30m预应力混凝土简支T梁
30米预应力装配式简支T梁桥的上部结构
30米预应力装配式简支T梁桥的上部结构1.引言预应力装配式简支T梁桥是一种常用于中小跨度桥梁的结构形式,具有施工周期短、成本低、质量可控等优点。
本文将对一座30米预应力装配式简支T梁桥的上部结构进行介绍。
2.结构形式2.1T形主梁T形主梁是本桥的承重构件,由混凝土预制构件组成,其截面形状为T形。
T形主梁的横向宽度较窄,利于施工,且具有良好的受力性能。
主梁的长度为30米,采用了预应力钢筋进行预应力加固,以增加其承载能力。
2.2横梁横梁位于主梁的两侧,起到连结主梁和纵向横梁的作用。
横梁同样由混凝土预制构件组成,其形状为矩形或闭口形,具有较好的整体刚度和承载能力。
2.3纵向横梁纵向横梁位于主梁的底部,其作用是增加主梁的整体刚度和稳定性。
纵向横梁同样由混凝土预制构件组成,可以分为多个跨度,每个跨度之间通过伸缩缝连接。
2.4支座支座是桥梁与土地接触的部分,起到承载桥梁重力和传递荷载的作用。
在本桥的上部结构中,支座位于主梁的两侧,采用橡胶支座。
橡胶支座具有较好的承载能力和减震性能,可以有效减小桥梁受到的地震和车辆荷载产生的震动。
3.施工工艺3.1预制首先,根据设计要求和施工图纸进行主梁、横梁和纵向横梁的预制。
预制过程中需要进行混凝土搅拌、模具浇注、养护等环节,确保预制构件的质量和强度符合要求。
3.2运输预制完成后,将构件进行装车和运输。
运输过程中需要注意保护构件,防止损坏。
3.3吊装到达施工现场后,使用吊车将预制构件吊装至正确的位置。
吊装过程中需要进行精确的定位和调整,确保构件的安装正确。
3.4安装吊装完成后,进行构件的安装,包括主梁、横梁和纵向横梁的连接。
安装过程中需要进行预应力张拉和调整,确保构件之间的力学连接性能。
4.结论。
30米预应力装配式简支T梁桥的上部结构
设计总说明书1.1 技术资料1.1.1 桥面净空净9+2×1.5(人行道)1.1.2 设计荷载公路Ⅱ级,人群荷载3.0KN/m21.1.3 计算要求设计流量设计水位确定桥长确定桥面最低标高上部结构内力计算下部结构计算1.2 结构形式上部采用30m装配式预应力混凝土T形梁1.3 主要材料1.3.1 混凝土主梁、人行道、栏杆及铺装层均采用C40号混凝土。
1.3.2 预应力钢束采用1×7标准型-15.2-1860-Ⅱ-GB/T 5224—1995钢绞线。
1.3.3 普通钢筋纵向抗拉普通钢筋采用HRB400钢筋,箍筋及构造钢筋采用HRB335钢筋。
1.3.4 锚具按后张法施工工艺制作主梁,采用HVM15-9型锚具。
1.3.5 基本计算数据材料特性表表1-11.4 上部结构说明书1.4.1 技术标准和技术规范《公路桥涵设计通用规范》 JTGD60-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTJ021-89 《公路工程技术标准》 JTJ01-881.4.2 技术标准标准跨径:30m计算跨径:29.16m主梁全长:29.96m支点距端顶:0.40m梁高:2.00m设计荷载:公路Ⅱ级,人群荷载3.0KN/m2桥面净空:净-9+2 1.51.4.3 设计要求A为减轻主梁的安装重量,增强桥梁的整体性,在预制T梁上设40cm的湿接缝B 设计构件尺寸按规范图C 对内梁各截面进行验算上部结构设计4.1 横截面布置4.1.1 主梁间距与主梁片数如图4-1主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T梁翼板。
因该桥采用30m预应力混凝土简支T形梁桥,主梁间距均为220㎝,(T梁的上翼缘宽度为180㎝,保留40㎝的湿接缝),考虑人行道适当挑出,故净-9+2×1.5m人行道的桥宽采用五片主梁 (如图4-1所示)。
上部结构一般构造图图4-14.1.2 主梁跨中截面主要尺寸拟定A 主梁高度预应力混凝土简支梁桥的主梁高度与其跨径之比通常在1/14--1/25之间,高跨比约在1/18—1/19之间。
预应力简支梁桥课程设计
预应力简支梁桥课程设计目录1 计算依据与基础资料 (3)1.1 主梁跨径及全长 (3)1.2 桥面净空:21m (3)1.3 设计荷载:公路Ⅱ级 (3)1.4 计算方法:极限状态法 (3)1.5 设计依据 (3)1.6 材料和工艺 (3)1.7 设计要点 (4)2 结构尺寸及截面特征 (4)2.1 横截面布置 (4)构造图如图所示 (5)2.3 T梁翼缘有效宽度计算 (7)3 主梁内力计算 (7)3.1 永久作用及其作用效应 (7)3.2 可变作用及其作用效应计算 (12)3.3 作用效应组合 (19)4 主梁截面几何特性 (22)5 主梁配筋及布置 (22)5.1 跨中截面钢束的估算和确定 (22)5.2 跨中截面预应力钢束的布置 (23)5.3 非预应力钢筋的估算及布置 (25)6 预应力损失计算 (25)6.1 预应力钢束与管道壁之间的摩擦引起的预应力损失 (25)6.2 由锚具变形、钢束回缩引起的预应力损失 (26)6.3 混凝土弹性压缩引起的预应力损失 (28)6.4 应力松弛引起的预应力损失 (28)6.5 混凝土收缩和徐变引起的预应力损失 (28)6.6 预应力损失汇总 (31)7 主梁承载能力及应力验算 (31)7.1 持久状况承载能力极限状态承载力验算 (31)7.2 正常使用极限状态抗裂性验算 (36)8 主梁端部局部承压验算 (37)8.1 局部承压区截面尺寸验算 (37)8.2 局部抗压承载验算 (38)9 主梁变形验算 (39)9.1 预压力引起的跨中反拱度 (39)9.2 由荷载引起的跨中挠度 (40)9.3 结构刚度验算 (41)9.4 预拱度设置 (41)10 行车道板计算 (41)10.1 悬臂板的荷载效应 (41)10.2 连续板荷载效应计算 (43)10.3 截面设计、配筋和承载力验算 (47)30m 预应力简支梁桥课程设计1 计算依据与基础资料 1.1 主梁跨径及全长标准跨径:30.00m (墩中心距离) 主梁全长:29.96m 计算跨径:29.00m 1.2 桥面净空:21m桥面宽度:由于桥面宽度较大,确定将桥面分为两幅,半幅桥宽10m 。
预应力简支撑t梁混凝土计算
预应力简支撑t梁混凝土计算随着建筑技术的发展和建筑结构的多样化,预应力混凝土结构在工程中被广泛应用。
预应力混凝土结构中,预应力简支撑t梁是一种常见的结构形式。
本文将介绍预应力简支撑t梁混凝土计算的相关内容。
1. 引言预应力简支撑t梁是一种由上部受压预应力筋和下部受拉钢筋构成的梁。
预应力筋通过预应力引张机构进行预应力的引入,使得梁在使用状态下能够充分利用混凝土的承压性能,增加梁的承载力和抗弯刚度。
2. 计算方法预应力简支撑t梁的计算方法主要包括截面力学性能计算和受力计算两个方面。
2.1 截面力学性能计算截面力学性能计算是预应力简支撑t梁计算的基础。
首先需要确定梁的几何尺寸和材料性能,包括梁的宽度、高度、上下翼缘宽度、翼缘厚度等。
然后根据这些参数计算梁的截面面积、截面惯性矩、截面模量等。
2.2 受力计算受力计算是预应力简支撑t梁计算的核心内容。
在受力计算中,需要分别考虑梁在自重和活载荷作用下的受力情况。
首先计算梁在自重作用下的受力,包括弯矩、剪力和轴力。
然后计算梁在活载荷作用下的受力,根据活载荷的大小和分布形式,确定梁的受力情况。
3. 设计要求预应力简支撑t梁的设计要求主要包括受力性能、变形性能和施工性能三个方面。
3.1 受力性能预应力简支撑t梁的受力性能要求梁能够满足弯矩、剪力和轴力的要求。
在设计中,需要根据工程的具体情况确定梁的截面尺寸和预应力筋的布置方式,以满足受力性能的要求。
3.2 变形性能预应力简支撑t梁的变形性能要求梁在使用状态下能够满足挠度和躯体变形的要求。
在设计中,需要根据工程的挠度和躯体变形的限值,确定梁的截面尺寸和预应力筋的预应力水平,以满足变形性能的要求。
3.3 施工性能预应力简支撑t梁的施工性能要求梁能够满足施工过程中的要求。
在设计中,需要考虑梁的施工方法和施工工艺,以满足施工性能的要求。
4. 设计实例为了更好地理解预应力简支撑t梁混凝土计算的方法和要求,下面以一座桥梁为例进行设计实例。
预应力混凝土简支t梁毕业设计
预应力混凝土简支t梁毕业设计一、选题背景和意义预应力混凝土简支T梁作为高速公路和铁路桥梁中常用的结构形式之一,在工程实践中具有广泛的应用。
该结构形式具有刚度大、变形小、承载能力强等优点,因此在桥梁设计中得到了广泛的应用。
本文以预应力混凝土简支T梁为研究对象,通过对其受力性能进行分析和计算,探讨其在工程实践中的应用。
二、预应力混凝土简支T梁结构及受力特点1. 结构形式预应力混凝土简支T梁是由上下两个翼缘和中间的腹板组成的。
其中,上下两个翼缘呈倒T形,腹板呈长方形。
在制作过程中,先制作好预应力钢筋,并将其张拉到设计要求的预应力值后,再浇筑混凝土。
2. 受力特点(1)弯曲受力:由于车辆荷载等原因,T梁会产生弯曲变形。
这时,上下两个翼缘会承受剪切力和弯曲扭矩,腹板则会承受弯曲应力。
(2)剪切受力:在车辆荷载作用下,T梁上下两个翼缘之间会产生剪切力。
这时,T梁的受力状态就类似于一根悬臂梁。
(3)压弯受力:当T梁的跨度较大时,由于自重和荷载的作用,T梁中间的腹板会发生压弯变形。
这时,上下两个翼缘也会承受一定的压应力。
三、预应力混凝土简支T梁设计计算1. 参考标准本文设计参考了《公路桥涵设计细则》(JTG D60-2015)和《预应力混凝土结构设计规范》(GB 50010-2010)等相关标准。
2. 计算过程(1)截面尺寸确定:根据桥墩高度、跨度等参数确定T梁截面尺寸。
(2)荷载计算:根据桥梁使用要求和交通流量等参数进行荷载计算。
(3)静态分析:采用静态分析方法对T梁进行分析,得出各个截面的受力情况。
(4)预应力钢筋设计:根据静态分析结果,确定预应力钢筋的数量和张拉方式等参数。
(5)混凝土设计:根据静态分析结果和预应力钢筋设计参数,进行混凝土配合比设计。
四、结论与展望通过对预应力混凝土简支T梁的研究,可以得出以下结论:(1)预应力混凝土简支T梁具有较好的承载能力和变形性能,适用于中小跨径桥梁的设计。
(2)在T梁的设计过程中,需要考虑荷载计算、截面尺寸确定、静态分析、预应力钢筋设计和混凝土配合比设计等因素。
预应力混凝土简支t梁课程设计
预应力混凝土简支t梁课程设计预应力混凝土简支T梁是一种常见的结构形式,广泛应用于桥梁、高速公路、铁路等工程中。
本课程设计旨在通过对预应力混凝土简支T梁的设计过程和计算方法进行详细分析,使学生掌握预应力混凝土结构设计的基本理论和方法。
一、设计要求根据工程实际情况,我们的设计要求是:跨度为30米,道路等级为一级公路,荷载标准按照GB/T 50009-2012《建筑结构荷载规范》执行,使用C50的预应力混凝土。
二、设计步骤1. 确定截面尺寸和受力状态根据跨度和荷载标准,我们可以根据静力平衡原理确定截面形状和尺寸。
在确定截面尺寸时,需考虑梁的弯矩、剪力和轴力等受力状态。
2. 计算活载和恒载根据荷载标准,计算活载和恒载对T梁的作用力大小。
根据桥梁的具体情况,包括车辆类型、车道数、车辆荷载等参数,计算活载作用下的弯矩和剪力。
3. 计算预应力力量根据截面尺寸和受力状态,计算预应力的力量。
预应力可以通过预应力钢筋的预拉或者压力传递产生,根据静力平衡原理,计算预应力的大小和位置。
4. 设计受力钢筋根据受力状态和预应力力量,设计受力钢筋的数量和位置。
受力钢筋主要用于承受剪力和轴力,保证梁的受力性能。
5. 计算截面抗弯承载力和抗剪承载力根据受力钢筋和预应力的力量,计算截面的抗弯承载力和抗剪承载力。
根据结构的安全性要求,保证截面的抗弯和抗剪强度满足设计要求。
6. 校核截面尺寸根据抗弯和抗剪承载力的计算结果,对截面尺寸进行校核。
如果截面尺寸不满足要求,则需要重新调整截面形状或者增加预应力力量。
7. 绘制截面图和构造图根据设计计算结果,绘制截面图和构造图。
截面图主要用于展示截面尺寸和钢筋布置,构造图用于展示梁的构造形式和连接方式。
8. 编写设计报告根据设计计算结果和绘制的图纸,编写设计报告。
设计报告应包括设计计算的步骤、输入参数、计算结果和结论等内容,以便于后续施工和验收。
三、设计注意事项1. 在设计过程中,应根据具体情况合理选择混凝土的强度等级和预应力力量,保证结构的安全性和经济性。
预应力混凝土简支T梁课程设计-桥梁工程
四、计算指导书
(二)毛截面几何特性计算 对于预应力混凝土受弯构件来说,其内力偶臂所能变 化的范围越大,则在预加力相同的条件下,其所能抵抗外 弯矩的能力也就越大,即抗弯效率越高。 对于全预应力混凝土梁,混凝土合力只能在上下核心 之间移动。
四、计算指导书
(二)毛截面几何特性计算 截面效益指标(The Section Efficiency factor) 任意截面的截面特性:截面高度h,上核心距Ku,下 核心距Kb,预应力筋的偏心距e。
四、计算指导书
(二)毛截面几何特性计算 从预应力简支T梁的施工过程看,翼板的一部分在T梁 安装就位后现浇,使横截面T梁连成整体,扣除现浇段的T 梁截面称为小毛截面,全截面称为大毛截面,因此预制时 梁的自重,接缝重量及预应力荷载均由小毛截面承担,二 期恒载,活载由大毛截面承担。 l、小毛截面特性计算; 2、大毛截面特性计算。
二、基本资料
1、跨径和宽度 计算跨径:L0=26.0~36.0m; 主梁全长:L=26.96~36.96m; 桥面宽度:10.0~13.8m。 2、设计荷载 公路—Ⅰ级;公路—Ⅱ级。
二、基本资料
3、材料 (1)混凝土 主梁混凝土强度等级不低于C40;栏杆和桥面铺装混 凝土强度等级为C40。
三、基本内容
9、应力验算; 10、挠度及锚固区计算; 11、桥面板配筋; 12、板式橡胶支座设计(待定); 13、主梁横膈梁配筋(待定); 14、绘图及整理计算书。
四、计算指导书
(一)主梁构造尺寸拟定 主梁截面尺寸按桥梁工程教材,可参照经验数据确定。 l、高跨比:l/15~l/25;一般可取1/16~1/18。 2、横隔梁:5~7道; 3、主梁宽度:2.0~2.5m;
二、基本资料
(2)预应力筋 纵向预应力束采用7Ф 5mm高强度低松弛预应力钢绞线, 每束6根。钢绞线技术标准应符合《预应力混凝土用钢绞 线》(GB/T5224-2003),公称直径Ф s15.2mm,标准强度 fpk=1860MPa,弹性模量Ep=1.95x105MPa,单股面积Ay= 139mm2。
30m预应力混凝土简支T梁计算书
一、主要技术标准及设计采用规范1、主要技术标准(1)道路等级:城市主干道路;(2)荷载标准:公路-1级,人群荷载:3.5kN/m2;(5)平纵曲线:本桥位于直线段,桥面最大纵坡:3%;(6)桥面横坡:行车道2%人字坡;(7)地震:无资料。
2、设计采用规范(1)《公路工程技术标准》(JTG B01-2003)(2)《公路桥涵设计通用规范》(JTGD60-2004)(3)《公路桥涵地基与基础设计规范》(JTJ024-85)(4)《公路桥涵钢结构及木结构设计规范》(JTJ025-86)(5)《公路工程抗震设计规范》(JTJ004-89)(6)《城市桥梁设计准则》(JTJ11-93)(7)《城市桥梁设计荷载标准》(CJJ77-98)(8)《钢结构工程施工及验收规范》(GB50215-95)(9)参考规范《铁路钢桥制造及验收规范》(TB10212-98)二、桥梁总体布置1、桥型与孔跨布置主桥采用1联(30.7+100+30.7)m钢桁拱桥,主桥全长161.4m。
2、桥梁横断面布置桥梁横断面布置为:1.5m(人行道、栏杆)+3.0m(非机动车道)+2.0m(拱肋及吊杆区,含防撞护拦)+23.0m(机动车道)+2.0m(拱肋及吊杆区,含防撞护拦)+3.0m(非机动车道)+1.5m(人行道、栏杆),桥面全宽36.0m。
三、桥梁结构设计1、上部结构设计本桥上部结构采用连续钢桁拱结构,两片承重主桁间距为25m,主桁间距远大于桥梁宽跨比1/20的要求,通过合理的系杆与桥面结构布置,具有良好的横向刚度。
主跨拱圈矢高20m,矢跨比接近1/4,拱脚在桥面以下高度为6m;边跨计算跨度30m,平弦钢桁梁主桁高度9.5m。
桁梁和拱肋的标准节间距为5m。
弦不分上下弦杆、拱部分上下弦杆、加劲弦杆、系杆均采用箱形截面,横梁采用工字形截面、设有纵横加劲肋,吊杆、腹杆及平纵联均采用工字形截面。
桥面板主要采用钢筋混土Π形板,边跨机动车道部分为了增加压重而采用矩形截面钢筋混凝土板,人行道部分全桥均采用槽形板。
30米T梁施工方案
T梁预制施工方案1、编制依据及原则1.1编制依据1.1.1谷城至竹溪高速第**合同段(K87+410~K93+690)两阶段施工图:第Ⅱ.16.D 册,第T.09册30米装配式预应力混凝土T梁(先简支后结构连续)。
1.1.2交通部颁发的有关规范和标准:《公路桥涵施工技术规范》JTJ041-2000《公路工程质量检验评定标准》(第一册.土建工程)JTG F80/1-2004《公路水泥混凝土试验规程》JTJ053-94《公路工程施工安全技术规程》JTJ076-951.2编制原则1.2.1根据本工程施工特点和各目标要求,合理安排施工方案与旅工顺序,制定切实可行的工方案,积极采取新工艺、新材料、新技术、新设备,确保工程质量和安全1.2.2因地制宜、合理布置施工平面,尽量减少临时用地数量。
1.2.3采用平行流水作业及均衡施工方法,运用网络计月技术控别随工进度,确保项目工期1.2.4根据施工工期和各施工工序衔接惰况,合理投入工料机等施工资源,尽量让各种施工资源在工程建设过程中,发挥到最大效能,不浪费施工资源。
1.2.5施工过程中,对工程计划采取动态管理,及时很据工程的进展情况进行调整施工计划,针对出现的问题,统筹考虑,保证桥梁工程施工的整体进度不受影响。
2、工程概况谷竹高速公路16标,起点里程K87+410,终点里程K93+690,全长6.28公里,桥梁4座,(分别为李家湾中桥、解家湾大桥、田家湾大桥及赵家湾大桥)全长1040.25m,桥梁最大高度33.6m。
上部构造为预应力混凝土T梁,共335片30米装配式预应力混凝土T梁。
受白鹤隧道施工的影响和限制,拟定在隧道进出口各规划1个T梁预制场地进行预制梁生产,考虑隧道进口解家湾大桥较高,墩柱、盖梁施工周期较长,计划先建设2#梁场,预制完成田家湾、赵家湾的175片梁后再开始1#梁场的建设、预制李家湾中桥、解家湾大桥160片T梁预制工作,本合同段各桥预制T梁数量分布如下:30m预制T梁轴线处高200cm,预制T梁中梁底宽50cm,顶宽170cm;边梁底宽50cm,顶宽205cm,中梁及边梁顶板均设横坡(大部分2%)。
4车道高速公路30米预应力混凝土简支T梁桥上部结构设计本科生毕业设计论文
4车道⾼速公路30⽶预应⼒混凝⼟简⽀T梁桥上部结构设计本科⽣毕业设计论⽂4车道⾼速公路30⽶预应⼒混凝⼟简⽀T梁桥上部结构设计本科⽣毕业设计论⽂1⽂献综述1.1预应⼒混凝⼟简⽀T梁桥国外研究进展18世纪中叶⼯业⾰命后,钢、⽔泥、钢筋混凝⼟及预应⼒混凝⼟等⼈⼯材料的发展和应⽤,推动了近代桥梁科学技术的⾰命。
⼈⼯材料在桥梁⼯程上的应⽤是近代桥梁的标志。
19世纪中期,钢材的出现,开始了⼟⽊⼯程的第⼀次飞跃。
随后⼜产⽣了⾼强钢材,于是钢结构得到蓬勃发展。
结构跨度从砖、⽯、⽊结构的⼏⽶、⼏⼗⽶跃到百⽶、⼏百⽶⾄千⽶以上,开创了在⼤江、海峡上修建桥梁的奇迹[1]。
1867年钢筋混凝⼟诞⽣,实现了⼟⽊⼯程的第⼆次飞跃。
有了钢筋混凝⼟才有可能建造跨越能⼒很⼤的桥梁,并使形式多样化。
1905年,⽐利时出现了单跨55m的钢筋混凝⼟桥;1930年,法国的弗莱西奈建造了跨度178m的钢筋混凝⼟拱桥。
1928年⾼强钢丝⽤于预应⼒混凝⼟,使在混凝⼟中建⽴永存的预压应⼒成为可能,奠定了现代预应⼒混凝⼟的实⽤基础,⼤⼤提⾼了混凝⼟结构的抗裂性能、刚度和承载能⼒,使其⽤途更为⼴泛,使⼟⽊⼯程发⽣了⼜⼀次飞跃[2,3]。
20世纪中叶,第⼆次世界⼤战以后,全球的持续稳定和科学技术与经济的⾼速发展,使桥梁科学技术获得了⽐历史上任何时期都快的发展。
主要表现为:⾼强轻质材料的发展和应⽤;跨度的不断增⼤,形式的多样化与结构的整体化;设计与计算的计算机化(如CAD技术的发展);制造的⼯业化、⾃动化与程序化,施⼯⼯艺的提⾼。
由于设计⽅法与计算理论、材料科学、制造⼯艺、安装⽅法、基础施⼯技术等⽅⾯的不断改进,当今桥梁⼯程规模之巨⼤、技术之复杂已今⾮昔⽐。
已建桥梁跨度接近2000m(明⽯海峡悬索桥跨度为1990m),⽔下深度超100m的基础⼯程,⾼出地⾯接近200m的桥墩。
桥梁⼯程还将向更⾼的记录攀登[4]。
预应⼒混凝⼟桥梁⼀跃上桥梁建设的历史舞台,就显⽰出它强⼤的竞争能⼒。
装配式预应力混凝土简支T梁施工方案
(25m、30m、40m)
1
⑴、《成自泸赤高速公路泸州段第三标段A1区(K263+000~K272+100)两阶段施工图设计土建部分(第三分册、第四分册)》;
⑵、《高速公路桥涵通用图—装配装配式预应力混凝土简支T梁》;
⑶、《公路桥涵施工技术规范》(JTJ041-2000)
⑷、《公路工程质量检验评定标准》(土建工程)(JTGF80/1-2004)
⑸、《桥涵施工手册》
2
2.1
本标段施工的埂基寺大桥(K263+641.95)位于为分水岭互通主线桥,上跨宜渝高速,分别接A匝道和E匝道。起讫桩号为:K263+410.45~K263+873.45,全长463米。左幅16跨,孔跨布置为:2×25m+3×30m+1×40m+3×25m+2×30m+5×25.8m;右幅15跨,跨布置为:5×30m+1×40m+4×30m+5×25.8m。
为了保证梁体外观质量,防止产生水泡,并尽可能减小气泡的影响,将通过试验对砼配合比进行优化设计,在保证砼的和易性前提下有效降低砼坍落度。
梁体砼振捣采用附着式振动器和插入式振动器联合振捣。腹板处混凝土采用插入式φ30振捣棒配合附着式高频振动器振捣,顶板砼采用插入式φ50振动棒插捣。混凝土每层浇筑厚度不应大于300mm,且待下层振捣密实后方可浇筑上层,为保证混凝土振捣质量,将挑选经验丰富并具有上岗证的工人进行振捣作业。振捣上层时,应插入下层混凝土50mm以上。振捣做到“快插慢拔”,待砼表面平坦、停止下沉、无气泡冒出并泛浆时徐徐拔除振捣棒。捣固时避免碰撞模板、钢筋、波纹管及其它预埋件。浇筑期间,将派专人检查模板,预埋件等稳固情况,当发现有松动变形,
30m预应力混凝土简支T梁完整版
第 2 页 共 54 页
1.正截面抗裂验算 .......................................................................... 41 2.斜截面抗裂验算 .......................................................................... 41
目录
一、设计目的 ................................................................................................................................. 3 二、设计资料及构造布置 ............................................................................................................. 3
(三)持久状况构件的应力验算 .......................................................................... 45
1.正截面混凝土压应力验算 .......................................................... 45 2.预应力筋拉应力验算 .................................................................. 46 3.截面混凝土主压应力验算 .......................................................... 46
(完整)30m预应力混凝土简支T梁
30m预应力混凝土简支T梁一、计算依据与基础资料(一)、设计标准及采用规范1、标准跨径:桥梁标准跨径30m;计算跨径(正交、简支)28。
9m;预知T梁长29。
92m。
设计荷载:公路——Ⅱ级桥面宽度:分离式路基宽28。
0m(高速公路),半幅桥全宽桥梁安全等级为一级,环境条件为Ⅱ类2、采用规范:交通部颁布的预应力混凝土简支T梁设计通用图;《公路桥涵设计通用规范》JTG D60-2004;《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62—2004;刘效尧等编著,《公路桥涵设计手册—梁桥》,人民交通出版社,2011;强士中,《桥梁工程(上)》,高等教育出版社,2004。
(二)、主要材料1、混凝土:预制T梁,湿接缝为C50、现浇铺装层为C50、护栏为C30。
2、预应力钢绞线:采用钢绞线s 15。
2㎜,ƒpk=1860MPa,E p=1.95×105MPa3、普通钢筋:采用HRB335,ƒsk=335MPa,E s=2。
0×105MPa(三)、设计要点1、简支T梁按全预应力构件进行设计,现浇层80mm厚的C40的混凝土不参与截面组合作用。
2、结构重要性系数取1.1;3、预应力钢束张拉控制应力值σcon=0。
75ƒpk;4、计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d;5、环境平均相对湿度RH=55%;6、存梁时间为90d;7、湿度梯度效应计算的温度基数,T1=14℃,T2=5。
5℃。
二、结构尺寸及结构特征(一)、构造图构造图如图1~图3所示.(二)、截面几何特征边梁、中梁毛截面几何特性见表1边梁、中梁毛截面几何特性表1(三)、T 梁翼缘有效宽度计算 根据《桥规》4。
2。
2条规定,T 梁翼缘有效宽度计算如下:中梁:B f1=min(全截面)边梁中梁(2号梁)毛截面面积A (㎡) 抗弯惯矩I(m 4) 截面重心到梁顶距离y x (m)毛截面面积A (㎡)抗弯惯矩I (m 4)截面重心到梁顶距离y x (m) 支点几何特性 1。
30m简支T梁计算(24.5m)
30m简支T梁计算目录(24.50m路基宽)一. 说明书⒈设计概况⒉计算依据⒊计算荷载⒋计算方法⒌计算结果二. 计算过程⒈施工程序⒉荷载计算⒊运用桥梁综合程序进行主梁计算⒋各阶段应力值⒌T梁主拉应力计算⒍变形验算及预拱度的设置⒎结构吊装验算⒏支座反力⒐压杆稳定验算三. 部分电算结果输出四. 附图地震烈度:6度4. 计算方法及计算工具采用《公路桥梁综合计算程序》(二次开发版本)进行电算,利用电算结果采用手算进行强度复核等。
5. 计算结果及分析评价计算结果见“30JZ3.OUT”和“30JB3.OUT”文件,计算结果证明拟订的30mT梁结构尺寸(见图二)合理,拟订的施工程序合理,预应力束配束(见附图)恰当。
本计算共分5个阶段,即4个施工阶段加1个使用阶段,各阶段情况见下表:注:预制T梁时,梁高为200cm,T梁安装就位后,再在翼缘板上现浇10cm厚C40砼,最终梁高210cm。
2.荷载计算2.1桥梁荷载横向分布系数计算主梁横向分布计算按《公路桥梁荷载横向分布计算》(第二版)中刚接T 梁桥横向计算方法计算。
①主梁抗弯惯矩I主梁截面见图二。
近似取翼板的平均厚度0.2m,先求截面的形心位置a,x至梁底的距离为:然后求抗弯惯矩I。
截面的形心位置axa=(0.29x0.42x0.29/2+1.61x0.2x(1.61/2+0.29)+1.98x0.2xx(0.2/2+1.61+0.29))/(0.29x0.42+1.61x0.2+1.98x0.2)=1.384mI=(0.42x0.293/12+0.42x0.29x(1.384-0.29/2)2)+(0.2x1.613/12+0.2x1.61 x(1.384-1.61/2-0.29) 2 )+(1.98x0.23/12+1.98x0.2x(2-1.384) 2 )=0.18783+0.09645+0.15158=0.4359(m4)②主梁抗扭惯矩IT将T梁划分为2.10mx0.20m的梁肋部分和1.78mx0.20m的桥面板部分,然后将两I相加T梁肋部分α=0.2/2.1=0.095<0.1,取α=1/3桥面板部分α=0.2/1.78=0.112,取α=0.309(α查《公路桥梁荷载横向分布计算》(第二版)P22表3-1)因此主梁抗扭惯矩:I=cbt3=1/3x2.1x0.203+0.309x1.78x0.203=0.0100002 m4T③求内横梁(横隔板)截面和等刚度桥面板的抗弯惯矩内横梁翼板宽度取内横梁间距5m,翼板厚取0.21m,腹板厚0.16m,腹板高1.61m。
[整理]30m预应力连续T梁通用图计算书(2)
7.2简支T梁边梁使用阶段验算(1)正常使用极限状态验算●正常使用极限状态作用长期效应组合下简支边梁拉应力:仅摘取支撑中心线(2#节点)、1/4跨(9#节点)及半跨(16号节点)处计算结果(应力单位:Mpa,压为正,拉为负)●正常使用极限状态作用短期效应组合下简支边梁拉应力:仅摘取支撑中心线(2#节点)、1/4跨(9#节点)及半跨(16号节点)处计算结果(应力单位:Mpa,压为正,拉为负)●正常使用极限状态作用简支边梁压应力:仅摘取支撑中心线(2#节点)、1/4跨(9#节点)及半跨(16号节点)处计算结果(应力单位:Mpa,压为正,拉为负)● 正常使用极限状态简支T 形梁边梁截面验算边梁为C50预应力混凝土结构。
按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.3.1条、第7.1.5条、第7.1.6条,混凝土构件的法向应力和主拉、压应力及部分预应力混凝土A 类受弯构件的法向拉应力应符合下面规定:法向压应力限值: 0.5ck f =0.5×32.4=16.2 Mpa法向拉应力限值(短期效应组合):0.7tk f =0.7×2.65=1.855 Mpa主压应力限值: 0.6ck f =0.6×32.4=19.44 Mpa主拉应力限值(短期效应组合): 0.7tk f =0.7×2.65=1.855 Mpa由正常使用极限状态荷载组合应力表中可知:在荷载组合作用下,边梁截面应力均满足要求。
使用荷载作用下,简支边梁各束预应力钢绞线最大拉应力值为1171 Mpa ,小于按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第7.1.5条,7股钢绞线最大拉应力限值0.65pk f =0.65×1860=1209 Mpa ,满足要求● 正常使用极限状态简支T 梁边梁竖向挠度验算在短期效应组合作用下,跨中16#节点最大竖向挠度为mm f 5.25max (↑)。
中小跨径桥梁设计讲座(30m全预应力钢筋混凝土T梁)
稳定性分析
疲劳分析
对桥梁结构进行稳定性分析,包括整体和 局部稳定性计算,以确保结构的稳定性和 安全性。
对桥梁结构进行疲劳分析,评估结构的疲 劳寿命和耐久性,以确保结构在使用寿命 内的安全性。
03
中小跨径桥梁的建筑材 料
混凝土
混凝土是中小跨径桥梁最常用的建筑材料之一,具有抗压性能好、耐久性好、成本 低等优点。
浇筑施工
01
浇筑施工是一种传统的中小跨径 桥梁施工工艺,通过在施工现场 浇筑混凝土来形成桥梁的结构部 分。
02
浇筑施工需要注意混凝土的配合 比和浇筑质量,同时需要保证模 板的精度和稳定性,以确保桥梁 的结构强度和耐久性。
预应力施工
预应力施工是一种先进的中小跨径桥 梁施工工艺,通过在桥梁结构中施加 预应力来提高桥梁的承载能力和抗裂 性能。
混凝土桥梁的施工方法多样,可以采用预制桥梁段拼装施工,也可以采用常规浇筑 施工。
混凝土桥梁的外观比较粗糙,需要定期进行养护和维修,以保持其性能和耐久性。
钢材
钢材是另一种常用的中小跨径 桥梁建筑材料,具有强度高、 韧性好、耐腐蚀等优点。
钢材可以用于桥梁的各个部位, 包括主梁、桥墩、桥面等,其 加工和安装精度较高。
中小跨径桥梁设计讲 座
目录
• 中小跨径桥梁概述 • 30m全预应力钢筋混凝土T梁设计 • 中小跨径桥梁的建筑材料 • 中小跨径桥梁的施工工艺 • 中小跨径桥梁的维护与保养 • 中小跨径桥梁设计案例分析
01
中小跨径桥梁概述
定义与特点
定义
中小跨径桥梁通常是指跨度在30 米以下的桥梁,其设计、施工和 养护相对简单。
桥墩和基础施工
根据设计要求进行桥墩和基础的施工, 可以采用常规的施工方法或者新型的 施工工艺。
桥梁通用图跨径30M简支T梁
中华人民共和国交通行业
公路桥涵通用图装配式预应力混凝土简支T梁桥上部构造
交通部专家委员会等编制
编号: 3-2
跨径: 30m
斜度: 0°
荷载:公路-Ⅰ级
桥面宽度:分离式路基24.5m
30m跨径装配式预应力混凝土简支T梁目录
序号内容图号页数
序号内容图号页数路基宽度:24.5m;跨径:30m 斜度:0°
1 说明共 3 页
2 主要工程材料数量表 1 共 1 页
3 上部构造标准横断面图
4 共 1 页
4 T梁一般构造(一)
5 共 1 页
5 T梁一般构造(二)
6 共 1 页
6 T梁预应力钢束布置图1
7 共 1 页
7 T梁预应力钢束定位钢筋布置图(一)18 共 1 页
8 T梁预应力钢束定位钢筋布置图(二)19 共 1 页
9 T梁梁肋钢筋布置图(一)20 共 1 页
10 翼板钢筋布置图(一)26 共 1 页
11 翼板钢筋布置图(二)27 共 1 页
12 T梁梁端封锚钢筋布置图(一)38 共 1 页
13 T梁梁端锚下钢筋布置图(一)44 共 1 页
14 端横隔梁钢筋布置图(一)46 共 1 页
15 中横隔梁钢筋布置图52 共 1 页
16 桥面现浇层钢筋布置图(一)58 共 1 页
17 桥面现浇层钢筋布置图(二)59 共 1 页
18 桥面连续构造图70 共 1 页。
30m预应力混凝土T梁施工阶段分析
30m预应力混凝土T梁施工阶段分析摘要:随着经济的不断发展,我国建设事业已经进入了快速发展阶段,大型桥梁不断涌现。
预应力混凝土T梁也得到了广泛的推广和应用。
预应力混凝土T 梁的施工方法一般有先张法和后张法两种。
本文以30m预应力混凝土T梁为例,应用midas/civil对其施工阶段进行分析。
主要阐述预应力T梁徐变和收缩、钢束预应力、施工阶段荷载和运营阶段荷载组合等引起的结构应力和内力变化特性。
关键词:预应力T梁预应力钢束收缩和徐变荷载工程概况:重庆巫奉A5标地处重庆市巫山县骡坪镇境内,全线总长2.662km,设计预应力混凝土T梁总计335片,其中20m预应力混凝土T梁225片,30m预应力混凝土T梁110片,本文主要以30m预应力混凝土T梁为依据进行分析。
施工阶段分析:图1分析模型(成型后)本文以30m预应力混凝土T梁为模型,简述midas/civil对预应力混凝土T 梁的施工阶段分析步骤,主要阐述预应力T梁徐变和收缩、钢束预应力等引起的结构应力和内力变化特性。
在midas/civil中预应力混凝土T梁施工的分析步骤如下:定义材料和截面建立结构模型输入荷载:恒荷载钢束特性和形状钢束预应力荷载定义施工阶段输入移动数据荷载运行结构分析确认及查看分析结果由于字数限制,在此就只对施工阶段的结果做简要的分析,其他过程省略不计。
内力和应力变化特性分析徐变徐变是指荷载维持不变的情况下,混凝土的变形随时间增加而徐徐增加的现象。
它具有下列特性:徐变在初期发展特别快,而后发展逐渐减慢,延续时间可达数年。
一般在加载的第一个月内完成全部徐变量的40%,3个月完成60%,1~1.5 年约完成80%,在3~5年内基本完成。
在卸载时,一部分变形立即恢复,另一部分变形在相当长时间内逐渐恢复,而更大部分的残余变形永不恢复。
徐变量与加载的应力大小有关,应力越大,徐变量越大。
当应力小于棱柱体强度的50%~60% 时,应力与徐变量呈近似线性的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、计算依据与基础资料(一)、设计标准及采用规范1、标准跨径:桥梁标准跨径30m;计算跨径(正交、简支);预知T梁长。
设计荷载:公路——Ⅱ级桥面宽度:分离式路基宽(高速公路),半幅桥全宽桥梁安全等级为一级,环境条件为Ⅱ类2、采用规范:交通部颁布的预应力混凝土简支T梁设计通用图;《公路桥涵设计通用规范》JTG D60-2004;《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004;刘效尧等编著,《公路桥涵设计手册-梁桥》,人民交通出版社,2011;强士中,《桥梁工程(上)》,高等教育出版社,2004。
(二)、主要材料1、混凝土:预制T梁,湿接缝为C50、现浇铺装层为C50、护栏为C30.2、预应力钢绞线:采用钢绞线s ㎜,ƒpk=1860MPa,E p=×105MPa3、普通钢筋:采用HRB335,ƒsk =335MPa,Es=×105MPa(三)、设计要点1、简支T梁按全预应力构件进行设计,现浇层80mm厚的C40的混凝土不参与截面组合作用。
2、结构重要性系数取;3、预应力钢束张拉控制应力值σcon =ƒpk;4、计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d;5、环境平均相对湿度RH=55%;6、存梁时间为90d;7、湿度梯度效应计算的温度基数,T1=14℃,T2=℃。
二、结构尺寸及结构特征(一)、构造图构造图如图1~图3所示。
(二)、截面几何特征边梁、中梁毛截面几何特性见表1边梁、中梁毛截面几何特性(全截面)边梁中梁(2号梁)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距离yx(m)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距离yx(m)支点几何特性跨中几何特性(预制截面)边梁中梁(2号梁)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距(三)、T梁翼缘有效宽度计算根据《桥规》条规定,T梁翼缘有效宽度计算如下:中梁:B f1=min故按全部翼缘参与受力考虑。
三、汽车荷载横向分布系数、冲击系数计算(一)、汽车荷载横向分布系数计算1、汽车横向折减系数根据《通规》条第7款规定,三车道的横向折减系数为,两车道的横向折减系数为.2、跨中横向分布系数本桥一跨沿顺桥向布置5道横梁,跨中汽车荷载横向分布系数按刚性横梁法计算。
主梁刚度按T梁跨中截面考虑,抗弯惯矩I=,抗扭惯矩It=。
T形截面抗扭惯矩It的计算,系根据普朗特的薄膜比拟法对T形截面按矩形子块进行分块,然后将各矩形子块的抗扭惯矩累计而得到结果。
设各矩形子块的宽度为bi 、高度为ti,则3Iiiitt b∑=α,其中⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+-=5052.063.0131iiiii btbtα。
本计算中将T形截面分为三块:翼缘、腹板及下马蹄,个子块的bi 、ti分别取为:[,],[2,],[,]。
任意主梁的影响系数为:∑∑==±=nj jj ii nj jiie I a I ea I I 121βη。
其中:∑∑+=iiTi Ia E I l2212G 11β=。
影响线坐标见表2。
求1号梁(边梁)、2号梁、3号梁汽车荷载横向分布系数:在影响线上布置车道荷载,各车道中线相应位置处的影响线坐标即为该车道荷载分布系数。
1~3号梁汽车荷载跨中横向分布系数计算图式见图。
按三车道布置,可得1号梁、2号梁、3号梁汽车荷载横向分布系数分别为、与。
按两车道布置,可得1号梁、2号梁、3号梁汽车荷载横向分布系数分别为、与。
考虑到三车道布置时活荷载效应需乘以车道横向折减系数ξ=,而两车道布置时活荷载效应需乘以车道横向折减细数ξ=,故按两车道布置时活荷载效应达最大值(边梁与2号梁达最大,3号梁按三车道布置时最大,但小于按两车道布置时的2号梁),计算中应按两车道考虑计算边梁与2号梁。
3.支点横向分布系数按杠杆法布载,分别计算边梁、2号梁的横向分布系数()。
支点横向分布系数7556.07556.06889.0321===支支支,,ηηη。
影响线坐标表 表2(二)、汽车荷载冲击系数μ值计算1、汽车荷载纵向整体冲击系数按《通规》条文说明条计算,简支梁结构基频:ccc m I E l f 212π=C50混凝土,E c =MPa=N/㎡。
梁跨中处单位长度质量gGm c =,其中G 为跨中延米结构自重(N/m ),g 为重力加速度,g=s 2。
()m kg m c /103111.281.9896.0102633⨯=⨯⨯=()Hz f 827.4103747.24376.01045.39.28231021=⨯⨯⨯⨯=π冲击系数μ可按《通规》条计算,当≤f ≤14Hz 时,2625.00157.0827.4ln 1767.0=-⨯=μ2、汽车荷载局部加载的冲击系数按《通规》条,采用3.11=+μ。
四、作用效应组合(一)、作用的标准值 1、永久作用标准值(1)每延米一期恒载q 1(不包括湿接缝)计算预制T 梁重度取3/26m kN =γ,半片跨中横隔梁的重量:V F h b =γ预制T 梁每延米一期恒载q 1见图所示在计算中略去T 梁支座以外两端各50cm 范围恒载对跨中梁段受力的影响。
(2)湿接缝重量'1q 计算半片跨中横隔梁接缝的重量()kN V F h h 31.2088825.026=⨯==γ(3)二期恒载2q 计算①80mm 厚的C40混凝土重度取3/26m kN =γ。
②100mm 厚沥青混凝土铺装重度取3/24m kN =γ③F 形混凝土护栏(防撞等级SA ,单侧)q=m ,平均分配到五根梁上,各梁分别承担()m kN /08.36/225.9=⨯。
边梁:()m kN q /96.1108.32475.11.02625.208.03=+⨯⨯+⨯⨯=。
2号梁:()m kN q /16.1308.32425.21.02625.208.03=+⨯⨯+⨯⨯=。
恒载效应标准值见表表3恒载效应标准值计算2、汽车荷载效应标准值(1)公路—Ⅱ级车道荷载计算图式,见图根据《通规》第条,公路—Ⅱ级车道荷载均布标准值为m kN q k /88.7=,集中荷载标准值:当计算跨径小于5m 时,P k =360kN 。
本例计算跨径为。
()()kN P k 7.20675.055059.28180180=⨯--⨯+=,计算剪力时()kN P k 04.2487.2062.1=⨯=(2)计算跨中、L/4截面荷载效应标准值()()y P A q S k k Qk ++=ξημ1,两列车布载控制设计,横向折减系数ξ=,A 为内力影响线面积,y 为内力影响线竖标值。
(3)跨中、L/4、支点截面汽车荷载内力影响线,见图 跨中、L/4、支点截面公路—Ⅱ级荷载产生的内力见表4。
跨中、L/4、支点截面公路—Ⅱ级荷载产生的内力1、基本组合(用于结构承载能力极限状态)按《通规》是():⎪⎪⎭⎫⎝⎛++=∑∑==m i n j Qjk Qj c k Q Q GikGi ud S S S S 121100γψγγγγ 式中各分项系数的取值如下: 0γ——结构重要性系数,0γ=; G γ——结构自重分项系数,G γ=;1Q γ——汽车荷载(含冲击力)的分项系数,1Q γ=.基本组合计算,永久作用的设计值与可变作用设计值见表5、表6边梁永久作用的设计值与可变作用设计值组合表52号梁永久作用的设计值与可变作用设计值组合表表62、作用短期效应组合(用于正常使用极限状态设计)永久荷载作用标准值效与可变作用频遇值效应组合,按《通规》式(),其效应组合为:Qjk nj j mi Gik sd S S S ∑∑==+=111ψ式中:j 1ψ——可变作用效应的频遇值系数,汽车荷载(汽车荷载不计冲击力)j 1ψ=,温度梯度作用j 1ψ=。
3、作用长期效应组合(用于正常使用极限状态设计)永久作用标准值效应与可变作用准永久值效应相组合,按《通规》式(),其效应组合为:Qjk nj j i Gik ld S S S ∑∑==+=1221ψ式中:j 2ψ——第j 个可变作用效应的准永久值系数,汽车荷载(不计冲击力)j 2ψ=,温度梯度作用j 2ψ=;ld S ——作用长期效应组合设计值。
作用短期和长期效应组合计算见表7和表8.边梁作用短期和长期效应组合计算2号梁作用短期和长期效应组合计算(三)截面预应力钢束估算及集合特性计算1、全预应力混凝土受弯构件受拉区钢筋面积估算(1)根据《桥规》第条,全预应力混凝土构件在作用(或荷载)短期效应组合下应符合《桥规》式():085.0≤-pc st σσ 式中:⎪⎪⎭⎫ ⎝⎛+=+==pn n n n pe p n n pn p n p pc sst e I y A A y I e N A N y I M 1,00σσσ。
估算预应力钢筋时,近似取毛截面积A 、抗弯惯矩I 、y p 分别代替公式中的A n 、I n 、e pn ,,y n 为截面重心轴到截面受拉边缘(梁低)的距离,用x u y h y -=代替; pe σ为受拉区钢筋合力点预应力钢筋的应力,取控制应力的70%计,()MPa pe 5.976186075.07.0=⨯⨯=σ。
近似取085.0,=--==pc st p u p pn a y y e σσ并令,可得到下式:()up pe us p y y r y M A +=285.0σ式中:r 截面的回转半径,AI r =2。
(2)假定混凝土受压区高度x 位于截面翼缘板内,根据《桥规》第条式():⎪⎭⎫ ⎝⎛-≤200x h bx f M cd d γ令b f M h h x cd d ⋅--=02002γ,并由《桥规》式()条可以得到:sdp pd sd s f A f bx f A -=式中:b ——截面宽度;h 0——截面有效高度,此处近似取mm h h h p 18200=-=; p a ——预应力钢筋合力中心到底板的距离,p a =180mm ; C50混凝土:MPa f HRB MPa f sd cd 2803354.22==钢筋:;; 钢绞线:21392.15,1260mm A MPa f p s pd ==截面积单根φ。
钢筋面积估算及配筋见表9和表10.预应力钢束布置图见图9。
预应力钢筋、普通钢筋面积估算表梁内截面配筋注:A p——受拉区预应力钢筋截面积;h0——截面有效高度,h0=h-ap;ap——受拉区预应力钢筋合力点到受拉边缘的距离。
2、截面几何特性计算截面几何特性见表11,截面特征示意图见图10。
截面几何特性注:x y 0——换算截面重心轴到梁顶面距离; p y ——预应力钢筋重心到截面重心的距离000S I A 、、——换算截面面积、抗弯惯矩和面积矩; n n n S I A 、、——净截面面积、抗弯惯矩和面积矩。