A.5、6月B.6、7月C.7、8月D.8、9月二.填空〔共15小〕16.〔2021?江〕{an}是公比q的等比数列,|q|>1,令bn=an+1〔n=1,2,⋯〕,假设数列{bn}有四在集合{ 53,23,19,37,82}中,6q=.17.〔2021?四川〕等差数列{an}的前n和Sn,假设S4≥10,S5≤15,a4的最大.18.〔2021?福建〕商家通常依据“系数准〞确定商品售价格,及根据商品的最低售限价a,最高售限价b〔b>a〕以及常数x〔0<x<1〕确定售价格c=a+x〔b a〕,里,x被称系数.说明,最正确系数x恰好使得〔c a〕是〔b c〕和〔b a〕的等比中,据此可得,最正确系数x的等于.19.〔2021?江〕1=a1≤a 2≤⋯≤a 7,其中a1,a3,a5,a7成公比q 的等比数列,a2,a4,a6成公差1的等差数列,q 的最小是.*;20.〔2021?北京〕{an}足:a4n ﹣3=1,a4n ﹣1=0,a2n=an ,n∈Na 2021=a2021=.21〔.2021?宁夏〕等差数列{an}的前n 和Sn ,22amam=0,s2m ﹣1=38,m=22.〔2021?四川〕数列{a n }中,a 1=2,a n+1=a n +n+1,通a n =.23〔.2007?海南〕{an}是等差数列,a4+a6=6,其前5和S5=10,其公差d=24.〔2006?广〕在德国不莱梅行的第48届世期,某商橱窗里用同的球堆成假设干堆“正三棱〞形的展品,其中第1堆只有一,就一个球,第2、3、4、⋯堆最底〔第一〕分按下所示方式固定放,从第二开始,每的小球自然放在下一 之上,第n 堆第n 就放一个球,以f 〔n 〕表示第n 堆的球数,f 〔3〕= ;f 〔n 〕=〔答案用n 表示〕.25.〔2005?广〕平面内有n 条直〔n≥3〕,其中有且有两条直互相平行,任意三条直不同一点,假设用f 〔n 〕表示n 条直交点个数,f 〔4〕=,当>4f 〔n 〕=〔用n 表示〕n26.〔2004?上海〕假设干个能惟一确定一个数列的量称数列的“根本量〞.{an}是公比q 的无等比数列,以下{an}的四量中,一定能成数列“根本量〞的是第.〔写出所有符合要求的号〕①S 1与S2;②a 2与S3;③a 1与an ;④q 与an .〔其中n 大于1的整数,Sn{an}的前n 和.〕27.〔2002?上海〕假设数列{an}中,a1=3,且an+1=an2〔n∈N*〕,数列的通an=.28.〔2021?上海〕点O〔0,0〕、Q0〔0,1〕和点R0〔3,1〕,Q0R0的中点P1,取Q0P1和P1R0中的一条,其端点Q1、R1,使之足〔|OQ1| 2〕〔|OR1| 2〕<0,Q1R1的中点P2,取Q1P2和P2R1中的一条,其端点Q2、R2,使之足〔|OQ2| 2〕〔|OR2|2〕<0.依次下去,得到P1,P2,⋯,Pn,⋯,= .29.〔2021?湖北〕数列.{an}足:a1=m〔m正整数〕,an+1=假设m所有可能的取a6=1,30.〔2004?北京〕定“等和数列〞:在一个数列中,如果每一与它的后一的和都同一个常数,那么个数列叫做等和数列,个常数叫做数{an}是等和列的公和.数列数列,且 a1=2,公和5,那么a18的,个数列的前 n和Sn的算公式.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.〔共15小〕1.〔2021?阳模〕定在[0,+∞〕上的函数f〔x〕足f〔x〕=3f〔x+2〕,当x∈[0,2〕,和2f〔x〕=x+2x,Sn,=〔〕f〔x〕在[2n2,2n〕上的最大+an〔n∈N〕且{an}的前n A.3B.C.2D.考点:数列的求和;数列的极限.:算;.分析:由意可知,函数f〔x〕按照2位向右平移,只是改函数的最大,求出a1,公比,推出an,然后求出Sn,即可求出极限.解答:解:因f〔x〕=3f〔x+2〕,所以f〔x+2〕=f〔x〕,就是函数向右平移2个位,最大原来的,a1=f〔1〕=1,q=,所以an=,Sn=,==故D点:本是中档,考函数与数列以及数列的极限的交目,注意函数的象的平移,改的是函数的最大,就是数列的公比,考算能力,解决的能力.2.〔2021?安徽〕{an}是任意等比数列,它的前n和,前2n和与前3n和分Y,Z,以下等式中恒成立的是〔〕2A.X+Z=2Y B.Y〔Y X〕=Z〔Z X〕C.Y=XZD.Y〔Y X〕=X〔Z X〕X,考点:等比数列.:.3分析:取一个具体的等比数列即可.解答:解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入算,只有D足.故D点:于含有多字母的客,可以取足条件的数字代替字母,代入,假设能排除个,剩下唯一正确的就一定正确;假设不能完全排除,可以取其他数字排除.3.〔2005?广〕数列{xn}足x2=,xn=〔xn ﹣1+xn﹣2〕,n=3,4,⋯.假设=2,x1=〔A.B.3 C.4 D.5 考点:数列的求和;数列的函数特性.:.分析:要求极限,先求通,而条件只是一个推关系且复,故宜采用法猜通.〕并注意无等比数列的极限解答:解:∵令n=3,得,令n=4,得,∴,⋯,,于是xn=x1+〔x2 x1〕+⋯+〔xn xn﹣1〕=∴,x1=3.故B点:求出前几后,从什么角度求通呢,一般是看差和商,采用叠加或累乘法.4.〔2021?上海〕A.25 B.50an=sinC.75,Sn=a1+a2+⋯+an,在D.100S1,S2,⋯S100中,正数的个数是〔〕考点:数列的求和;三角函数的周期性及其求法.:算;.分析:由于f〔n〕=sin的周期T=50,由正弦函数性可知,2242627,a,⋯,a>0,a,a,⋯,a49<0,f〔n〕=减,a25=0,a26⋯a50都数,但是|a26|<a1,|a27|<a2,⋯,|a49|<a24,从而可判断解答:解:由于f 〔n〕=sin的周期T=50由正弦函数性可知,a1,a2,⋯,a24>0,a25=0,a26,a27,⋯,a49<0,a50=0且sin,sin⋯但是f〔n〕=减a26⋯a都数,但是|a|<a,|a7|<a,⋯,|a|<a492612924∴S1,S2,⋯,S25中都正,而S26,S27,⋯,S50都正同理S1,S2,⋯,s75都正,S1,S2,⋯,s75,⋯,s100都正,故D点:本主要考了三角函数的周期的用,数列求和的用,解的关是正弦函数性的灵活用.5.〔2007?西〕出如下三个命:①a,b∈R,且ab≠0,假设>1,<1;②四个非零数a、b、c、d依次成等比数列的充要条件是ad=bc;③假设f〔x〕=logix,f〔|x|〕是偶函数.其中正确命的序号是〔〕A.①②B.②③C.①③D.①②③考点:等比数列;不等关系与不等式.:.分析:要明确等比数列和偶函数的定,明白什么是“充要条件〞.解答:解:①,所以<1成立;②ad=bc不一定使a、b、c、d依次成等比数列,如取a=d= 1,b=c=1;③由偶函数定可得.故C.点:做要心,清干,根本概念要掌握牢固.6.〔2006?北京〕f〔n〕=2+24+27+210+⋯+23n+10〔n∈N〕,f〔n〕等于〔〕A.B.C.D.考点:等比数列的前n和.:.分析:首先根据意分析出f〔n〕是首2,公比8的等比数列的前 n+4和,然后由等比数列前n和公式求之即可.解答:解:由意知,f〔n〕是首2,公比 8的等比数列的前n+4和,所以f〔n〕==.故D.点:本考等比数列的定及前n和公式.7.〔2005?江西〕将1,2,⋯,99个数平均分成三,每的三个数都可以成等差数列的概率〔〕A.B.C.D.考点:等差关系确实定;等可能事件的概率.:算;.分析:先把9个数分成3,根据排列合的性可求得所有的的数,然后把三个数成等差数列的,分枚出来,可知共有5,然后利用概率的性求得答案.解答:解:9个数分成三,共有,其中每的三个数均成等差数列,有{〔1,2,3〕,〔4,5,6〕,〔7,8,9〕}、{〔1,2,3〕,〔4,6,8〕,〔5,7,9〕}、{〔1,3,5〕,〔2,4,6〕,〔7,8,9〕}、{〔1,4,7〕,〔2,5,8〕,〔3,6,9〕}、{〔1,5,9〕,〔2,3,4〕,〔6,7,8〕},共5.∴所求概率.故A点:本主要考了等差关系确实定和概率的性.于数量比小的中,可以用枚的方法解决直接.8.〔2005?黑江〕如果a1,a2,⋯,a8各都大于零的等差数列,公差d≠0,〔A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4 a5考点:等差数列的性.:;分析法.分析:先根据等差中的性可排除C;然后可令an=n一个具体的数列而可D、A不,得到答案.解答:解:∵1+8=4+5∴a1+a8=a4+a5∴排除C;假设令an=n,a1a8=1?8<20=4?5=a4a5∴排除D,A.故B点:本主要考等差数列的性.属基.9.〔2004?湖南〕民收入由工性收入和其它收入两局2003年某地区民部构成.人均收入3150元〔其中工性收入1800元,其它收入1350元〕,地区自2004年起的5年内,民的工性收入将以每年6%的年增率增,其它收入每年增加160元.根据以上数据,2021年地区民人均收入介于〔〕A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元考点:数列的用.:用;.分析:根据意算出2004年民收入;算出2005年民收入;根据数列的特点出律得到2021年的民收入,估算出范即可.解答:解:由知:2004年民收入=1800×〔1+6%〕+〔1350+160〕;2005年民收入=1800×〔1+6%〕2+〔1350+2×160〕;⋯所以2021年民收入=1800×〔51+6%〕+〔1350+5×160〕≈4559故B点:考学生利用数列解决数学的能力,以及会根据条件出一般性律的能力.10.〔2002?北京〕假设一个等差数列前3的和34,最后3的和146,且所有的和390,个数列有〔〕A.13B.12C.11D.10考点:等差数列的性.:算;.分析:先根据意求出a1nn.+a的,再把个代入求和公式,而求出数列的数解答:解:依意a1+a2+a3=34,a n+a n﹣1+a n﹣2=146∴a+a+a+a+ a+a=34+146=180123nn﹣1n ﹣2又∵a1+an=a2+an﹣1=a3+an﹣2∴a1+an==60∴S n===390n=13故A点:本主要考了等差数列中的求和公式的用.注意Sn═和Sn=a1?n+两个公式的灵活运用.11.〔2000?北京〕等差数列{an}足a1+a2+⋯+a101=0,有〔A.a1+a101>0B.a2+a102<0C.a3+a99=0 D.a51=51〕考点:等差数列的性.:算;.分析:根据特殊数列an=0可直接得到a3+a99=0,而看得到答案.解答:解:取足意的特殊数列an=0,即可得到a3+a99=0C.点:本主要考等差数列的性.做要合理最恰当的方法可省做.12.〔2021?上海〕在数列〔a n〕中,a n=2n1,假设一个7行12列的矩的第i行第j列的元素cij=ai?aj+ai+aj〔i=1,2,⋯,7;j=1,2,⋯,12〕,矩元素能取到的不同数的个数〔〕A.18B.28C.48D.63考点:数列的函数特性.:.分析:由于矩的第i行第j列的元素j ijij+j=a?a+a+a=〔21〕〔21〕+21+21=21〔i=1,2,⋯,7;j=1,2,⋯,12〕,要使a ij=a mn〔i,m=1,2,⋯,7;j,n=1,2,⋯,12〕.+j m+ni+j≠m+n,足21=21,得到i+j=m+n,由指数函数的性可得:当a ij≠a mn,因此矩元素能取到的不同数i+j的所有不同和,即可得出.解答:解:矩的第i行第j列的元素cij=ai?aj+ai+aj=〔2i1〕〔2j1〕+2i1+2j1=2i+j 181〔i=1,2,⋯,7;j=1,2,⋯,12〕,当且当:i+j=m+n,aij=amn〔i,m=1,2,⋯,7;j,n=1,2,⋯,12〕,因此矩元素能取到的不同数i+j 的所有不同和,其和2,3,⋯,19,共个不同数.故A.点:由意得出:当且当i+j=m+n,aij=amn〔i,m=1,2,⋯,7;j,n=1,2,⋯,12〕是解的关.13.〔2021?上海〕成的区域〔含界〕Ωn〔n=1,2,⋯〕,当点〔Ω1,Ω2,⋯上,x+y的最大分是M1,M2,⋯, Mn=〔〕A.0 B.C.2 D.2x,y〕分在考点:数列的极限;的性.:;曲的定、性与方程.分析:先由得到个的参数方程:〔θ参数〕,再由三角函数知求x+y的最大,从而求出极限的.解答:解:把得,的参数方程:〔θ参数〕,∴x+y=2cosθ+sinθ,∴〔x+y〕max==.∴M n==2.故D.点:本考数列的极限,的参数方程和最大的求法,解要真,注意三角函数知的灵活运用.14.〔2005?上海〕用 n个不同的数a1,a2,⋯,an可得到n!个不同的排列,每个排列一行写成一个n!行的数,第ni行ai1,ai2,⋯,ain,bi=ai1+2ai23ai3++〔1〕nain,i=1,2,3,⋯,n!,例如:用1,2,3可得数如,由于此数中每一列各数之和都是12,所以,b1+b2+⋯+b6= 12+2×123×12=24,那么,在用1,2,3,4,5形成的数中,b1+b2+⋯+b120等于〔〕A.3600 B.1800C.1080 D.720考点:数列的求和;高矩.:算;.分析:先根据意算出数的行数5!和每一列数字之和5!÷5×〔b1+b2+⋯+b120=360×〔1+2 3+4 5〕求得答案.解答:解:由意可知数中行数5!=120,在用1,2,3,4,5形成的数中,每一列各数字之和都是5!÷5×〔1+2+3+4+5〕=360,1+2+3+4+5〕,再根据∴b1+b2+⋯+b120=360×〔1+2 3+4 5〕=360×〔3〕= 1080.故C点:本主要考了数列的求和.本学生了一个很好的、研究型学的平台.15.〔2001?北京〕根据市果,某种家用商品从年初开始的 n个月内累的需求2量Sn〔万件〕近似地足关系式Sn=〔21n n 5〕〔n=1,2,⋯,12〕,按此,在本年度内,需求量超万件的月份是〔〕A.5、6月B.6、7月C.7、8月D.8、9月考点:数列的用.:用;.分析:本考了数列的前 n 和知和二次不等式的求解. 既可以直接求解二次不等 式得到n 的范,再根据 n∈Z 找到足意的 n ;即可得到答案. 2再解不等式〔 n 2+15n 9〕>, 得6<n <9.答案:C点:本考了数列前n 和的知,二次不等式的知.解答要充分体会二次不等式在解答中的作用以及法在解答的妙用.二.填空〔共 15小〕16.〔2021?江〕{an}是公比 q 的等比数列, |q|>1,令bn=an+1〔n=1,2,⋯〕,假设数列{bn}有四在集合{53,23,19,37,82}中,6q=9.考点:等比数列的性;数列的用.:等差数列与等比数列.分析:nnnn中,根据B=A+1可知A=B1,依据{Bn}有四在{53,23,19,37,82}可推知{An}有四在{54,24,18,36,81}中,按的序排列上述数,相相两相除 24,36,54,81是{A n }中的四,求得 q,而求得6q .解答:解:{Bn}有四在{53,23,19,37,82}中Bn=An+1An=Bn1{An}有四在{54,24,18,36,81}中{An}是等比数列,等比数列中有数 q <0,且数相隔两 等比数列各的增或减,按的序排列上述数 18,24,36,54,81 相两相除 = = = =很明,24,36,54,81是{An}中的四 q=或q=〔|q|>1,∴此种情况舍〕 q= 6q=9故答案: 9点:本主要考了等比数列的性.属基.17.〔2021?四川〕等差数列{a n}的前n和S n,假设S4≥10,S5≤15,a4的最大4.考点:等差数列的前n和;等差数列.:.分析:利用等差数列的前n和公式形不等式,再利用消元思想确定d或a1的范,a4用d或a1表示,再用不等式的性求得其范.解答:解:∵等差数列的前n和n45{a S,且S≥10,S≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a≤3+d≤3+1=4故a的最大4,44故答案:4.点:此重点考等差数列的通公式,前n和公式,以及不等式的形求范;18.〔2021?福建〕商家通常依据“系数准〞确定商品售价格,及根据商品的最低售限价a,最高售限价b〔b>a〕以及常数x〔0<x<1〕确定售价格c=a+x 〔ba〕,里,x被称系数.说明,最正确系数x恰好使得〔ca〕是〔bc〕和〔ba〕的等比中,据此可得,最正确系数x的等于.考点:数列的用.:算;.分析:根据条件,由〔ca〕是〔bc〕和〔ba〕的等比中,知[x〔ba〕]=〔ba〕2x〔ba〕2,由此能求出最正确系数x的.(解答:解:∵c a=x〔ba〕,b c=〔b a〕x〔b a〕,ca〕是〔bc〕和〔ba〕的等比中,∴[x〔ba〕]2=〔ba〕2x〔ba〕2,2∴x+x1=0,解得,0<x<1,∴.故答案:.点:本考等比数列的性和用,解要注意等比中的算.19.〔2021?江〕1=a1≤a2≤⋯≤a7,其中a1,a3,a5,a7成公比q的等比数列,a2,a4,a6成公差1的等差数列,q的最小是.考点:等差数列与等比数列的合.:等差数列与等比数列.分析:利用等差数列的通公式将a6用a2表示,求出a6的最小一步求出a7的最小,利用等比数列的通求出公比的范.解答:解:方法1:∵1=a1≤a2≤⋯≤a7; a 2,a4,a6 成公差1的等差数列,∴a6=a2+2≥3,∴a的最小3,6∴a7的最小也3,此a1=1且a1,a3,a5,a7成公比q的等比数列,必有q>0,3∴a7=a1q≥3,3∴q≥3,q≥,方法2:由意知1=a1≤a 2≤⋯≤a 7;中a1,a3,a5,a7成公比q 的等比数列,a2,a4,a6公差1的等差数列,得,所以,即3≥3,解得q≥,q2≥1,所以故q 的最小是:.故答案:.点:解决等差数列、等比数列的合一般利用通公式、前n 和公式列出方程,解方程求解.即根本量法..20.〔2021?北京〕{an}足:a4n ﹣3=1,a4n ﹣1=0,a2n=an ,n∈Na 2021=1;a2021=0考点:数列的概念及表示法. :.分析:由a4n ﹣3=1,a4n ﹣1=0,a2n=an ,知第一是1,第二是1,第三是0,第2021的2021可写503×43,故第2021是1,第2021等于1007,而1007=252×4 1,所以第2021是0.解答:解:∵2021=503×43, ∴a 2021=1,∵a 2021=a1007,1007=252×4 1, ∴a =0,2021故答案:1,0.点:培养学生善于分析意,富于想,以适新的背景,新的方式,提高学生用函数的思想、方程的思想研究数列的自性、培养学生主探索的精神和科学理性的思方法.21.〔2021?宁夏〕等差数列2{an}的前n 和Sn ,2amam=0,s2m ﹣1=38,m=10考点:等差数列的前 n 和. :算;.分析:根据意先解出 a m ,再利用等差数列的前 n 和与特殊之的关系am ,建立方程,求解即可. 2解答:解:∵2a mam=0, 解得am=2或am=0,∵S2m﹣1=38≠0,∴a m=2;∵S2m﹣1=×〔2m1〕=am×〔2m1〕=2×〔2m1〕=38,解得m=10.S2m﹣1=〔2m 1〕故答案10.点:本主要考了等差数列前n和公式与等差数列性的合用,解的关.熟掌握公式是22.〔2021?四川〕数列{an}中,a1=2,an+1=an+n+1,通an= .考点:数列推式.:算;.分析:根据数列的推式,依次写出n=1,2,3⋯n的数列相两的关系,而各式相加即可求得答案.解答:解:∵a1=2,an+1=an+n+1∴a n=an﹣1+〔n1〕+1,an﹣1=an﹣2+〔n2〕+1,an﹣2=an﹣3+〔n3〕+1,⋯,a3=a2+2+1,a2=a1+1+1,a1=2=1+1将以上各式相加得:an=[〔n 1〕+〔n 2〕+〔n 3〕+⋯+2+1]+n+1=故答案;点:此重点考由数列的推公式求数列的通公式.重推公式的特征与解法的;抓住an+1=an+n+1中an+1,an系数相同是找到方法的突破口;此可用累和法,迭代法等;23.〔2007?海南〕{an}是等差数列,a4+a6=6,其前5和S5=10,其公差d=.考点:等差数列的性.:算;.分析:先根据a4+a6=2a5=求得a5的,再根据,而求得a1,而根据求得d.解答:解:a4+a6=2a5=6∴a=3,5∴故答案点:本主要考了等差数列中的等差中的性和通公式的运用.24.〔2006?广〕在德国不莱梅行的第48届世期,某商橱窗里用同的球堆成假设干堆“正三棱〞形的展品,其中第1堆只有一,就一个球,第2、3、4、⋯堆最底〔第一〕分按下所示方式固定放,从第二开始,每的小球自然放在下一之上,第n堆第n就放一个球,以f〔n〕表示第n堆的球数,f〔3〕=10 ;f〔n〕= n〔n+1〕〔n+2〕〔答案用n表示〕.考点:数列的求和.:;律型.分析:由意知第一堆球只有1,个数1,第二堆球有两,个数分1,1+2,第三堆球有三,个数分1,1+2,1+2+3,第四堆球有四,个数分1,1+2,1+2+3,1+2+3+4,因此可以推知第n堆球有n,个数分1,1+2,1+2+3,⋯,1+2+3+⋯+n,据此解答.解答:解:由意知,f〔1〕=1,f〔2〕=1+1+2,f〔3〕=1+1+2+1+2+3,⋯,f〔n〕=1+1+2+1+2+3+⋯+1+2+3+⋯+n,分析可得:f〔n〕f〔n1〕=1+2+3+⋯+n==+;f〔n〕=[f〔n〕f〔n 1〕]+[f 〔n 1〕f〔n 2〕]+[f〔n2〕f〔n 3〕]+⋯+f2〕f〔1〕+f〔1〕==n〔n+1〕〔2n+1〕+n〔n+1〕=n〔n+1〕〔n+2〕.故答案:10;n〔n+1〕〔n+2〕.点:本主要考数列求和在中的用,解决的关是先由f〔1〕、f〔2〕、f〔3〕的通推理得到f〔n〕的表达式,在求和注意累加法的运用.25.〔2005?广〕平面内有 n条直〔n≥3〕,其中有且有两条直互相平行,任意三条直不同一点,假设用f〔n〕表示n条直交点个数,f〔4〕= 5 ,当n>4〔n〕= 〔用n表示〕 f考点:等差数列的前n和;数列的用.:;律型.分析:要想求出f〔4〕的,我画分析即可得到答案,但要求出n>4f〔n〕的,我要逐一出f〔3〕,f〔4〕,⋯,f〔n1〕,f〔n〕然后分析与之的关系,然后利用数列求和的法行求解.解答:解:如,4条直有5个交点,故f〔4〕=5,由f〔3〕=2,f〔4〕=f〔3〕+3⋯〔n1〕=f〔n2〕+n2f〔n〕=f〔n1〕+n1累加可得f〔n〕=2+3+⋯+〔n 2〕+〔n 1〕==故答案5,点:本考的知点是推理与数列求和,根据f〔3〕,f〔4〕,⋯,f〔n1〕,f〔n〕然后分析与之的关系,找出与之的化是解决的关.26.〔2004?上海〕假设干个能惟一确定一个数列的量称数列的“根本量〞. {an}是公比q的无等比数列,以下{an}的四量中,一定能成数列“根本量〞的是第①④.〔写出所有符合要求的号〕①S1与S2;②a2与S3;③a1与an;④q与an.〔其中n大于1的整数,Sn {an}的前n和.〕考点:等比数列.:算;.分析:由根据等差数列性可知,利用是数列的“根本量〞;由a2与S3,其公比q,首S1和S2,可知a1和a2.由可得公比q,故能确定数列2a1,可得把a1和S3代入整理得a2q+〔a2 S3q〕+a2=0q不能确定,不一定是数列的根本量;n﹣1由a1与an,可得an=a1q,当n奇数,q可能有两个,故不一定能确定数列;根据等比数列通公式,数列{a n}能确定,是数列{a n}的一个根本量.解答:解:〔1〕由S1和S2,可知a1和a2.由可得公比q,故能确定数列是数列的“根本量〞,故①;〔2〕由a2与S3,其公比2q,首a1,可得a2=a1q,a1=,S3=a1+a1q+a1q,2+〔aSq〕+a= 0;∴S=+a+aq,∴aq32222足条件的q可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列n根本量,②不;﹣13〕由a1与an,可得an=a1q,当n奇数,q可能有两个,故不一定能确定数列,所以也不一定是数列的一个根本量.〔4〕由q与an由an=a1q n﹣1,故数列{an}能确定,是数列{an}的一个根本量;故答案:①④.点:本主要考等比数列的性.考了学生分析和解决的能力.27.〔2002?上海〕假设数列2*2n﹣1 {an}中,a1=3,且an+1=an〔n∈N〕,数列的通an=3考点:数列推式.:算;.屡次运用迭代可求出数列242n﹣1分析:由推公式an+1=an an=an﹣1=an﹣2=⋯=a1解答:解:因a1=3屡次运用迭代,可得an=an﹣12=an﹣24=⋯=a12n﹣1=32n﹣1,故答案:点:本主要考利用迭代法求数列的通公式,迭代中要注意律,灵活运用公式,熟形是解的关28.〔2021?上海〕点O〔0,0〕、Q0〔0,1〕和点R0〔3,1〕,Q0R0的中点P1,取Q0P1和P1R0中的一条,其端点Q1、R1,使之足〔|OQ1| 2〕〔|OR1| 2〕<0,Q1R1的中点P2,取Q1P2和P2R1中的一条,其端点Q2、R2,使之足〔|OQ2| 2〕〔|OR2| 2〕<0.依次下去,得到P1,P2,⋯,Pn,⋯,= .考点:数列与解析几何的合;数列的极限.:合;.分析:由意〔|OQ1| 2〕〔|OR1| 2〕<0,〔|OQ2| 2〕〔|OR2| 2〕<0.依次下去,Q1、R1;Q2、R2,⋯中必有一点在〔〕的左,一点在右,根据意推出P1,P2,⋯,Pn,⋯,的极限:〔〕,然后求出.解答:解:由意〔|OQ1| 2〕〔|OR1| 2〕<0,所以第一次只能取P1R0一条,〔|OQ2| 2〕〔|OR2| 2〕<0.依次下去,Q1、R1;Q2、R2,⋯中必有一点在〔〕的左,一点在右,由于P1,P2,⋯,Pn,⋯,是中点,根据意推出P1,P2,⋯,Pn,⋯,的极限:〔〕,所以=|Q0P1|=,故答案:.点:本是基,考数列的极限,数列与解析几何的合,极限的思想的用,注意分析意,Pn的律是本解答的关,考推理能力.29.〔2021?湖北〕数列{an}足:a1=m〔m正整数〕,an+1=假设a6=1,m所有可能的取4,5,32.考点:数列推式.:.分析:由知a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.解答:解:∵数列{an}足:a1=m〔m正整数〕,an+1=,a6=1,∴a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案:4,5,32.点:本考数列的性和用,解要真,仔解答,注意公式的合理运用.30.〔2004?北京〕定“等和数列〞:在一个数列中,如果每一与它的后一的和都同一个常数,那么个数列叫做等和数列,个常数叫做数列的公和.数列{an}是等和数列,且a1=2,公和5,那么a18的3 ,个数列Sn的算公式的前n和当n偶数,;当n奇数,.考点:数列的求和;数列的用.:;新型.分析:由意可知,a n+a n+1=5,且a1=2,所以,a2=3,a3=2,a4=3,而找出个数列的奇数2,偶数3,所以a18的数3.由于数列2,3,2,3,2,3⋯所以求和要看最后一是2是3,就需n分奇数是偶数行,解答:解:由意知,an+an+1=5,且a1=2,所以,a1+a2=5,得a2=3,a3=2,a4=3,⋯a17=2,a18=3,当n偶数sn=〔2+3〕+〔2+3〕+〔2+3〕+⋯+〔2+3〕=5×=当n奇数sn=〔2+3〕+〔2+3〕+⋯〔2+3〕+2=5×+2=故答案:3;当n偶数Sn=,当n奇数Sn=点:本由新定考数列的求和,在求和一定注意n分奇数和偶数。
高中数学难题汇编带解析
(1) //
又 平面 , 平面 ,∴ // 平面
(2)易证:平面 底面
所以截面 与面 所成的二面角即为面 与面 所成的二面角,
ห้องสมุดไป่ตู้因为 平面 所以 平面
,
由(1)可知 四点共面
所以 为截面 与平面 所成的二面角的平面角.
所以 ,
所以
考点:线面平行,二面角.
7.如图,在四棱锥 中, , 平面 , 平面 , , , .
试题解析:(1)∵点 到 和 的距离之和等于 且 ,∴ 是以 和 为焦点的椭圆,设椭圆方程为 ,则 ,故 ,∴曲线 的方程为 .
(2)设 , ,则联立方程 ,得 ,此时 恒成立,又由韦达定理可得 , ………………①
由点 在直线 上,可得 , 又∵ , ∴ 即
即 ,整理得 ,将①式代入得 ,故 .
当 时, ,当 时, ,综上所述, .
(2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.
【答案】(1) ;(2) ;(3) .
【解析】
试题分析:(1)利用频率分布表以及 进行求解;(2)利用互斥事件的概率公式进行求解;(3)利用平均数的计算公式进行求解.
(Ⅰ)求棱锥 的体积;
(Ⅱ)求证:平面 平面 ;
(Ⅲ)在线段 上是否存在一点 ,使 平面 ?若存在,求出 的值;若不存在,说明理由.
【答案】(I) ;(II)证明见解析;(III)存在, .
【解析】
试题分析:(I)在在 中, ,可得 ,由于 平面 ,可的棱锥的高,利用体积公式求解几何体的体积;(II)由 平面 ,可得 ,进而得到 平面 ,即可证明平面 平面 ;(III)在线段 上存在一点 ,使得 平面 , ,设F为线段DE上的一点,且 ,过F作 ,由线面垂直的性质可得 ,可得四边形ABMF是平行四边形,于是 ,即可证明 平面 .
高中数学难题集锦
高中数学难题集锦一.解答题(共10小题)1.(2012•宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010•江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;(Ⅱ)求S的最大值,并求取得最大值时k的值.3.(2013•越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4.(2013•柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.5.(2009•福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;(3)解不等式|2x﹣1|<|x|+1.6.(2009•东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.7.(2009•天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.(2007•海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l 向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.高中数学组卷参考答案与试题解析一.解答题(共10小题)1.(2012•宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.考点:直线和圆的方程的应用.专题:计算题;压轴题.分析:(1)由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;(2)由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.解答:解:(1)证明:点(t>0),因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.所以点E是直角坐标系原点,即E(0,0).于是圆C的方程是.则.由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,于是多边形EACB为Rt△AEB,其面积.所以多边形EACB的面积是定值,这个定值是4.(2)若|EM|=|EN|,则E在MN的垂直平分线上,即EC是MN的垂直平分线,,k MN=﹣2.所以由k EC•k MN=﹣1,得t=2,所以圆C的方程是(x﹣2)2+(y﹣1)2=5.点评:(1)重点考查了利用方程的思想用以变量t写出圆的方程,判断出圆心O在AB上,故四边形为直角三角形,还考查了三角形的面积公式;(2)重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数.2.(2010•江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O 是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;(Ⅱ)求S的最大值,并求取得最大值时k的值.考点:直线与圆的位置关系;二次函数的性质.专题:计算题;压轴题.分析:(Ⅰ)先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.(Ⅱ)换元后把函数S的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变.解答:解:(Ⅰ)直线l方程,原点O到l的距离为(3分)弦长(5分)•ABO面积•∵|AB|>0,∴﹣1<K<1(K≠0),•∴(﹣1<k<1且K≠0)(8分),(Ⅱ)令,∴.∴当t=时,时,S max=2(12分)点评:本题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变.3.(2013•越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.考点:直线与圆的位置关系.专题:综合题;压轴题.分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.解答:解:设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P(a,b)到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:(x+1)2+(y+1)2=2,或(x﹣1)2+(y﹣1)2=2.点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.(2013•柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设抛物线方程为x2=2py,把点(2,1)代入运算求得p的值,即可求得抛物线的标准方程.(Ⅱ)由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得,求得点O到直线的距离,从而求得,由此函数在(0,4)单调递增,故有,从而得出结论.解答:解:(Ⅰ)设抛物线方程为x2=2py,由已知得:22=2p,所以p=2,所以抛物线的标准方程为x2=4y.(Ⅱ)不存在.因为直线与圆相切,所以.把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.由△=16k2+16t=16(t2+2t)+16t>0,得t>0或t<﹣3.设M(x1,y1),N(x2,y2),则x1+x2=4k且x1•x2=﹣4t,∴.∵∠MON为钝角,∴,解得0<t<4,∵,点O到直线的距离为,∴,易证在(0,4)单调递增,∴,故不存在直线,当∠MON为钝角时,S △MON=48成立.点评:本题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.5.(2009•福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;(3)解不等式|2x﹣1|<|x|+1.考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.专题:计算题;压轴题;转化思想.分析:(1)由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;(2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比较大小得到直线与圆的位置关系,即可得到交点的个数;(3)分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.解答:解:(1)由题意可知(x,y)=(13,5),即,解得,所以A(2,﹣3);设矩阵M的逆矩阵为,则•=,即,且,解得a=﹣1,b=3,c=﹣1,d=2所以矩阵M的逆矩阵为;(2)把圆的参数方程化为普通方程得(x+1)2+(y﹣2)2=4,圆心(﹣1,2),半径r=2则圆心到已知直线的距离d==<2=r,得到直线与圆的位置关系是相交,所以直线与圆的公共点有两个;(3)当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2);当0≤x<时,原不等式变为:1﹣2x<x+1,解得x>0,所以原不等式的解集为(0,);当x<0时,原不等式变为:1﹣2x<﹣x+1,解得x>0,所以原不等式无解.综上,原不等式的解集为[0,2).点评:此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.6.(2009•东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程.专题:压轴题.分析:(Ⅰ)根据已知,容易写出直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(Ⅱ)过A(﹣1,0)的一条动直线l.应当分为斜率存在和不存在两种情况;当直线l与x 轴垂直时,进行验证.当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于弦长,利用垂径定理,则圆心C到弦的距离|CM|=1.从而解得斜率K来得出直线l的方程为.(Ⅲ)同样,当l与x轴垂直时,要对设t=,进行验证.当l的斜率存在时,设直线l 的方程为y=k(x+1),代入圆的方程得到一个二次方程.充分利用“两根之和”和“两根之积”去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.解答:解:(Ⅰ)由已知,故k l=3,所以直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(3分)(Ⅱ)当直线l与x轴垂直时,易知x=﹣1符合题意;(4分)当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.(8分)(Ⅲ)当l与x轴垂直时,易得M(﹣1,3),,又A(﹣1,0)则,,故.即t=﹣5.(10分)当l的斜率存在时,设直线l的方程为y=k(x+1),代入圆的方程得(1+k2)x2+(2k2﹣6k)x+k2﹣6k+5=0.则,,即,=.又由得,则.故t=.综上,t的值为定值,且t=﹣5.(14分)另解一:连接CA,延长交m于点R,由(Ⅰ)知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|•|AN|=|AC|•|AR|.由,得|AM|•|AN|=5.故(14分)另解二:连接CA并延长交直线m于点B,连接CM,CN,由(Ⅰ)知AC⊥m,又CM⊥l,所以四点M,C,N,B都在以CN为直径的圆上,由相交弦定理得.(14分)点评:(1)用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.(2)解决直线与圆相交弦相关计算时一般采用垂径定理求解.(3)涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和”和“两根之积”整体求解.这种方法通常叫做“设而不求”.7.(2009•天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.考点:直线和圆的方程的应用.专计算题;证明题;压轴题.题:分析:(1)由已知中圆C:(x+4)2+y2=4,点D(0,3),我们易求出CD的长,进而求出圆D 的半径,求出A,B两点坐标后,可由tan∠APB=k BP得到结果.(2)设D点坐标为(0,a),圆D半径为r,我们可以求出对应的圆D的方程和A,B两点的坐标,进而求出∠APB正切的表达式(含参数r),求出其最值后,即可根据正切函数的单调性,求出∠APB的最大值;(3)假设存在点Q(b,0),根据∠AQB是定值,我们构造关于b的方程,若方程有解,则存在这样的点,若方程无实根,则不存在这样的点.解答:解:(1)∵|CD|=5,∴圆D的半径r=5﹣2=3,此时A、B坐标分别为A(0,0)、B(0,6)∴tan∠APB=k BP=2(3分)(2)设D点坐标为(0,a),圆D半径为r,则(r+2)2=16+a2,A、B的坐标分别为(0,a﹣r),(0,a+r)∴,∴==∵|r+2|2≥16,∴r≥2,∴8r﹣6≥10,∴∴.(8分)(3)假设存在点Q(b,0),由,,得∵a2=(r+2)2﹣16,∴欲使∠AQB的大小与r无关,则当且仅当b2=12,即,此时有,即得∠AQB=60°为定值,故存在或,使∠AQB为定值60°.(13分)点评:本题考查的知识点是直线和圆的方程的应用,其中根据已知中圆C:(x+4)2+y2=4,圆D 的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,确定圆D的方程,进而求出A,B的方程是解答本题的关键.8.(2007•海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.考点:直线和圆的方程的应用;向量的共线定理.专题:计算题;压轴题.分析:(Ⅰ)先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,(Ⅱ)A(x1,y1),B(x2,y2),根据(1)中的方程和韦达定理可求得x1+x2的表达式,根据直线方程可求得y1+y2的表达式,进而根据以与共线可推知(x1+x2)=﹣3(y1+y2),进而求得k,根据(1)k的范围可知,k不符合题意.解答:解:(Ⅰ)圆的方程可写成(x﹣6)2+y2=4,所以圆心为Q(6,0),过P(0,2)且斜率为k的直线方程为y=kx+2.代入圆方程得x2+(kx+2)2﹣12x+32=0,整理得(1+k2)x2+4(k﹣3)x+36=0.①直线与圆交于两个不同的点A,B等价于△=[4(k﹣3)2]﹣4×36(1+k2)=42(﹣8k2﹣6k)>0,解得,即k的取值范围为.(Ⅱ)设A(x1,y1),B(x2,y2),则,由方程①,②又y1+y2=k(x1+x2)+4.③而.所以与共线等价于(x1+x2)=﹣3(y1+y2),将②③代入上式,解得.由(Ⅰ)知,故没有符合题意的常数k.点评:本题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.考点:直线与圆的位置关系.专题:压轴题.分析:设AP的长为x,AM的长为y,用x表示y,并用复合函数求导法则对时间t进行求导.解答:解:如图,作CD⊥AM,并设AP=x,AM=y,∠COA=θ,由题意弧AC的长为,半径OC=1,可知θ=,考虑θ∈(0,π).∵△APM∽△DCM,∴.∵DM=y﹣(1﹣cos),DC=sin,∴∴.上式两边对时间t进行求导,则y′t=y′x•x′t.∴y′t=当时,x′t=v,代入上式得点M的速度.点评:本题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;同时也考查了逻辑思维能力和计算能力.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.考点:直线与圆的位置关系;轨迹方程.专题:计算题;压轴题;数形结合.分析:设割线OP1P2的直线方程为y=kx与圆的方程联立得(1+k2)x2﹣2(1+2k)x+4=0,再由韦达定理得:,因为P是P1P2的中点,所以,再由P点在直线y=kx上,得到,代入上式得整理即可.要注意范围.解答:解:设割线OP1P2的直线方程为y=kx代入圆的方程,得:x2+k2x2﹣2x﹣4kx+4=0即(1+k2)x2﹣2(1+2k)x+4=0设两根为x1,x2即直线与圆的两交点的横坐标;由韦达定理得:又设P点的坐标是(x,y)P是P1P2的中点,所以又P点在直线y=kx上,∴,代入上式得两端乘以,得即x2+y2=x+2y(0<x<)这是一个一点为中心,以为半径的圆弧,所求轨迹是这个圆在所给圆内的一段弧.本题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.点评:考点卡片1.二次函数的性质【知识点的认识】其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.【解题方法点拨】以y=ax2+bx+c为例:①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f(﹣)=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1•x2=﹣;另外,方程可以写成(y+)=2(x+)2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理【概念】共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=(1,2),向量=(2,4),则=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=(x1,y1)与向量=(x2,y2)平行时,有x1•y2﹣x2•y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,则λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k()∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.根据向量共线的充要条件,若向量与共线,就能得到含λ的等式,解出λ即可.【考点分析】向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.3.平面向量数量积的运算【平面向量数量积的运算】平面向量数量积运算的一般定理为①(±)2=2±2•+2.②(﹣)(+)=2﹣2.③•(•)≠(•)•,从这里可以看出它的运算法则和数的运算法则有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“”②“(m+n)t=mt+nt”类比得到“()•=”;③“t≠0,mt=nt⇒m=n”类比得到“⇒”;④“|m•n|=|m|•|n|”类比得到“||=||•||”;⑤“(m•n)t=m(n•t)”类比得到“()•=”;⑥“”类比得到.以上的式子中,类比得到的结论正确的是①②.解:∵向量的数量积满足交换律,∴“mn=nm”类比得到“”,即①正确;∵向量的数量积满足分配律,∴“(m+n)t=mt+nt”类比得到“()•=”,即②正确;∵向量的数量积不满足消元律,∴“t≠0,mt=nt⇒m=n”不能类比得到“⇒”,即③错误;∵||≠||•||,∴“|m•n|=|m|•|n|”不能类比得到“||=||•||”;即④错误;∵向量的数量积不满足结合律,∴“(m•n)t=m(n•t)”不能类比得到“()•=”,即⑤错误;∵向量的数量积不满足消元律,∴”不能类比得到,即⑥错误.故答案为:①②.向量的数量积满足交换律,由“mn=nm”类比得到“”;向量的数量积满足分配律,故“(m+n)t=mt+nt”类比得到“()•=”;向量的数量积不满足消元律,故“t≠0,mt=nt⇒m=n”不能类比得到“⇒”;||≠||•||,故“|m•n|=|m|•|n|”不能类比得到“||=||•||”;向量的数量积不满足结合律,故“(m•n)t=m (n•t)”不能类比得到“()•=”;向量的数量积不满足消元律,故”不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比较多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对(x,y)表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标(x,y)中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤(直接法)(1)建系设点:建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标;(2)列式:写出适合条件p的点M的集合{M|p(M)};(3)代入:用坐标表示出条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间的距离公式、点到直线的距离公式、夹角公式等)进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.关键是条件的转化,即转化为某一基本轨迹的定义条件.(3)相关点法:用所求动点P的坐标(x,y)表示已知动点M的坐标(x0,y0),即得到x0=f(x,y),y0=g(x,y),再将x0,y0代入M满足的条件F(x0,y0)=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.(4)待定系数法(5)参数法(6)交轨法.6.直线与圆的位置关系【知识点的认识】1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:(1)圆的标准方程:(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0)其中圆心(﹣,﹣),半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y2=2px,焦点在x轴上,焦点坐标为F(,0),(p可为正负)(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px(p>0),焦点在x轴上x2=2py(p>0),焦点在y轴上图形顶点(0,0)(0,0)对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点(,0)(0,)焦距无无离心率e=1 e=1准线x=﹣y=﹣9.二阶矩阵【知识点的知识】1、矩阵由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的(i,j)元.以数a ij为(i,j)元的矩阵可简记作(a ij)或(a ij)m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号(在数表外加上双竖线)是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法行矩阵[a11 a12]与列矩阵的乘法规则为,二阶矩阵与列矩阵的乘法规则为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.。
高考数学难题集100道详解
第二题:证明四点共圆 (5)第三题:证明角的倍数关系 (6)第四题:证明线与圆相切 (7)第五题:证明垂直 (8)第六题:证明线段相等 (9)第七题:证明线段为比例中项 (10)第八题:证明垂直 (11)第九题:证明线段相等 (12)第十题:证明角平分 (13)第十一题:证明垂直 (14)第十二题:证明线段相等 (15)第十三题:证明角相等 (16)第十四题:证明中点 (17)第十五题:证明线段的二次等式 (18)第十六题:证明角平分 (19)第十七题:证明中点 (20)第十八题:证明角相等 (21)第十九题:证明中点 (22)第二十题:证明线段相等 (23)第二十一题:证明垂直 (24)第二十二题:证明角相等 (25)第二十三题:证明四点共圆 (26)第二十四题:证明两圆相切 (27)第二十五题:证明线段相等 (28)第二十六题:证明四条线段相等 (29)第二十七题:证明线段比例等式 (30)第二十八题:证明角的倍数关系 (31)第二十九题:证明三线共点 (32)第三十题:证明平行 (33)第三十一题:证明线段相等 (34)第三十二题:证明四点共圆 (35)第三十三题:证明三角形相似 (36)第三十四题:证明角相等 (37)第三十五题:证明内心 (38)第三十六题:证明角平分 (39)第三十七题:证明垂直 (40)第三十八题:证明面积等式 (41)第三十九题:证明角平分 (42)第四十题:证明角相等 (43)第四十一题:证明中点 (44)第四十二题:证明中点 (45)第四十三题:证明角相等 (46)第四十四题:证明垂直 (47)第四十六题:证明垂直 (49)第四十七题:证明四点共圆 (50)第四十八题:证明四点共圆 (51)第四十九题:证明四点共圆 (52)第五十题:证明角平分 (53)第五十一题:证明线段相等 (54)第五十二题:证明两圆外切 (55)第五十三题:证明垂直 (56)第五十四题:证明垂直 (57)第五十五题:证明垂直 (58)第五十六题:证明垂直 (59)第五十七题:证中点 (60)第五十八题:证明角相等 (61)第五十九题:证明角相等 (62)第六十题:证明四点共圆 (63)第六十一题:证明四点共圆 (64)第六十二题:证明四点共圆 (65)第六十三题:证明角相等 (66)第六十四题:证明角的倍数关系 (67)第六十五题:证明中点 (68)第六十六题:伪旁切圆 (69)第六十七题:证明垂直 (70)第六十八题:证明平行 (71)第六十九题:证明圆心在某线上 (72)第七十题:证明三线共点 (73)第七十一题:证明垂直 (74)第七十二题:证明垂直 (75)第七十三题:证明中点 (76)第七十四题:证明垂直 (77)第七十五题:证明垂直 (78)第七十六题:证明三线共点 (79)第七十七题:证明平行 (80)第七十八题:证明平行 (81)第七十九题:证明三线共点、证明垂直 (82)第八十题:证明三点共线(牛顿定理) (83)第八十一题:证明角平分 (84)第八十二题:证明角相等 (85)第八十三题:证明三点共线 (86)第八十四题:证明四圆共点 (87)第八十五题:证明角平分 (88)第八十六题:证明线段相等 (89)第八十七题:证明角相等 (90)第八十八题:证明线段相等 (91)第九十题:证明线段相等 (93)第九十一题:证明中点 (94)第九十二题:证明四点共圆 (95)第九十三题:证明西姆松定理及逆定理 (96)第九十四题:证明线段的和差关系等式 (97)第九十五题:证明角相等 (98)第九十六题:证明托勒密定理及逆定理 (99)第九十七题:证明线段的和差关系等式 (100)第九十八题:证明角相等 (101)第九十九题:证明四点共圆 (102)第一百题:证明两三角形共内心 (103)第一题:证明角平分已知PE 、PF 是⊙O 的切线,A 、B 是一组对径点,PB 交⊙O 于另一点C ,直线AF 、BE 交于D 点。
高中数学圆锥曲线难题
高中数学圆锥曲线难题高中数学圆锥曲线难题一.选择题〔共10小题〕1.椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,那么|NF|:|AB|等于〔〕A.B.C.D.2.设点P与正方体ABCD﹣A1B1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,那么点P的轨迹是〔〕A.圆B.椭圆C.双曲线D.抛物线3.〔2021•密云县一模〕如图过抛物线y2=2px〔p>0〕的焦点F的直线依次交抛物线及准线于点A,B,C,假设|BC|=2|BF|,且|AF|=3,那么抛物线的方程为〔〕A.y2=x B.y2=9x C.y2=xD.y2=3x4.〔2021•海珠区一模〕一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是〔〕A.椭圆B.双曲线C.抛物线D.圆5.〔2021•武汉模拟〕抛物线y2=2px〔p>0〕的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,那么的最大值为〔〕A.B.C.1D.6.〔2021•齐齐哈尔二模〕如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈〔0,〕,以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,那么〔〕A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小7.〔2021•怀化三模〕从〔其中m,n∈{﹣1,2,3}〕所表示的圆锥曲线〔椭圆、双曲线、抛物线〕方程中任取一个,那么此方程是焦点在x轴上的双曲线方程的概率为〔〕A.B.C.D.8.〔2021•温州二模〕抛物线y2=2px〔p>0〕的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,那么有〔〕A.B.C.D.9.〔2021•和平区模拟〕在抛物线y=x2+ax﹣5〔a≠0〕上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,那么抛物线顶点的坐标为〔〕A.〔﹣2,﹣9〕B.〔0,﹣5〕C.〔2,﹣9〕D.〔1,6〕10.〔2021•安徽模拟〕以下四个命题中不正确的选项是〔〕A.假设动点P与定点A〔﹣4,0〕、B〔4,0〕连线PA、PB的斜率之积为定值,那么动点P的轨迹为双曲线的一局部B.设m,n∈R,常数a>0,定义运算“*〞:m*n=〔m+n〕2﹣〔m﹣n〕2,假设x≥0,那么动点的轨迹是抛物线的一局部C.两圆A:〔x+1〕2+y2=1、圆B:〔x﹣1〕2+y2=25,动圆M与圆A外切、与圆B内切,那么动圆的圆心M的轨迹是椭圆D.A〔7,0〕,B〔﹣7,0〕,C〔2,﹣12〕,椭圆过A,B两点且以C为其一个焦点,那么椭圆的另一个焦点的轨迹为双曲线二.解答题〔共10小题〕11.〔2021•天津〕中心在原点的双曲线C的一个焦点是F1〔﹣3,0〕,一条渐近线的方程是.〔Ⅰ〕求双曲线C的方程;〔Ⅱ〕假设以k〔k≠0〕为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.12.〔2021•北京〕直线y=kx+m〔m≠0〕与椭圆相交于A,C两点,O是坐标原点.〔Ⅰ〕当点B的坐标为〔0,1〕,且四边形OABC为菱形时,求AC的长;〔Ⅱ〕当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.13.焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A〔0,〕为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.〔1〕求双曲线C的方程;〔2〕假设Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.14.〔2021•安徽〕设λ>0,点A的坐标为〔1,1〕,点B在抛物线y=x2上运动,点Q满足,经过点Q 与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.15.〔2021•南开区一模〕椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.〔1〕求椭圆C的方程;〔2〕过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,假设,,求证:λ1+λ2为定值.16.〔2021•广东〕抛物线C的顶点为原点,其焦点F〔0,c〕〔c>0〕到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.〔1〕求抛物线C的方程;〔2〕当点P〔x0,y0〕为直线l上的定点时,求直线AB的方程;〔3〕当点P在直线l上移动时,求|AF|•|BF|的最小值.17.〔2021•上海〕双曲线.〔1〕求双曲线C的渐近线方程;〔2〕点M的坐标为〔0,1〕.设P是双曲线C上的点,Q是点P关于原点的对称点.记.求λ的取值范围;〔3〕点D,E,M的坐标分别为〔﹣2,﹣1〕,〔2,﹣1〕,〔0,1〕,P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.18.〔2021•南通三模〕过抛物线y2=4x上一点A〔1,2〕作抛物线的切线,分别交x轴于点B,交y轴于点D,点C〔异于点A〕在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.〔1〕设,求λ;〔2〕当点C在抛物线上移动时,求点P的轨迹方程.19.〔2021•四川〕椭圆C:〔a>b>0〕的两个焦点分别为F1〔﹣1,0〕,F2〔1,0〕,且椭圆C经过点.〔Ⅰ〕求椭圆C的离心率:〔Ⅱ〕设过点A〔0,2〕的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.20.〔2021•宜昌模拟〕点A,B的坐标分别是〔0,﹣1〕,〔0,1〕,直线AM,BM相交于点M,且它们的斜率之积﹣.〔1〕求点M轨迹C的方程;〔2〕假设过点D〔2,0〕的直线l与〔1〕中的轨迹C交于不同的两点E、F〔E在D、F之间〕,试求△ODE与△ODF 面积之比的取值范围〔O为坐标原点〕.高中数学圆锥曲线难题参考答案与试题解析一.选择题〔共10小题〕1.椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,那么|NF|:|AB|等于〔〕A.B.C.D.考点:椭圆的应用.专题:计算题;压轴题.分析:此题适合于特值法.不妨取直线的斜率为1.由此推导出|NF|:|AB|的值.解答:解:取直线的斜率为1.右焦点F〔2,0〕.直线AB的方程为y=x﹣2.联立方程组,把y=x﹣2代入整理得14x2﹣36x﹣9=0,设A〔x1,y1〕,B〔x2,y2〕,那么,,∴AB中点坐标为〔〕,那么AB的中垂线方程为,令y=0,得,∴点N的坐标〔〕.∴|NF|=,|AB|==,∴|NF|:|AB|=,应选B.点评:特值法是求解选择题和填空题的有效方法.2.设点P与正方体ABCD﹣A1B1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,那么点P的轨迹是〔〕A.圆B.椭圆C.双曲线D.抛物线考点:抛物线的定义.专题:压轴题;圆锥曲线的定义、性质与方程.分析:设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,M∈C1D1,N∈A1B1,故平面EFMN 内的点到AD和BC的距离相等.PM为P到C1D1的距离.根据P到BC的距离等于P到点M的距离,可得点P的轨迹.解答:解:由题意可得AD和BC平行且相等,设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,且M∈C1D1,N∈A1B1,那么平面EFMN与AD也平行,故平面EFMN内的点到AD和BC的距离相等.由正方体的性质可得平面EFMN垂直于平面CDD1C1,故有D1C1垂直于平面EFMN,故PM为P到C1D1的距离.由此可得P到BC的距离等于P到点M的距离,故点P的轨迹是抛物线,应选D.点评:此题主要考查抛物线的定义的应用,属于根底题.3.〔2021•密云县一模〕如图过抛物线y2=2px〔p>0〕的焦点F的直线依次交抛物线及准线于点A,B,C,假设|BC|=2|BF|,且|AF|=3,那么抛物线的方程为〔〕A.y2=x B.y2=9x C.y2=xD.y2=3x考点:抛物线的标准方程.专题:计算题;压轴题;数形结合.分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,那么抛物线方程可得.解答:解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,那么由得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.应选D.点评:此题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和根本知识的综合把握.4.〔2021•海珠区一模〕一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是〔〕A.椭圆B.双曲线C.抛物线D.圆考点:双曲线的定义.专题:计算题;压轴题;数形结合.分析:根据CD是线段AQ的垂直平分线.可推断出|PA|=|PQ|,进而可知|PO|﹣|PQ|=|PO|﹣|PA|=|OA|结果为定值,进而根据双曲线的定义推断出点P的轨迹.解答:解:由题意知,CD是线段AQ的垂直平分线∴|PA|=|PQ|,∴|PO|﹣|PQ|=|PO|﹣|PA|=|OA|〔定值〕,∴根据双曲线的定义可推断出点P轨迹是以Q、O两点为焦点的双曲线,应选B.点评:此题主要考查了双曲线的定义的应用,考查了学生对椭圆根底知识的理解和应用,属于根底题.5.〔2021•武汉模拟〕抛物线y2=2px〔p>0〕的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,那么的最大值为〔〕A.B.C.1D.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据根本不等式,求得|AB|的范围,进而可得答案.解答:解:设|AF|=a,|BF|=b,由抛物线定义,得AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.由勾股定理得,|AB|2=a2+b2配方得,|AB|2=〔a+b〕2﹣2ab,又ab≤,∴〔a+b〕2﹣2ab≥〔a+b〕2﹣得到|AB|≥〔a+b〕.所以≤=,即的最大值为.应选A.点评:此题主要考查抛物线的应用和余弦定理的应用,考查了学生综合分析问题和解决问题的能力.6.〔2021•齐齐哈尔二模〕如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈〔0,〕,以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,那么〔〕A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小考点:椭圆的简单性质.专题:计算题;压轴题.分析:连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.解答:解:连接BD,AC设AD=t那么BD==∴双曲线中a=e1=∵y=cosθ在〔0,〕上单调减,进而可知当θ增大时,y==减小,即e1减小∵AC=BD∴椭圆中CD=2t〔1﹣cosθ〕=2c∴c'=t〔1﹣cosθ〕AC+AD=+t,∴a'=〔+t〕e2==∴e1e2=×=1应选B.点评:此题主要考查椭圆和双曲线的离心率的表示,考查考生对圆锥曲线的性质的应用,圆锥曲线是高考的重点每年必考,平时要注意根底知识的积累和练习.7.〔2021•怀化三模〕从〔其中m,n∈{﹣1,2,3}〕所表示的圆锥曲线〔椭圆、双曲线、抛物线〕方程中任取一个,那么此方程是焦点在x轴上的双曲线方程的概率为〔〕A.B.C.D.考点:双曲线的标准方程;列举法计算根本领件数及事件发生的概率.专题:计算题;压轴题.分析:m和n的所有可能取值共有3×3=9个,其中有两种不符合题意,故共有7种,可一一列举,从中数出能使方程是焦点在x轴上的双曲线的选法,即m和n都为正的选法数,最后由古典概型的概率计算公式即可得其概率解答:解:设〔m,n〕表示m,n的取值组合,那么取值的所有情况有〔﹣1,﹣1〕,〔2,﹣1〕,〔2,2〕,〔2,3〕,〔3,﹣1〕,〔3,2〕,〔3,3〕共7个,〔注意〔﹣1,2〕,〔﹣1,3〕不合题意〕其中能使方程是焦点在x轴上的双曲线的有:〔2,2〕,〔2,3〕,〔3,2〕,〔3,3〕共4个∴此方程是焦点在x轴上的双曲线方程的概率为应选B点评:此题考查了古典概型概率的求法,椭圆、双曲线、抛物线的标准方程,列举法计数的技巧,准确计数是解决此题的关键8.〔2021•温州二模〕抛物线y2=2px〔p>0〕的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,那么有〔〕A.B.C.D.考点:椭圆的标准方程;等差数列的通项公式;直线的斜率.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程求出点C〔﹣,0〕,可得直线AB方程为y=k〔x﹣〕,将其与抛物线方程消去y得到关于x的一元二次方程,由根与系数的关系得到x1+x2和x1x2关于p、k的式子,结合两点间的距离公式算出|AB|=•.再利用抛物线的定义,得到|AF|+|BF|=x1+x2+p=+p,而|AF|、|AB|、|BF|成等差数列得出|AF|+|BF|=2|AB|,从而建立关于p、k的等式,化简整理得•=,即可解出,得到此题答案.解答:解:∵抛物线y2=2px的准线方程为x=﹣,∴准线与x轴的交点C坐标为〔﹣,0〕因此,得到直线AB方程为y=k〔x﹣〕,与抛物线y2=2px消去y,化简整理,得,设A〔x1,y1〕,B〔x2,y2〕,由根与系数的关系得∴|AB|==•=•=•∵|AF|、|AB|、|BF|成等差数列,∴|AF|+|BF|=2|AB|,根据抛物线的定义得|AF|=x1+,|BF|=x2+,因此,得到x1+x2+p=2•,即+p=2•,化简得=,约去得•=∴〔1+k2〕〔1﹣k2〕=,解之得k2=应选:D点评:此题给出抛物线准线交对称轴于点C,过点C的直线交抛物线于A、B两点,A、B与焦点F构成的三角形的三边成等差数列,求直线AB的斜率.着重考查了抛物线的定义与简单几何性质,直线与抛物线位置关系等知识点,属于中档题.9.〔2021•和平区模拟〕在抛物线y=x2+ax﹣5〔a≠0〕上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,那么抛物线顶点的坐标为〔〕A.〔﹣2,﹣9〕B.〔0,﹣5〕C.〔2,﹣9〕D.〔1,6〕考点:抛物线的应用.专题:计算题;压轴题.分析:求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.解答:解:两点坐标为〔﹣4,11﹣4a〕;〔2,2a﹣1〕两点连线的斜率k=对于y=x2+ax﹣5y′=2x+a∴2x+a=a﹣2解得x=﹣1在抛物线上的切点为〔﹣1,﹣a﹣4〕切线方程为〔a﹣2〕x﹣y﹣6=0直线与圆相切,圆心〔0,0〕到直线的距离=圆半径解得a=4或0〔0舍去〕抛物线方程为y=x2+4x﹣5顶点坐标为〔﹣2,﹣9〕应选A.点评:此题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆心到直线的距离等于半径.10.〔2021•安徽模拟〕以下四个命题中不正确的选项是〔〕A.假设动点P与定点A〔﹣4,0〕、B〔4,0〕连线PA、PB的斜率之积为定值,那么动点P的轨迹为双曲线的一局部B.设m,n∈R,常数a>0,定义运算“*〞:m*n=〔m+n〕2﹣〔m﹣n〕2,假设x≥0,那么动点的轨迹是抛物线的一局部C.两圆A:〔x+1〕2+y2=1、圆B:〔x﹣1〕2+y2=25,动圆M与圆A外切、与圆B内切,那么动圆的圆心M的轨迹是椭圆D.A〔7,0〕,B〔﹣7,0〕,C〔2,﹣12〕,椭圆过A,B两点且以C为其一个焦点,那么椭圆的另一个焦点的轨迹为双曲线考点:椭圆的定义;轨迹方程.专题:证明题;压轴题.分析:利用直译法,求A选项中动点P的轨迹方程,进而判断表示的曲线;利用新定义运算,利用直译法求选项B中曲线的轨迹方程,进而判断轨迹图形;利用圆与圆的位置关系,利用定义法判断选项C中动点的轨迹;利用椭圆定义,由定义法判断D中动点的轨迹即可解答:解:A:设P〔x,y〕,因为直线PA、PB的斜率存在,所以x≠±4,直线PA、PB的斜率分别是k1=,k2=,∴×=,化简得9y2=4x2﹣64,即〔x≠±4〕,∴动点P的轨迹为双曲线的一局部,A正确;B:∵m*n=〔m+n〕2﹣〔m﹣n〕2,∴==,设P〔x,y〕,那么y=,即y2=4ax〔x≥0,y≥0〕,即动点的轨迹是抛物线的一局部,B正确;C:由题意可知,动圆M与定圆A相外切与定圆B相内切∴MA=r+1,MB=5﹣r∴MA+MB=6>AB=2∴动圆圆心M的轨迹是以A,B为焦点的椭圆,C正确;D设此椭圆的另一焦点的坐标D 〔x,y〕,∵椭圆过A、B两点,那么CA+DA=CB+DB,∴15+DA=13+DB,∴DB﹣DA=2<AB,∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,D错误应选D点评:此题综合考查了求动点轨迹的两种方法:直译法和定义法,考查了圆、椭圆、抛物线、双曲线的定义,椭圆、双曲线、抛物线的标准方程,有一定难度二.解答题〔共10小题〕11.〔2021•天津〕中心在原点的双曲线C的一个焦点是F1〔﹣3,0〕,一条渐近线的方程是.〔Ⅰ〕求双曲线C的方程;〔Ⅱ〕假设以k〔k≠0〕为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.考点:双曲线的应用.专题:计算题;压轴题.分析:〔1〕设出双曲线方程,根据焦点坐标及渐近线方程求出待定系数,即得双曲线C的方程.〔2〕设出直线l的方程,代入双曲线C的方程,利用判别式及根与系数的关系求出MN的中点坐标,从而得到线段MN的垂直平分线方程,通过求出直平分线与坐标轴的交点,计算围城的三角形面积,由判别式大于0,求得k的取值范围.解答:解:〔Ⅰ〕解:设双曲线C的方程为〔a>0,b>0〕.由题设得,解得,所以双曲线方程为.〔Ⅱ〕解:设直线l的方程为y=kx+m〔k≠0〕.点M〔x1,y1〕,N〔x2,y2〕的坐标满足方程组将①式代入②式,得,整理得〔5﹣4k2〕x2﹣8kmx﹣4m2﹣20=0.此方程有两个不等实根,于是5﹣4k2≠0,且△=〔﹣8km〕2+4〔5﹣4k2〕〔4m2+20〕>0.整理得m2+5﹣4k2>0.③由根与系数的关系可知线段MN的中点坐标〔x0,y0〕满足,.从而线段MN的垂直平分线方程为.此直线与x轴,y轴的交点坐标分别为,.由题设可得.整理得,k≠0.将上式代入③式得,整理得〔4k2﹣5〕〔4k2﹣|k|﹣5〕>0,k≠0.解得或.所以k的取值范围是.点评:本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等根底知识,考查曲线和方程的关系等解析几何的根本思想方法,考查推理运算能力.12.〔2021•北京〕直线y=kx+m〔m≠0〕与椭圆相交于A,C两点,O是坐标原点.〔Ⅰ〕当点B的坐标为〔0,1〕,且四边形OABC为菱形时,求AC的长;〔Ⅱ〕当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.考点:椭圆的简单性质;两点间的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:〔I〕先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为〔,〕,根据两点间的距离公式即可得出AC的长;〔II〕欲证明四边形OABC不可能为菱形,只须证明假设OA=OC,那么A、C两点的横坐标相等或互为相反数.设OA=OC=r,那么A、C为圆x2+y2=r2与椭圆的交点,从而解得,那么A、C两点的横坐标相等或互为相反数.于是结论得证.解答:解:〔I〕∵点B的坐标为〔0,1〕,当四边形OABC为菱形时,AC⊥OB,而B〔0,1〕,O〔0,0〕,∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为〔,〕,如图,于是AC=2.〔II〕欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,那么有OA=OC,设OA=OC=r,那么A、C为圆x2+y2=r2与椭圆的交点,故,x2=〔r2﹣1〕,那么A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.点评:此题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于根底题.13.焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A〔0,〕为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.〔1〕求双曲线C的方程;〔2〕假设Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.考点:双曲线的标准方程;轨迹方程;双曲线的简单性质.专题:计算题;压轴题.分析:〔1〕设双曲线C的渐近线方程为y=kx,根据题意可得k=±1,所以双曲线C的方程为,C的一个焦点与A关于直线y=x对称,可得双曲线的焦点坐标进而求出双曲线的标准方程.〔2〕假设Q在双曲线的右支上,那么延长QF2到T,使|QT|=|OF1|;假设Q在双曲线的左支上,那么在QF2上取一点T,使|QT|=|QF1|,根据双曲线的定义|TF2|=2,再利用相关点代入法求出轨迹方程即可.解答:解:〔1〕设双曲线C的渐近线方程为y=kx,即kx﹣y=0∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x…〔3分〕故设双曲线C的方程为,又∵双曲线C的一个焦点为∴2a2=2,a2=1,∴双曲线C的方程为x2﹣y2=1…〔6分〕〔2〕假设Q在双曲线的右支上,那么延长QF2到T,使|QT|=|OF1|假设Q在双曲线的左支上,那么在QF2上取一点T,使|QT|=|QF1|…〔8分〕根据双曲线的定义|TF2|=2,所以点T在以F2为圆心,2为半径的圆上,即点T的轨迹方程是①…〔10分〕由于点N是线段F1T的中点,设N〔x,y〕,T〔x T,y T〕那么…〔12分〕代入①并整理得点N的轨迹方程为…〔14分〕点评:此题主要考查双曲线的有关性质与定义,以及求轨迹方程的方法〔如相关点代入法〕.14.〔2021•安徽〕设λ>0,点A的坐标为〔1,1〕,点B在抛物线y=x2上运动,点Q满足,经过点Q 与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.考点:抛物线的应用;轨迹方程.专题:综合题;压轴题.分析:设出点的坐标,利用向量的坐标公式求出向量的坐标,代入条件中的向量关系得到各点的坐标关系;表示出B点的坐标;将B的坐标代入抛物线方程求出p的轨迹方程.解答:解:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设P〔x,y〕,Q〔x,y0〕,M〔x,x2〕那么x2﹣y0=λ〔y﹣x2〕即y0=〔1+λ〕x2﹣λy①再设B〔x1,y1〕由得将①代入②式得又点B在抛物线y=x2将③代入得〔1+λ〕2x2﹣λ〔1+λ〕y﹣λ=〔〔1+λ〕x﹣λ〕2整理得2λ〔1+λ〕x﹣λ〔1+λ〕y﹣λ〔1+λ〕=0因为λ>0所以2x﹣y﹣1=0故所求的点P的轨迹方程:y=2x﹣1点评:此题考查题中的向量关系提供点的坐标关系、求轨迹方程的重要方法:相关点法,即求出相关点的坐标,将相关点的坐标代入其满足的方程,求出动点的轨迹方程.15.〔2021•南开区一模〕椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.〔1〕求椭圆C的方程;〔2〕过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,假设,,求证:λ1+λ2为定值.考点:椭圆的标准方程;直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:〔1〕根据椭圆C的一个顶点恰好是抛物线的焦点,离心率等于.易求出a,b的值,得到椭圆C的方程.〔2〕设A、B、M点的坐标分别为A〔x1,y1〕,B〔x2,y2〕,设直线l的斜率为k,那么直线l的方程是y=k〔x﹣2〕,然后采用“联立方程〞+“设而不求〞+“韦达定理〞,结合中,,求出λ1+λ2值,即可得到结论.解答:解:〔1〕设椭圆C的方程为,那么由题意知b=1.…〔2分〕∴.∴a2=5.…〔4分〕∴椭圆C的方程为.…〔5分〕〔2〕设A、B、M点的坐标分别为A〔x1,y1〕,B〔x2,y2〕,M〔0,y0〕.又易知F点的坐标为〔2,0〕.…〔6分〕显然直线l存在的斜率,设直线l的斜率为k,那么直线l的方程是y=k〔x﹣2〕.…〔7分〕将直线l的方程代入到椭圆C的方程中,消去y并整理得〔1+5k2〕x2﹣20k2x+20k2﹣5=0.…〔8分〕∴.…〔9分〕又∵.〔11分〕∴.…〔12分〕点评: 此题考查的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,其中根据条件计算出椭圆的标准方程是解答此题的关键.16.〔2021•广东〕抛物线C 的顶点为原点,其焦点F 〔0,c 〕〔c >0〕到直线l :x ﹣y ﹣2=0的距离为,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. 〔1〕求抛物线C 的方程;〔2〕当点P 〔x 0,y 0〕为直线l 上的定点时,求直线AB 的方程; 〔3〕当点P 在直线l 上移动时,求|AF|•|BF|的最小值.考点:抛物线的标准方程;利用导数研究曲线上某点切线方程;抛物线的简单性质. 专题:压轴题;圆锥曲线的定义、性质与方程. 分析:〔1〕利用焦点到直线l :x ﹣y ﹣2=0的距离建立关于变量c 的方程,即可解得c ,从而得出抛物线C 的方程; 〔2〕先设,,由〔1〕得到抛物线C 的方程求导数,得到切线PA ,PB 的斜率,最后利用直线AB 的斜率的不同表示形式,即可得出直线AB 的方程; 〔3〕根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由〔2〕得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2,将它表示成关于y 0的二次函数的形式,从而即可求出|AF|•|BF|的最小值. 解答:解:〔1〕焦点F 〔0,c 〕〔c >0〕到直线l :x ﹣y ﹣2=0的距离,解得c=1所以抛物线C 的方程为x 2=4y〔2〕设,由〔1〕得抛物线C 的方程为,,所以切线PA ,PB 的斜率分别为,所以PA :①PB :②联立①②可得点P 的坐标为,即,又因为切线PA 的斜率为,整理得直线AB 的斜率所以直线AB 的方程为 整理得,即因为点P 〔x 0,y 0〕为直线l :x ﹣y ﹣2=0上的点,所以x 0﹣y 0﹣2=0,即y 0=x 0﹣2 所以直线AB 的方程为 〔3〕根据抛物线的定义,有,所以=由〔2〕得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2 所以=所以当时,|AF|•|BF|的最小值为点评: 此题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.17.〔2021•上海〕双曲线.〔1〕求双曲线C 的渐近线方程;〔2〕点M 的坐标为〔0,1〕.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记.求λ的取值范围;〔3〕点D ,E ,M 的坐标分别为〔﹣2,﹣1〕,〔2,﹣1〕,〔0,1〕,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为△DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.考点: 双曲线的简单性质;直线与圆锥曲线的综合问题. 专题: 计算题;压轴题. 分析:〔1〕在双曲线,把1换成0,就得到它的渐近线方程.〔2〕设P 的坐标为〔x 0,y 0〕,那么Q 的坐标为〔﹣x 0,﹣y 0〕,先求出,然后运用向量数量积的坐标运算能够求出λ的取值范围.〔3〕根据P 为双曲线C 上第一象限内的点,可知直线l 的斜率再由题设条件根据k 的不同取值范围试将s 表示为直线l 的斜率k 的函数.解答:解:〔1〕在双曲线,把1换成0,所求渐近线方程为〔2〕设P 的坐标为〔x 0,y 0〕,那么Q 的坐标为〔﹣x 0,﹣y 0〕,=∵∴λ的取值范围是〔﹣∞,﹣1].〔3〕假设P为双曲线C上第一象限内的点,那么直线l的斜率由计算可得,当;当∴s表示为直线l的斜率k的函数是点评:此题是直线与圆锥曲线的综合问题,解题要熟练掌握双曲线的性质和解题技巧.18.〔2021•南通三模〕过抛物线y2=4x上一点A〔1,2〕作抛物线的切线,分别交x轴于点B,交y轴于点D,点C〔异于点A〕在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.〔1〕设,求λ;〔2〕当点C在抛物线上移动时,求点P的轨迹方程.考点:抛物线的简单性质;向量在几何中的应用.专题:综合题;压轴题.分析:〔1〕设出过A点的切线方程,确定出D点,分别表示出,,根据λ1+λ2=1,求出λ的值.〔2〕设C〔x0,y0〕,P〔x,y〕,用x0,y0表示出x,y,代入抛物线方程,进而确定P点的轨迹.解答:解:〔1〕过点A的切线方程为y=x+1.…〔1分〕切线交x轴于点B〔﹣1,0〕,交y轴交于点D〔0,1〕,那么D是AB的中点.所以.〔1〕…〔3分〕由⇒=〔1+λ〕⇒.〔2〕同理由=λ1,得=〔1+λ1〕,〔3〕。
高中数学难题集锦
abab ab aEAC DA 1BC 1D 1(D )(C )(B)(A)F B CD A 1B 1C 1D 1高考数学难题集锦热点之一:点、线、面问题包括平面的基本性质、空间的直线和平面的位置关系及判定方法,特别注意三垂线定理及其逆定理的应用。
三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
1.已知、αβ是两个平面,直线,.l l αβ⊄⊄若以①l α⊥,②//l β,③αβ⊥中两个为条件,另一个为结论构成三个命题,则其中正确命题的个数是( ) (A )0个 (B )1个 (C )2个 (D )3个 2.把边长为a 的正方形剪去图中的阴影部分,沿图中所画的线折成一个正三棱锥,则这个正三棱锥的高为( )(A 13233a + (B 1333a -(C 1233a + (D 13333a +3.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触,经过棱锥的一条侧棱和高作截面,正确的截面图形是( ) 4.如右图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,则过点E 与直线AB 和11B C 都相交的直线的条数是( ) (A )0条 (B )1条 (C )2条 (D )无数5.在正方体1111ABCD A B C D -中,写出过顶点A 的一个平面________,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
热点之二:空间角与距离问题三个角:包括两条直线所成的角、直线与平面所成的角、二面角;八个距离:包括点到直线的距离、点到面的距离、两条平行直线的距离、异面直线 的距离、直线与平行平面的距离、两个平行平面之间的距离、球面上两点的距离。
高中数学难题(含答案)
东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。
若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学难题100道(1-10题)第1题(函数与求导题)【湘南中学2019届高三试题】已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若a>1,存在,使得(是自然对数的底数),求实数的取值范围。
第2题(椭圆题)1. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点为F ,直线l经过F 且与椭圆交于A ,B 两点. (1)给定椭圆的离心率为√22.①若椭圆的右准线方程为x =2,求椭圆方程; ②若A 点为椭圆的下顶点,求AFBF ;(2)若椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,求椭圆离心率e 的取值范围.()2()ln 0,1x f x a x x a a a =+->≠()f x []12,1,1x x ∈-12()()1f x f x e -≥-e a第3题(函数与求导题)已知函数2211()()ln (1)124f x x x x x a x =---++,a R ∈.(1)试讨论函数()f x 极值点个数;(2)当2ln 22a -<<-时,函数()f x 在[1+∞,)上最小值记为()g a ,求()g a 的取值范围.第4题(函数与求导题)已知()ln ,f x x ax a a R =-+∈ (1)讨论()f x 的单调性;(2)若21()()(1)2g x f x x =+-有三个不同的零点,求a 的取值范围.第5题(函数与求导题)已知函数2()()ln f x a x x x b =-++的图象在点(1,(1))f 处的切线方程为330x y --= (1)求,a b 的值;(2)如果对任何0x >,都有()['()3]f x kx f x ≤⋅-,求所有k 的值;第6题(函数与求导题)(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.第8题(函数与求导题)已知函数f(x)=2x+lnx−a(x2+x).(1)若函数f(x)在x=1处的切线与直线y=−3x平行,求实数a的值;(2)若存在x∈(0,+∞),使得不等式f(x)≥0成立,求实数a的取值范围;(3)当a=0时,设函数p(x)=2x+1−f(x),q(x)=x3−mx+e(其中e为自然,试确定函数h(x)的零点对数底数,m为参数).记函数h(x)=p(x)+q(x)+|p(x)−q(x)|2个数.已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x .第10题(函数与求导题) 已知函数2()e =-xf x ax .(1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .高中数学难题100道(参考答案)第1题(函数与求导题)解:(Ⅰ). 1分因为当时,,在上是增函数, 因为当时,,在上也是增函数,所以当或,总有在上是增函数, 3分 又,所以的解集为,的解集为, 故函数的单调增区间为,单调减区间为. 6分 (Ⅱ)因为存在,使得成立,而当时,所以只要即可.又因为,,的变化情况如下表所示:所以在上是减函数,在上是增函数,所以当时,的最小值,的最大值为和中的最大值. 8分因为, 令,因为,所以在上是增函数.而,故当时,,即;所以,当时,,即,函数在上是增函数,解得; 12分()ln 2ln 2(1)ln x xf x a a x a x a a '=-=-++1a >ln 0a >()1ln xa a -R 01a <<ln 0a <()1ln xa a -R 1a >01a <<()f x 'R (0)0f '=()0f x '>(0,)∞+()'0f x <(),0-∞()f x (0,)∞+(),0-∞12,[1,1]x x ∈-12()()e 1f x f x --≥[1,1]x ∈-12max min ()()()()f x f x f x f x --≤max min ()()e 1f x f x --≥x ()f x '()f x ()f x [1,0]-[0,1][1,1]x ∈-()f x ()()min 01f x f ==()f x ()max f x ()1f -()1f 11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++1()2ln (0)g a a a a a=-->22121()1(1)0g a a a a '=-=->+1()2ln g a a a a=--()0,a ∈+∞(1)0g =1a >()0g a >(1)(1)f f >-1a >(1)(0)e 1f f --≥ln e 1a a --≥ln y a a =-(1,)a ∈+∞e a ≥第2题(椭圆题)解:(1)①由题意可得{ ca =√22a 2c=2a 2=b 2+c 2,解得a =√2,b =1,∴椭圆方程为x 22+y 2=1.②F(c,0),A(0,−b),∴直线AB 的方程为y =bc x −b , ∵e =c a=√22,∴b =c ,a =√2b ,∴即直线AB 方程为y =x −b ,联立方程组{x 2a 2+y 2b 2=1y =x −b ,消元得x 2−2bx =0, ∴x =0或x =2b ,∴B 点横坐标为2b ,∴AFBF =c2b−c =1.(2)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0).,依题意直线l 的斜率不能为0,故设直线l 的方程为:x =my +c , 由{b 2x 2+a 2y 2=a 2b 2x=my+c,得(b 2m 2+a 2)y 2+2mcb 2y −b 4=0. y 1+y 2=−2mcb 2b 2m 2+a 2,x 1+x 2=my 1+c +my 2+c =2a 2cb 2m 2+a 2要使△ABP 的重心是坐标原点O ,则有{x 1+x 2+x 03=0y 1+y2+y 03=0∴{x 0=−2a 2cb 2m 2+a 2y 0=2mcb 2b 2m 2+a 2P(x 0,y 0)在b 2x 2+a 2y 2=a 2b 2上,得b 2⋅4a 4c 2(b 2m 2+a 2)2+a 2⋅4m 2c 2b 4(b 2m 2+a 2)2=a 2b 2,⇒b 4m 4+(2b 2a 2−4c 2b 2)m 2+a 4−4a 2c 2=0, ⇒(b 2m 2+a 2)(b 2m 2+a 2−4c 2)=0, ∵⇒b 2m 2+a 2>0,∴椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,则方程b 2m 2+a 2−4c 2=0必成立. ∴a 2−4c 2≤0,⇒c 2a 2≥14⇒e =c a ≥12,椭圆离心率e 的取值范围为[12,1).第3题(函数与求导题) 解:(1)∵()1)ln 2f x x x a '=---(,记()(1)ln 2h x x x =--,则1()ln 1h x x x '=+-,211()0(0)h x x x x''=+>>时∴()h x '在0+∞(,)上递增且(1)0h '=. ∴当01x <<时,()0h x '<,当1x >时,()0h x '>. ∴()h x 在0,1()上递减,在1+∞(,)上递增, 又0x →时,()h x →+∞,x →+∞时,()h x →+∞,min ()(1)2h x h ==-, ∴当2a ≤-时,()0f x '≥,()f x 在定义域上递增,∴无极值点, 当2a >-时,()y f x '=有两变号零点,∴有两极值点.(2)由(1)知,()f x '在[)1+∞,上递增, 又∵(1)20f a '=--<,(2)ln 220f a '=-->.∴存在唯一实数(1,2)t ∈使()0f t '=,(1)ln 2a t t ∴=--,()f x ∴在]1t (,上递减,在[),t +∞上递增, 22min 11()()()ln (1)124f x g a t t t t a t ∴==---++2211ln 124t t t t =--++ 又明显(1)ln 2a t t =--在[)1+∞,上递增, ∴对任意一个()2,ln 22a ∈--,都存在唯一()1,2t ∈与之对应,反之亦然.设()u t =2211ln 124t t t t --++,()1,2t ∈u (t)t(lnt 1)10'=-++<()u t ∴在1,2()上递减,(2)()(1)u u t u ∴<<, 即722ln 2()4u t -<<()g a ∴的取值范围为722ln 24-(,).第4题(函数与求导题)解:(1)由已知()f x 的定义域为(0,)+∞,又1'()axf x x-=, 当0a ≤时,'()0f x >恒成立,10,'()0,()x f x f x a<<>单调递增; 当0a >时,10,'()0,()x f x f x a <<>单调递增;1,'()0,()x f x f x a><单调递减; (2)由题21()ln (1)2g x x ax a x =-++-,1'()1g x x a x =+--①当1a ≤时,'()10g x a ≥-≥,此时()g x 单调递增,最多存在一个零点,不符合题意②当1a >时,2(1)1'()x a x g x x-++=,令2()(1)1h x x a x =-++,此时(3)(1)0a a ∆=+->,令()0h x =两根分别为1212,()x x x x <,由121210,1x x a x x +=+>=,可以知道1201x x <<<10,()0,'()0,()x x h x g x g x <<>>单调递增;当12,()0,'()0,()x x x h x g x g x <<<<单调递减; 2,()0,'()0,()x x h x g x g x >>>单调递增;其中(1)0g =,1212()0,()0,()0a g x g x g e--><<, (2(1))0g a +>,因此有121(,1)a x e--∃∈使得1()0g x =,21x ∃=使得2()0g x =;3(1,2(1))x a ∃∈+使得3()0g x =综上:(1,)a ∈+∞ 注1:当01x <<时,211(1)22x -<,因此有11()ln ln 22g x x ax a x a <-++<++,令1ln 02x a ++=,解得12a x e --= 注2:当1x >时,22111()ln (1)222g x x ax a x x x a x =-++-+>-+,令21(1)02x a x -+=,解得2(1)x a =+第5题(函数与求导题)解:(1)1'()(21)f x a x x=-+,由题知'(1)3,(1)0f f ==,解得2,0a b == (2)令21()()['()3]2()ln [45]g x f x kx f x x x x kx x x=-⋅-=-+--+,1'()2(21)(85)g x x k x x=-+--,其中(1)0g =,又因()0g x ≤,则必有'(1)0g =,解得1k =当1k =时,(1)(41)'()x x g x x-+=,01,'()0,()x g x g x <<>单调递增;1,'()0,()x g x g x ><单调递减,()(1)0g x g ≤=,符合题意综上:1k =第6题(函数与求导题)【解析】(1)函数()f x的导函数1()f x x'=, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=,所以所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (2)令(||)a k m e-+=,2||1()1a n k+=+,则 ()||0f m km a a k k a -->+--≥, ()))0a f n kn a n k n k n --<---<≤ 所以,存在0(,)x m n ∈使00()f x kx a =+,所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得ln x a k x-=.设ln ()x a h x x-=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2g x x =-. 由(1)可知()(16)g x g ≥,又34ln 2a -≤,故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.第7题(函数与求导题)解:(1)若f (0)≤1,即:a 2+|a|﹣a (a ﹣1)≤1.可得|a|+a ﹣1≤0,当a≥0时,a ,可得a ∈[0,].当a <0时,|a|+a ﹣1≤0,恒成立.综上a .∴a 的取值范围:; (2)函数 f (x )==,当x <a 时,函数f (x )的对称轴为:x==a+>a , y=f (x )在(﹣∞,a )时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=∴,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.第8题(函数与求导题)−a(2x+1),解:(1)函数f(x)=2x+lnx−a(x2+x)的导数为f′(x)=2+1x可得函数f(x)在x=1处的切线斜率为3−3a,由切线与直线y=−3x平行,可得3−3a=−3,解得a=2;(2)存在x ∈(0,+∞),使得不等式f(x)≥0成立,即为a ≤2x+lnx x 2+x 的最大值, 令m(x)=2x+lnx x 2+x ,(x >0),m′(x)=(2x+1)(1−x−lnx)(x 2+x)2,由1−x −lnx =0,即x +lnx =1,由于x +lnx −1的导数为1+1x >0,即x +ln −1在x >0递增,且x =1时,x +lnx −1=0,则x =1为m(x)的极值点,当x >1时,m(x)递减,当0<x <1时,m(x)递增,则x =1时,m(x)取得极大值,且为最大值1,则a ≤1;(3)当a =0时,设函数p(x)=2x +1−f(x)=1−lnx ,q(x)=x 3−mx +e ,则当1−lnx ≥x 3−mx +e ,h(x)=1−lnx ;当1−lnx <x 3−mx +e ,h(x)=x 3−mx +e .①当x ∈(0,e)时,p(x)>0,依题意,h(x)≥p(x)>0,h(x)无零点;②当x =e 时,p(e)=0,q(e)=e 3−me +e ,若q(e)=e 3−me +e ≤0,即m ≥e 2+1,则e 是h(x)的一个零点;若q(e)=e 3−me +e >0,即m <e 2+1,则e 不是h(x)的零点;③当x ∈(e,+∞)时,p(x)<0,所以此时只需考虑函数q(x)在(e,+∞)上零点的情况.因为 3e^{2}-m'/>,所以 当m ≤3e 2时,0'/>,q(x)在(e,+∞)上单调递增. 又q(e)=e 3−me +e ,所以(i)当m ≤e 2+1时,q(e)≥0,q(x)在(e,+∞)上无零点;(ii)3e 2≥m >e 2+1时,q(e)<0,又q(2e)=8e 3−2me +e ≥6e 3−e >0,所以此时q(x)在(e,+∞)上恰有一个零点;当m >3e 2时,令,得x =±√m 3. 由,得e <x <√m 3; 由 0'/>,得x >√m 3. 所以q(x)在(e,√m 3)上单调递减,在(√m 3,+∞)上单调递增. 因为q(e)=e 3−me +e <e 3−3e 3+e <0,q(m)=m 3−m 2+e >m 2−m 2+e =e >0,所以此时q(x)在(e,+∞)上恰有一个零点;综上,m <e 2+1时,h(x)没有零点;m =e 2+1时,h(x)有一个零点;m >e 2+1时,h(x)有两个零点.第9题(函数与求导题)【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当2()2a a x+∈+∞时,()0f x '<; 当(,22a a x+∈时,()0f x '>.所以()fx 在(0,2a,(,)2++∞a 单调递减,在(22a a -+单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.第10题(函数与求导题)【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤x x . 设函数2()(1)1-=+-x g x x e ,则22()(21)(1)--=--+=--x x g'x x x e x e . 当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减.而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x .(2)设函数2()1e -=-xh x ax . ()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点. (i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e x h'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x .所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e=-a h 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点; ②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点; ③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点, 由(1)知,当0>x 时,2e >x x , 所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .。