陕西师范大学851高等代数2020年考研专业课初试大纲
陕西师范大学832综合化学2020年考研专业课初试大纲
陕西师范大学832综合化学2020年考研专业课初试大纲
陕西师范大学硕士研究生招生考试
《综合化学》考试大纲
本《综合化学》考试大纲适用于陕西师范大学化学化工学院化学学科硕士研究生招生考试,包含无机化学、分析化学和有机化学三门理论课程及对应的实验课程。
无机化学是化学专业的专业基础课,它既是该专业知识结构中重要的一环,也为其它几门后继课程准备必需的基础理论知识。
要求考生通过本课程的学习,掌握无机化学的基本规律和原理,重点掌握平衡理论、化学热力学和物质结构初步等知识,并能灵活运用所学知识解决综合问题。
有机化学是化学专业的专业基础课,主要考察学生对自由基取代、自由基加成、亲电加成反应、亲电取代反应、亲核取代反应和亲核加成反应、重排反应、周环反应等重要基础反应的机理;各类化合物相互转变的基本规律;结构解析有机化合物的能力;立体化学的基本知识和基本概念;综合运用所学知识合成目标产物的能力;
分析化学是化学专业的基础课,主要考核分析化学(下,仪器分析部分)的理论课程及对应的实验课程。
分析化学(下,仪器分析)是以物质的物理性质和物理化学性质为基础,主要包括光学分析法、电化学分析法、色谱法和其它仪器分析法。
、、考试的基本要求。
2020考研数一考纲(2020年整理).pptx
八、常微分方程
考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶 的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉 (Euler)方程 微分方程的简单应用
6. 会求点到直线以及点到平面的距离. 7. 了解曲面方程和空间曲线方程的概念. 8. 了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9. 了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求 该 投影曲线的方程.
五、多元函数微分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上 多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元 复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平 面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元 函 数的最大值、最小值及其简单应用
、 最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函 数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分 中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸 性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率 圆 与曲率半径
2020考研数一考纲(可编辑修改word版)
2020 年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150 分,考试时间为180 分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8 小题,每小题4 分,共32 分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题)9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:1x→∞lim x→0sin x= 1xlim⎛1+⎝1 ⎫x⎪=e⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径x2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b) 内,设函数f (x) 具有二阶导数.当f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.32.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握4换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.59.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算6两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[ l, l] 上的傅里叶级数函数在[0, l] 上的正弦级数和余弦级数考试要求71.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x ,cos x ,ln(1+x) 及(1+x )的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-l, l] 上的函数展开为傅里叶级数,会将定义在[0, l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求81.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n) = f (x), y '= f (x, y') 和y '= f ( y, y') .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数9一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空10间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.114.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.12概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F (x) =P{X ≤x}(-∞<x <+∞) 的概念及性质,13141 2 1 2 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a , b ) 、正态分布 N (, 2 ) 、指数分布及其应用,其中参数为(> 0) 的指数分布 E () 的概率密度为⎧⎪e -x , f (x ) = ⎨若x > 0, ⎩⎪ 0, 若x ≤ 0.5. 会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布 N (,; 2 ,2; ) 的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容2分布t 分总体个体简单随机样本统计量样本均值样本方差和样本矩布 F 分布分位数正态总体的常用抽样分布考试要求1516 ∑ 1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为S 2 = 1 n n -1 i =1 ( X i - X )22. 了解2 分布、t 分布和 F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念.2. 掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.17。
2020考研数一考纲
2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式与试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数得概念及表示法 函数得有界性、单调性、周期性与奇偶性 复合函数、反函数、分段函数与隐函数 基本初等函数得性质及其图形 初等函数 函数关系得建立数列极限与函数极限得定义及其性质 函数得左极限与右极限 无穷小量与无穷大量得概念及其关系 无穷小量得性质及无穷小量得比较 极限得四则运算 极限存在得两个准则:单调有界准则与夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续得概念 函数间断点得类型 初等函数得连续性 闭区间上连续函数得性质考试要求1.理解函数得概念,掌握函数得表示法,会建立应用问题得函数关系.2.了解函数得有界性、单调性、周期性与奇偶性.3.理解复合函数及分段函数得概念,了解反函数及隐函数得概念.4.掌握基本初等函数得性质及其图形,了解初等函数得概念.5.理解极限得概念,理解函数左极限与右极限得概念以及函数极限存在与左极限、右极限之间得关系.6.掌握极限得性质及四则运算法则.7.掌握极限存在得两个准则,并会利用它们求极限,掌握利用两个重要极限求极限得方法.8.理解无穷小量、无穷大量得概念,掌握无穷小量得比较方法,会用等价无穷小量求极限.9.理解函数连续性得概念(含左连续与右连续),会判别函数间断点得类型.10.了解连续函数得性质与初等函数得连续性,理解闭区间上连续函数得性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数与微分得概念导数得几何意义与物理意义函数得可导性与连续性之间得关系平面曲线得切线与法线导数与微分得四则运算基本初等函数得导数复合函数、反函数、隐函数以及参数方程所确定得函数得微分法高阶导数一阶微分形式得不变性微分中值定理洛必达(L’Hospital)法则函数单调性得判别函数得极值函数图形得凹凸性、拐点及渐近线函数图形得描绘函数得最大值与最小值弧微分曲率得概念曲率圆与曲率半径考试要求1.理解导数与微分得概念,理解导数与微分得关系,理解导数得几何意义,会求平面曲线得切线方程与法线方程,了解导数得物理意义,会用导数描述一些物理量,理解函数得可导性与连续性之间得关系.2.掌握导数得四则运算法则与复合函数得求导法则,掌握基本初等函数得导数公式.了解微分得四则运算法则与一阶微分形式得不变性,会求函数得微分.3.了解高阶导数得概念,会求简单函数得高阶导数.4.会求分段函数得导数,会求隐函数与由参数方程所确定得函数以及反函数得导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理与泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限得方法.7.理解函数得极值概念,掌握用导数判断函数得单调性与求函数极值得方法,掌握函数最大值与最小值得求法及其应用.8.会用导数判断函数图形得凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 得图形就是凹得;当()0f x ''<时,()f x 得图形就是凸得),会求函数图形得拐点以及水平、铅直与斜渐近线,会描绘函数得图形.9.了解曲率、曲率圆与曲率半径得概念,会计算曲率与曲率半径.三、一元函数积分学考试内容原函数与不定积分得概念 不定积分得基本性质 基本积分公式 定积分得概念与基本性质 定积分中值定理 积分上限得函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分与定积分得换元积分法与分部积分法 有理函数、三角函数得有理式与简单无理函数得积分 反常(广义)积分 定积分得应用考试要求1.理解原函数得概念,理解不定积分与定积分得概念.2.掌握不定积分得基本公式,掌握不定积分与定积分得性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式与简单无理函数得积分.4.理解积分上限得函数,会求它得导数,掌握牛顿-莱布尼茨公式.5.了解反常积分得概念,会计算反常积分.6.掌握用定积分表达与计算一些几何量与物理量(平面图形得面积、平面曲线得弧长、旋转体得体积及侧面积、平行截面面积为已知得立体体积、功、引力、压力、质心、形心等)及函数得平均值.四、向量代数与空间解析几何考试内容向量得概念向量得线性运算向量得数量积与向量积向量得混合积两向量垂直、平行得条件两向量得夹角向量得坐标表达式及其运算单位向量方向数与方向余弦曲面方程与空间曲线方程得概念平面方程直线方程平面与平面、平面与直线、直线与直线得夹角以及平行、垂直得条件点到平面与点到直线得距离球面柱面旋转曲面常用得二次曲面方程及其图形空间曲线得参数方程与一般方程空间曲线在坐标面上得投影曲线方程考试要求1.理解空间直角坐标系,理解向量得概念及其表示.2.掌握向量得运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行得条件.3.理解单位向量、方向数与方向余弦、向量得坐标表达式,掌握用坐标表达式进行向量运算得方法.4.掌握平面方程与直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间得夹角,并会利用平面、直线得相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面得距离.7.了解曲面方程与空间曲线方程得概念.8.了解常用二次曲面得方程及其图形,会求简单得柱面与旋转曲面得方程.9.了解空间曲线得参数方程与一般方程.了解空间曲线在坐标平面上得投影,并会求该投影曲线得方程.五、多元函数微分学考试内容多元函数得概念二元函数得几何意义二元函数得极限与连续得概念有界闭区域上多元连续函数得性质多元函数得偏导数与全微分全微分存在得必要条件与充分条件多元复合函数、隐函数得求导法二阶偏导数方向导数与梯度空间曲线得切线与法平面曲面得切平面与法线二元函数得二阶泰勒公式多元函数得极值与条件极值多元函数得最大值、最小值及其简单应用考试要求1.理解多元函数得概念,理解二元函数得几何意义.2.了解二元函数得极限与连续得概念以及有界闭区域上连续函数得性质.3.理解多元函数偏导数与全微分得概念,会求全微分,了解全微分存在得必要条件与充分条件,了解全微分形式得不变性.4.理解方向导数与梯度得概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数得求法.6.了解隐函数存在定理,会求多元隐函数得偏导数.7.了解空间曲线得切线与法平面及曲面得切平面与法线得概念,会求它们得方程.8.了解二元函数得二阶泰勒公式.9.理解多元函数极值与条件极值得概念,掌握多元函数极值存在得必要条件,了解二元函数极值存在得充分条件,会求二元函数得极值,会用拉格朗日乘数法求条件极值,会求简单多元函数得最大值与最小值,并会解决一些简单得应用问题.六、多元函数积分学考试内容二重积分与三重积分得概念、性质、计算与应用两类曲线积分得概念、性质及计算两类曲线积分得关系格林(Green)公式平面曲线积分与路径无关得条件二元函数全微分得原函数两类曲面积分得概念、性质及计算两类曲面积分得关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度得概念及计算曲线积分与曲面积分得应用考试要求1.理解二重积分、三重积分得概念,了解重积分得性质,了解二重积分得中值定理.2.掌握二重积分得计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分得概念,了解两类曲线积分得性质及两类曲线积分得关系.4.掌握计算两类曲线积分得方法.5.掌握格林公式并会运用平面曲线积分与路径无关得条件,会求二元函数全微分得原函数.6.了解两类曲面积分得概念、性质及两类曲面积分得关系,掌握计算两类曲面积分得方法,掌握用高斯公式计算曲面积分得方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度得概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形得面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数得收敛与发散得概念 收敛级数得与得概念 级数得基本性质与收敛得必要条件 几何级数与p 级数及其收敛性 正项级数收敛性得判别法 交错级数与莱布尼茨定理 任意项级数得绝对收敛与条件收敛 函数项级数得收敛域与与函数得概念 幂级数及其收敛半径、收敛区间(指开区间)与收敛域 幂级数得与函数 幂级数在其收敛区间内得基本性质 简单幂级数得与函数得求法 初等函数得幂级数展开式 函数得傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[,]l l -上得傅里叶级数 函数在[0,]l 上得正弦级数与余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数得与得概念,掌握级数得基本性质及收敛得必要条件.2.掌握几何级数与p 级数得收敛与发散得条件.3.掌握正项级数收敛性得比较判别法与比值判别法,会用根值判别法.4.掌握交错级数得莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛得概念以及绝对收敛与收敛得关系.6.了解函数项级数得收敛域及与函数得概念.7.理解幂级数收敛半径得概念,并掌握幂级数得收敛半径、收敛区间及收敛域得求法.8.了解幂级数在其收敛区间内得基本性质(与函数得连续性、逐项求导与逐项积分),会求一些幂级数在收敛区间内得与函数,并会由此求出某些数项级数得与.9.了解函数展开为泰勒级数得充分必要条件.10.掌握xe ,sin x ,cos x ,ln(1)x +及(1)x α+得麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数得概念与狄利克雷收敛定理,会将定义在[,]l l -上得函数展开为傅里叶级数,会将定义在[0,]l 上得函数展开为正弦级数与余弦级数,会写出傅里叶级数得与函数得表达式.八、常微分方程考试内容常微分方程得基本概念 变量可分离得微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单得变量代换求解得某些微分方程 可降阶得高阶微分方程 线性微分方程解得性质及解得结构定理 二阶常系数齐次线性微分方程 高于二阶得某些常系数齐次线性微分方程 简单得二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程得简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件与特解等概念.2.掌握变量可分离得微分方程及一阶线性微分方程得解法.3.会解齐次微分方程、伯努利方程与全微分方程,会用简单得变量代换解某些微分方程.4.会用降阶法解下列形式得微分方程:()(),(,)n y f x y f x y '''==与(,)y f y y '''=.5.理解线性微分方程解得性质及解得结构.6.掌握二阶常系数齐次线性微分方程得解法,并会解某些高于二阶得常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们得与与积得二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单得应用问题.线性代数一、行列式考试内容行列式得概念与基本性质 行列式按行(列)展开定理考试要求1.了解行列式得概念,掌握行列式得性质.2.会应用行列式得性质与行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵得概念矩阵得线性运算矩阵得乘法方阵得幂方阵乘积得行列式矩阵得转置逆矩阵得概念与性质矩阵可逆得充分必要条件伴随矩阵矩阵得初等变换初等矩阵矩阵得秩矩阵得等价分块矩阵及其运算考试要求1.理解矩阵得概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵与反对称矩阵以及它们得性质.2.掌握矩阵得线性运算、乘法、转置以及它们得运算规律,了解方阵得幂与方阵乘积得行列式得性质.3.理解逆矩阵得概念,掌握逆矩阵得性质以及矩阵可逆得充分必要条件,理解伴随矩阵得概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换得概念,了解初等矩阵得性质与矩阵等价得概念,理解矩阵得秩得概念,掌握用初等变换求矩阵得秩与逆矩阵得方法.5.了解分块矩阵及其运算.三、向量考试内容向量得概念向量得线性组合与线性表示向量组得线性相关与线性无关向量组得极大线性无关组等价向量组向量组得秩向量组得秩与矩阵得秩之间得关系向量空间及其相关概念n维向量空间得基变换与坐标变换过渡矩阵向量得内积线性无关向量组得正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量得线性组合与线性表示得概念.2.理解向量组线性相关、线性无关得概念,掌握向量组线性相关、线性无关得有关性质及判别法.3.理解向量组得极大线性无关组与向量组得秩得概念,会求向量组得极大线性无关组及秩.4.理解向量组等价得概念,理解矩阵得秩与其行(列)向量组得秩之间得关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换与坐标变换公式,会求过渡矩阵.7.了解内积得概念,掌握线性无关向量组正交规范化得施密特(Schmidt)方法.8.了解规范正交基、正交矩阵得概念以及它们得性质.四、线性方程组考试内容线性方程组得克拉默(Cramer)法则齐次线性方程组有非零解得充分必要条件非齐次线性方程组有解得充分必要条件线性方程组解得性质与解得结构齐次线性方程组得基础解系与通解解空间非齐次线性方程组得通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解得充分必要条件及非齐次线性方程组有解得充分必要条件.3.理解齐次线性方程组得基础解系、通解及解空间得概念,掌握齐次线性方程组得基础解系与通解得求法.4.理解非齐次线性方程组解得结构及通解得概念.5.掌握用初等行变换求解线性方程组得方法.五、矩阵得特征值与特征向量考试内容矩阵得特征值与特征向量得概念、性质相似变换、相似矩阵得概念及性质矩阵可相似对角化得充分必要条件及相似对角矩阵实对称矩阵得特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵得特征值与特征向量得概念及性质,会求矩阵得特征值与特征向量.2.理解相似矩阵得概念、性质及矩阵可相似对角化得充分必要条件,掌握将矩阵化为相似对角矩阵得方法.3.掌握实对称矩阵得特征值与特征向量得性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型得秩惯性定理二次型得标准形与规范形用正交变换与配方法化二次型为标准形二次型及其矩阵得正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩得概念,了解合同变换与合同矩阵得概念,了解二次型得标准形、规范形得概念以及惯性定理.2.掌握用正交变换化二次型为标准形得方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵得概念,并掌握其判别法、概率论与数理统计一、随机事件与概率考试内容随机事件与样本空间事件得关系与运算完备事件组概率得概念概率得基本性质古典型概率几何型概率条件概率概率得基本公式事件得独立性独立重复试验考试要求1.了解样本空间(基本事件空间)得概念,理解随机事件得概念,掌握事件得关系及运算.2.理解概率、条件概率得概念,掌握概率得基本性质,会计算古典型概率与几何型概率,掌握概率得加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性得概念,掌握用事件独立性进行概率计算;理解独立重复试验得概念,掌握计算有关事件概率得方法.二、随机变量及其分布考试内容随机变量随机变量分布函数得概念及其性质离散型随机变量得概率分布连续型随机变量得概率密度常见随机变量得分布随机变量函数得分布考试要求1.理解随机变量得概念,理解分布函数(){}()=≤-∞<<+∞得概念及性质,会F x P X x x计算与随机变量相联系得事件得概率.2.理解离散型随机变量及其概率分布得概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.了解泊松定理得结论与应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度得概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>得指数分布()E λ得概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数得分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量得概率分布、边缘分布与条件分布 二维连续型随机变量得概率密度、边缘概率密度与条件密度 随机变量得独立性与不相关性 常用二维随机变量得分布 两个及两个以上随机变量简单函数得分布考试要求1.理解多维随机变量得概念,理解多维随机变量得分布得概念与性质,理解二维离散型随机变量得概率分布、边缘分布与条件分布,理解二维连续型随机变量得概率密度、边缘密度与条件密度,会求与二维随机变量相关事件得概率.2.理解随机变量得独立性及不相关性得概念,掌握随机变量相互独立得条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;得概率密度,理解其中参数得概率意义.4.会求两个随机变量简单函数得分布,会求多个相互独立随机变量简单函数得分布.四、随机变量得数字特征考试内容随机变量得数学期望(均值)、方差、标准差及其性质 随机变量函数得数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)得概念,会运用数字特征得基本性质,并掌握常用分布得数字特征.2.会求随机变量函数得数学期望.五、大数定律与中心极限定理考试内容切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律与辛钦大数定律(独立同分布随机变量序列得大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)与列维-林德伯格定理(独立同分布随机变量序列得中心极限定理).六、数理统计得基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差与样本矩 2χ分布 t 分布 F 分布 分位数 正态总体得常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩得概念,其中样本方差定义为 2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布与F 分布得概念及性质,了解上侧α分位数得概念并会查表计算.3.了解正态总体得常用抽样分布.七、参数估计考试内容点估计得概念估计量与估计值矩估计法最大似然估计法估计量得评选标准区间估计得概念单个正态总体得均值与方差得区间估计两个正态总体得均值差与方差比得区间估计考试要求1.理解参数得点估计、估计量与估计值得概念.2.掌握矩估计法(一阶矩、二阶矩)与最大似然估计法.3.了解估计量得无偏性、有效性(最小方差性)与一致性(相合性)得概念,并会验证估计量得无偏性.4、理解区间估计得概念,会求单个正态总体得均值与方差得置信区间,会求两个正态总体得均值差与方差比得置信区间.八、假设检验考试内容显著性检验假设检验得两类错误单个及两个正态总体得均值与方差得假设检验考试要求1.理解显著性检验得基本思想,掌握假设检验得基本步骤,了解假设检验可能产生得两类错误.2.掌握单个及两个正态总体得均值与方差得假设检验.。
陕西师范大学602高等数学(I)2020年考研专业课初试大纲
陕西师范大学硕士研究生招生考试“602-高等数学(I)”考试大纲本《高等数学》(I)考试大纲适用于陕西师范大学地理科学与旅游学院各相关专业硕士研究生招生考试。
高等数学是大学理科学生的最基本课程之一,是大多数理工科专业学生的必修基础课。
它的主要内容包:函数与极限、一元函数微分学、一元函数积分学、空间解析几何与向量代数、多元函数微分学、多元函数积分学、无穷级数及常微分方程。
一、考试的基本要求要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。
二、考试方法和考试时间考试采用闭卷笔试形式,试题题型包括:选择题、判断题、填空题、计算题、应用题及证明题等。
试卷满分为150分,考试时间为180分钟。
三、考试内容(一)函数与极限1.映射、函数的概念及函数奇偶性、单调性、周期性、有界性,复合函数和反函数的概念,基本初等函数的性质及其图形。
2.数列极限的概念及收敛数列的性质。
3.函数的极限及其性质。
4.无穷小、无穷大、以及无穷小的阶的概念,用等价无穷小求极限。
5.极限运算法则。
6.极限存在准则,用两个重要极限求极限。
7.函数连续的概念、间断点的概念、判别间断点的类型。
8.连续函数的运算与初等函数的连续性。
9.闭区间上连续函数的性质(有界性定理、零点定理、介值定理,最大最小值定理)。
(二)一元函数微分学1.导数的概念、几何意义、函数的可导性与连续性之间的关系。
2.导数的四则运算法则和复合函数的求导法则、反函数的导数,高阶导数。
3.隐函数和参数式所确定的函数的一阶、二阶导数。
4.微分的概念、几何意义,微分的四则运算法则。
5.罗尔(Rolle)定理和拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理。
6.用洛必达(L’Hospital)法则求不定式的极限。
7.函数极值的概念,用导数判断函数的单调性和求极值的方法,求解简单的最大值和最小值的应用问题。
8.用导数判断函数图形的凹凸性,求拐点,描绘函数的图形。
2020考研数一考纲.pdf
2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green )公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss )公式 斯托克斯(Stokes )公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l −上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l −上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ−⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace )定理 列维-林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==−−∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求学海无涯1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。
(完整word版)2020考研数一考纲
2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分12高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.343.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿—莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求51.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用6考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的7概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与89条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l -上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.1011.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.112.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量12向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组13线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.142.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法。
2020年陕西师范大学教育学考研科目
2020年陕西师范大学教育学考研科目2020年陕西师范大学教育学院招收教育学研究生。
2020年教育学考研备考已经开始,只有明确了考试科目,才能有针对性的选择参考书,去规划复习。
博仁考研的老师为大家整理了2020陕西师范大学教育学考研科目,参考复习。
一、陕西师范大学教育学学硕专业目录040101教育学原理01教育哲学02教育基本理论03学校德育04教师教育05教育社会学06农村教育040102课程与教学论01课程论02教学论03远程教育的学与教04课程与课堂社会学01体育教学论01语文教学论01英语教学论01历史教学论01数学教学论01物理教学论01化学教学论01地理教学论01生物学教学论040103教育史01中国史02外国教育史与中外教育比较040104比较教育学01国际与职业教育研究02区域与性别教育比较03国别教育研究040105学前教育学01学前教育理论与实践02学前儿童心理发展与教育03学前儿童课程04学前艺术教育040106高等教育学01高等教育学原理02高等教育管理040107成人教育学01现代远程教育02教师继续教育理论与实践03成人教育理论040108职业技术教育学01职业教育政策与法律02比较职业教育040109特殊教育学01特殊儿童诊断与评估02特殊儿童认识与学习03残疾人职业教育0401Z3民族教育01少数民族双语教育02民族教育课程与教学研究03少数民族教育测量与评估0401Z5教师教育学01教师教育基本理论02教师认知与学习03教师教育的课程与教学04智能技术支持的教师教育二、陕西师范大学教育学学硕考研科目①101 思想政治理论②201英语一或202俄语或203日语③311教育学专业基础综合三、陕西师范大学教育学专硕专业目录0451教育045102学科教学(思政)045103学科教学(语文)045104学科教学(数学)045105学科教学(物理)045106学科教学(化学)045107学科教学(生物)045108学科教学(英语)045109学科教学(历史)045110学科教学(地理)045112学科教学(体育)045113学科教学(美术)045114现代教育技术045115小学教育045116心理健康教育045117科学与技术教育045118学前教育045119特殊教育045120职业技术教育四、陕西师范大学教育学专硕考研科目①101 思想政治理论②204 英语二③333教育综合距离2020年教育学考研还有百余天的时间,在了解了考试科目后,我们还要确定参考书,以及制定复习计划。
2020考研大纲-数一
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函 数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方 法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、 曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等). 七、无穷级数
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲 线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可 导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了 解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
考试内容 二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两 类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分 的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯 托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用. 考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面 坐标、球面坐标).
二、一元函数微分学
考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函 数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微 分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹 凸性、拐点及渐近线ห้องสมุดไป่ตู้函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径. 考试要求
【精品】【精编版】2020考研大纲-数一.pdf
2020年考研数学(一)大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间各卷种试卷满分均为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学(或微积分)约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选则题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分考试内容和考试要求高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立.数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 0sin lim 1x x x →=,1lim(1)x x e x→∞+=函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径.考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿—莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用.考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程.考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用.考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用.考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数.考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,sin ,cos ,ln(1)x e x x x +及α(1)x +的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和 函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用.考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),''(,')''(,').n y f x y f x y y f y y ===和5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理.考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算.考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质.考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解.考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵.考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性.考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验.考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算 理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布.考试要求1.理解随机变量的概念,理解分布函数{}()()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布)(λP 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,x e f x λλλ-⎧>=⎨≤⎩若若x 0.5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布.考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(,;,;)N μμσσρ的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质.考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗-拉普拉斯(DeMoivre-Laplace )定理 列维-林德伯格(Levy-Lindberg )定理.考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布.考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2 211().1niiS X Xn==--∑2.了解2χ分布、t分布和F分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计.考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验.考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。
【精编版】2020考研大纲-数一【精编版】.pdf
四、试卷题型结构
单项选则题
8 小题,每小题 4 分,共 32 分
填空题
6 小题,每小题 4 分,共 24 分
解答题(包括证明题) 9 小题,共 94 分
考试内容和考试要求
高等数学
一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、 分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立.
5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等) 及函数的平均值. 四、向量代数和空间解析几何
考试内容 向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量 垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与 方向余弦 曲面方程和空间曲线方程的概念 平面方程 直线方程 平面与平面、平面 与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程. 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行 的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量 运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互 关系(平行、垂直、相交等))解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该 投影曲线的方程. 五、多元函数微分学
2019年陕西师范大学研究生入学考试大纲-826-高等代数
陕西师范大学硕士研究生招生考试“826-高等代数”考试大纲本《高等代数》考试大纲适用于陕西师范大学数学学科各专业硕士研究生招生考试. 高等代数是大学数学系本科学生基础课程之一,也是大多数理工科专业学生的必修基础课.它的主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、- 矩阵,欧氏空间等. 要求考生熟悉这门课程中的基本概念、熟练掌握基本理论、有较强的运算能力以及综合分析问题和解决问题的能力.一、考试的基本要求要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法. 要求考生具有对高等代数这门课程的抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.二、考试方法和考试时间高等代数考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟.三、考试内容(一)多项式1.数域及其性质.2.一元多项式及其运算.3.带余除法;整除定义.4.最大公因式;辗转相除法;互素.5.不可约多项式的定义和基本性质;因式分解定理.6.k-重因式;重因式的判别和求法.7.多项式函数与根;多项式函数的有关性质.8.代数基本定理;复数域上多项式的因式分解;实数域上多项式的因式分解.9.本原多项式;Gauss引理.10. 在整数集上的多项式的分解问题;艾森施坦因判别法;有理数域上多项式的有理根.(二)行列式1.排列及其性质.2.n级行列式定义.3.行列式的性质.4.行列式的计算方法.5.行列式的一行(列)展开.6.非齐次与齐次线性方程组;克兰姆法则及有关定理.7.k 级子式;k 级子式的代数余子式;拉普拉斯(Laplace)定理;行列式乘法法则. (三)线性方程组1.高斯消元法;消元法的矩阵表示;齐次线性方程组.2.n维向量空间.3.线性相关;线性无关;向量组的秩.4.矩阵的秩;矩阵的秩的有关结论;矩阵秩的计算.5.线性方程组有解的判定定理.6.齐次线性方程组解的结构;一般线性方程组解的结构.(四)矩阵1.矩阵的运算.2.矩阵乘积的行列式;非退化矩阵;矩阵乘积的秩.3.可逆矩阵的判定及求法;逆矩阵的运算规律.4.分块矩阵的运算.5.初等矩阵;等价矩阵;用初等变换求矩阵的逆.6.矩阵分块乘法的初等变换.(五)二次型1.二次型的矩阵表示;非退化线性替换;矩阵的合同.2.二次型的标准形;配方法.3.复数域上的二次型的规范形;实数域上的二次型的规范形.4.正定二次型及其判定.(六)线性空间1.线性空间及其性质.2.维数;基与坐标.3.过渡矩阵及其性质;坐标变换公式.4.线性子空间及其判定;生成空间及其性质;基的扩充定理.5.子空间的交;子空间的和;维数公式;子空间的交与和的有关性质.6.直和及其判定;子空间的补;多个子空间的直和.(七)线性变换1.线性变换的简单性质;有关例子.2.线性变换的运算;线性变换的逆;线性变换的多项式.3.线性变换的矩阵;原向量与像向量坐标之间关系.4.特征值与特征向量;特征子空间;特征多项式5.线性变换可对角化的概念;可对角化的条件;可对角化的一般方法.6.值域与核的有关性质.7.不变子空间;线性空间的直和分解.8.最小多项式的基本性质;几类矩阵的最小多项式.(八) -矩阵1.λ-矩阵及其性质;λ-矩阵的秩;可逆λ-矩阵.2.λ-矩阵的初等变换;λ-矩阵的等价;标准形及其求法.3.行列式因子;不变因子及其求法.4.矩阵相似的条件;矩阵相似的几个判定方法.5.初等因子与不变因子的区别与联系;初等因子的求法.6.若当块的初等因子;若当形矩阵的初等因子.(九)欧几里得空间1.内积;欧氏空间;内积的基本性质;向量的夹角;度量矩阵及其性质.2.正交向量组;标准正交基及其性质;标准正交基的求法;正交矩阵.3.欧氏空间的同构;同构的基本性质;同构的判定方法.4.正交变换及其刻画;正交变换的性质;正交变换的分类.5.正交子空间及其性质;正交补.6.实对称矩阵及其性质;实对称矩阵正交对角化.四、掌握重点(一)多项式的整除理论.(二)最大公因式;辗转相除法;互素.(三)一般数域上多项式的因式分解理论.(四)多项式函数.(五)复数域、实数域以及有理数域上多项式的因式分解.(六)行列式定义及计算.(七)矩阵的运算及其理论.(八)可逆矩阵及其应用.(九)分块矩阵运算及其应用.(十)矩阵的秩及其应用.(十一)初等矩阵的概念及其性质.(十二)二次型的标准形理论.(十三)正定二次型及其应用.(十四)线性空间的概念及性质.(十五)子空间的概念及性质.(十六)子空间的运算及其性质.(十七)线性变换及其运算.(十八)线性变换的特征值理论及应用.(十九)线性变换的不变子空间及其应用.(二十)矩阵Jordan标准形的计算及其应用.(二十一)欧氏空间的概念及其性质.(二十二)正交变换及其性质.(二十三)对称变换及其性质.(二十四)实对称矩阵及其性质.五、参考书目[1] 北京大学数学系前代数小组编. 高等代数(第四版),高等教育出版社,2013.[2] 李志慧,李永明. 高等代数中的典型问题与方法(第二版),科学出版社,2016.。
2020年哈工大考研初试大纲数学[831] 高等代数
2020年数学学院硕士研究生入学考试大纲考试科目名称:高等代数考试科目代码:[831]一、考试内容及要求(一)多项式1.理解数域,多项式,整除,最大公因式,互素,不可约,重因式等概念。
了解多项式环,微商,本原多项式,字典排序法,对称多项式,初等对称多项式,齐次多项式,多项式函数等概念。
2.掌握整除,带余除法定理,最大公因式定理,互素多项式及不可约多项式的判别与性质,多项式唯一因式分解定理,余式定理,因式定理、代数基本定理,Vieta定理,高斯引理,Eisenstein判别定理,对称多项式基本定理。
3.掌握多项式无重因式、多项式相等的判别条件,Lagrange插值公式,复数域、实数域及有理数域上多项式因式分解理论,有理多项式的有理根范围。
4.掌握辗转相除法,化对称多项式为初等对称多项式的多项式的方法。
(二)行列式1.了解行列式的概念,理解行列式的子式,余子式及代数余子式的概念。
2.掌握行列式的性质,Cramer法则,Laplace定理,行列式乘法公式。
3.掌握行列式的计算,并且能运用行列式理论解决相关问题。
(三)线性方程组1.理解向量线性相关,向量组等价,极大无关组,向量组的秩,矩阵的秩,基础解系,解空间等概念。
2.掌握线性方程组有解判别定理,解的结构,以及求解线性方程组的方法。
(四)矩阵1.理解矩阵的基本概念及其性质,掌握矩阵的线性运算、乘法、转置,以及它们的运算规律。
2.掌握逆矩阵的性质以及矩阵可逆的充要条件。
掌握伴随矩阵的概念与性质。
理解矩阵的初等变换及矩阵等价的概念,会求矩阵的秩及逆矩阵。
3.理解分块矩阵,掌握分块阵的运算及初等变换。
(五)二次型1.掌握二次型的概念及二次型的矩阵表示,二次型秩的概念,二次型的标准形、规范形及慣性定律,掌握用合同变换、正交变换化二次型为标准形的方法。
2.掌握二次型和对应矩阵的正定、半正定、负定、半负定及其判别法。
(六)线性空间1.理解线性空间,子空间,生成子空间,基底,维数,坐标,过渡矩阵,子空间的和与直和,线性空间同构等概念。
陕西师范大学603高等数学2020年考研专业课初试大纲
陕西师范大学硕士研究生招生考试“603-高等数学”考试大纲《高等数学》考试大纲适用于陕西师范大学计算机软件与理论和量子信息学专业硕士研究生招生考试。
《高等数学》是计算机学科各专业学生的重要基础之一。
它的主要内容包括函数的极限与连续性、一元函数微积分学、多元函数微积分学、常微分方程、向量代数与空间解析几何、无穷级数等。
要求考生熟悉基本概念、掌握基本定理、有较强的计算能力、证明能力和综合分析解决问题能力。
一、考试的基本要求要求考生比较系统地理解《高等数学》的基本概念和基本理论,掌握高等数学的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、计算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间高等数学考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
三、考试内容(一)函数的极限与连续性1.函数的概念及表示法,函数的有界性、单调性、奇偶性和周期性,函数的运算,初等函数;2.数列极限的定义及性质;3.函数极限的定义及性质,函数的左极限和右极限;4.无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较;5.极限的四则运算法则,复合函数的极限运算法则;6.极限存在的两个准则:夹逼准则和单调有界准则,两个重要极限;7.函数连续的概念,左连续和右连续,间断点的类型;8.连续函数的和、差、积、商的连续性,反函数与复合函数的连续性,初等函数的连续性;9.闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理,介值定理。
(二)导数和微分1.导数的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线;2.函数的四则运算求导法则,反函数的求导法则,复合函数的求导法则,基本初等函数的导数;3.高阶导数;4.隐函数的导数与二阶导数,由参数方程所确定函数的导数及二阶导数;。
硕士研究生入学考试大纲-853高等代数
目录I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (4)全国硕士研究生入学统一考试高等代数考试大纲I 考查目标要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容与题型结构计算题(30%)、证明题(70%)III 考查内容一、多项式1.熟练掌握多项式因式分解理论及整除理论。
2.掌握多项式、不可约多项式、最大公因式、重因式的概念;掌握整除、互素、不可约等概念的联系与区别。
3.掌握带余除法、辗转相除法、艾森斯坦因(Eisenstein)判别法。
4.会求两个多项式的最大公因式,会求有理系数多项式的有理根,会判别两个多项式互素。
二、行列式1.熟练掌握行列式的性质及行列式的计算。
2.掌握n阶行列式的定义。
3.掌握克拉默(Cramer)法则。
三、线性方程组1.熟练掌握向量线性相关性的概念、性质、判别法,会求向量组的秩及最大线性无关组。
2.掌握基础解系的概念及计算,熟练掌握线性方程组的解的判别定理,以及齐次和非齐次线性方程组的求解。
3.熟练掌握矩阵的秩的概念及计算。
四、矩阵1.熟练掌握矩阵、可逆矩阵、初等矩阵的概念与性质。
2.理解分块矩阵的概念,掌握分块矩阵的运算及思想方法。
3.熟练掌握矩阵的加法、减法、乘法,数乘、转置等运算。
4.熟练掌握可逆矩阵的判别方法及逆矩阵的计算。
5.能熟练使用矩阵的初等变换方法。
五、二次型1.掌握二次型的标准形、实二次型的规范形的概念。
2.熟练掌握正定二次型的概念、性质、判别方法。
3.掌握化二次型为标准形的思想方法。
4.理解合同矩阵的概念及背景。
六、线性空间1.掌握线性空间、子空间的概念及判定方法。
2020年全国硕士研究生招生考试考研数学考试大纲(数学一)
2
积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常 (广义)积分定积分的应用
考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换 元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等) 及函数的平均值. 四、向量代数和空间解析几何 考试内容 向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条 件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲 线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂 直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间 曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的 条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量 运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互 关系(平行、垂直、相交等))解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西师范大学硕士研究生招生考试
“851-高等代数”考试大纲
《高等代数》考试大纲适用于陕西师范大学计算机软件与理论和量子信息学专业硕士研究生招生考试。
《高等代数》是计算机学科各专业学生的重要基础之一。
它的主要内容包括多项式、行列式和线性方程组、矩阵及其运算、特征值和特征向量、线性空间和线性变换、对称矩阵和二次型等。
要求考生熟悉基本概念、掌握基本定理、有较强的计算能力、证明能力和综合分析解决问题能力。
一、考试的基本要求
要求考生比较系统地理解《高等代数》的基本概念和基本理论,掌握高等代数的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、计算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间
高等代数考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
三、考试内容
(一)多项式
1. 数域P上的一元多项式;
2. 多项式的整除及性质;
3. 带余除法;
4. 两个多项式的最大公因式,辗转相除法;
5. 不可约多项式及性质;
6. 因式分解定理;
7. 重因式;
8. 多项式函数;
9. 代数基本定理与多项式的因式分解;
10. 有理系数多项式。
(二)行列式
1. 行列式的概念和基本性质;
2. 行列式的计算;
3. 行列式的余子式和代数余子式;
4. 行列式按行(列)展开定理;
5. 拉普拉斯(Laplace)定理;
6.范德蒙(Vandermonde)行列式。
(三)矩阵
1. 矩阵的概念;。