一元一次方程的应用——和差倍分问题专题练习(学生版)
3.4实际问题与一元一次方程(1——和差倍分问题习题课件+2023-2024学年人教版数学七年级上册
过关训练
1.比a的3倍大5的数等于a的4倍,则下列方程正确的是( B )
A.3a-5=4a
B.3a+5=4a
C.5-3a=4a
D.3(a+5)=4a
பைடு நூலகம்
2.若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,
有94只脚.问笼中鸡和兔各有多少只?若设鸡有x只,则x满足的方程
为( A )
A.2x+4(35-x)=94 B.4x+2(35-x)=94
4.某次数学知识竞赛中,试题由50道不定项选择题组成,评分标准 规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2 分.已知某学生有4道题未选,得了172分,则该学生全选对了_4_4__道 题.
5.一个旅游团共26人去参观某个景点,已知成人票每张120元,儿童 票每张80元,经预算,共需要门票钱2 640元. (1)求这个旅游团成人和儿童各有多少人? 解:设该旅游团成人有x人,则儿童有(26-x)人. 由题意,得120x+80(26-x)=2 640.解得x=14. 26-x=26-14=12. 答:这个旅游团成人有14人,儿童有12人.
(2)若某景点成人票价为每张 80 元,儿童票价为每张 40 元,并且乙团 中儿童人数恰好比甲团中儿童人数的2倍少 2 人,两旅行团在此景点 所花门票费用相同.求甲、乙两团中儿童人数各是多少?
解:设甲团儿童人数为y,则乙团儿童人数为(2y-2),所以甲团成人 有(30-y)人,乙团成人有[34-(2y-2)]人. 根据题意,得40y+80(30-y)=40(2y-2)+80[34-(2y-2)]. 解得y=10. 则2×10-2=18(人). 答:甲、乙两团中儿童分别有 10 人和 18 人.
买两种布料共138 m,花了540元,其中蓝布料每米3元,黑布 料每米5元,两种布料各买了多少米?设买蓝布料x m,由题意,列方 程得( A ) A.3x+5(138-x)=540 B.5x+3(138-x)=540 C.3x+5(540-x)=138 D.5x+3(540-x)=138
七年级数学上一元一次方程应用题第一课时:和差倍分问题精选全文完整版
可编辑修改精选全文完整版例2:甲种铅笔每只0.3元,乙种铅笔每只0.6元,用9元钱买了两种铅笔共20只,两种铅笔各买了多少支?练习:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?例3:把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开?练习:一个梯形的下底比上底多2cm,高是5cm,面积是402cm,求上底二、数字问题例1.用式子表示下列两位数或三位数:(1)一个两位数,个位数字是a,十位数字是b:____________(2)一个两位数,个位数字是a,十位数字比个位数字小1:__________(3)一个两位数,个位数字是a,比十位数字小1:__________(4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3;(5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1.练习:(1)一个两位数,个位上的数字比十位上的数字大 2 个位与十位上的数字之和是10,求这个两位数.(2)一个两位数个位上的数是1,十位上的数是,把1与x对调,新的两位数比原两位数小18,求十位上的数。
例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701这三个数各是多少?例3:一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?三、数学作业1、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?2、买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少m?3、用一根长60m的绳子围出一个长方形,是他的长是宽的1.5倍,长和宽各是多少?4、一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和是9,这个两位数是多少5.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得的两位数比原两位数大27,求这个两位数.6.有一列数,按一定规律排列成1,-2,4,-8,16,-32…,其中某三个相邻数的和是-96,这三个数各是多少?7.下图是本月的日历,用如图所示的“十字架”去框其中的五个数,若这五个数的和是60,你知道框住的是哪五个数吗?在图中画出来,并用方程的知识进行说明.1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 2728 29 30。
七年级数学上册第五章一元一次方程专题十一一元一次方程的应用__和差倍分问题作业课件新版北师大版4
2.为支持亚太地区国家基础设施建设 , 由中国倡议设立亚投行 , 据悉 , 亚投行意向创始成员国确定为57个 , 其中意向创始成员国数亚洲是欧 洲的2倍少2个 , 其他洲共5个 , 求亚洲和欧洲的意向创始成员国各有多 少个 ? 解 : 设欧洲意向创始成员国为x个.那么x+(2x-2)+5=57 , 所以x= 18 , 2x-2=34.答 : 亚洲为34个 , 欧洲为18个
6.(阿凡题 : 1070840)(2016·孝感)孝感市在创建国家级园林城市中 , 绿 化档次不断提升.某校计划购进A , B两种树木共100棵进行校园绿化 升级 , 经市场调查 : 购买A种树木2棵 , B种树木5棵 , 共需600元 ; 购买 A种树木3棵 , B种树木1棵 , 共需380元.求A种 , B种树木每棵各多少 元? 解 : 设A种树木每棵x元 , 那么B种树木每棵(380-3x)元 , 2x+5(380- 3x)=600 , 解得x=100 , 380-3x=80.答 : A种树木每棵100元 , B种树 木每棵80元
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念”诗歌朗诵比赛.为了鼓励学生积极 参与活动 , 班委会决定奖励比赛成绩优秀的同学 , 准备用184元班费 , 买3个书包和5本词典 , 分别奖给三名一等奖、五名二等奖获得者 , 已 知每个书包的价格比每本词典的价格多8元 , 每个书包和每本词典的 价格各是多少元 ? 解 : 设每本词典x元 , 那么每个书包(x+8)元 , 3(x+8)+5x=184 , 解得 x=20 , x+8=28 , 答 : 每个书包28元 , 每本词典20元
一元一次方程应用一-和差倍分全篇
某校三年共购买计算机140台, 去年购买数量是前年的2倍,今年 购买数量又是去年的2倍,前年这 个学校购买了多少台计算机?
甲、乙、丙三队合修一条公 路,计划出280人,如果甲队人 数是乙队的一半,丙队人数是乙 队的2倍,问三队各有多少人?
1、 数学组原来女生占1/3,后来又加入了4名女生,
现在女生人数占全组人数的一半,求这组原来有多 少人?
解得: x =25 则: 3 x -25=50 答:今年的产值为50万元。
• 两筐鸭梨共重154千克,其中第一筐比第二 筐的2倍少14千克,求两筐鸭梨各有多少千 克?
解:设第二筐有x千克,则第一筐有(2x-14)千克。
x+(2x-14)=154
解得: x =50 则: 2x-14=86
答:第一筐有86千克 ,第二筐有50千克。
一元一次方程的实际应用
----和倍差分问题
(1) 2x 1 10x 1 2x 1 1
3
6
4
(2) 4x 1.5 5x 0.8 1.2 x
0.5
0.2
0.1
• 1、已知甲数是乙数的3倍多12,甲乙 两数的和是60,求乙数
• 2、甲数比乙数大10,甲数的5倍与乙 数的8倍的和是115,求甲、乙两数。
• 例:某厂今年的产值是去年的3倍少25 万,今年和去年产值总和是75万,求 今年的产值多少万?
怎样设未知数?
如果设今年产值为x万,则去年产值为( )万
如果设去年产值为x万,则今年产值为( )万
例、某厂今年的产值是去年的3倍少25万,今年和ቤተ መጻሕፍቲ ባይዱ 年产值总和是75万,求今年的产值。
解:设去年的产值为x 万, 则今年的产值为(3 x-25)万。 x+(3x-25)=75
(完整word版)一元一次方程——和差倍分问题
一元一次方程应用题-—和、差、倍、分问题一、学习重点:这类问题主要应搞清各量之间的关系,注意关键词语.仔细读题,找出表示和、差、倍、分关系的关键字,例如:“大,小,多,少,增加,减少……”,并据题意设出未知数,利用这些关键字表示出含有未知数的量,最后利用题目中的量与量之间的关系列出方程。
1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几……”来体现。
2、多少关系:通过关键词语“多、少、和、差……”来体现。
增长量=原有量×增长率现在量=原有量+增长量一般设未知数要找跟所有关系联系最紧密的那个量。
二、基础练习题:1、a比b多5,则a=______;a比b少3,则a=______;a是b的2倍,则a=____;a增加3倍,则a=_____;a增加到3倍,则a=_____;将a增加b,则a=_____;将a增加到b,则a=_____。
2、已知甲数比乙数小12,甲乙两数的和为50,甲数为_____;乙数为_____.3、已知甲数比乙数的3倍多12,甲乙两数的和是60,甲数为_____;乙数为_____。
4、已知甲数是10,增加40%后甲数为______;在此基础上减少50%后甲数为_______.5、已知甲数的3倍是乙数与—2的和的2倍,甲数与乙数的差为5,甲数为_____;乙数为_____。
6、三个连续偶数的和是360,中间的偶数为_____。
7、三个连续奇数的和为361,中间的奇数为_____。
8、甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为_________.9、某校共有学生1049人,女生占男生的40%,则男生的人数为__________。
例题1:禽养场养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场的鸡鸭各多少只?练习:足球的表面是由一些呈多边形的黑白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种皮块各有多少?做题:10、11例题2:一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
人教版七年级上册数学实际问题与一元一次方程--和差倍分问题应用题训练
(3)x等于多少时,调动后两班人数一样多?
参考答案
1.这本书有480页
2.30元
3.计划做23个中国结
4.23
5.小组成员共有30名,他们计划做138个“中国结”.
6.这批服装原计划40天完成;订货任务是900套.
7.113个
8.苹果买了2千克,梨买了3千克.
15.甲商品每件20元,乙商品每件15元,若购买甲、乙两种商品共40件,恰好用去675元,求甲、乙商品各买多少件?
16.2020年1月“新型冠状肺炎”来袭,全国人民众志成城,展开全民战“役”,携手共筑坚强后盾,纷纷捐款捐物,我校师生也参与了为武汉捐款活动:七年级学生捐款数为全校总捐款数的 ;八年级学生捐款数比七年级和九年级学生捐款数和的一半少450元;九年级捐款3900元.请分别求出七年级和八年级各捐款多少元?
20.(1)(3x-10)人;(2)(x-26)人;(3)x等于26时,调动后两班人数一样多.
13.江南生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg,求粗加工的这种山货的质量.
14.某校初一学生(共三个班)为灾区捐款,一班捐款为初一总捐款的 ,二班捐款为一班、三班捐款数的和的一半,三班捐了 元,求初一三个班的总捐款数.
人教版七年级上册数学3.4实际问题与一元一次方程--和差倍分问题应用题训练
一、解答题
1.晶晶看一本书,第一天看了总页数的 ,第二天看的是第一天的 ,剩下12页没有看完.这本书有多少页?
2.从大连万达影城获悉电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.请问《我和我的祖国》的电影票在网上平台购票单价为多少元?
初一一元一次方程解应用题全部类型
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
一元一次方程的应用题专题
和差倍分问题-------总量=分量1+分量2+.....1、某校三年共购计算机x台,去年购买数量是前年2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?2、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?3、有一列数,按一定规律排成1,-3,9,-27,81,-243,....其中某三个相邻数的和是-1701,这三个数各是多少?4、有这样的一列数:5,10,15,20,25....,按此规律排列,如果其中相邻的三个数的和蔚135,则这三个数分别是多少?5、用一根长60米的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各是多少?6、把一根长为100厘米的木棍锯成两段,要使其中一段长比另一段长的2倍少5厘米,锯成的两段木棍分别长多少?7、洗衣机厂今年计划生产洗衣机25500台,其中型号1、型号2、型号3三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?8、某造纸厂为节约木材,大力扩大再生纸的生产,它去年10月生产再生纸2050吨,这比前年10月份再生纸产量的2倍还多150吨,它前年10月份生产再生纸多少吨?9、小新出生时父亲28周岁,现在父亲的年龄是小新年龄的3倍,求现在小新几周岁?10、买两种布料共138米,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少元?11、一根竹竿竖直插入一水池底部的淤泥中,竹竿的入泥部分占全长的1/5,淤泥以上的入水部分比入泥部分长1/2米,露出水面部分为13/10米,请问竹竿有多长?水有多深?分配问题---------找不变量1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?2、几个人共同种一批树苗,如果每人种10棵,则剩下6棵未种;如果每人种12棵,则缺6棵树苗,求参与种树的人数?3、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8千克,李丽平均每小时采摘7千克,采摘结束后王芳从她采摘的樱桃中去取0.25千克给了李丽,这时两人樱桃一样多,她们采摘用了多长时间?4、我班举行了一次集邮展览,展出的邮票比平均每人3枚多24枚,比平均每人4枚少26枚,则我班共展出邮票多少枚?5、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺排量之比为2:5,两种工艺的废水排量各是多少?行程问题-------路程=速度x时间+列表(1)顺逆问题1、一艘船从甲码头到乙码头顺流而行,用了2小时;从乙码头返回甲码头逆流而行,用了2.5小时,已知水流的速度是3千米每小时,求船在静水中的平均速度。
一元一次方程的应用(和差倍分问题)汇总
一元一次方程的应用(和、差、倍、分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。
3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
4、三个连续偶数的和是360,求这三个偶数。
5、在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是乙处劳动的人数的2倍,应往甲、乙两处各调去多少人?6、姐姐四年前的年龄是妹妹年龄的2倍,今年的年龄是妹妹年龄的1.5倍,问姐姐今年的年龄?7、3月12日是植树节,初三年级170名学生去参加义务植树活动。
如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?8、服装厂有工人156人,其中女工人数是男工人数的3倍,求有男工、女工各多少人?9、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?10、有两筐苹果共重78千克,如果从甲筐中取出14千克放入乙筐,则此时两筐重量相同,求两筐原来各有多少千克?11、有甲乙两个蓄水池,甲池中的水3000立方米,乙池中有水1200立方米,现从甲池中往乙池引水,流速为每分钟50立方米,多少分钟后乙池内的蓄水量是甲池水量的2倍?12、饲养小组共养鸡鸭1720只,卖出鸡的一半,再买进260只鸭子后,这时,鸡鸭的只数相同等。
求原来各养鸡、鸭多少只?13、两个数相除商6余5,被除数与商的和是225,求被除数和除数14、少先队四年级一、二、三中队共植树200棵,其中二中队植树的棵数比一中队植树棵数的2倍还多5棵,三中队植树的棵数比一、二中队植树的和多4棵,求三个中队各植树多少棵?15、甲乙两个仓库共有化肥56吨,如果甲库运出7吨化肥,乙库再运进9吨化肥,这样两个仓库存放的化肥数量相同。
求两仓库原来各有多少吨化肥?。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(和差倍分问题)训练(含解析)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(和差倍分问题)训练参考答案:1.励东中学植树279棵,则海石中学植树555棵【分析】本题考查了一元一次方程的应用,设励东中学植树棵,则海石中学植树棵,根据等量关系列出方程,并方程即可求解,理清题意,根据等量关系列出方程是解题的关键.【详解】解:设励东中学植树棵,则海石中学植树棵,依题意得:,解得:,(棵),答:励东中学植树279棵,则海石中学植树555棵.2.,【分析】设其中一段长为,这另一段长为,根据整个木棍总长列方程求解即可.本题考查了一元一次方程的应用,正确设未知数,找出等量关系是解本题的关键.【详解】解:设其中一段长为,这另一段长为,解得,,答:两段长分别为,.3.甲、乙、丙三种草药分别需要克,克,克【分析】设这三种草药分别需要,,,然后根据题意列出一元一次方程,进而求解即可.【详解】设这三种草药分别需要,,,根据题意可得,解得∴,,∴甲、乙、丙三种草药分别需要克,克,克.【点睛】本题主要考查了从实际问题中抽象出一元一次方程,正确理解题意找到等量关系是解题的关键.x ()23x -x ()23x -23834x x +-=279x =834279555-=36cm 64cmcm x ()28cm x -100cm cm x ()28cmx -28100x x +-=36x =∴2864x -=36cm 64cm 2403608402x 3x 7x 2x 3x 7x 2371440x x x ++=120x =2240x =3360x =7840x =240360840可得出结论.【详解】解:设店中共有x 间房,根据题意得:,解得:.答:店中共有8间房.【点睛】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.10.40名【分析】设该班有名学生,根据口罩的总数不变,列出方程,进行求解即可.【详解】解:设该班有名学生,由题意,得:,解得:;答:该班有40名学生.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.11.购买A 种跳绳的单价为10元,购买B 种跳绳的单价15元【分析】设购买A 种跳绳的单价为x 元,则购买B 种跳绳的单价元,然后根据一共花费1000元,列出方程求解即可.【详解】解:设购买A 种跳绳的单价为x 元,则购买B 种跳绳的单价元,依题意得:,解得:,∴,答:购买A 种跳绳的单价为10元,购买B 种跳绳的单价15元.【点睛】本题主要考查了一元一次方程的实际应用,正确理解题意找到等量关系列出方程是解题的关键.12.(1)每套队服和每个足球的价格各是180元和120元(2)当购买足球的个数为50个时,在两家商场购买一样合算.当购买的足球少于50个时,则到甲商场购买合算.当购买的足球多于50个时,则到乙商场购买合算.779(1)x x +=-8x =x x 330550x x +=-40x =()25x -()25x -()4025401000x x -+=10x =2515x -=【分析】(1)根据“总费用×补贴百分数”进行计算即可;(2)设电视的单价为x 元,则空调的单价为(2x +600)元,找到等量关系列出一元一次方程解之即可.【详解】(1)解:6000×13%=780(元)答:该粉丝可以到线上客服处返780元.(2)设电视的单价为x 元,则空调的单价为(2x +600)元,根据题意得x +(2x +600)=6000解得x =1800∴6000-1800=4200(元)答:空调的单价为4200元,电视的单价为1800元.【点睛】本题考查一元一次方程的应用及有理数乘法的应用,解题关键是找到等量关系正确列出方程.19.(1)钢笔的单价为25元,毛笔的单价为29元(2)见解析【分析】(1)设钢笔的单价为x 元,则毛笔的单价为元,根据等量关系:买30支钢笔的钱+买45支毛笔的钱=2055,列出方程并解方程即可;(2)设钢笔购买y 支,毛笔购买支,根据等量关系:买y 支钢笔的钱+买(105−y )支毛笔的钱=2859,列出方程并解方程,根据y 的值为小数即可知算错了账.【详解】(1)设钢笔的单价为x 元,则毛笔的单价为元由题意有:解得:x =25毛笔的单价为:x +4=25+4=29元答:钢笔的单价为25元,毛笔的单价为29元.(2)设钢笔购买y 支,毛笔购买支由题意有:解得:y =46.5()4x +()105y -()4x +()304542055x x ++=()105y -()25291052859y y +-=∵y 取正整数,y 不能取46.5所以陈老师不能用2859元购买两种笔105支.【点睛】本题考查了一元一次方程的应用,正确理解题意、找到等量关系并列出方程是关键和难点.20.197个【分析】设小红跳了x 个大绳,根据你的单摇个数是你的大绳的4倍多5个,得到跳的单摇的数量,根据题意,列出方程进行求解即可.【详解】解:设小红跳了x 个大绳,则小红跳了个单摇,由题意,得:,解得.所以.答:小红跳了197个单摇.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.()45x +()4524623x x ++=+-48x =45197x +=。
七年级上册一元一次方程应用题和差倍分问题
试试看,你会做吗?
• 列式表示:
x58 –比X大5的数等于8 : ________________________
–Y的三分之一等于9 : ______13__y___9____________
–x的2倍与10的和等于28 : ____2_x___1_0___2__8_____
1 x y6 –x的三分之一减y的差等于6 : __4_______________
3a51a –比a的3倍大5的数等于a的一半: __________2____
应用题中常见的关键词
•比 • 是、、、倍 •共 •和 • 几分之几
找一找关键词语:
• (1)甲、乙两名同学去书店买书,乙买的书数 是甲的3倍多1本,设甲同学买了x本,则乙买
了__3_x___1_本书 .
• (2)饲养小组共养鸡鸭820只,卖出鸡鸡的的一一半半, 再买进260只鸭子后,这时,鸡鸭的只数相同
轻快 松乐 做学 题习
一元一次方程应用题专题(பைடு நூலகம்)
——和差倍分问题
解应用题的秘籍
审:读题找量 设:设出未知数,表示出与其相关的量。 列:根据题意找出等量关系,列出方程。 解:解方程并检验。 答:给出问题的答案。
• 1、和:即求几个量的和,用_加__法___。 • 2、差:即求两个量的差,用__减__法__。 • 3、倍:即求一个量的若干倍,用_乘__法__。 • 4、分:即求一个量的分量,用__除__法__。
和差倍分应用题精选全文完整版
可编辑修改精选全文完整版
一元一次方程应用题————和差倍分问题
1.某校七年级1班共有学生48人,其中女生人数比男生人数的多3人,这个班有男生多少人?
2.某乡镇农民今年人均收入比去年提高20%,今年人均收入比去年的1.5倍少1200元,这个乡镇农民去年人均收入是多少元?
3.把一根长100cm的木棍钜成两段,使其中一段的长比另一段的2倍少5cm,求分成的两段木棍各有多少cm?
4.据某统计数据显示,在我国的664座城市中,按水资源情况分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?
5.洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?。
十六种用一元一次方程解决实际问题专题(含解析)
十六种用一元一次方程解决实际问题专题类型一:和差倍分问题1.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)2.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物每满100元返购物券30元(不足100元不返券,购物券全场通用),但他只带了400元钱.若两家都可以选择,在哪一家购买更省钱?类型二:行程问题(相遇、追及、相对速度等)(1)直线型路线3.A,B两地相距480千米,甲乙两车分别从A,B两地出发,相向而行,2小时30分相遇.已知甲车速度是每小时80千米,乙车速度每小时多少千米?4.A、B两地相距400米,甲、乙两人分别从A、B两地同时同向出发,甲在乙后面,已知甲每分钟跑250米,乙每分钟跑200米,经过多长时间甲能追上乙?5.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?(2)环型跑道6.小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分.(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?(3)相对速度7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?8.小明和小红沿着与铁轨平行的方向相向而行,两人行走的速度均为每小时7.2千米,恰有一列火车从他们身旁驶过.火车与小明相向而行,从小明身旁驶过用了10秒;火车与小红同向而行,从小红身旁驶过用了12秒.求火车车身的长度.类型三:航行问题(航空、陆地、水上等)9.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分,逆风飞行需要3小时,两城市间的距离为.10.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A,C两地相距10km,求A,B两地的距离.类型四:工(作)程问题(工作总量为单位“1”,工作总量=工作效率×工作时间)11.由于洪水渗漏造成堤坝内积水,用三部抽水机抽水,单独用一部抽水机抽尽,第一部需用24小时,第二部需用30小时,第三部需用40小时.现在第一部、第二部共同抽8小时后,第三部也加入,问从开始到结束,一共用了多少小时才把水抽掉?12.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?类型五:销售盈亏问题13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元14.一家商场因换季决定将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售就可赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?15.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?类型六:调配问题(内部、外部等)16.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调部分学生去乙组,结果乙组人数是甲组的2倍,问从甲组抽调了多少学生去乙组?17.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n 是大于1的正整数,不包括1.)则符合条件的n的值共有个.类型七:余缺问题18.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?类型八:数字问题19.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数,求这个两位数.类型九:日历问题21.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72类型十:年龄问题22.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄是多少岁?类型十一:银行利率问题23.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.24.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.类型十二:比赛积分问题25.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?类型十三:部分量之各等于总量26.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.类型十四:等积变形问题27.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何()A.1280cm3 B.2560cm3 C.3200cm3 D.4000cm3类型十五:分段计费问题(水、电、煤、气、出租车和工资等)28.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见价目表:价目表每月用水量单价不超出6立方米的部分2元/米3超出6立方米不超出10立方米的部分4元/米3超出10立方米的部分8元/米3 注:水费按月结算.若某户居民1月份用水8立方米,则应交水费:2×6+4×(8﹣6)=20(元).(1)若该户居民2月份用水12.5立方米,则应交水费元;(2)若该户居民3,4月份共用水15立方米(4月份用水量多于3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?类型十六:方案设计问题(设备购买、房屋销售、汽车运输等)29.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?。
人教版七年级上册 第3章 一元一次方程实际应用-和差倍分问题(含答案)
人教版七年级上册一元一次方程实际应用-和差倍分问题(含答案)1.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物()A.吨B.吨C.吨D.吨2.某班学生共40人,外出参加植树活动,根据任务不同,要分成甲、乙、丙三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲小组有()A.5人B.10人C.20人D.25人3.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3304.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25 B.3x﹣25=4x+20C.4x﹣3x=25﹣20 D.3x﹣20=4x+255.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是()A.8 B.7 C.6 D.96.今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100 千克,则丙种盐水最多可用_________千克.7.幼儿园阿姨给x个小朋友分糖果,如果每人分4颗则少13颗;如果每人分3颗则多15颗,根据题意可列方程为______.8.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.9.一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_______________.11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?底面积(cm2)甲杯60乙杯80丙杯10012.某人把360cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4︰5,则这两个正方形的边长分别是__________.13.某校七年级共有587名学生分别到北京博物馆和中国科技馆参观,其中到北京博物馆的人数比到中国科技馆人数的2倍还多56人,设到中国科技馆的人数为x人,可列方程为_____.14.甲、乙两个图形的面积之和是2cm.150cm,面积之比为7:3,则较大图形的面积是____215.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.如图为一块在电脑屏幕上出现的色块图,由个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为,则所拼成的长方形的面积是________.17.将49毫升蜂蜜全部放入下面两个盛有水的杯子中,杯子分别有160和400毫升水,要使两杯水的甜度相同,这两个杯中应分别放入多少毫升蜂蜜?18.某车间共有28名工人生产螺栓和螺母,每人平均每天生产螺栓12个或螺母18个,问:如何安排工人才能使每天生产的螺栓和螺母按1:2配套?19.某校开展植树活动,七(1)班有27人,七(2)班有19人,现另调26人去支援,使七(1)班人数与七(2)班人数相等,问应调往七(1)班、七(2)班各多少人?20.列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调来多少名武警部队战士?21.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的23,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?22.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?24.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套?25.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?参考答案1.C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.2.A【解析】根据三个小组人数的比例,设甲小组的人数为x,则乙小组的人数为2x,丙小组的人数为5x.因为三个小组的人数相加应该等于班级总人数,故可以列出如下方程:x+2x+5x=40合并同类项,得8x=40,系数化为1,得x=5,即甲小组有5人.故本题应选A. 3.D 【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D . 4.A 【解析】试题分析:设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程. 解:设这个班有学生x 人, 由题意得,3x+20=4x ﹣25. 故选A .考点:由实际问题抽象出一元一次方程. 5.A . 【解析】试题分析:设答对的题数为x 道,则不答或答错的有(10﹣x )道,故:5x ﹣3(10﹣x )=34,解得:x=8.故选A .考点:1.一元一次方程的应用;2.应用题. 6.50 【解析】 【分析】可设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,盐的浓度=盐的质量与盐水总质量之比,根据题意可得3%(100)8%11%7%100x y x y--++=,化简即可确定y 的最大值.【详解】解:设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,根据题意可得3%(100)8%11%7%100x y x y --++=,化简得85400y x +=,即5508y x =-+,所以y 的最大值为50,丙种盐水最多可用50千克. 故答案为:50 【点睛】本题考查了二元一次方程的应用,正确理解题意列出方程是解题的关键. 7.4x ﹣13=3x+15 【解析】 【分析】根据分配方法不同,但糖果总数相同,可列出方程. 【详解】根据两种分配方法糖果总数相等,得 4x ﹣13=3x+15故答案为:4x ﹣13=3x+15 【点睛】分析题意,抓住总数相等,列出方程. 8.800 【解析】 【分析】设选择“公交车”的学生人数是3x ,则自行车的有7x ,其他的有2x ,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为:800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.115【解析】试题分析:可以设共有x辆卡车,货物的总量是不变的,根据相等关系列出方程,从而得出货物的总量.解:设共有x辆卡车,根据题意得:7x+10=8(x﹣1)+3解得:x=15则货物共有7×15+10=115(吨).故答案为:115考点:一元一次不等式的应用.10.2x+56=589-x【解析】试题解析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589-x)人,由题意得,2x+56=589-x.考点:由实际问题抽象出一元一次方程.11.7.2【解析】【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,分别计算出倒水前后三个杯子中水的总体积,依据水的总体积不变列方程求解即可.【详解】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,答:甲杯内水的高度变为3×2.4=7.2cm.故答案是:7.2.【点睛】本题考查了一元一次方程的应用,理解倒水前后三个水杯中水的总体积不变是解题关键.12.40cm;50cm.【解析】因为两个正方形的边长之比是4:5,所以可以设边长较短的正方形的边长为4x,则另一个正方形的边长应为5x. 由题意可知,这两个正方形的周长之和为360cm. 通过正方形边长与周长的关系获得这两个正方形的边长与周长之和的关系从而列出方程并求解.设边长较短的正方形的边长为4x,则由两个正方形的边长之比是4:5可知,边长较长的正方形的边长应为5x.()()4445360x x +=整理,得 36360x =, 解之,得 10x =.因此,边长较短的正方形的边长为441040x =⨯=(cm),边长较长的正方形的边长为551050x =⨯=(cm). 故本题应依次填写:40cm ,50cm. 点睛:利用比例关系设未知数是一种重要的解题方法. 这种方法有别与直接设某一个量为未知数x 的方法. 利用某两个相关量之间的比例关系,将这两个量设为关于未知数x 的单项式形式 (单项式的系数为比例关系中的相应数值). 这种方法不仅可以简化对比例关系的分析,还可以在一定程度上减少由比例关系所带来的分数运算. 13.x+2x+56=587.【解析】试题分析:由到中国科技馆的人数为x 人可得到北京博物馆的人数为2x+56,再根据七年级共有589名学生列出方程即可解:设到中国科技馆的人数为x 人,依题意可列方程为: x+2x+56=589,故答案为:x+2x+56=589.考点:由实际问题抽象出一元一次方程. 14.105 【解析】设较大图形的面积为x 2cm ,则较小图形的面积为(150-x)2 cm , 由题意得:x :(150-x)=7:3,cm即较大图形的面积是105215.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:∵糯米做成年糕的过程中重量会增加20%,∴a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键.16.【解析】试题分析:若设第二小的正方形的边长为x.则有两种不同的方法可以表示出长方形的长:根据正方形的边长相等,可得:第一种表示方法为x+x+(x+1);第二种表示方法为(x+2)+(x+3);即可列出方程.解:设第二小的正方形的边长为x,则有:x+x+(x+1)=(x+2)+(x+3),解得:x=4,所以长方形的长为13,宽为11,面积=13×11=143.故答案是:143.考点:一元一次方程的应用.17.这两杯分别放入14ml 、35ml 蜂蜜 【解析】 【分析】可以设出未知数,列出比例式,解答即可.设放入第一杯xml ,第二杯()49x ml -蜂蜜,根据题意,可列比例式():16049:400x x =-,求解即可. 【详解】解:设放入第一杯xml ,第二杯()49x ml -蜂蜜():16049:400x x =-14x =491435ml -=答:这两杯分别放入14ml 、35ml 蜂蜜. 【点睛】此题考查了比与比例的意义,以及对比例的实际应用能力. 18.螺栓12人,螺母16人【解析】试题分析:设安排x 人生产螺栓,则有(28-x )人生产螺母,根据每天生产的螺栓和螺母按1:2配套列出方程求解即可.试题解析:设安排x 人生产螺栓,则有(28-x )人生产螺母, 根据题意得:18(28-x )=12x·2, 解得:x=12, 28-12=16(人).答:应安排12人生产螺栓,16人生产螺母才行. 19.应调往七(1)班9人,调往七(2)班17人.【解析】试题分析:设应调往七(1)班x人,则应调往七(2)班(26-x)人,根据等量关系“七(1)班原有的人数+调往七(1)班的人数=七(2)班原有的人数+调往七(2)班的人数”,列出方程,解方程即可.试题解析:设应调往七(1)班x人,则应调往七(2)班(26-x)人.根据题意,得27+x=19+26-x.解得x=9.26-x=17.答:应调往七(1)班9人,调往七(2)班17人.点睛:本题主要考查了一元一次方程的应用,根据两个班人数之间的关系列出方程是解题关键.20.应往甲处调去140名,往乙处调去60名武警部队战士【解析】【分析】设应往甲处调来x名武警部队战士, 则向乙处调来(200-x) 个武警部队战士, 根据调派后甲处的人数比乙处人数的2倍多10人, 即可得出关于ェ的一元一次方程, 解之即可得出结论.【详解】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∴200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程式解题的关键.21.(1)11215a ,641156a ax +;(2)19.2. 【解析】 【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可. 【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a ;六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +;(2)由题意得,11215a =641156a ax +, ∵a >0,∴11215=641156x +, 解得x =19.2.∴六月份零售票应按每张19.2元定价. 【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了.22.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【解析】试题分析:设应分配x人生产甲种零件,则(60-x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.试题解析:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),依题意得方程:24x=12(60-x),解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.考点:一元一次方程的应用.23.七年级共有200名同学参加这次公益活动.【解析】试题分析:由于本题要求的是参加这次公益活动的七年级学生总人数,所以可以设七年级共有x名同学参加这次公益活动. 进一步分析题意可以看出,这些学生进行了三项活动:宣传,植树以及清扫垃圾. 根据题意,进行宣传活动的学生人数可以用x表示为10%x,进行植树活动的学生人数可以表示为55%x,从而清扫垃圾的学生人数可以表示为x-10%x-55%x. 由于题目中已经给出了清扫垃圾的学生人数,故可以根据清扫垃圾的学生人数列出方程并求解.试题解析:设七年级共有x名同学参加这次公益活动.由题意,得x-10%x-55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.点睛:在利用方程解决实际问题的题目中,列方程的基本根据是题目中的等量关系. 因此,在题目的条件中寻找合适的等量关系就成为解决问题的关键. 本题中应用的等量关系本质上是“总量=各部分量的和”. 在等量关系明确之后,利用未知数x对等量关系中的各个量进行表示则是正确列出方程的重要步骤.24.30名工人生产A种工件,45名工人生产B种工件【解析】试题分析:首先设分配x名工人生产A种工件,然后根据A种工件数量的2倍等于B种工件的数量列出方程进行求解,得出答案.试题解析:设分配x名工人生产A种工件,根据题意,得:2×15x=20(75-x)解得:x=30 ∴75-x=75-30=45答:分配30名工人生产A种工件,45名工人生产B种工件.考点:一元一次方程的应用25.篮球队有28支,排球队有20支.【解析】试题分析:设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.解:设篮球队有x支,排球队有y支,由题意,得,解得:.答:篮球队有28支,排球队有20支.考点:二元一次方程组的应用.26.每天能组装48套GH型电子产品;【解析】试题分析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;试题解析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,根据题意,,解得x=32,则80-32=48(套),答:每天能组装48套GH型电子产品;。
(完整版)5一元一次方程应用题
一元一次方程的应用专题【和差倍分问题】1.某种食材经加水等其他工艺膨化处理后,体积和重量都扩大5倍,做成街头热卖的小食品,现要得到24kg这种小食品供应实验中学超市,需要多少千克的原材料?【盈亏问题】2.有若干农民工要住进一栋新修的集体宿舍,每间住6人还有17个床位空着;每间住5人就有3人住不下,问共有多少间宿舍?多少个农民工?【劳动力调配问题】3.龙山中学七年级共有60名学生参加语文、数学两种兴趣小组,现在从数学兴趣小组调5人到语文兴趣小组,这样数学组的人数为语文组人数的2倍,求原来语文、数学兴趣小组的人数。
【产品配套问题】4.长兴服装厂生产某种型号的秋装一批,已知每2m长的某种布料可做上衣的衣身3个或衣袖5只,现计划用132m这种布料生产这批秋装,应分别用多少布料生产衣身和衣袖才能恰好配套?(变式)5.陶瓷店主为了促销,决定买一只茶壶赠一只茶杯,某君购这些物品共付款162元,买得茶壶茶杯共36只,已知茶壶15元/只,茶杯3元/只,问其中茶壶、茶杯各多少只?【利用表格分析问题中的等量关系】(难点)6.马和骡并排走着,背上都背着包裹,马抱怨说自己背得太多了,骡回答说:“你抱怨什么呢?如果我从你背上拿一个包过来,我的负担就是你负担的两倍;如果你从我背上拿一个包过去,你背的也不过和我一样多。
”问马和骡各背了几个包裹(假定包裹的重量相同)?【实际生活中的应用题】7.小明和小颖在课外学习中,用20张白卡纸做包装盒,每张白卡纸可以做盒身2个或者做盒底3个,现一个盒身和2个盒底恰好做成一个包装盒,为了充分利用材料,使做成的盒身和盒底正好配套,他们设计了两种方案。
方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做盒底。
方案二:先把一张白卡纸适当套裁出一个盒身和一个盒底,余下白卡纸分成两部分,一部分做盒身,一部分做盒底。
请判断这两种设计方案的可行性。
【工程问题】8.要修建体育馆的一个附属工程,甲队单独做9天完工,乙队单独做12天完工,丙队单独做15天完工,若甲队、丙队先做3天后,由乙队接替因故离开的甲队的工作,问还要多少天才能完成这项工程的5/6?【注/排水问题】9.一个水池,有甲、乙、丙三个水管,甲、乙是入水管,丙是排水管,单开甲管16分钟可将水池注满,单开乙管10分钟可将水池注满,单开丙管20分钟可将全水池放完,现在先开甲、乙两管,4分钟后关上甲管开丙管,问又经过几分钟才能将水池注满?【比例问题】10.甲、乙二人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两上余下的钱数之比为3:2,则余下的钱数分别是多少?【浓度问题】11.有含盐8%的盐水40kg,要配制成含盐20%的盐水,需要加盐多少千克?【行程问题】12.A、B两站间的路程为448km,一列慢车从A站出发,每小时行驶60km,一列快车从B站出发,每小时行驶80km,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车相向而行,慢车先开28分钟,快车开出后多少小时两车相遇?(3)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?【航行问题】13.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时,已知该船在静水中每小时航行12千米,求水流速度和两码头之间的距离。
初一数学上册一元一次方程(差倍部分)解决应用题专项练习
16﹣11=5(年),答:5年后爸爸的年龄是儿子年龄的3倍。
【例三】父亲现年50岁,女儿现年14岁,几年前父亲的年龄是女儿年龄的5倍?解:父女相差36岁,这个差不变。
当父亲年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁。
这36岁是女儿年龄的(5-1)倍。
36÷(5-1)=9(岁)当女儿是9岁时,14-9=5,正是5年前,所以5年前,父亲年龄是女儿年龄的5倍。
【例四】甲筐有梨400个,乙筐有梨240个,现在从两筐取出数目相等的梨,剩下梨的个数,甲筐恰好是乙筐的5倍,甲筐所剩的梨是多少个,乙筐所剩下的梨是多少个?解:乙筐剩下的个数=(400-240)÷(5-1)=40(个)甲筐剩下的个数=40×5=200(个)【例五】小勇和小英各有钱若干元,若小勇给小英24元,二人钱数相等。
如果小英给小勇27元,则小勇的钱数就是小英钱数的2倍。
问小勇原有多少元,小英原有多少元?解:小英的钱数:(24×2+27×2)÷(2-1)+27=129(元)小勇的钱数:129+24×2=177(元)答:小勇有钱177元,小英有钱129元。
【例六】有一对父子,他们年龄相差20岁零六个月。
父亲的岁数又是儿子岁数的3倍。
请问:再过多少年,父亲的岁数是儿子的2倍?解:儿子的年龄:20岁零六个月÷(3-1)=10岁零3个月,后来儿子的年龄:20岁零六个月÷(2-1)=20岁零六个月,20岁零六个月-10岁零3个月=10年零3个月,答:再过10年零3个月,父亲的岁数是儿子的2倍。
【例七】今年父亲的年龄是儿子的5倍,15年后,父亲的年龄是儿子年龄的2倍,问:现在父子的年龄各是多少岁?解:今年父子的年龄差是儿子的5-1=4倍,15年后父子的年龄差是儿子的2-1=1倍,这说明在过了15年后,儿子的年龄是现在的四倍,根据差倍问题的公式可以计算出儿子今年的年龄是15÷(4-1)=5岁,父亲今年是5×5=25岁。
专题11 一元一次方程的应用—和差倍分与水电费问题(专项培优训练)(学生版)
专题11 一元一次方程的应用—和差倍分与水电费问题(专项培优训练)试卷满分:100分 考试时间:120分钟 试卷难度:中等试卷说明:本套试卷结合人教版数学七年级上册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(本题2分)(2023秋·七年级单元测试)一批学生夏令营住某校学生宿舍楼,如果一间房住6人,那么有6人无房可住;如果一间房住8人,那么就空出一间房,若设该校学生宿舍楼有房x 间,则列出关于x 的一元一次方程正确的是( )A .668(1)x x -=-B .6681x x +=-C .668(1)x x +=-D .6681x x -=-2.(本题2分)(2022秋·河北·七年级校联考期末)《孙子算经》中有道“共车”问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?其大致意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车无人坐;若每2人共乘一车,最终剩余8人无车可乘,问有多少人,多少辆车?如果设有x 辆车,3.(本题2分)(2023春·七年级单元测试)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不A .②③⑤B .①④⑤C .①③⑤D .②④ 4.(本题2分)(2022秋·辽宁沈阳·七年级统考期末)把1~9这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”。
如图所示是可以看到部分数值的“九宫格”,则其中x 的值为( )A .1B .3C .4D .65.(本题2分)(2022秋·七年级课时练习)某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米,按每立方米a 元收费;用水超过10立方米的,超过部分加倍收费.某职工6月份缴水费16a 元,则该职工6月份实际用水量为( )A .13立方米B .14立方米C .15立方米D .16立方米6.(本题2分)(2023秋·天津南开·七年级校考期末)某市为提倡节约用水,采取分段收费.若每户每月用水不超过10吨,每吨收费4元;若超过10吨,超过部分每吨加收1元.小明家5月份交水费60元,则他家该月用水( )A .12吨B .14吨C .15吨D .16吨7.(本题2分)(2017秋·重庆开州·七年级统考期末)梦洁和嘉丽是邻居,星期天他们两家人准备去郊外的农家乐游玩,早上两家人同时乘坐了两辆不同价格的出租车,梦洁家乘坐的是起步4公里8元,以后每公里收1.2元,嘉丽家乘坐的是起步3公里6元,以后每公里收1.3元,两家人几乎同时到达农家乐,付款后梦洁发现两家人的车费仅差1.5元,则两家住地离公园的路程是( )A .20公里B .21公里C .25公里D .26公里8.(本题2分)(2019秋·七年级单元测试)某市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过10m 3,则按每立方米1.5元收费;若每月用水超过10m 3,则超过部分按每立方米3元收费,如果某居民户今去年12月份缴纳了36元水费,那么这户居民去年12月份的实际用水量为( )A .7m 3B .12m 3C .17m 3D .24m 39.(本题2分)(2022秋·河南周口·七年级校考期末)某校书法兴趣小组计划组织学生写春联.如果每人写6副,那么计划多写7副;如果每人写5副,那么比计划少13副.设有x 名同学,则( ) A .67513x x -=+B .67513x x +=-C .67513x x -=-D .67513x x +=+10.(本题2分)(2021秋·山东德州·七年级德州市陵城区第三中学校联考阶段练习)《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x 尺,则x =( )A .2.5B .6.5C .7D .11二、填空题:本大题共10小题,每小题2分,共20分.11.(本题2分)(2023秋·浙江湖州·七年级统考期末)今年某班有45人订阅过《初中生数学学习》,其中,上半年有18名男生,15名女生订阅了该杂志,下半年有20名男生,19名女生订阅了该杂志,有16第二阶梯每户每年用水量180~300立方米(含300),不超过180立方米的部分仍按每立方米3.1元计算,超过部分按每立方米按4.65元收费.若某用户去年交费651元,则该用户去年用水立方米.20.(本题2分)(2019秋·江苏盐城·七年级统考阶段练习)公民每月工资、薪金等个人收入所得不超过3000元的不必纳税,超过3000元的部分为全月应纳税所得额,此项税款按下面分段累加计算:(1)不超过500元的部分交5%的税;(2) 超过500元且低于2000元的部分交纳10%税;(3) 超过2000元且低于5000元的部分交15%税;(4)超过5000元的部分交20%税.若小张某个月个人收入交325元税,则小张该月个人收入为元.三、解答题:本大题共7小题,共60分.21.(本题8分)(2019秋·广东茂名·七年级期末)某市居民用水收费标准如下,每户每月用水不超过22立方米时,水费按a元/立方米收费,每户每月用水超过22立方米时,未超过的部分按a元/立方米收费,a 元/立方米收费.超过的部分按( 1.1)(1)若某用户4月份用水20立方米,交水费46元,求a的值;(2)若该用户7月份交水费71元,请问其7月份用水多少立方米?(1)结合表中数据,直接写出两人每次参与瑜伽运动的时间为小时;(2)若乙参与两项运动的总次数是24次,利用你所学的方程知识,求乙该月分别参与游泳和瑜伽项目的次数.24.(本题8分)(2023秋·云南楚雄·七年级统考期末)为倡导节约用水,某市采用阶梯价格调控手段达到节水目的,价目标准如下(水费按月缴纳):第一梯度:月用水量不超过12吨的部分,每吨2元.第二梯度:月用水量超过12吨但不超过20吨的部分,每吨3元.第三梯度:月用水量超过20吨的部分,每吨5元.m m吨,则用含m的式子表示甲用户当月应缴纳的水费为______元.(1)若甲用户月用水量为20(2)若乙用户6,7两个月共用水42吨(其中6月份用水量超过12吨,7月份用水量超过22吨),一共缴纳的水费为110元,问乙用户6,7月份各用水多少吨?25.(本题8分)(2022秋·河北沧州·七年级校考期中)为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若某用电户四月费的电费相当于平均每度0.5元,问该用电户四月份应缴电费多少元?(1)若小明家8月份用电200千瓦时,则应缴多少电费;a ),则应缴多少电费;(用含a的代数式表示,并化简)(2)若小明家8月份用电a千瓦时(其中280(3)若小明家8月份缴电费326元,求小明家8月份用电多少千瓦时.27.(本题10分)(2022秋·江西上饶·七年级统考阶段练习)如图,依依与爸爸在下围棋,棋盘旁有甲、乙两个围棋盒.甲盒中都是黑子,共12个;乙盒中都是白子,共9个.依依从甲盒中拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,求a的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的应用——和差倍分问题专题练习
一、选择题
1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().
A. 32+x=2×18
B. 32+x=2(38-x)
C. 52-x=2(18+x)
D. 52-x=2×18
2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().
A. 120-x=30%×180
B. 120-x=30%(180+x)
C. 120+x=30%×180
D. 180-x=30%(120+x)
3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是().
A. 2×1000(26-x)=800x
B. 1000(13-x)=800x
C. 1000(26-x)=2×800x
D. 1000(26-x)=800x
4、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为().
A. 2cm
B. 3cm
C. 4cm
D. 5cm
5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为().
A. 75元
B. 90元
C. 95元
D. 100元
6、父亲现在32岁,儿子现在5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是().
A. 32-x=5x
B. 32-x=10(5-x)
C. 32-x=5×10
D. 32+x=5×10
7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒
头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ). A. 3
x
+3(100-x )=100 B.
3
x
-3(100-x )=100
C. 3x +1003
x -=100
D. 3x -1003
x -=100 8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了( ).
A. 5场
B. 6场
C. 7场
D. 8场
9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x 尺,根据题意列一元一次方程,正确的是( ). A. 1
2 x +5=x -5 B.
1
2 x -5=x +5
C. 1
2
(x -5)=x +5
D. 1
2
(x +5)=x -5
二、填空题
10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______.
11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.
12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题: 一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?
如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人? 设大和尚x 人,小和尚y 人,可列方程组为______.
13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的
1
7
,则女儿现在的年龄是______.
14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:
巍巍古寺在山林,不知寺中几多僧.
三百六十四只碗,众僧刚好都用尽.
三人共食一碗饭,四人共吃一碗羹.
请问先生明算者,算来寺内几多僧.
诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x人,由题意可列方程为______.
三、解答题
15、某校购买了A,B两种教具共138件,共花了5400元,其中A教具每件30元,B教具每件50元,两种教具各买了多少件?
16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少.
17、列方程解应用题:
改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里.
18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答)
19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚?
20、列方程解应用题.
某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.
21、某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员准备送出的这三种美术用纸各多包?
22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?
23、某工厂现有15m3木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.
1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m3.
2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.
(1)如果1m3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.
(2)如果3m3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.。