高中数学最全数列总结及题型精选

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:数列及最全总结和题型精选

一、数列的概念

(1)数列定义:按一定次序排列的一列数叫做数列;

数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫

这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…

②:5

14131211,,,,… 说明:

①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;

② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n

-=1,21

()1,2n k k Z n k -=-⎧∈⎨+=⎩

③不是每个数列都有通项公式。例如,1,,,,……

(3)数列的函数特征与图象表示:

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始

依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列 (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…

(5)数列{n a }的前n 项和n S 与通项n a 的关系:1

1(1)(2)n n

n S n a S S n -=⎧=⎨

-⎩≥

二、等差数列

(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1n n -或1(1)n n a a d n +-=≥

例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-;

说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

例:1.已知等差数列{}n a 中,124971

16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64

2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670

3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)

(三)、等差中项的概念:

定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2

a b

A +=

a ,A ,

b 成等差数列⇒2

a b

A += 即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )

A .120

B .105

C .90

D .75

(四)、等差数列的性质:

(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m

a a d n m

-=

-()m n ≠;

(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (五)、等差数列的前n 和的求和公式:11()(1)22

n n n a a n n S na d +-=

=+n d

a )(2n 2112-+=。(),(2

为常数B A Bn

An S n +=⇒{}n a 是等差数列 )

递推公式:2

)(2)()1(1n

a a n a a S m n m n n --+=+= 例:1.如果等差数列中,,那么

(A )14 (B )21 (C )28 (D )35 2.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( )

A .13

B .35

C .49

D . 63

3.(2009全国卷Ⅰ理) 设等差数列的前项和为,若,则=

4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )

项 项 项 项 5.已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 6.(2009全国卷Ⅱ理)设等差数列的前项和为,若则

7.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )

3

132

--

..B A C.31 D.32

8.(2009陕西卷文)设等差数列的前n 项和为,若,则

9.(00全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{n

S n

}的

前n 项和,求T n 。

(六).对于一个等差数列:

(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ②

1

n n S a

S a +=奇偶; (2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②1

S n

S n =-奇偶。

1.一个等差数列共2011项,求它的奇数项和与偶数项和之比__________

2.一个等差数列前20项和为75,其中奇数项和与偶数项和之比1:2,求公差d

3.一个等差数列共有10项,其偶数项之和是15,奇数项之和是2

25,则它的首项与公差分别是_______

相关文档
最新文档