【曹杨二中自招】2017年曹杨二中自招数学试卷.pdf

合集下载

2016-2017年上海市曹杨二中高二上开学考数学

2016-2017年上海市曹杨二中高二上开学考数学

上海市曹杨二中高二开学摸底考数学试卷2016.09一、填空题1. 等比数列{}n a 中,265,80a a ==,则公比q =____________.2. 方程cos sin 6x π=的解为x =____________.3. 若1sin 3θ=,则3cos 2πθ⎛⎫-= ⎪⎝⎭____________. 4. 等差数列{}n a 中,10205,15S S ==,则30S =____________.5. 已知(3,3),(6,7)a k b k ==--,若a b ⊥,则实数k 的值为____________.6. 数列{}n a 的前n 项和为2,32n n S S n n =-,则n a =____________.7. 在ABC 中,已知120,5,7A AB BC =︒==,那么ABC 的面积S =____________.8. 已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且,,A B C 三点共线(该直线不过原点O ),则200S =____________.9. 直线6x π=是()sin()(0||6)3f x x πωω=+<<图像的一条对称轴,则ω=____________.10. 已知菱形ABCD 的边长为2,120BAD ∠=︒,点,E F 分别在,BC DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ=____________.11. 已知等比数列{}n a 的公比为q ,它的前n 项积为n T ,且满足1201520161,1a a a >⋅>,20152016(1)(1)0a a --<,给出以下四个命题:①1q >;②201520171a a ⋅<;③2015T 为n T 的最大值;④使1n T >成立的最大正整数n 为4031,则其中正确命题的序号为____________.12. 定义12min{,,,}n a a a 为12,,,n a a a 的最小值,若2()min{,5,21}f x x x x x =---,对于任意的*n N ∈,均有(1)(2)(21)(2)()f f f n f n kf n +++-+≤成立,则实数k 的取值范围是____________.二、选择题 13. 函数()sin 2cos 2f x x x =+的最小正周期是( )A. 4πB. 2πC. πD. 2π14. 下列向量组中能够作为它们所在平面内所有向量的基的是( )A. (0,0),(1,2)a b ==-B. (1,2),(2,4)a b -=-C. (3,5),(6,10)a b ==D. (2,3),(6,9)a b =-=15. 将函数sin y x =的图像上所有的点向右平行移动10π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A. sin 210y x π⎛⎫=- ⎪⎝⎭ B. sin 25y x π⎛⎫=- ⎪⎝⎭C. sin 210x y π⎛⎫=- ⎪⎝⎭D. sin 220x y π⎛⎫=- ⎪⎝⎭ 16. 已知数列{}n a 的通项公式是1133()[()1]44n n n a --=⋅-,则下列选项正确的是( )A. 最大项为1a ,最小项为3aB. 最大项为1a ,最小项不存在C. 最大项不存在,最小项为3aD. 最大项为1a ,最小项为4a三、解答题17. 已知,(0,)2παβ∈且αβ<,若312sin ,cos()513ααβ=-=; (1)求cos β的值; (2)求tan 2β的值18. 在ABC 中,角,,A B C 的对边分别是,,a b c ,且(cos cos )a B C b c +=+;(1)判断ABC 的形状;(2)若ABC 的外接圆半径等于1,求ABC 周长的取值范围19. 定义在R 上的函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的图像如图所示;(1)求函数()f x 的解析式;(2)写出函数()f x 的单调递增区间;(3)设两个不相等的实数12,(0,)x x π∈,且12()()2f x f x ==-,求12x x +的值20. 设数列{}n a 前n 项和为n S ,对一切*n N ∈,点(,)n S n n 都在()2n a f x x x=+的图像上; (1)证明:当2n ≥,*n N ∈时,12(21)n n a a n -+=-;(2)求数列{}n a 的通项公式;(3)设n T 为数列1n n a a ⎧⎫-⎨⎬⎩⎭前n项积,若不等式3()2n a T f a a +<-对一切*n N ∈恒成立,求实数a 的取值范围参考答案一、填空题1. 2±2. 23k ππ±+ 3. 13- 4. 30 5. 75- 6. 65n -7. 4 8. 100 9. 5-或1 10. 2 11. ②③ 12. 1[,0]2-二、选择题13. C14. D 15. C 16. A三、解答题17. (1)3365; (2)4718. (1)直角三角形; (2)(4,2+19. (1)()4sin(2)3f x x π=+;(2)76π20. (1)作差可得,证明略; (2)2n a n =; (3)(,0)(3,)2-+∞。

上海市曹杨二中2017-2018学年高三下开学考数学试题(无答案)word

上海市曹杨二中2017-2018学年高三下开学考数学试题(无答案)word

2018届曹杨二中高三下学期开学考数学试卷2018.2.22一、填空题(54分)1、已知集合},2|{R x y y A x∈==,},|{2R x x y y B ∈-==,则B A =_______2、已知向量)0,1(-=a,)3,4(=b,则a在b方向上的投影是_________3、若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211321,则该线性方程组的解为_______ 4、一组数据12,11,,9,8x 平均数是10,则这组数据的方差是_______5、若复数231i +-=ω(i 为虚数单位),则12++ωω=______ 6、已知函数⎩⎨⎧∈∈=]3,1(,2]1,0[,2)(x x x x f x,则)(1x f -的最大值是_____ 7、若圆锥的侧面展开图是面积为π2的半圆面,则圆锥的母线与底面所成角的大小为_____ 8、已知点P 在抛物线x y 42=上,如果点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和取得最小值,那么点P 的坐标是_______9、用数字0、1、2、3、4组成没有重复数字的五位偶数的概率是______ 10、函数x y a log =在),2[+∞上恒有1||>y ,则实数a 的取值范围是_________ 11、如图在杨辉三角中从上往下数共有n 行,在这些数中非1的数字之和为_____14641133112111112、定义函数}}{{)(x x x f =,其中}{x 表示不小于x 的最小整数,如2}4.1{=,2}3.2{-=-,当()*∈∈Nn n x ],0(时,函数)(x f 的值域为nA,记集合n A 中元素的个数为n a ,则⎪⎪⎭⎫⎝⎛+++∞→n n a a a 111lim 21=_______ 二、选择题(20分)13、已知直线R y x l ∈=-+θθθ,01sin cos :与圆)0(:222>=+r r y x C ,则1=r 是直线与圆相切的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既非充分又非必要条件 14、一个几何体的三视图如图所示,则该几何体的体积为( )A 、37 B 、29 C 、27 D 、49 15、有4张软盘与5张光盘的价格之和不小于20元,6张软盘与3张光盘的价格之和不大于24元,则买3张软盘与9张光盘至少需要( ) A 、15元 B 、22元 C 、36元 D 、72元16、设函数的定义域是)1,0(,且满足:(1)对于任意的)1,0(∈x ,0)(>x f ;(2)对于任意的)1,0(,21∈x x ,恒有2)1()1()()(2121≤--+x f x f x f x f 。

上海曹杨二中数学平面图形的认识(一)单元测试题(Word版 含解析)

上海曹杨二中数学平面图形的认识(一)单元测试题(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。

上海市曹杨二中2017-2018学年度高二下学期数学开学摸底考(PDF含答案)

上海市曹杨二中2017-2018学年度高二下学期数学开学摸底考(PDF含答案)

曹杨二中高二开学考2018.03一. 填空题1. 直线210x y 的一个法向量为2. 直线350x 的倾斜角大小为3. 直线20x 与直线10x 的夹角为4. 一条直线经过直线230x y ,310x y 的交点,并且与直线2350x y 垂 直,则这条直线方程为5. 点(4,)P a 到直线4310x y 的距离等3,则实数a 的值为6. 过点(2,1)A 与(1,2)B 半径最小的圆的方程为7. 对任意实数m ,圆2224620x y mx my m 恒过定点,则其坐标为8. 已知直线 :2l y ax 和 (1,4)A 、(3,1)B 两点,若直线l 与线段AB 相交,则实数a 的取值范围为9. 已知(2,3)A 、(4,8)B 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,则直 线的方程为10. 已知定点(0,5)A ,P 是圆22(2)(3)2x y 上的动点,则当||PA 取到最大值时,P 点的坐标为11. 直线l 与两直线1y 和70x y 分别交于A 、B 两点,若直线AB 的中点为(1,1)M ,则直线l 的斜率为12. 已知正三角形的三个顶点(0,0)A 、(2,0)B 、C ,一质点从AB 的中点0P 沿与AB 夹角为 的方向射到BC 边上的点1P 后,依次反射到CA 和AB 边上的点2P 、3P ,若1P 、2P 、3P 是三个不同的点,则tan 的取值范围为二. 选择题13. 如果曲线C 上任一点的坐标都是方程(,)0F x y 的解,那么下列命题中正确的是( )A. 曲线C 的方程为(,)0F x yB. (,)0F x y 的曲线是CC. 以方程(,)0F x y 的解为坐标的点都在曲线C 上D. 曲线C 上的点都在方程(,)0F x y 的曲线上14. 若圆222:()()C x a y a a 被直线:20l x y 分成的两段弧长之比是1:3,则满足条件的圆C ( )A. 有一个B. 有两个C. 有三个D. 有四个15. 两直线1l 、2l 的方程分别为0x b 和sin 0x a (a 、 b 为实常数), 为第三象限角,则两直线1l 、2l 的位置关系是( )A. 相交且垂直B. 相交但不垂直C. 平行D. 不确定16. 若(2,3)P 既是11(,)A a b 、22(,)B a b 的中点,又是直线111:130l a x b y 与直线222:130l a x b y 的交点,则线段AB 的中垂线方程是( )A. 23130x yB. 32120x yC. 320x yD. 2350x y三. 解答题17. 讨论两直线1:1l mx y 和2:323l mx my m 之间的位置关系.18. 已知ABC 的三个顶点(,)A m n 、(2,1)B 、(2,3)C .(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y ,且7ABC S ,求点A 的坐标.19. 已知定点(2,0)A 、(2,0)B ,动点C 在线段AB 上,且PAC 、QBC 均为等边三角形(P 、Q 均在x 轴上方).(1)R 是线段PQ 的中点,求点R 的轨迹;(2)求ARB 的取值范围.20. 过点(2,1)P 的直线l 分别交12y x(0x )与2y x (0x )于A 、B 两点. (1)设A 点的坐标为(2,)a a ,用实数a 表示B 点的坐标,并求实数a 的取值范围; (2)设AOB 的面积为245,求直线l 的方程; (3)当||||PA PB 最小时,求直线l 的方程.曹杨二中高二开学考2018.03一. 填空题1. 直线210x y 的一个法向量为【解析】(2,1) 等2. 直线350x 的倾斜角大小为 【解析】33. 直线20x 与直线10x 的夹角为【解析】60°4. 一条直线经过直线230x y ,310x y 的交点,并且与直线2350x y 垂 直,则这条直线方程为【解析】2114170x y5. 点(4,)P a 到直线4310x y 的距离等3,则实数a 的值为【解析】0或106. 过点(2,1)A 与(1,2)B 半径最小的圆的方程为 【解析】22315()()222x y7. 对任意实数m ,圆2224620x y mx my m 恒过定点,则其坐标为 【解析】(1,1)、17(,)558. 已知直线 :2l y ax 和 (1,4)A 、(3,1)B 两点,若直线l 与线段AB 相交,则实数a 的取值范围为 【解析】1[,2]39. 已知(2,3)A 、(4,8)B 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,则直 线的方程为【解析】1120x y 或560x y10. 已知定点(0,5)A ,P 是圆22(2)(3)2x y 上的动点,则当||PA 取到最大值时,P 点的坐标为【解析】(3,2)11. 直线l 与两直线1y 和70x y 分别交于A 、B 两点,若直线AB 的中点为(1,1)M ,则直线l 的斜率为【解析】1A y ,3B y ,∴(4,3)B ,(2,1)A ,∴直线l 的斜率为2312. 已知正三角形的三个顶点(0,0)A 、(2,0)B 、C ,一质点从AB 的中点0P 沿与AB 夹角为 的方向射到BC 边上的点1P 后,依次反射到CA 和AB 边上的点2P 、3P ,若1P 、2P 、 3P 是三个不同的点,则tan 的取值范围为【解析】利用对称处理反射问题,两次反射,作两次对称,范围为(2二. 选择题13. 如果曲线C 上任一点的坐标都是方程(,)0F x y 的解,那么下列命题中正确的是( )A. 曲线C 的方程为(,)0F x yB. (,)0F x y 的曲线是CC. 以方程(,)0F x y 的解为坐标的点都在曲线C 上D. 曲线C 上的点都在方程(,)0F x y 的曲线上【解析】D14. 若圆222:()()C x a y a a 被直线:20l x y 分成的两段弧长之比是1:3,则满足条件的圆C ( )A. 有一个B. 有两个C. 有三个D. 有四个【解析】B15. 两直线1l 、2l 的方程分别为0x b 和sin 0x a (a 、 b 为实常数), 为第三象限角,则两直线1l 、2l 的位置关系是( )A. 相交且垂直B. 相交但不垂直C. 平行D. 不确定【解析】A16. 若(2,3)P 既是11(,)A a b 、22(,)B a b 的中点,又是直线111:130l a x b y 与直线222:130l a x b y 的交点,则线段AB 的中垂线方程是( )A. 23130x yB. 32120x yC. 320x yD. 2350x y【解析】C三. 解答题17. 讨论两直线1:1l mx y 和2:323l mx my m 之间的位置关系.【解析】当3m ,重合;当3m ,相交,1x m,2y .。

曹杨二中2016-2017学年高二上学期期中考试数学试卷(解析版)

曹杨二中2016-2017学年高二上学期期中考试数学试卷(解析版)

2016-2017学年上海市普陀区曹杨二中高二(上)期中数学试卷一.填空题1.三个平面最多把空间分割成个部分.2.两条异面直线所成的角的取值范围是.3.给出以下命题“已知点A、B都在直线l上,若A、B都在平面α上,则直线l在平面α上”,试用符号语言表述这个命题.4.设E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,则四边形EFGH的形状一定是.5.设点A∈平面α,点B∈平面β,α∩β=l,且点A∉直线l,点B∉直线l,则直线l与过A、B两点的直线的位置关系.6.数列{a n}中,设S n是它的前n项和,若log2(S n+1)=n+1,则数列{a n}的通项公式a n=.7.a,b是不等的两正数,若=2,则b的取值范围是.8.计算81+891+8991+89991+…+81=.9.已知正方体ABCD﹣A1B1C1D1的棱长为1,则点C1到直线BD的距离为.10.我们把b除a的余数r记为r=abmodb,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r←abmodb”被执行了次.11.设S n是数列{a n}的前n项和,a1=﹣1,a n+1=S n S n+1,则S n=.12.若三个数a,1,c成等差数列(其中a≠c),且a2,1,c2成等比数列,则的值为.13.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:①平行于同一平面的两个不同平面互相平行;②平行于同一直线的两个不同平面互相平行;③垂直于同一直线的两个不同平面互相平行;④垂直于同一平面的两个不同平面互相平行;其中正确的有.14.在n行n列矩阵中,若记位于第i行第j列的数为a ij(i,j=1,2,…,n),则当n=9时,表中所有满足2i<j的a ij的和为.二.选择题15.如图给出的是计算的值的一个程序框图,判断其中框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<2016.下列命题中,正确的共有()①因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;②两个平面有时只相交于一个公共点;③分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;④一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内.A.0个B.1个C.2个D.3个17.从k2+1(k∈N)开始,连续2k+1个自然数的和等于()A.(k+1)3B.(k+1)3+k3C.(k﹣1)3+k3D.(2k+1)(k+1)318.已知方程组的解中,y=﹣1,则k的值为()A.3 B.﹣3 C.1 D.﹣1三.解答题19.解关于x、y的方程组,并对解的情况进行讨论.20.如图,A是△BCD所在平面外一点,M、N为△ABC和△ACD重心,BD=6;(1)求MN的长;(2)若A、C的位置发生变化,MN的位置和长度会改变吗?21.已知长方体ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;(1)求出异面直线AC'和BD所成角的余弦值;(2)找出AC'与平面D'DBB'的交点,并说明理由.22.已知数列{a n}的前n项和S n满足:S n=(a n﹣1)(a为常数,且a≠0,a≠1);(1)求{a n}的通项公式;(2)设b n=+1,若数列{b n}为等比数列,求a的值;(3)若数列{b n}是(2)中的等比数列,数列c n=(n﹣1)b n,求数列{c n}的前n项和T n.23.设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.2016-2017学年上海市普陀区曹杨二中高二(上)期中数学试卷参考答案与试题解析一.填空题1.(2015春•鹤岗校级期末)三个平面最多把空间分割成8个部分.【考点】平面的基本性质及推论.【专题】空间位置关系与距离.【分析】分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.【解答】解:三个平面两两平行时,可以把空间分成4部分,三个平面有两个平行,第三个与他们相交时,可以把空间分成6部分,三个平面交于同一直线时,可以把空间分成6部分,三个平面两两相交,交线相互平行时,可以把空间分成7部分,当两个平面相交,第三个平面同时与两个平面相交时,把空间分成8部分.所以空间中的三个平面最多能把空间分成8部分.故答案为:8.【点评】本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.2.(2009秋•三明期中)两条异面直线所成的角的取值范围是(0°,90°] .【考点】异面直线及其所成的角.【专题】阅读型.【分析】由异面直线所成角的定义求解.【解答】解:由异面直线所成角的定义可知:过空间一点,分别作相应直线的平行线,两条相交直线所成的直角或锐角为异面直线所成的角故两条异面直线所成的角的取值范围是(0°,90°]故答案为:(0°,90°]【点评】本题主要考查异面直线所成的角,同时,还考查了转化思想,属基础题.3.(2016秋•普陀区校级期中)给出以下命题“已知点A、B都在直线l上,若A、B都在平面α上,则直线l在平面α上”,试用符号语言表述这个命题已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.【考点】平面的基本性质及推论.【专题】阅读型;定义法;空间位置关系与距离.【分析】根据几何符号语言的应用,对题目中的语句进行表示即可.【解答】解:用符号语言表述这个命题为:已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.故答案为:已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.【点评】本题考查了空间几何符号语言的应用问题,是基础题目.4.(2016秋•普陀区校级期中)设E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA 的中点,则四边形EFGH的形状一定是平行四边形.【考点】棱锥的结构特征.【专题】综合题;转化思想;演绎法;空间位置关系与距离.【分析】证明FG∥EH,且FG=EH即可得出结论.【解答】解:如图,连接BD.因为FG是△CBD的中位线,所以FG∥BD,FG=BD.又因为EH是△ABD的中位线,所以EH∥BD,EH=BD.根据公理4,FG∥EH,且FG=EH.所以四边形EFGH是平行四边形.故答案为平行四边形【点评】主要考查知识点:简单几何体和公理四,证明平行四边形常用方法:对边平行且相等;或对边分别平行;或对角线相交且平分.要注意:对边相等的四边形不一定是平行四边形.5.(2016秋•普陀区校级期中)设点A∈平面α,点B∈平面β,α∩β=l,且点A∉直线l,点B∉直线l,则直线l与过A、B两点的直线的位置关系异面.【考点】空间中直线与平面之间的位置关系.【专题】计算题;转化思想;反证法;空间位置关系与距离.【分析】假设l与AB不是异面直线,那么它们在同一个平面上,记这个平面为γ,由此能推导出A 在α与β的交线l上,与已知点A∉直线l,点B∉直线l相互矛盾.从而得到l与AB是异面直线.【解答】解:假设l与AB不是异面直线,那么它们在同一个平面上,记这个平面为γ.∵A和l都在平面γ上,∴由它们决定的平面α在平面γ上,∴平面γ=平面α.同理γ=平面β.∴α=β,∵A∈α,∴A∈β,所以A在α与β的交线l上,与已知点A∉直线l,点B∉直线l相互矛盾.∴假设不成立,∴l与AB是异面直线.故答案为:异面.【点评】本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(2016秋•普陀区校级期中)数列{a n}中,设S n是它的前n项和,若log2(S n+1)=n+1,则数列{a n}的通项公式a n=.【考点】数列递推式.【专题】综合题;函数思想;转化法;等差数列与等比数列.【分析】由已知数列递推式求得S n,再由a n=S n﹣S n﹣1(n≥2)求得数列{a n}的通项公式.【解答】解:由log2(S n+1)=n+1,得S n+1=2n+1,∴,当n=1时,a1=S1=3;当n≥2时,,当n=1时,上式不成立,∴.故答案为:.【点评】本题考查数列递推式,考查了由数列的前n项和求数列的通项公式,是中档题.7.(2016秋•普陀区校级期中)a,b是不等的两正数,若=2,则b的取值范围是(0,2).【考点】极限及其运算.【专题】计算题;分类讨论;极限思想.==a,进而求出b的范围.【分析】当a>b时,【解答】解:a,b是不等的两正数,且=2,须对a,b作如下讨论:=0,则==a,①当a>b时,所以,a=2,因此,b∈(0,2),②当a<b时,则=﹣b=2,而b>0,故不合题意,舍去.综合以上讨论得,b∈(0,2),故答案为:(0,2).【点评】本题主要考查了极限及其运算,以及应用常用极限|q|<1,q n=0解题,属于基础题.8.(2016秋•普陀区校级期中)计算81+891+8991+89991+…+81=10n+1﹣9n﹣10.【考点】数列的求和.【专题】转化思想;等差数列与等比数列.【分析】原式=8×(10+102+…+10n)+(1+1+…+1)+(90+990+…+×10),利用等比数列的求和公式即可得出.【解答】解:原式=8×(10+102+…+10n)+(1+1+…+1)+(90+990+…+×10)=8×+n+(102﹣10)+(103﹣10)+…+(10n﹣10)=+n+﹣10(n﹣1)=10n+1﹣9n﹣10.故答案为:10n+1﹣9n﹣10.【点评】本题考查了分组求和、等比数列的求和公式,考查了推理能力与计算能力,属于中档题.9.(2016秋•普陀区校级期中)已知正方体ABCD﹣A1B1C1D1的棱长为1,则点C1到直线BD的距离为.【考点】点、线、面间的距离计算.【专题】数形结合;转化思想;空间位置关系与距离.【分析】如图所示,连接AC,BD,DC1,BC1.设AC∩BD=O,连接OC1.利用等腰三角形的性质可得:OC1⊥BD,因此OC1是点C1到直线BD的距离.【解答】解:如图所示,连接AC,BD,DC1,BC1.设AC∩BD=O,连接OC1.∵DC1=BC1,OB=OD.∴OC1⊥BD,∴OC1是点C1到直线BD的距离.OC1==.故答案为:.【点评】本题考查了正方体的性质、等腰三角形的性质、勾股定理,考查了推理能力与计算能力,属于中档题. 10.(2016秋•普陀区校级期中)我们把b 除a 的余数r 记为r=abmodb ,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r ←abmodb ”被执行了 4 次.【考点】程序框图.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a ,b ,r 的值,当r=0时满足条件,退出循环,从而得解.【解答】解:模拟程序的运行,可得 a=209,b=77, r=55不满足条件r=0,执行循环体,a=77,b=55,r=22 不满足条件r=0,执行循环体,a=55,b=22,r=11 不满足条件r=0,执行循环体,a=22,b=11,r=0 此时,满足条件r=0,退出循环,输出a 的值为22. 由此可得循环体“r ←abmodb ”被执行了4次. 故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a ,b ,r 的值是解题的关键,属于基础题.11.(2016秋•徐汇区校级期中)设S n 是数列{a n }的前n 项和,a 1=﹣1,a n +1=S n S n +1,则S n = ﹣ . 【考点】数列的求和.【专题】方程思想;转化思想;等差数列与等比数列. 【分析】a n +1=S n S n +1,可得S n +1﹣S n =S n S n +1, =﹣1,再利用等差数列的通项公式即可得出.【解答】解:∵a n +1=S n S n +1,∴S n +1﹣S n =S n S n +1, ∴=﹣1,∴数列是等差数列,首项为﹣1,公差为﹣1.∴=﹣1﹣(n ﹣1)=﹣n ,解得S n =﹣. 故答案为:.【点评】本题考查数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题. 12.(2014•宝山区二模)若三个数a ,1,c 成等差数列(其中a ≠c ),且a 2,1,c 2成等比数列,则的值为 0 .【考点】极限及其运算;等差数列的性质;等比数列的性质. 【专题】计算题;等差数列与等比数列.【分析】由等差中项的概念和等比中项的概念列式求得a ,c 的值,然后代入数列极限求得答案. 【解答】解:∵a ,1,c 成等差数列, ∴a +c=2 ①又a 2,1,c 2成等比数列, ∴a 2c 2=1 ② 联立①②得: 或或,∵a ≠c , ∴或,则a +c=2,.∴=.故答案为:0.【点评】本题考查等差数列和等比数列的性质,考查了方程组的解法,训练了数列极限的求法,是基础的计算题.13.(2016秋•普陀区校级期中)在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:①平行于同一平面的两个不同平面互相平行;②平行于同一直线的两个不同平面互相平行;③垂直于同一直线的两个不同平面互相平行;④垂直于同一平面的两个不同平面互相平行;其中正确的有①③.【考点】类比推理.【专题】综合题;转化思想;演绎法.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:①平行于同一平面的两个不同平面互相平行,正确;②平行于同一直线的两个不同平面互相平行或相交,不正确;③垂直于同一直线的两个不同平面互相平行,正确;④垂直于同一平面的两个不同平面互相平行或相交,不正确.故答案为①③.【点评】本题考查类比推理,考查学生分析解决问题的能力,比较基础.14.(2016秋•普陀区校级期中)在n行n列矩阵中,若记位于第i行第j列的数为a ij(i,j=1,2,…,n),则当n=9时,表中所有满足2i<j的a ij的和为88.【考点】三阶矩阵.【专题】选作题;转化思想;演绎法;矩阵和变换.【分析】根据题意n=9时,求得所有满足2i<j的a ij,相加即可求得答案.【解答】解:由题意可知:当i=1时,由2i<j,∴j取3,4,5,6,7,8,9当i=2时,j取5,6,7,8,9当i=3时,j取7,8,9当i=4时,j取9∴表中所有满足2i<j的a ij和为:a13+a14+a15+a16+a17+a18+a19+a25+a26+a27+a28+a29+a37+a38+a39+a49=3+4+5+6+7+8+9+6+7+8+9+1+9+1+2+3=88,故答案为:88【点评】本题考查高阶矩阵,考查学生的理解问题,分析解决问题的能力,考查a ij中i和j的字母含义,属于中档题.二.选择题15.(2013•沈河区模拟)如图给出的是计算的值的一个程序框图,判断其中框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<20【考点】程序框图.【专题】阅读型;图表型.【分析】框图给出的是计算的值的一个程序框图,首先赋值i=1,执行s=0+时同时执行了i=i+1,和式共有10项作和,所以执行完s=后的i值为11,再判断时i=11应满足条件,由此可以得到正确答案.【解答】解:框图首先给变量s,n,i赋值s=0,n=2,i=1.判断,条件不满足,执行s=0+,n=2+2=4,i=1+1=2;判断,条件不满足,执行s=+,n=4+2=6,i=2+1=3;判断,条件不满足,执行s=++,n=6+2=8,i=3+1=4;…由此看出,当执行s=时,执行n=20+2=22,i=10+1=11.此时判断框中的条件应满足,所以判断框中的条件应是i>10.故选C.【点评】本题考查了程序框图中的直到型循环,虽然是先进行了一次判断,但在不满足条件时执行循环,直到满足条件算法结束,此题是基础题.16.(2016秋•普陀区校级期中)下列命题中,正确的共有()①因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;②两个平面有时只相交于一个公共点;③分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;④一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内.A.0个B.1个C.2个D.3个【考点】平面的基本性质及推论.【专题】探究型;空间位置关系与距离.【分析】根据平面的基本性质及其推论逐一判断即可得解.【解答】解:对于①,因为平面也是可以无限延伸的,故错误;对于②,两个平面只要有一个公共点,就有一条通过该点的公共直线,故错误;对于③,交点分别含于两条直线,也分别含于两个平面,必然在交线上,故正确;对于④,一条直线与三角形的两边都相交,则两交点在三角形所在的平面内,则这条直线必在三角形所在的平面内,故正确.故选:C.【点评】本题考查命题的真假判断,考查平面的基本性质及其推论的应用,属于基础题.17.(2016秋•普陀区校级期中)从k2+1(k∈N)开始,连续2k+1个自然数的和等于()A.(k+1)3B.(k+1)3+k3C.(k﹣1)3+k3D.(2k+1)(k+1)3【考点】数学归纳法.【专题】转化思想;等差数列与等比数列;点列、递归数列与数学归纳法.【分析】从k2+1(k∈N)开始,连续2k+1个自然数的和=k2+1+k2+2+…+(k2+2k+1),再利用等差数列的求和公式即可得出.【解答】解:从k2+1(k∈N)开始,连续2k+1个自然数的和=k2+1+k2+2+…+(k2+2k+1)=(2k+1)•k2+=2k3+3k2+3k+1=(k+1)2+k3.故选:B.【点评】本题考查了数学归纳法、等差数列的求和公式,考查了推理能力与计算能力,属于中档题.18.(2016秋•普陀区校级期中)已知方程组的解中,y=﹣1,则k的值为()A.3 B.﹣3 C.1 D.﹣1【考点】简单线性规划.【专题】转化思想;综合法;不等式的解法及应用.【分析】由已知方程组得到x,z,k的方程组,解之即可.【解答】解:由已知得到,解得;故选B.【点评】本题考查了三元一次方程组的解法;只要利用加减消元即可得到所求.三.解答题19.(2016秋•普陀区校级期中)解关于x、y的方程组,并对解的情况进行讨论.【考点】根的存在性及根的个数判断.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】将原方程组写成矩阵形式为Ax=b,其中A为2×2方阵,x为2个变量构成列向量,b为2个常数项构成列向量.而当它的系数矩阵可逆,或者说对应的行列式D不等于0的时候,它有唯一解.并不是说有解.【解答】解:系数矩阵D非奇异时,或者说行列式D=4﹣2m2﹣2m≠0,即m≠1且m≠﹣2时,方程组有唯一的解,x==,y==.系数矩阵D奇异时,或者说行列式D=4﹣2m2﹣2m=0,即m=1或m=﹣2时,方程组有无数个解或无解.当m=﹣2时,原方程为无解,当m=1时,原方程组为,无解.【点评】本题主要考查克莱姆法则,克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立.20.(2016秋•普陀区校级期中)如图,A是△BCD所在平面外一点,M、N为△ABC和△ACD重心,BD=6;(1)求MN的长;(2)若A、C的位置发生变化,MN的位置和长度会改变吗?【考点】棱锥的结构特征.【专题】综合题;转化思想;演绎法;空间位置关系与距离.【分析】(1)利用三角形的重心的性质,可得M、N分别是△ABC与△ACD的中线的一个三等分点,得=,由此利用平行线的性质与三角形中位线定理,算出MN与BD的关系,即可得到MN的长.(2)由(1)可得位置改变,长度不改变.【解答】解:(1)延长AM、AN,分别交BC、CD于点E、F,连结EF.∵M、N分别是△ABC和△ACD的重心,∴AE、AF分别为△ABC和△ACD的中线,且=,可得MN∥EF且MN=EF,∵EF为△BCD的中位线,可得EF=BD,∴MN=BD=2;(2)由(1)可得位置改变,长度不改变.【点评】本题着重考查了三角形的重心性质、平行线的性质和三角形的中位线定理等知识,属于中档题.21.(2016秋•普陀区校级期中)已知长方体ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;(1)求出异面直线AC'和BD所成角的余弦值;(2)找出AC'与平面D'DBB'的交点,并说明理由.【考点】空间中直线与直线之间的位置关系;异面直线及其所成的角.【专题】计算题;作图题;转化思想;空间位置关系与距离;立体几何.【分析】(1)建立空间直角坐标系,求出两条线段的方向向量,代入向量夹角公式,可得答案.(2)连接BD',DB'交于点O,则点O即为AC'与平面D'DBB'的交点,根据长方体的性质,可得结论.【解答】解:(1)建立如图所示空间直角坐标系,∵AB=4,AD=3,AA'=2;∴C'(4,3,2),B(4,0,0),D(0,3,0)则:=(4,3,2),=(﹣4,3,0)异面直线AC'和BD所成角的余弦值为:==;(2)连接BD',DB'交于点O,则点O即为AC'与平面D'DBB'的交点,根据长方体的几何特征可得:O为长方体ABCD﹣A'B'C'D'外接球的球心,AC'为长方体ABCD﹣A'B'C'D'外接球的直径,故O为AC'中点,又由BD',DB'交于点O,故O在平面D'DBB'上,故O即为AC'与平面D'DBB'的交点.【点评】本题考查的知识点是空间直线与直线,直线与平面的位置关系,异面直线的夹角,难度中档.22.(2016秋•普陀区校级期中)已知数列{a n}的前n项和S n满足:S n=(a n﹣1)(a为常数,且a≠0,a≠1);(1)求{a n}的通项公式;(2)设b n=+1,若数列{b n}为等比数列,求a的值;(3)若数列{b n}是(2)中的等比数列,数列c n=(n﹣1)b n,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【专题】方程思想;作差法;等差数列与等比数列;不等式的解法及应用.【分析】(1)由公式求得通项公式;(2)简化数列{b n},再由等比数列的通项公式的结构特征,得出=0,解得参数a;(3)由(2)求出数列{c n}的通项,根据通项结构特征,采用错位相减法求数列{c n}的前n项和.【解答】解:(1)当n=1时,,∴a1=a,,当n≥2时,S n=(a n﹣1)且,两式做差化简得:a n=a•a n﹣1即:,∴数列{a n}是以a为首项,a为公比的等比数列,∴.(2)b n=+1=,若数列{b n}为等比数列,则=0,即.(3)由(2)知,∴∴T n=0×3+1×32+2×33+…+(n﹣1)3n…①3T n=0×32+1×33+2×34+…+(n﹣2)×3n+(n﹣1)×3n+1…②①﹣②得:﹣2T n=32+33+34+…+3n﹣(n﹣1)×3n+1=∴.【点评】本题主要考查求数列通项公式,已知等比数列求参数,求数列前n项和,利用错位相减求前前n项和是关键.23.(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.【考点】数列的应用;等差数列的性质.【专题】等差数列与等比数列.【分析】(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.。

上海市曹杨二中2017学年第一学期高一年级月考

上海市曹杨二中2017学年第一学期高一年级月考

上海市曹杨二中2017学年第一学期高一年级12月阶段测试试卷一、填空题1、已知集合},1{},,1{2x B x A ==且B A =,则=x .2、函数x x x f -++=112)(的定义域是.(用区间表示)3、不等式132-≥+x x 的解集为.4、函数12)21(+=x y 的值域是.5、电子技术的飞速发展,计算机成本不断降低,若每隔一年计算机的价格降低二分之一,现在价格为8100元的计算机3年后价格可降为元.6、不等式3232)23()2(--+>-x x 的解集为.7、已知函数)(x f y =是奇函数,当0>x 时,131)(+=x x f ,设)(x f 的反函数是)(x g y =,则=-)10(g .8、若函数c b x a x f +-=)(满足①函数)(x f 的图像关于1=x 对称;②在R 上有大于零的最大值;③函数)(x f 的图像过点)1,0(;④Z c b a ∈,,,试写出一组符合要求的c b a ,,的值.9、设21,x x 是方程0lg lg 2=++b x a x (b a ,为常数)的两个根,则21x x ⋅的值是.10、若函数m x f x +=+-13)(的图像存在零点,则实数m 的取值范围是.11、已知函数⎪⎩⎪⎨⎧=≠-=1,11,11)(x x x x f ,且关于x 的函数c x bf x af x F ++=)()()(2恰有三个零点321,,x x x ,则=++232221x x x .12、对于函数)(x f ,若存在R x ∈0,使00)(x x f =,则称0x 是)(x f 的一个不动点,已知4)(2++=ax x x f 在]3,1[恒有两个不同的不动点,则实数a 的取值范围.二、选择题13、已知d c b a ,,,为实数,且d c >,则“b a >”是“d b c a ->-”的().A 充分非必要条件.B 必要非充分条件.C 充要条件.D 既不充分也不必要条件14、下列函数中,与1-=x y 为同一函数的是()2)1(.-=x y A 33)1(.-=x y B 11.2+-=x x y C 2)1(.-=x y D 15、已知0x 是函数xx f x -+=112)(的一个零点.若),(),,1(0201+∞∈∈x x x x ,则()0)(,0)(.21<<x f x f A 0)(,0)(.21><x f x f B 0)(,0)(.21<>x f x f C 0)(,0)(.21>>x f x f D 16、函数x x xx e e e e y ---+=的图象大致为().A .B .C .D 三、解答题17、(1)计算2log 133+.(2)p =3log 4,q =5log 3,用q p 、表示5lg .18、如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为218000cm ,四周空白的宽度为cm 10,两栏之间的中缝空白的宽度为cm 5,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?19、已知函数)(33)(R x f xx ∈⋅+=-λλ.(1)根据λ的不同取值,讨论函数的奇偶性,并说明理由;(2)若不等式6)(≤x f 在]2,0[∈x 上恒成立,求实数λ的取值范围.20、已知定义在实数集R 上的偶函数)(x f 和奇函数)(x g 满足12)()(+=+x x g x f .(1)求)(x f 与)(x g 的解析式;(2)求证:)(x f 在区间),0[+∞上单调递增;并求)(x f 在区间),0[+∞的反函数;(3)设12)(22+-++=m m mx x x h (其中m 为常数),若h(g(x))⩾m2−m−12))((2--≥m m x g h 对于]3,1[∈x 恒成立,求m 的取值范围.。

上海市曹杨第二中学2017-2018学年高二下期中考试数学试题(无答案)

上海市曹杨第二中学2017-2018学年高二下期中考试数学试题(无答案)

曹杨二中2017-2018学年第二学期高二年级期中考试数学试卷一、填空题(1至6题毎题4分,7至1题每题5分,共54分)1.直线1+=x y 的倾斜角大小为_________.2.过()()42,、,m Q m P -两点的直线斜率为1,那么m 的值为________.3.若椭圆1422=+my x 的焦距为2,则=m ______. 4.过点(),,124P ,且平行于直线013:0=+-y x l 的直线的一般方程为__________. 5.两条直线023:1=++y x l 和032:2=--y x l 的夹角大小为__________.6.已知双曲线,12222=-y a x 其右焦点与抛物线x y 342=的焦点重合,则该双曲线方程为____________.7.若()022222=++++a ax y a x a 表示圆,则实数a 的值为_______. 8.设椭圆13422=+y x 的左、右焦点分别为,、21F F 过焦点1F 的直线交椭圆于M 、N 两点,若 2MNF △的内切圆的面积为π,则=2MNF S △________.9.若直线b x y +=和曲线21x y -=有两个交点,则实数b 的取值范围为_______.10.已知F 是抛物线C:x y 82=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N,若M 为FN 的中点,则=FN ______. 11.在平面直角坐标系xOy 中,双曲线()0012222>,>b a by a x =-的右支与焦点为F 的抛物 线()022>p py x =交于A 、B 两点,若,OF BF AF 4=+则该双曲线的渐近线方程为__.12.已知椭圆()101222<<b b y x =+的左、右焦点分别为,、21F F 记,c F F 221=若此椭圆上存在点P,使P 到直线cx 1=的距离是1PF 与2PF 的等差中项,则b 的最大值为________. 二、选择题(每题5分,共20分)13.双曲线122=-my x 的实轴长是虚轴长的2倍,则=m A.41 B.21 C.2 D.4 14.关于双曲线141622=-y x 和141622=-x y 焦距和渐近线,下列说法正确的是 A.焦距相等,渐近线相同 B.焦距相等,渐近线不同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同15.过抛物线()022>p px y =的焦点作一条直线交抛物线于()(),,、,2211y x B y x A 则2121x x y y 为 A.4 B.4- C.2p D.2p -16.已知曲线2:1=-x y C 与曲线4:222=+y x C λ怡好有两个不同的公共点,则实数λ的取值范围是A.(][)101,, -∞-B.(]11--,C.[)11,- D.[]()∞+-,,101 三、解答题(共76分)17.已知△ABC 的三个顶点坐标分别为()()().011331,、,、,-C B A (1)求边AB 边所在直线的方程;(2)求△ABC 的面积.18.已知椭圆()11:222>a y ax C =+焦距为.32 (1)求椭圆的标准方程;(2)求椭圆中斜率为1的平行弦的中点的轨迹方程.19.已知双曲线,134:22=-y x C 其右顶点为P. (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P,其法向量(),,11-=若在双曲线C 上恰有三个点321P P P 、、到直线l 的 距离均为,d 求d 的值.20.已知抛物线px y C 2:2=过点(),,11P 过点⎪⎭⎫ ⎝⎛210,D 作直线l 与抛物线C 交于不同两点M 、N ,过M 作x 轴的垂线分别与直线OP 、ON 交于点A 、B ,其中O 为坐标原点.(1)求抛物线C 的方程;(2)写出抛物线的焦点坐标和准线方程;(3)求证:A 为线段BM 的中点.21.已知椭圆()01:2222>>b a by a x C =+长轴的两顶点为A 、B ,左、右焦点分别为,、21F F 焦 距为c 2且,c a 2=过1F 且垂直于x 轴的直线被椭圆C 截得的弦长为3.(1)求椭圆C 的方程;(2)在双曲线13422=-Γy x :上取点Q 异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为,、、、4321k k k k 试证明:4321k k k k +++为定值;(3)在椭圆C 外的抛物线x y K 4:2 上取一点E ,若21EF EF 、的斜率分别为,、21k k 求211k k 的取值范围.。

2016曹二自招试题

2016曹二自招试题

冲刺17年自主招生之 2016年曹杨二中自招数学试卷1.存在,可化简为___________.2. 123kx k -=有1个整数解x ,正整数k 的个数有____________. A. 4 B. 5 C. 6 D. 73. 同一直角坐标系,y kx b =+(k b ,为实数,0k ≠)代表的直线有无数条,不论怎么抽,都能得证其中两条过完全相同的象限,至少要抽____________. A. 5 B. 6 C.7 D. 84. []x 表示不超过x 的最大整数. M N ==(x 为实数). 当1x ≥时,M N 、的大小关系为__________.A. M N >B. M N =C. M N <D. M N ≥5. ABC △中,AB AC AD =,为高,AD BC AB AC +=+, ABC △周长为2,则ABC S △为_________.A. 316B. 38C. 34 D.无法计算6. 矩形ABCD 边AB 经过O ⊙圆心O E F ,、分别为AB DC 、与O ⊙交点,34AE AD ==,,5.DF =求O ⊙直径______________.=7. 任意实数x y 、,定义2*xyx y ax by=+(a b 、为常数),等式右端的计算是通常的四则运算. 若1*212*32==,,则()2*1____________.-=8. 函数121y x x x =+++-∣∣+∣∣∣∣的最小值是______________.9. 实数x y 、满足2245x x y --=,则2x y -的取值范围是___________.10. 二次函数()20y ax bx ab =+≠,当x 取()1212x x x x ≠、时,函数值相等. 当x 取()1212x x x x +≠时,函数值___________.y =A11. 若242221021010a a b b ab +-=--=-≠,,,求2016221ab b a ⎛⎫++ ⎪⎝⎭12. a b c ,,是ABC △的三边,b a b c ≥,≥. 函数()()22y a b x cx a b =++--在12x =-处取得最小值2a-,求ABC △三内角度数.13. ABC △中,3046A AB AC P ∠=︒==,,,是AC 边上任一点,过P 作PD AB ∥,()1若AP x PBD =,△面积S ,求出S 与x 的关系式. ()2 x 为何值时,S 有最大值?求出这个最大值.A。

上海市曹杨二中2017-2018学年高二下学期开学摸底考数学试题

上海市曹杨二中2017-2018学年高二下学期开学摸底考数学试题

上海市曹杨二中2017-2018学年高二下学期开学摸底考数学试题学校_________ 班级__________ 姓名__________ 学号__________一、填空题1. 直线的一个法向量为______.2. 直线的倾斜角大小为___________.3. 直线与直线的夹角为______.4. 一条直线经过直线,的交点,并且与直线垂直,则这条直线方程为___________.5. 若点到直线的距离等于3,则__________.6. 过点与半径最小的圆的方程为___________.7. 对任意实数,圆恒过定点,则其坐标为______.8. 已知直线:和、两点,若直线与线段相交,则实数的取值范围为______.9. 已知、两点,直线经过原点,且、两点到直线的距离相等,则直线的方程为______.10. 已知定点,是圆上的动点,则当取到最大值时,点的坐标为______.11. 若直线l与直线和分别交于M,N两点,且MN的中点为,则直线l的斜率等于__________.12. 已知正三角形的三个顶点,一质点从AB的中点沿与AB夹角为的方向射到BC近上的点后,依次反射到CA和AB边上的点、.若、、是三个不同的点,则的取值范围为____________.二、单选题13. 如果曲线上任一点的坐标都是方程的解,那么下列命题中正确的是()A.曲线的方程为B.的曲线是C.以方程的解为坐标的点都在曲线上D.曲线上的点都在方程的曲线上14. 若圆:被直线:分成的两段弧长之比是,则满足条件的圆()A.有一个B.有两个C.有三个D.有四个15. 两直线的方程分别为和(为实常数),为第三象限角,则两直线的位置关系是()A.相交且垂直B.相交但不垂直C.平行D.不确定16. 若既是、的中点,又是直线:与直线:的交点,则线段的中垂线方程是()A.B.C.D.三、解答题17. 讨论两直线:和:之间的位置关系.18. 已知的三个顶点、、.(1)求边所在直线的方程;(2)边上中线的方程为,且,求点的坐标.19. 已知定点、,动点在线段上,且、均为等边三角形(、均在轴上方).(1)是线段的中点,求点的轨迹;(2)求的取值范围.20. 过点的直线分别交与于、两点.(1)设点的坐标为,用实数表示点的坐标,并求实数的取值范围;(2)设的面积为,求直线的方程;(3)当最小时,求直线的方程.。

上海市曹杨二中2017-2018度第一学期高二年级期中考试数学试卷 答案

上海市曹杨二中2017-2018度第一学期高二年级期中考试数学试卷 答案

上海市曹杨二中2017学年度第一学期高二年级期中考试数学试卷一、填空题(本大题满分54分)本大题共有12题,第1题到第6题每题4分,第7题到第12题每题5分. 1.计算:210lim ____________323n n n →∞+=+.【答案】232.计算:1224____________3432⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭. 【答案】3666⎛⎫⎪⎝⎭3.若数列{}n a 的前n 项和2n S n =,则数列{}n a 的通项公式____________n a =. 【答案】21n -4.若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭,解为21x y =⎧⎨=⎩,则____________a b +=. 【答案】25.按下图所示的程序图运算:若输入17x =,则输出的x 的值是____________.【答案】1436.三阶行列式()sin 016cos 2sin 540x x x x R --⎛⎫ ⎪∈ ⎪ ⎪-⎝⎭中元素4的代数余子式的值记为()f x ,则_________3f π⎛⎫= ⎪⎝⎭. 【答案】94-7.已知等差数列{}n a 满足12192018a a a a +++=,则20____________S =. 【答案】908.假设每次用相同体积的清水漂流一件衣服,且每次能洗去污垢的34,那么至少要清洗____________次才能使存留的污垢在1%以下. 【答案】49.在数列{}n a 中,若对一切*n N ∈都有13n n a a +=-,且()24629lim 2n n a a a a →∞++++=L , 则1a 的值为____________. 【答案】12- 10.已知()11f x x=+,各项为正数的数列{}n a 满足()121n n a a f a +==,,若20162018a a =,则2011a a +的值是____________.11.定义在[)0+∞,上的函数()f x 满足()()32f x f x =+,当[)0,2x ∈时,()22f x x x =-+,设()f x 在[)222n n -,上的最大值为()*n a n N ∈,且{}n a 的前n 项和为n S ,则lim ____________n n S →∞=. 【答案】3212.已知数列{}n a 满足1213a a ==,,若()*12n n n a a n N +-=∈,且{}21n a -是递增数列,{}2n a 是递减数列,则212lim____________n n na a -→∞=.【答案】12-二、选择题(本大题满分20分)本大题共有4题,每题5分. 13、等比数列{}n a 中,11=a ,258a a -=,25a a >,则()=n a A 、()12--n B 、()12---n C 、()n2- D 、()n2--【答案】A14、某个命题与正整数n 有关,如果当k n =时,该命题成立,则可以推得当1+=k n 时该命题也成立,现在为了推得5=n 时该命题不成立,则()A 、6=n 时该命题不成立B 、6=n 时该命题成立C 、4=n 时该命题不成立D 、4=n 时该命题成立 【答案】C15、设{}n a 是各项为正数的无穷数列,i A 是边长为i a ,1+i a 的矩形面积() ,2,1=i ,则{}n A 为等比数列的充要条件为() A 、{}n a 是等比数列B 、 ,,,,1231-n a a a 或 ,,,,242n a a a 是等比数列C 、 ,,,,1231-n a a a 和 ,,,,242n a a a 均是等比数列D 、 ,,,,1231-n a a a 和 ,,,,242n a a a 均是等比数列,且公比相同 【答案】D16、实数b a 、满足0>ab 且b a ≠,由ab ba b a 、、、2+按一定顺序构成的数列() A 、可能是等差数列,也可能是等比数列 B 、可能是等差数列,但不可能是等比数列 C 、不可能是等差数列,但可能是等比数列 D 、不可能是等差数列,也不可能是等比数列 【答案】B三、解答题(本题有5道题,满分76分,17题6+8=14分,18题6+8=14分,19题6+8=14分,20题4+5+7=16分,21题4+6+8=18分)17、解关于y x 、的二元一次方程组⎩⎨⎧+=--=+3231m my mx y mx ,并对解得情况进行讨论。

上海曹杨二中数学全等三角形单元测试题(Word版 含解析)

上海曹杨二中数学全等三角形单元测试题(Word版 含解析)

一、八年级数学全等三角形解答题压轴题(难)1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.在四边形 ABCD 中,E 为 BC 边中点.(Ⅰ)已知:如图,若 AE 平分∠BAD ,∠AED =90°,点 F 为 AD 上一点,AF =AB .求证:(1)△ABE ≌AFE ;(2)AD =AB +CD(Ⅱ)已知:如图,若 AE 平分∠BAD ,DE 平分∠ADC ,∠AED =120°,点 F ,G 均为 AD 上的点,AF =AB ,GD =CD .求证:(1)△GEF 为等边三角形;(2)AD =AB + 12BC +CD .【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC . 【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.如图,AB=12cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=9cm ,点P 在线段AB 上以3 cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.(1)若点Q 的运动速度与点P 的运动速度相等,当运动时间t=1(s ),△ACP 与△BPQ 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;(2)将 “AC ⊥AB ,BD ⊥AB ”改为“∠CAB=∠DBA ”,其他条件不变.若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△ACP 与△BPQ 全等. (3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿△ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.【答案】(1)△ACP ≌△BPQ ,理由见解析;线段PC 与线段PQ 垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可; (2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ),∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt=-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.4.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积; (2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.5.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.【详解】(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.6.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,∴DF=CD=12CF,又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.7.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.8.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

上海市2017年曹杨二中高三数学第一次月考试卷

上海市2017年曹杨二中高三数学第一次月考试卷

曹杨二中高三月考数学试卷2017.10一. 填空题1. 已知集合2{|230}A x x x =--≤,{||2|2}B x x =-<,则A B =I2. 已知1sin()23πα+=,则cos()πα-= 3. 若(12)n x +(*n N ∈)展开式中各项系数和为243,则n =4. 满足方程2lg lg 1121x x -=的实数解x = 5. 若x R ∈,则不等式||(1)0x x +>的解集是6. 函数12()12xx f x -=+的值域是 7. 若线性方程组(3)305(3)30a x y x a y ++-=⎧⎨-+-+=⎩有解,则实数a 的取值范围是8. 若函数2()21f x ax x =-+在[0,1]x ∈上存在唯一零点,则实数a 的取值范围是9. 已知一个球的球心O 到过球面上A 、B 、C 三点的截面的距离等于此球半径的一半,若 3AB BC CA ===,则球的体积为10. 从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则关于x 的方程2220x ax b ++=有两个虚根的概率是11. 已知121122sin 2sin αα+=++,其中12,R αα∈,则12|10|παα--的最小值为 12. 已知数列{}n a 的通项公式为52n n a -=,数列{}n b 的通项公式为n b n k =+,设nn n n nn n b a b c a a b ≤⎧=⎨>⎩,若在数列{}n c 中,5n c c ≤对任意*n N ∈恒成立,则实数k 的取值范围 是二. 选择题13. 已知a 、b 为实数,则22a b >是22log log a b >的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. 数列{}n a 的通项22(cos sin )33n n n a n ππ=-,其前n 项和为n S ,则10S 为( ) A. 0 B. 1- C. 12 D. 12-15. 已知集合{(,)|log log 0}a a A x y x y =+>,{(,)|}B x y y x a =+<,若A B =∅I ,则a 的取值范围是( )A. ∅B. 0a >且1a ≠C. 02a <≤且1a ≠D. 12a <≤16. 已知函数()1||x f x x =+(x R ∈)时,则下列结论:①()f x 是R 上的偶函数;②()f x 是R 上的增函数;③不等式|()|1f x <在R 上恒成立;④函数()()g x f x x =-在R 上有三个零点;其中错误的个数是( )A. 1B. 2C. 3D. 4三. 解答题17. 在ABC ∆中,a 、b 、c 分别为内角A 、B 、C 所对的边,且满足2cos cos cos )b A c A a C =+;(1)求A 的大小;(2)若2a =,c =b c >,求ABC ∆的面积;18. 如图,在四棱锥P ABCD -中,底面为直角梯形,AD ∥BC ,90BAD ∠=︒,PA 垂直于底面ABCD ,22PA AD AB BC ====,M 、N 分别为PC 、PB 的中点;(1)求证:M 、N 、A 、D 四点共面,并证明PB M D ⊥;(2)求直线PC 与平面MNAD 所成角的大小(用反三角函数值表示);19. 已知直线1y kx =+与双曲线2231x y -=相交于A 、B 两点,O 为坐标原点;(1)若0OA OB ⋅=u u u r u u u r ,求实数k 的值;(2)是否存在实数k ,使得A 、B 两点关于12y x =对称?若存在,求k 的值,若不存在, 说明理由;20. 已知点列11(1,)B y 、22(2,)B y 、⋅⋅⋅、(1,)n n B y 、⋅⋅⋅(*n N ∈)为函数x y a =(1a >)图像上的点,点列11(,0)A x 、22(,0)A x 、⋅⋅⋅、(,0)n n A x 、⋅⋅⋅(*n N ∈)顺次为x 轴上的点,其中1x m =(01m <<),对任意*n N ∈,点n A 、n B 、1n A +构成以n B 为顶点的等腰三角形;(1)证明:数列{}n y 是等比数列;(2)若数列{}n y 中任意连续三项能构成等边三角形的三边,求a 的取值范围;(3)求证:对任意*n N ∈,2n n x x +-是常数,并求数列{}n x 的通项公式;21. 设定义在R 上的函数()f x 满足:对任意的1x 、2x R ∈,当12x x <时,都有12()()f x f x ≤;(1)若3()1f x ax =+,求实数a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)若(0)0f =,()(1)1f x f x +-=,1()()52x f f x =, ① 记1()5n n a f =(*n N ∈),求数列{}n a 的通项公式;② 求1()2017f 的值;参考答案一. 填空题1. (0,3]2. 13-3. 54. 105. (1,0)(0,)-+∞U6. (1,1)-7. 2a ≠-,a R ∈8. (,1]-∞9.323π 10. 15 11.4π 12. [5,3]--二. 选择题13. B 14. D 15. D 16. B三. 解答题17.(1)6A π=;(2)18.(1)证明略;(2)arctan19.(1)1k =±;(2)不存在;20.(1)证明略;(2)1a <<; (3)22n n x x +-=,当n 为偶数时,n x n m =-,当n 为奇数时,1n x n m =+-; 21.(1)0a ≥;(2)证明略;(3)① 1()2n n a =;② 11()201732f =;。

上海曹杨二中2016-2017学年高一上学期月考数学试卷 含

上海曹杨二中2016-2017学年高一上学期月考数学试卷 含

2017 学年曹杨二中高一数学学科月考试卷一、填空题(共 12 小题,每小题 3 分,共计 36 分)1、已知集合 A = {1, x }, B = {1, x 2} 且 A = B ,则 x = .【测量目标】1.1 集合及其表示法【考查内容】两个集合相等,集合的互异性【评析】集合有确定性、无序性和互异性,本题考查集合的互异性.【解答】-1.2、函数 f ( x ) =x + 2 + 1 1 - x的定义域是.(用区间表示)【测量目标】3.1 函数的概念【考查内容】函数的定义域【评析】根据函数的概念,根式里面的数是非负数,分母不为 0,解出 x 的取值范围. 【解答】[-2,1) ⋃ (1,+∞)3、不等式132-≥+x x的解集为 . 【测量目标】2.3 其他不等式的解法【考查内容】分式不等式的解法【评析】分式不等式的基本解题步骤是:移项,同分,最后化简为一元一次或一元二次不 等式,进而求得不等式的解集. 【解答】 (-∞,-3) ⋃ [1,+∞)4、函数12)21(+=x y 的值域是 .【测量目标】4.2 指数函数的图像和性质【考查内容】指数函数的值域【评析】这道题是求指数函数的值域问题,由于 x 2+ 1 本身大于等于 1,再根据指数函数的 图像与性质求出函数的值域.【解答】)21,0(5、电子技术的飞速发展,计算机成本不断降低,若每隔一年计算机的价格降低二分之一,现在价格为 8100 元的计算机 3 年后价格可降为元.【测量目标】4.7 简单的指数方程【考查内容】指数函数的应用题【评析】本题属于指数函数的应用,根据条件列出关系式求出结果.【解答】1012.56、不等式 ( x - 2)- 23> (3 + 2 x )- 23 的解集为.【测量目标】4.1 幂函数的图像与性质【考查内容】幂函数的不等式⎨ 3 ⎨ 【评析】由于函数32)(-=xx f 是 (-∞,0) ⋃ (0,+∞) 上的偶函数,在 (-∞,0) 上单调递增,在(0,+∞)上单调递减,因此可列出式子x x 2320+- ,据此求出 x 的取值范围.【解答】),()(,∞+⋃⋃∞22,31-)5--(7、已知函数)(x f y =是奇函数,当0 x 时,131)(+=x x f ,设)(x f 的反函数是)(x g y =,则 g (-10) = .【测量目标】3.4 4.5 函数的基本性质(1) 反函数的概念【考查内容】奇函数的性质、反函数的相关概念⎧1⎪3 x + 1, x > 0 【评析】根据奇函数的性质写出 f (x ) 在 R 上的函数关系式 f ( x ) = ⎪⎪1 0, x = 0 ,然后求⎧ 3x - 3, x > 1⎪ x - 1, x < 0 ⎩出在每段上的值域写出 g ( x ) 的对应法则 g ( x ) = ⎪ ⎪ 0, x = 0 ,最后把 x = -10 带入关系 ⎩3x + 3, x < -1式求出 g (-10) 的取值.【解答】-27 8、若函数 f ( x ) = ax - b + c 满足①函数 f ( x ) 的图像关于 x = 1 对称;②在 R 上有大于零 的最大值;③函数 f ( x ) 的图像过点 (0,1) ;④ a , b , c ∈ Z ,试写出一组符合要求的 a , b , c 的 值 .【测量目标】3 函数的基本性质【考查内容】绝对值函数的图像与平移 【评析】函数 f ( x ) 的图像关于 x = 1 对称,根据 f ( x ) = x 的图像可知 b = 1, f ( x ) 在 R 上有大于零的最大值,因此 a < 0 ,又由于 a , b , c ∈ Z ,且图像过(0,1), a + c = 1, a < 0 ,据 此写出满足条件的 a , b , c 的值. 【解答】 a = -1, b = 1, c = 29、设 x 1 , x 2 是 方 程0lg lg 2=++b x a x ( a , b 为 常 数 ) 的 两 个 根 , 则 x 1 ⋅ x 2 的 值 是 .【测量目标】4.6 对数函数的图像和性质 【考查内容】对数函数的运算、韦达定理【评析】本题属于一个类二次函数,因此 l g x 1 + lg x 2 = -a ,所有 l g x 1 x 2 = -a ,据此求出x 1 ⋅ x 2 的值.【解答】a 10110、若函数 f ( x ) = 3- x +1+ m 的图像存在零点,则实数 m 的取值范围是.【测量目标】4.2 指数函数的图像与性质⎨【考查内容】指数函数的值域【评析】函数 3- x +1+ m = 0 有根,把 - m 移到等式的右边,本题就转化为求指数函数 3- x +1的值域问题.【解答】[- 1 ,0)3⎧ 111、已知函数 f ( x ) = ⎪x - 1 , x ≠ 1,且关于 x 的函数 F ( x ) = af 2 ( x ) + bf ( x ) + c 恰有三个 ⎩⎪ 1, x = 122 2 零点 x 1 , x 2 , x3 ,则 x 1+ x 2+ x 3=.【测量目标】3 函数的基本性质【考查内容】类二次函数的图像问题【评析】先画出 f ( x ) 的函数图像,根据函数解的情况,若 a = 0 ,则只有可能 f ( x ) = 1 , 解出 x 1 , x 2 , x 3 ;若 a ≠ 0 时,根据函数的性质若方程无解时不成立;若方程只有一个根, 那么f ( x ) = 1 ;若方程有两个不相等的实数根,则只有 f 1 ( x ) = 1, f 2 ( x ) ≤ 0 时成立。

【精品】2017年上海市普陀区曹杨二中高二上学期期中数学试卷带解析答案

【精品】2017年上海市普陀区曹杨二中高二上学期期中数学试卷带解析答案

2016-2017学年上海市普陀区曹杨二中高二(上)期中数学试卷一.填空题1.(3分)三个平面最多把空间分割成 个部分. 2.(3分)两条异面直线所成的角的取值范围是 .3.(3分)给出以下命题“已知点A 、B 都在直线l 上,若A 、B 都在平面α上,则直线l 在平面α上”,试用符号语言表述这个命题 .4.(3分)设E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,则四边形EFGH 的形状一定是 .5.(3分)设点A ∈平面α,点B ∈平面β,α∩β=l ,且点A ∉直线l ,点B ∉直线l ,则直线l 与过A 、B 两点的直线的位置关系 .6.(3分)数列{a n }中,设S n 是它的前n 项和,若log 2(S n +1)=n +1,则数列{a n }的通项公式a n = .7.(3分)a ,b 是不等的两正数,若=2,则b 的取值范围是 . 8.(3分)计算81+891+8991+89991+…+81= .9.(3分)已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,则点C 1到直线BD 的距离为 .10.(3分)我们把b 除a 的余数r 记为r=abmodb ,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r←abmodb”被执行了 次.11.(3分)设S n是数列{a n}的前n项和,a1=﹣1,a n+1=S n S n+1,则S n=.12.(3分)若三个数a,1,c成等差数列(其中a≠c),且a2,1,c2成等比数列,则的值为.13.(3分)在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:①平行于同一平面的两个不同平面互相平行;②平行于同一直线的两个不同平面互相平行;③垂直于同一直线的两个不同平面互相平行;④垂直于同一平面的两个不同平面互相平行;其中正确的有.14.(3分)在n行n列矩阵中,若记位于第i行第j列的数为a ij(i,j=1,2,…,n),则当n=9时,表中所有满足2i<j的a ij的和为.二.选择题15.(3分)如图给出的是计算的值的一个程序框图,判断其中框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<2016.(3分)下列命题中,正确的共有()①因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;②两个平面有时只相交于一个公共点;③分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;④一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内.A.0个 B.1个 C.2个 D.3个17.(3分)从k2+1(k∈N)开始,连续2k+1个自然数的和等于()A.(k+1)3B.(k+1)3+k3C.(k﹣1)3+k3D.(2k+1)(k+1)318.(3分)已知方程组的解中,y=﹣1,则k的值为()A.3 B.﹣3 C.1 D.﹣1三.解答题19.解关于x、y的方程组,并对解的情况进行讨论.20.如图,A是△BCD所在平面外一点,M、N为△ABC和△ACD重心,BD=6;(1)求MN的长;(2)若A、C的位置发生变化,MN的位置和长度会改变吗?21.已知长方体ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;(1)求出异面直线AC'和BD所成角的余弦值;(2)找出AC'与平面D'DBB'的交点,并说明理由.22.已知数列{a n}的前n项和S n满足:S n=(a n﹣1)(a为常数,且a≠0,a ≠1);(1)求{a n}的通项公式;(2)设b n=+1,若数列{b n}为等比数列,求a的值;(3)若数列{b n}是(2)中的等比数列,数列c n=(n﹣1)b n,求数列{c n}的前n 项和T n.23.设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立.2016-2017学年上海市普陀区曹杨二中高二(上)期中数学试卷参考答案与试题解析一.填空题1.(3分)三个平面最多把空间分割成8个部分.【解答】解:三个平面两两平行时,可以把空间分成4部分,三个平面有两个平行,第三个与他们相交时,可以把空间分成6部分,三个平面交于同一直线时,可以把空间分成6部分,三个平面两两相交,交线相互平行时,可以把空间分成7部分,当两个平面相交,第三个平面同时与两个平面相交时,把空间分成8部分.所以空间中的三个平面最多能把空间分成8部分.故答案为:8.2.(3分)两条异面直线所成的角的取值范围是(0°,90°] .【解答】解:由异面直线所成角的定义可知:过空间一点,分别作相应直线的平行线,两条相交直线所成的直角或锐角为异面直线所成的角故两条异面直线所成的角的取值范围是(0°,90°]故答案为:(0°,90°]3.(3分)给出以下命题“已知点A、B都在直线l上,若A、B都在平面α上,则直线l在平面α上”,试用符号语言表述这个命题已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.【解答】解:用符号语言表述这个命题为:已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.故答案为:已知A∈l,B∈l,若A∈α,B∈α,则l⊆α.4.(3分)设E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,则四边形EFGH的形状一定是平行四边形.【解答】解:如图,连接BD.因为FG是△CBD的中位线,所以FG∥BD,FG=BD.又因为EH是△ABD的中位线,所以EH∥BD,EH=BD.根据公理4,FG∥EH,且FG=EH.所以四边形EFGH是平行四边形.故答案为平行四边形5.(3分)设点A∈平面α,点B∈平面β,α∩β=l,且点A∉直线l,点B∉直线l,则直线l与过A、B两点的直线的位置关系异面.【解答】解:假设l与AB不是异面直线,那么它们在同一个平面上,记这个平面为γ.∵A和l都在平面γ上,∴由它们决定的平面α在平面γ上,∴平面γ=平面α.同理γ=平面β.∴α=β,∵A∈α,∴A∈β,所以A在α与β的交线l上,与已知点A∉直线l,点B∉直线l相互矛盾.∴假设不成立,∴l与AB是异面直线.故答案为:异面.6.(3分)数列{a n}中,设S n是它的前n项和,若log2(S n+1)=n+1,则数列{a n}的通项公式a n=.【解答】解:由log2(S n+1)=n+1,得S n+1=2n+1,∴,当n=1时,a1=S1=3;当n≥2时,,当n=1时,上式不成立,∴.故答案为:.7.(3分)a,b是不等的两正数,若=2,则b的取值范围是(0,2).【解答】解:a,b是不等的两正数,且=2,须对a,b作如下讨论:①当a>b时,=0,则==a,所以,a=2,因此,b∈(0,2),②当a<b时,则=﹣b=2,而b>0,故不合题意,舍去.综合以上讨论得,b∈(0,2),故答案为:(0,2).8.(3分)计算81+891+8991+89991+…+81=10n+1﹣9n﹣10.【解答】解:原式=8×(10+102+…+10n)+(1+1+…+1)+(90+990+…+×10)=8×+n+(102﹣10)+(103﹣10)+…+(10n﹣10)=+n+﹣10(n﹣1)=10n+1﹣9n﹣10.故答案为:10n+1﹣9n﹣10.9.(3分)已知正方体ABCD﹣A1B1C1D1的棱长为1,则点C1到直线BD的距离为.【解答】解:如图所示,连接AC,BD,DC1,BC1.设AC∩BD=O,连接OC1.∵DC1=BC1,OB=OD.∴OC1⊥BD,∴OC1是点C1到直线BD的距离.OC1==.故答案为:.10.(3分)我们把b除a的余数r记为r=abmodb,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r←abmodb”被执行了4次.【解答】解:模拟程序的运行,可得a=209,b=77,r=55不满足条件r=0,执行循环体,a=77,b=55,r=22不满足条件r=0,执行循环体,a=55,b=22,r=11不满足条件r=0,执行循环体,a=22,b=11,r=0此时,满足条件r=0,退出循环,输出a的值为22.由此可得循环体“r←abmodb”被执行了4次.故答案为:4.11.(3分)设S n是数列{a n}的前n项和,a1=﹣1,a n+1=S n S n+1,则S n=﹣.【解答】解:∵a n=S n S n+1,∴S n+1﹣S n=S n S n+1,+1∴=﹣1,∴数列是等差数列,首项为﹣1,公差为﹣1.∴=﹣1﹣(n﹣1)=﹣n,解得S n=﹣.故答案为:.12.(3分)若三个数a,1,c成等差数列(其中a≠c),且a2,1,c2成等比数列,则的值为0.【解答】解:∵a,1,c成等差数列,∴a+c=2 ①又a2,1,c2成等比数列,∴a2c2=1 ②联立①②得:或或,∵a≠c,∴或,则a+c=2,.∴=.故答案为:0.13.(3分)在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:①平行于同一平面的两个不同平面互相平行;②平行于同一直线的两个不同平面互相平行;③垂直于同一直线的两个不同平面互相平行;④垂直于同一平面的两个不同平面互相平行;其中正确的有①③.【解答】解:①平行于同一平面的两个不同平面互相平行,正确;②平行于同一直线的两个不同平面互相平行或相交,不正确;③垂直于同一直线的两个不同平面互相平行,正确;④垂直于同一平面的两个不同平面互相平行或相交,不正确.故答案为①③.14.(3分)在n行n列矩阵中,若记位于第i行第j列的数为a ij(i,j=1,2,…,n),则当n=9时,表中所有满足2i<j的a ij的和为88.【解答】解:由题意可知:当i=1时,由2i<j,∴j取3,4,5,6,7,8,9当i=2时,j取5,6,7,8,9当i=3时,j取7,8,9当i=4时,j取9∴表中所有满足2i<j的a ij和为:a13+a14+a15+a16+a17+a18+a19+a25+a26+a27+a28+a29+a37+a38+a39+a49=3+4+5+6+7+8+9+6+7+8+9+1+9+1+2+3=88,故答案为:88二.选择题15.(3分)如图给出的是计算的值的一个程序框图,判断其中框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<20【解答】解:框图首先给变量s,n,i赋值s=0,n=2,i=1.判断,条件不满足,执行s=0+,n=2+2=4,i=1+1=2;判断,条件不满足,执行s=+,n=4+2=6,i=2+1=3;判断,条件不满足,执行s=++,n=6+2=8,i=3+1=4;…由此看出,当执行s=时,执行n=20+2=22,i=10+1=11.此时判断框中的条件应满足,所以判断框中的条件应是i>10.故选:A.16.(3分)下列命题中,正确的共有()①因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;②两个平面有时只相交于一个公共点;③分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;④一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内.A.0个 B.1个 C.2个 D.3个【解答】解:对于①,因为平面也是可以无限延伸的,故错误;对于②,两个平面只要有一个公共点,就有一条通过该点的公共直线,故错误;对于③,交点分别含于两条直线,也分别含于两个平面,必然在交线上,故正确;对于④,若一条直线过三角形的顶点,则这条直线不一定在三角形所在的平面内,故错误.故选:B.17.(3分)从k2+1(k∈N)开始,连续2k+1个自然数的和等于()A.(k+1)3B.(k+1)3+k3C.(k﹣1)3+k3D.(2k+1)(k+1)3【解答】解:从k2+1(k∈N)开始,连续2k+1个自然数的和=k2+1+k2+2+…+(k2+2k+1)=(2k+1)•k2+=2k3+3k2+3k+1=(k+1)2+k3.故选:B.18.(3分)已知方程组的解中,y=﹣1,则k的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:由已知得到,解得;故选:B.三.解答题19.解关于x、y的方程组,并对解的情况进行讨论.【解答】解:系数矩阵D非奇异时,或者说行列式D=4﹣2m2﹣2m≠0,即m≠1且m≠﹣2时,方程组有唯一的解,x==,y==.系数矩阵D奇异时,或者说行列式D=4﹣2m2﹣2m=0,即m=1或m=﹣2时,方程组有无数个解或无解.当m=﹣2时,原方程为无解,当m=1时,原方程组为,无解.20.如图,A是△BCD所在平面外一点,M、N为△ABC和△ACD重心,BD=6;(1)求MN的长;(2)若A、C的位置发生变化,MN的位置和长度会改变吗?【解答】解:(1)延长AM、AN,分别交BC、CD于点E、F,连结EF.∵M、N分别是△ABC和△ACD的重心,∴AE、AF分别为△ABC和△ACD的中线,且=,可得MN∥EF且MN=EF,∵EF为△BCD的中位线,可得EF=BD,∴MN=BD=2;(2)由(1)可得位置改变,长度不改变.21.已知长方体ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;(1)求出异面直线AC'和BD所成角的余弦值;(2)找出AC'与平面D'DBB'的交点,并说明理由.【解答】解:(1)建立如图所示空间直角坐标系,∵AB=4,AD=3,AA'=2;∴C'(4,3,2),B(4,0,0),D(0,3,0)则:=(4,3,2),=(﹣4,3,0)异面直线AC'和BD所成角的余弦值为:==;(2)连接BD',DB'交于点O,则点O即为AC'与平面D'DBB'的交点,根据长方体的几何特征可得:O为长方体ABCD﹣A'B'C'D'外接球的球心,AC'为长方体ABCD﹣A'B'C'D'外接球的直径,故O为AC'中点,又由BD',DB'交于点O,故O在平面D'DBB'上,故O即为AC'与平面D'DBB'的交点.22.已知数列{a n}的前n项和S n满足:S n=(a n﹣1)(a为常数,且a≠0,a ≠1);(1)求{a n}的通项公式;(2)设b n=+1,若数列{b n}为等比数列,求a的值;(3)若数列{b n}是(2)中的等比数列,数列c n=(n﹣1)b n,求数列{c n}的前n 项和T n.【解答】解:(1)当n=1时,,∴a1=a,,当n≥2时,S n=(a n﹣1)且,两式做差化简得:a n=a•a n﹣1即:,∴数列{a n}是以a为首项,a为公比的等比数列,∴.(2)b n=+1=,若数列{b n}为等比数列,则=0,即.(3)由(2)知,∴∴T n=0×3+1×32+2×33+…+(n﹣1)3n…①3T n=0×32+1×33+2×34+…+(n﹣2)×3n+(n﹣1)×3n+1…②①﹣②得:﹣2T n=32+33+34+…+3n﹣(n﹣1)×3n+1=∴.23.设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n﹣b n=﹣a1,+1c n=(n﹣1)(a1+d),对∀n∈N*,c n﹣c n=a1+d,+1则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n =,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n =,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

【数学】2015-2016年上海市普陀区曹杨二中高一(上)数学期中试卷带答案

【数学】2015-2016年上海市普陀区曹杨二中高一(上)数学期中试卷带答案

2015-2016学年上海市普陀区曹杨二中高一(上)期中数学试卷一、填空题(本大题共13小题、每小题3分)1.(3分)设全集U=R.若集合A={1,2,3,4},B={x|2≤x<3},则A∩(∁U B)=.2.(3分)不等式的解集为.3.(3分)命题“若x>2且y>3,则x+y>5”的否命题是命题.(填入“真”或“假”)4.(3分)已知x,y∈R+,且x+4y=1,则xy的最大值为.5.(3分)已知函数,若f(x0)=8,则x0=.6.(3分)若x>0,y>0,且,则x+2y的最小值为.7.(3分)已知函数f(x)=x2+2ax﹣3在[2,3]上单调,则实数a取值范围是.8.(3分)定义在R 上的奇函数f(x)在[0,+∞)上的图象如图所示,则不等式xf(x)<0 的解集是.9.(3分)已知集合,其中m >0,全集U=R.若“x∈∁U P”是“x∈∁U Q”的必要不充分条件,则实数m的取值范围为.10.(3分)若关于x的不等式|x+1|﹣|x﹣2|≤a的解集为∅,则实数a的取值范围是.11.(3分)已知函数的定义域是全体实数,那么实数a的取值范围是.12.(3分)设函数f(x),g(x)的定义域分别为D f,D g,且D f⊂D g.若对于任意x∈D f,都有g(x)=f(x),则称函数g(x)为f(x)在D g上的一个延拓函数.设f(x)=x2+2x,x∈(﹣∞,0],g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=.13.(3分)定义区间(a,d),[a,d),(a,d],[a,d]的长度为d﹣a(d>a),已知a>b,则满足的x构成的区间的长度之和为.二、选择题(本大题共4小题,每小题4分)14.(4分)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S15.(4分)下列各式中,最小值为2的是()A.B.C.D.16.(4分)设f(x)是R上的偶函数,且在(﹣∞,0)上为减函数,若x1<0,x1+x2>0,则()A.f(x1)>f(x2)B.f(x1)=f(x2)C.f(x1)<f(x2)D.不能确定f(x1)与f(x2)的大小17.(4分)已知函数f(x)=,则下列说法中正确的是()A.若a≤0,则f(x)≤1恒成立B.若f(x)≥1恒成立,则a≥0C.若a<0,则关于x的方程f(x)=a有解D.若关于x的方程f(x)=a有解,则0<a≤1三、解答题(10分+10分+12分+13分)18.(10分)已知集合A={x|(m﹣1)x2+3x﹣2=0}.(1)若集合A为两个元素的集合,试求实数m的范围;(2)是否存在这样的实数m,使得集合A有仅有两个子集?若存在,求出所有的m的值组成的集合M;若不存在,请说明理由.19.(10分)对于集合A、B,我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A﹣B.(1)若集合M={{x|y=},N={y|y=1﹣x2},求M﹣N;(2)若集合A={x|0<ax﹣1≤5},B=,且A﹣B=∅,求实数a的取值范围.20.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(1≤x≤10),设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求f(x)的表达式;(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.21.(13分)设函数,函数,其中a为常数且a>0,令函数f(x)=g(x)•h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当时,求函数f(x)的值域;(3)是否存在自然数a,使得函数f(x)的值域恰为?若存在,试写出所有满足条件的自然数a所构成的集合;若不存在,试说明理由.2015-2016学年上海市普陀区曹杨二中高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题共13小题、每小题3分)1.(3分)设全集U=R.若集合A={1,2,3,4},B={x|2≤x<3},则A∩(∁U B)={1,3,4} .【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x<3},∴(∁U B)={x|x≥3或x<2},∴A∩(∁U B)={1,3,4},故答案为:{1,3,4}.2.(3分)不等式的解集为(.【解答】解:≤0,可化为或,解得:﹣<x≤1,则原不等式的解集为(﹣,1].故答案为:(﹣,1]3.(3分)命题“若x>2且y>3,则x+y>5”的否命题是假命题.(填入“真”或“假”)【解答】解:若x>2且y>3,则x+y>5”的逆命题为:若x+y>5,则x>2且y >3,此命题为假命题,原因:若x=4,y=1,此时x+y>5,但是x>2且y>3不成立而命题的逆命题与否命题的真假相同可知原命题的否命题为假命题故答案为:假4.(3分)已知x,y∈R+,且x+4y=1,则xy的最大值为.【解答】解:,当且仅当x=4y=时取等号.故应填.5.(3分)已知函数,若f(x0)=8,则x0=2或4.【解答】解:∵函数,f(x0)=8,∴当0≤x0≤2时,f(x0)=+4=8,解得x0=2或x0=﹣2(舍),当x0>2时,f(x0)=2x0=8,解得x0=4,∴x0的值为2或4.故答案为:2或4.6.(3分)若x>0,y>0,且,则x+2y的最小值为19+6.【解答】解:∵x>0,y>0,且,则x+2y=(x+2y)=19++≥19+2=19+6,当且仅当3x==3+9时取等号.其最小值为19+6,故答案为:19+6.7.(3分)已知函数f(x)=x2+2ax﹣3在[2,3]上单调,则实数a取值范围是a ≤﹣3,或a≥﹣2.【解答】解:函数f(x)=x2+2ax﹣3的图象是开口朝上,且以直线x=﹣a为对称轴的抛物线,若函数f(x)=x2+2ax﹣3在[2,3]上单调,则﹣a≤2,或﹣a≥3,解得:a≤﹣3,或a≥﹣2,故答案为:a≤﹣3,或a≥﹣28.(3分)定义在R 上的奇函数f(x)在[0,+∞)上的图象如图所示,则不等式xf(x)<0 的解集是(﹣∞,﹣2)∪(2,+∞).【解答】解:(1)x>0时,f(x)<0,∴x>2,(2)x<0时,f(x)>0,∴x<﹣2,∴不等式xf(x)<0的解集为(﹣∞,﹣2)∪(2,+∞).故答案为:(﹣∞,﹣2)∪(2,+∞).9.(3分)已知集合,其中m >0,全集U=R.若“x∈∁U P”是“x∈∁U Q”的必要不充分条件,则实数m的取值范围为[9,+∞).【解答】解:由“x∈∁U P”是“x∈∁U Q”的必要不充分条件,可得∁U P⊋∁U Q,即P⊊Q,P={x||1﹣|≤2}={x|﹣2≤x≤10},Q={x|x2﹣2x+(1﹣m2)≤0}={x|1﹣m≤x≤1+m},则,即,解得m≥9,故实数m的取值范围[9,+∞),故答案为:[9,+∞).10.(3分)若关于x的不等式|x+1|﹣|x﹣2|≤a的解集为∅,则实数a的取值范围是a>3.【解答】解:因为|x+1|﹣|x﹣2|≤|x+1﹣x+2|=3,由题意得a>3,故答案为a>3.11.(3分)已知函数的定义域是全体实数,那么实数a的取值范围是(﹣∞,﹣]∪[1,+∞).【解答】解:若函数的定义域是全体实数,则a=1时,显然成立,a=﹣1时,f(x)=,不成立,若a2﹣1≠0,则,解得:a≥1或a≤﹣,故答案为:(﹣∞,﹣]∪[1,+∞).12.(3分)设函数f(x),g(x)的定义域分别为D f,D g,且D f⊂D g.若对于任意x∈D f,都有g(x)=f(x),则称函数g(x)为f(x)在D g上的一个延拓函数.设f(x)=x2+2x,x∈(﹣∞,0],g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=x2﹣2|x| .【解答】解:由题意可得当x≤0时,g(x)=f(x)=x2+2x由函数g(x)为偶函数可得,g(﹣x)=g(x)当x>0时,则﹣x<0,g(﹣x)=x2﹣2x,则g(x)=x2﹣2x∴g(x)=x2﹣2|x|故答案为:x2﹣2|x|13.(3分)定义区间(a,d),[a,d),(a,d],[a,d]的长度为d﹣a(d>a),已知a>b,则满足的x构成的区间的长度之和为2.【解答】解:∵,∴≥1,即﹣1≥0,则≤0,设x2﹣(2+a+b)x+ab+a+b=0的根为x1和x2.则有求根公式得x1=∈(a,b),x2=>a,x1+x2═2+a+b,则由穿根法得不等式的解集为[b,x1]∪[a﹣x2],则构成的区间的长度之和x1﹣b+x2﹣a=x1﹣x2﹣a﹣b=2+a+b﹣a﹣b=2,故答案为:2二、选择题(本大题共4小题,每小题4分)14.(4分)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S【解答】解:由图知,阴影部分在集合M中,在集合P中,但不在集合S中故阴影部分所表示的集合是(M∩P)∩C U S故选:C.15.(4分)下列各式中,最小值为2的是()A.B.C.D.【解答】解:A.x<0时,<0,因此不成立;B.+≥2=4,当且仅当x=时取等号,不成立.C.若<0,<0,则不成立.D.∵x≥0,∴+3=+2≥2,当x=1时取等号,因此其最小值为2.正确.故选:D.16.(4分)设f(x)是R上的偶函数,且在(﹣∞,0)上为减函数,若x1<0,x1+x2>0,则()A.f(x1)>f(x2)B.f(x1)=f(x2)C.f(x1)<f(x2)D.不能确定f(x1)与f(x2)的大小【解答】解:若x1<0,x1+x2>0,即x2>﹣x1>0,∵f(x)是R上的偶函数,且在(﹣∞,0)上为减函数,∴函数f(x)在(0,+∞)上为增函数,则f(x2)>f(﹣x1)=f(x1),故选:C.17.(4分)已知函数f(x)=,则下列说法中正确的是()A.若a≤0,则f(x)≤1恒成立B.若f(x)≥1恒成立,则a≥0C.若a<0,则关于x的方程f(x)=a有解D.若关于x的方程f(x)=a有解,则0<a≤1【解答】解:对于A,若a≤0,则f(x)≤1恒成立;当a=﹣1时,f(x)=,x∈(﹣1,0)时,f(x)>1,∴A不正确;对于B,若f(x)≥1恒成立,即,可得|x|﹣|x﹣a|≥a,当a≥0时,x<0,不等式不成立.∴B不正确;对于C,若a<0,则关于x的方程f(x)=a有解,即=a有解,显然不等式不成立,∴C不成立.对于D,若关于x的方程f(x)=a有解,当a≤0时,f(x)>0,等式不成立,当a>1时,f(x)≤1,不等式不成立,当0<a≤1,f(x)∈(0,1).∴D正确.故选:D.三、解答题(10分+10分+12分+13分)18.(10分)已知集合A={x|(m﹣1)x2+3x﹣2=0}.(1)若集合A为两个元素的集合,试求实数m的范围;(2)是否存在这样的实数m,使得集合A有仅有两个子集?若存在,求出所有的m的值组成的集合M;若不存在,请说明理由.【解答】解:(1)若集合A为两个元素的集合,则关于x的方程(m﹣1)x2+3x ﹣2=0有实数解,则m﹣1≠0,且△=9+8(m﹣1)>0,∴且m≠1;(2)集合A且仅有两个子集,∴关于x的方程恰有一个实数解,讨论:①当m=1时,x=,满足题意;②当m≠1时,△=8m+1=0,∴m=﹣.综上所述,m=1或m=﹣.∴M的集合为{﹣,1}.19.(10分)对于集合A、B,我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A﹣B.(1)若集合M={{x|y=},N={y|y=1﹣x2},求M﹣N;(2)若集合A={x|0<ax﹣1≤5},B=,且A﹣B=∅,求实数a的取值范围.【解答】解:(1)集合M={{x|y=}={x|2x﹣1≥0}={x|x≥},N={y|y=1﹣x2}={y|y≤1},M﹣N={x|x>1};(2)集合A={x|0<ax﹣1≤5}={x|1<ax≤6},B=,且A﹣B=∅,∴A⊆B;当a=0时,不满足题意;当a>0时,A={x|<x≤},应满足,解得a≥3;当a<0时,A={x|≤x<},应满足,解得a<﹣12;综上,a的取值范围是a<﹣12或a≥3.20.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(1≤x≤10),设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求f(x)的表达式;(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【解答】解:(I)每年能源消耗费用为C(x)=,建造费用为6x,∴f(x)=20C(x)+6x=.(1≤x≤10).(II)f′(x)=6﹣,令f′(x)=0得x=5或x=﹣(舍).∴当1≤x<5时,f′(x)<0,当5<x≤10时,f′(x)>0.∴f(x)在[1,5)上单调递减,在[5,10]上单调递增.∴当x=5时,f(x)取得最小值f(5)=70.∴当隔热层修建5cm厚时,总费用最小,最小值为70万元.21.(13分)设函数,函数,其中a为常数且a>0,令函数f(x)=g(x)•h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当时,求函数f(x)的值域;(3)是否存在自然数a,使得函数f(x)的值域恰为?若存在,试写出所有满足条件的自然数a所构成的集合;若不存在,试说明理由.【解答】解:(1),其定义域为[0,a];(2分)(2)令,则且x=(t﹣1)2∴(5分)∴∵在[1,2]上递减,在[2,+∞)上递增,∴在上递增,即此时f(x)的值域为(8分)(3)令,则且x=(t﹣1)2∴∵在[1,2]上递减,在[2,+∞)上递增,∴y=在[1,2]上递增,上递减,(10分)t=2时的最大值为,(11分)∴a≥1,又1<t≤2时∴由f(x)的值域恰为,由,解得:t=1或t=4(12分)即f(x)的值域恰为时,(13分)所求a的集合为{1,2,3,4,5,6,7,8,9}.(14分)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档