食品中蛋白质和氨基酸的测定(精)
食物中氨基酸的测定方法
食物中氨基酸的测定方法测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。
一、氨基酸自动分析仪法1.原理食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。
一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。
2.适用范围GB/T14965-1994食物中氨基酸的测定方法。
本法适用于食物中的16种氨基酸的测定。
其最低检出限为10pmol。
本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定3.仪器和设备3.1真空泵3.2恒温干燥箱3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。
用去离子水冲洗干净并烘干。
3.4真空干燥器(温度可调节)3.5氨基酸自动分析仪。
4.试剂全部试剂除注明外均为分析纯,实验用水为去离子水。
4.1浓盐酸:优级纯4.26mol/L盐酸:浓盐酸与水1:1混合而成。
4.3苯酚:需重蒸馏。
4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L4.5缓冲液:4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.24.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。
4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。
4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。
食品中一般成分分析—蛋白质和氨基酸的测定
反应原理
电位滴定法是靠电极电位的突跃来指示滴定终点。 在滴定到达终点前后,滴液中的待测离子浓度往往变 化很大,引起电位的突跃,被测成分的含量仍然通过 消耗滴定剂的量来计算。
反应原理
因此,电位滴定准确度和精密度高,可用于滴定 突跃小或不明显的滴定反应,也可用于有色或浑浊试 样的滴定,电位滴定装置简单、操作方便,可自动化。 使用不同的指示电极,电位滴定法可以进行酸碱滴定, 氧化还原滴定,配合滴定和沉淀滴定。
食品中通常含有多种氨基酸,因此需要测定氨基酸的总 量,不能以氨基酸百分率来表示,只能以氨基酸中所含的 氮即氨基酸态氮的百分率来表示。
氨基酸含量一直是某些发酵产品如调味品的重要质量指 标,也是目前许多保健食品的质量指标之一。
与蛋白质中氨基酸结合状态不同,呈游离状态的氨基酸 的含氮量可直接测定,因此称为氨基酸态氮。
.
营养学分类
(2)半必需氨基酸或条件必需氨基酸 人体虽能够合成精氨酸和组氨酸,但通常不能满足 正常的需要,因此,又被称为半必需氨基酸或条件必需 氨基酸,在幼儿生长期这两种是必需氨基酸。 (3)非必需氨基酸 指能由简单的前体合成,不需要从食物中获得的氨 基酸。例如甘氨酸、丙氨酸等氨基酸。
.
.
化学结构分类
仪器及试剂
仪器及试剂
1.仪器 分光光度计、容量瓶、具塞刻度试管、移液管、恒温水浴锅等; 2.试剂 (1)20g/L茚三酮溶液 称取茚三酮1g置于盛有35mL热水的烧杯中使 其溶解,加入40mg氯化亚锡,搅拌过滤作为防腐剂。滤液放置于棕色 瓶中冷暗处过夜,加水至58.04 磷酸盐缓冲溶液 准确称取磷酸二氢钾4.5350g于烧杯中,用少量蒸馏水溶解,移入500mL 容量瓶中,加水稀释至刻度,摇匀备用; 准确称取磷酸氢二钠11.9380g于烧杯中,用少量蒸馏水溶解,移入 500mL容量瓶中,加水稀释至刻度,摇匀备用; 取上述配制好的磷酸二氢钾溶液10mL与190mL磷酸氢二钠溶液混匀即为 pH8.04磷酸盐缓冲溶液。
197-习题作业-食品中蛋白质和氨基酸的测定 习题作业答案
习题九、食品中蛋白质的测定 答案一、填空题1.新鲜食品中的含氮化合物大都以蛋白质为主体。
2.脱水和氧化;催化剂、指示消化反应的完成、蒸馏时碱性反应的指示剂。
3.防止消化时产生的泡沫溢出瓶外;冷凝管尖端插入液面之下,样品消化液,将冷凝管尖端提离液面。
4.游离氨基酸。
5.使消化液呈碱性,便于氨游离出来,深蓝色或产生黑色沉淀,反应生成氢氧化铜,增加氢氧化钠的用量。
6.与氨基结合使氨基酸的碱性消失。
7.消化、蒸馏、吸收、滴定。
8.少量辛醇或液体石蜡或硅油。
9.澄清透明的蓝绿色。
10.蓝绿色、暗红色。
11.提高溶液沸点。
12.氨基酸,含氮。
13.硼酸。
二、判断题1.× 2.√ 3.√ 4.×三、名词解释1.粗蛋白含量:新鲜食品中含氮化合物大都以蛋白质为主体,凯氏定氮法是通过测出样品中的总含氮量再乘以相应的蛋白质系数而求出蛋白质的含量的方法。
由于样品中含有少量非蛋白质含氮化合物,如核酸、生物碱、含氮类脂、卟啉以及含氮色素等非蛋白质的含氮化合物,所以结果为粗蛋白含量。
2.蛋白质系数:每份氮素相当于的蛋白质的份数。
一般蛋白质含氮为16%,所以1份氮素相当于6.25份蛋白质,此数值(6.25)称为蛋白质系数。
不同种类食品的蛋白质系数不同。
四、问答题1.凯氏定氮法测定蛋白质的原理及操作步骤如何?加入的各种试剂起什么作用?操作过程中有哪些注意事项?原理:样品、浓硫酸和催化剂一同加热消化,使蛋白质分解,其中碳和氢被氧化为二氧化碳和水逸出,而样品中的有机氮转化为氨,并与硫酸结合成硫酸铵。
然后加碱蒸馏,使氨逸出,用硼酸溶液吸收后,再以标准盐酸溶液滴定。
根据消耗的标准盐酸液的体积可计算蛋白质的含量。
测定步骤:样品的消化、蒸留、吸收和滴定。
试剂及作用:硫酸铜催化剂和指示剂;硫酸钾提高沸点(4000C);浓硫酸消化;氢氧化钠溶液蒸留出氨气;硼酸溶液吸收氨气;盐酸标准溶液标定硼酸氨;溴甲酚绿-甲基红指示剂。
注意事项:所用试剂需用无氨蒸馏水配;消化初期先小火防泡沫溢出;蒸馏装置要密封,冷凝管要插入吸收瓶液液面之下;蒸馏结束一定要先撤吸收瓶再关电炉。
氨基酸的测定
甲醛滴定法 (以测定氨杞精口服液中的氨基酸含量为例)
计算: 氨基酸态氮=〔 c×(V2-V1)
×0.014×100) 〕/W×100 V1——用中性红为指示剂
时,碱液所消耗的体积 V2——用百里酚酞乙醇液
为指示剂时标液消耗量
应用: 氨杞精口服液是由天然原料提
取的氨基酸粉(含20多种氨基酸), 加上构祀子、黄精煎煮液配制而 成的口服液。其中氨基酸为主要 有效成份, 采用甲醛滴定法测定 氨基酸的总量做为质量控制方法, 操作简便 。
仪器 附磁力搅拌器的酸度计;25mL酸式 滴定管; 10mL胖肚吸管。
双语例句
电位滴定法 (以测定酱油中的氨基酸含量为例)
操作方法:
(1)样品处理:先测出待测酱油的比重,然后吸取酱油5.00mL于
100mL容量瓶中,加水定容。吸取定容液20.00mL于250mL烧杯中,
加水60mL,放入磁力转子,开动磁力搅拌器使转速适当。用
个别氨基酸的定量测定
a)赖氨酸 b)色氨酸 c)苯丙氨酸 d)酪氨酸 e)脯氨酸 f)羟脯氨酸 g)胱氨酸 h)谷氨酸
氨基酸的分离及测定
a)薄层色谱法 b)氨基酸自动分析仪法 c)气相色谱法 d)高效液相色谱法
茚三酮法 (以测定蜂蜜及果葡糖浆中的氨基酸含量为例)
反应原理
氨基酸在一定pH条件下与茚三酮起反应,生成蓝紫色化合物,可 比色(570nm)定量。 注意:茚三酮受阳光、温度、湿度、空气等影响易被氧化呈淡红或深 红色,使用前要进行纯化,方法如下:
结论
1)采用茚三酮显色法测定的 蜂蜜及果葡糖浆的氨基酸含 量在0~150 μg/mL范围,该 法具有线性好、准确性及精 密度高等特点。
2)蜂蜜与果葡糖浆混合物中 的氨基酸含量和果葡糖浆掺 入量呈良好的负线性关系。 采用茚三酮显色法测定蜂蜜 样品的氨基酸含量,可以快 速判断蜂蜜中是否掺入了果 葡糖浆。
食品理化检验分析 第九章 蛋白质和氨基酸的测定
二、 自动凯氏定氮法 1、原理及适用范围同前 2、特点:
(1)消化装置用优质玻璃制成的凯氏消化瓶,红 外线加热的消化炉。 (2)快速:一次可同时消化8个样品,30分钟可消 化完毕。 (3)自动:自动加碱蒸馏,自动吸收和滴定,自 动数字显示装置。可计算总氮百分含量并记录,12 分钟完成1个样。
5.计算: 氨基酸态氮=〔 c×(V2-V1)×0.014×100 ) 〕/W×100 V1——用中性红为指示剂时,碱液所消耗 的体积 V2——用百里酚酞乙醇液为指示剂时标液 消耗量
0.014——氮的毫摩尔质量,g/mmol。
(二)茚三酮的比色法
原理:氨基酸在一定条件下与茚三酮起反应,生 成蓝紫色化合物,可比色定量。(570nm)
一.双缩脲法 1.原理 脲(尿素)NH2—CO—NH2 加热至150~160℃时 ,两分子缩和成双缩脲。 NH2—CO—NH2 + NH2—CO—NH2 NH2—CO—NH—CO—NH2 + NH3 双缩脲能和硫酸铜的碱性溶液生成紫红色络和 物,此反应叫双缩脲反应。(缩二脲反应) 蛋白质分子中含有肽键( —CO—NH—),与双缩 脲结构相似。在同样条件下也有呈色反应,在一定 条件下,其颜色深浅与蛋白质含量成正比,可用分 光光度计来测其吸光度,确定含量。(560nm)
3.双指示剂:
① 40%中性甲醛溶液:以百里酚酞作指示剂,用 氢氧化钠将40%甲醛中和至淡蓝色。
② 0.1%百里酚酞乙醇溶液,(9.4~10.6)
③ 0.1%中性红 50%乙醇溶液,(6.8~8.0) ④ 0.1 mol/L 氢氧化钠标准溶液。
4.操作:
取相同两份样品20~30mg→分别于250ml三角瓶→各 加50ml蒸馏水 一份加中性红3滴→用0.1mol/L NaOH 滴定终点(由红变琥珀色),记录用量,另一份加百里酚 酞乙醇液3滴加中性甲醛20ml→摇匀→用0.1mol/L NaOH 滴至淡兰色。分别记录两次所消耗的碱液ml数。
食品中氨基酸总量的测定实验报告
食品中氨基酸总量的测定实验报告一、实验目的本实验旨在测定食品中氨基酸的总量,了解食品中蛋白质的组成和营养价值,为食品质量控制和营养评估提供依据。
二、实验原理氨基酸是含有氨基和羧基的有机化合物,它们在一定条件下与某些试剂反应可以产生特定的颜色或荧光,通过比色或荧光检测可以定量测定氨基酸的含量。
本实验采用茚三酮显色法测定食品中氨基酸的总量。
茚三酮在弱酸性溶液中与氨基酸反应,生成蓝紫色化合物,其颜色的深浅与氨基酸的含量成正比。
在一定波长下测定溶液的吸光度,通过与标准曲线对比,可以计算出样品中氨基酸的总量。
三、实验材料与设备1、实验材料标准氨基酸溶液(已知浓度)待测食品样品(如肉类、豆类、谷物等)茚三酮试剂缓冲溶液(pH 值 50)乙醇蒸馏水2、实验设备分光光度计分析天平容量瓶(100 mL、50 mL、25 mL 等)移液管(1 mL、2 mL、5 mL 等)具塞刻度试管(25 mL)水浴锅离心机四、实验步骤1、标准曲线的绘制分别吸取 000 mL、020 mL、040 mL、060 mL、080 mL、100 mL 标准氨基酸溶液于 25 mL 具塞刻度试管中,用蒸馏水补足至 100 mL。
向各试管中加入 100 mL 缓冲溶液(pH 值 50)和 100 mL 茚三酮试剂,摇匀。
将试管置于沸水浴中加热 15 min,取出后立即用冷水冷却至室温。
向各试管中加入 500 mL 60%乙醇,摇匀。
使用分光光度计,在 570 nm 波长下,以蒸馏水为空白,测定各溶液的吸光度。
以氨基酸的含量(μg)为横坐标,吸光度为纵坐标,绘制标准曲线。
2、样品处理称取适量待测食品样品,精确至 0001 g,放入研钵中研碎。
将研碎的样品转移至离心管中,加入适量蒸馏水,在沸水浴中加热30 min,以提取氨基酸。
冷却后,离心(3000 rpm,10 min),取上清液备用。
3、样品测定吸取 100 mL 样品上清液于 25 mL 具塞刻度试管中,按照标准曲线绘制的步骤进行操作,测定样品溶液的吸光度。
蛋白质氨基酸测定
三聚氰胺(melamine)
是一种有机含氮杂环化合物,学名1,3,5-三嗪-2,4,6-三胺, 或称为2,4,6-三氨基-1,3,5-三嗪,简称三胺、蜜胺、氰尿 酰胺,是一种重要的化工原料,主要用途是与醛缩合,生 成三聚氰胺-甲醛树脂,生产塑料,这种塑料不易着火,耐 水、耐热、耐老化、耐电弧、耐化学腐蚀,有良好的绝缘 性能和机械强度,是木材、涂料、造纸、纺织、皮革、电 器等不可缺少的原料。它还可以用来做胶水和阻燃剂,部 分亚洲国家,也被用来制造化肥。
①样品消化 : 准确称取一定量的样品至干燥洁净的 500mL凯氏烧瓶中,加入硫酸铜0.5g(1g)、硫酸钾10g (3g)和浓硫酸20mL、玻璃珠数粒→轻轻摇匀,以45º斜 支于石棉网上→用电炉以小火加热(或先烧瓶放在距电 炉较远处),待内容物全部炭化、泡沫停止产生后→加 大火力(或将烧瓶放在电炉上),保持瓶内液体微沸→至 液体变蓝绿色透明后→继续加热微沸30min→关闭电炉, 取下烧瓶、冷却→转移至100mL容量瓶中,加水定容。
❖ 加入硫酸铜的作用 催化作用:加速有机物的氧化分解 C+ 2CuSO4 → Cu2SO4 + SO2↑+ CO2↑ Cu2SO4 + 2H2SO4 → 2CuSO4 + 2H2O + SO2↑ 此反应不断进行,待有机物被消化完后,不再有硫 酸亚铜(褐色)生成,溶液呈现清澈的蓝绿色。
消化完全指示:蓝绿色;
三聚氰胺的最大的特点是含氮量很高(66 %),加之其生产工艺简单、成本很低, 给了掺假、造假者极大地利益驱动,有人 估算在植物蛋白粉和饲料中使蛋白质增加 一个百分点,用三聚氰胺的花费只有真实 蛋白原料的1/5。所以“增加”产品的表观 蛋白质含量是添加三聚氰胺的主要原因, 三聚氰胺作为一种白色结晶粉末,没有什 么气味和味道,掺杂后不易被发现等也成 了掺假、造假者心存侥幸的辅助原因。
蜂蜜中蛋白质及氨基酸含量的测定
图1 蛋白质含量的标准曲线图2.2 蜂蜜样品中蛋白质的含量蜂蜜各样品中的蛋白质含量,见表1。
1 六个蜂蜜样品中的蛋白质含量表/(g/100 g)相对标准偏差/%5平均值0.0430.0460.044±0.002 5.4240.0540.0510.054±0.004 6.4470.3880.3900.391±0.0030.6660.3740.3780.376±0.0030.6940.2220.2250.221±0.003 1.2570.3060.3020.302±0.0030.948以氨基酸含量为横坐标,吸光度值为纵坐标,绘制标准曲线,如图2所示。
曲线回归方程为:y=0.001 5x,R2=0.999 1XIANDAISHIPIN109现代食品/图2 氨基酸含量的标准曲线图表2 六个蜂蜜样品中的氨基酸含量表氨基酸含量12310.030 40.030 60.030 620.032 20.03160.032 430.048 00.04830.048 740.048 30.04810.047 750.055 10.05470.055 260.054 90.05510.055 93 结语从测定结果可知,考马斯亮蓝法和茚三酮显色法分别测定蜂蜜样品中的蛋白质和氨基酸含量,方法的精密度较高。
蜂蜜样品中蛋白质和氨基酸的含量有一定的差别[5]。
作为出口蜂蜜品种,龙眼蜜和荔枝蜜中的蛋白质含量相对较高,两个冬蜜样品中的含量稍低,但氨基酸的含量则相反。
野菊花蜜和山野百花蜜中的蛋白质及氨基酸的含量都极低。
参考文献:让.国家《蜂蜜》标准解读[J].蜜蜂春种一粒粟,秋成万颗子现代食品XIANDAISHIPIN。
食品中氨基酸总量的测定实验报告
食品中氨基酸总量的测定实验报告氨基酸含量的测定氨基酸含量的测定标准曲线绘制准确吸取200ug/ml的氨基酸标准溶液0.0,0.6,0.8,1.0,1.2,1.5,2.0ml,分别置于25ml容量瓶或比色管中,各加水补充至溶剂为4.0ml,然后加入茚三酮和磷酸缓冲溶液各1ml,混合均匀,于水浴上加热15min,取出迅速冷至室温,再摇匀,加水至标线25ml,摇匀。
静置15min后,在570nm波长下,以试剂空白为参比液夨订其余各溶液的吸光度A。
以氨基酸的微克数为横坐标,吸光度A为纵坐标,绘制标准曲线。
样品的测定:将虾研磨冷却过滤后稀释10倍,吸取澄清的样品溶液1.5ml,平行三次,按标准曲线制作步骤,在相同条件下测定吸光度A值,用测得的A值在标准曲线上即可查得氨基酸的微克数。
公式:氨基酸总量(ug/100g)=(c/m*1000)*100*10式中c是指从标准曲线上查得的氨基酸的ug数;M是指测定的样品溶液相当于样品的质量g;PH计酸度计测量ph的方法:(1)拿下笔帽(2)按on/off键,机器显示运作(3)将ph计放入待测液中(4)轻轻晃动ph计,保证内气泡逸出,使之于溶液充分接触,勿碰撞杯壁(5)ph计会立即显示数值,将笔置入待测液待数值稳定,30秒内将显示正确数值,(特:ph计数值上下浮动或不稳定是正常现象) (6)按hold键锁定数值,可在待测溶液外记录读取,继续按hold 键解除锁定(7)按on/off键关闭ph计(8)轻甩PH计测试笔上多于的水,用蒸馏水或脱离子水冲洗,盖上笔帽测量温度方法在测试模式下,温度数值与ph数值同步显示在液晶面板上,但在校准模式下不显示,数值默认为摄氏温度。
(一)挥发性盐基氮(TVB-N)的测定半微量定氮法(1)原理:蛋白质在酶和细菌的作用下分解后产生碱性含氮物质,有氨、伯胺、仲胺等,此类物质具有挥发性,可在碱性溶液中被蒸馏出来,用标准酸滴定,计算含量。
(2)试剂①氧化镁混悬液(10g/L)称取1.0g氧化镁,加100ml水,振摇成混悬液。
食品中氨基酸及蛋白质的测定(实验报告)
测定食品中的蛋白质---2013.3.25组员:***实验目的:(1)会测定食品中粗蛋白的含量。
(2)明确常见的食品蛋白质含量,以及测定原理。
实验原理:将被检样品加入浓硫酸,以硫酸铜,硫酸钾为催化剂共同加热消化食品中蛋白质分解为氨,并与硫酸结合成硫酸铵,通过碱化蒸馏,使氨分离出来,用硼酸吸收形成硼酸按后,再用盐酸标准溶液滴定,根据消耗的标准盐酸的体积,通过换算系数,可测定食品中蛋白质的含量。
实验仪器:凯氏烧瓶、可调式电炉、定氮蒸馏装置试剂:①硫酸铜CuSO4.5H2O ②硫酸钾③硫酸(密度为1.8149g/L)④40g/L 硼酸溶液⑤混合试剂;1g/L甲基红乙醇溶液与1g/L亚甲基蓝乙醇溶液,用时按2:1的比例混合。
实验步骤:数据处理:标定0.1000mol /L 盐酸标准溶液微量蒸馏按下式计算:X=⨯⨯⨯⨯-10010m c0.014)(0V V F 100⨯式中 X 食品中蛋白质质量分数,%;V 滴定试样时消耗盐酸标准滴定溶液的体积,mL;V 0 空白试验时消耗盐酸标准滴定溶液的体积mL ;C 盐酸标准滴定溶液的浓度; 0.014 氮的毫摩尔质量,g/mmol; m 试样的质量,g;F 氮换算蛋白质的系数。
注意事项:①本实验对蛋白质含量进行测定,因样品中常含有核酸、生物碱、含氮类脂以及含氮色素等非蛋白质的含氮化合物,故结果称为粗蛋白质含量。
②为减少实验误差,所有试剂溶液应用无氨蒸馏水配置。
③消化过程要不断转动凯氏烧瓶,以利于附着在烧瓶上的固体残渣被洗下,促进其消化;同时为防止造成氮损失,不要用强火,应保持缓和沸腾。
④样品中含脂肪或糖较多,消化过程中易产生大量泡沫,为防止泡沫外溢,在消化开始时用小火加热,并时时摇动,并可以加入少量辛醇、液体石蜡或硅油消泡剂,并控制热源强度。
⑤一般消化至呈透明后,继续消化30min即可,但对于含有特别难以氨化的氮化合物的样品,如含赖氨酸、组氨酸、色氨酸、酪氨酸或脯氨酸等时,呈较深绿色。
食品中氨基酸含量的测定
实验九食品中氨基酸含量的测定――茚三酮比色法1、目的通过实验,掌握茚三酮比色法测定氨基酸的方法。
2、原理凡含有自由氨基的化合物,如蛋白质、多肽、氨基酸的溶液与水合茚三酮共热时,能产生紫色化合物,可用比色法进行测定。
氨基酸与茚三酮的反应分两个步骤。
第一步是氨基酸被氧化形成CO2、NH3和醛、茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮与另一个茚三酮分子和NH3缩合生成有色物质。
3、实验材料与仪器3.1材料大豆、奶粉、火腿肠等(1) 0.2mol/L柠檬酸缓冲液,pH5.0(2) 80%乙醇(3) 10mmol/L KCN:称取0.1638gKCN溶于蒸馏水中,稀释至250ml备用(注意:KCN剧毒!)(4) KCN-乙二醇甲醚-茚三酮溶液:称取1.25g重结晶茚三酮溶于25ml经重蒸馏的乙二醇甲醚中使成5%溶液。
将2.5ml10mmol/L KCN溶液用乙二醇甲醚溶液稀释至125ml充分混合。
然后将125mlKCN—乙二醇甲醚溶与25ml茚三酮-乙二醇甲醚溶液相混合,置试剂瓶待用,正常情况下应为浅黄色。
(5 )标准氨基酸溶液:称取亮氨酸20mg溶于10ml蒸馏水中,则得浓度为200μg/ml的母液。
上述所有试剂必须放在草酸保护的干燥器中,以免被空气中的NH3所污染。
(6) 乙二醇甲醚(CH3OCH2CH2OH, methyl cellusolve)的处理:将5g硫酸亚铁加在500g乙二醇甲醚中,振摇1─2小时。
过滤除去硫酸亚铁(若滤液混浊没有关系),再在蒸馏瓶中蒸馏,收集沸点121─125℃部分,此时应为透明无色液体。
KCN-乙二醇甲醚-茚三酮溶液配制后必须隔夜才能应用。
配制后1星期内稳定,若超过1星期则灵敏度降低,不宜作定量。
(7) 茚三酮重结晶:即使AR级的茚三酮,由于保管不当,常带微红色,配成溶液后也带红色,影响比色测定,故需重结晶一次方可应用。
5g茚三酮溶于15ml热蒸馏水中,加入0.25g活性炭,轻轻摇动,若溶液太稠不易操作,可酌量加水5─10ml,30分钟后用滤纸过滤,滤液放冰箱中过液,次晨即见微黄色结晶出现,过滤,再以1ml冷水洗涤结晶,置于干燥器中干燥,最后装入棕色试剂瓶中保存。
食品理化分析蛋白质的测定
蛋白质分子中含有肽键 —CO— NH— 与双缩脲结构相似。在同样条件 与双缩脲结构相似。 下也有呈色反应, 在一定条件下, 下也有呈色反应 , 在一定条件下 , 其 颜色深浅与蛋白质含量成正比, 颜色深浅与蛋白质含量成正比 , 可用 分光光度计来测其吸光度, 确定含量。 分光光度计来测其吸光度 , 确定含量 。 (560nm) )
般消化至呈透明后,继续消化30 30分钟 (4) —般消化至呈透明后,继续消化30分钟 即可,消化液呈蓝色或浅绿色,但含铁量多时, 即可,消化液呈蓝色或浅绿色,但含铁量多时, 呈较深绿色。 呈较深绿色。 (5) 蒸馏装置不能漏气。 蒸馏装置不能漏气。 (6)蒸馏完毕后,应先将冷凝管下端提离液面 蒸馏完毕后, 清洗管口,再蒸1分钟后关掉热源. 清洗管口,再蒸1分钟后关掉热源.否则可能造 成吸收液倒吸。 成吸收液倒吸。
不同的蛋白质其氨基酸构成比例及方式 不同, 不同种类食品的蛋白质系数有所不同, 不同 , 不同种类食品的蛋白质系数有所不同 , 如玉米,荞麦, 青豆,鸡蛋等为6 25, 如玉米 , 荞麦 , 青豆 , 鸡蛋等为 6 . 25 , 花生 46,大米为5 95,大豆及其制品为5 71, 为 5 . 46, 大米为 5. 95 , 大豆及其制品为5 . 71 , 小麦粉为5 70,牛乳及其制品为6 38。 小麦粉为5.70,牛乳及其制品为6.38。
(2) 蒸馏
40%氢氧化钠 氢氧化钠加热蒸 消化液 + 40%氢氧化钠加热蒸 放出氨气。 馏,放出氨气。 观察:若所加碱量不足, (观察:若所加碱量不足,分解 液呈蓝色不生成氢氧化铜沉淀, 液呈蓝色不生成氢氧化铜沉淀,需再 增加氢氧化钠用量) 增加氢氧化钠用量)
2NaOH+ 2NaOH+ (NH4)2SO4= 2NH3↑ + Na2SO4 + 2H2O
蛋白质及氨基酸分析
② 蒸馏:在消化完全的样品溶液中加入浓 氢氧化钠使呈碱性,加热蒸馏,即可释放 出氨气,反应方程式如下: 2NaOH+ (NH4)2SO4= 2NH3↓+ Na2SO4 + 2H2O
③ 吸收与滴定:加热蒸馏所放出的氨,可用 硼酸溶液进行吸收,待吸收完全后,再用 盐酸标准溶液滴定,因硼酸呈微弱酸性(k =5.8×10-10),用酸滴定不影响指示剂 的变色反应,但它有吸收氨的作用,吸收 及滴定的反应方程式如下: 2NH3 + 4H3BO3=(NH4)2B4O7+5H2O (NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H30ml离心管→加 1mlClC4→混合→加50ml酒石酸钾钠稳定 剂→盖上盖子离心10min(4000转/分)→ 放置1小时→吸混合液15ml→于20ml离心 管中→离心到完全透明→取上清夜5ml于 →10ml容量瓶→加水定容→于560nm处测 定吸光度,从标准曲线上查出蛋白质含量。
1.蛋白质分析的重要性 (1)生物活性测定 一些蛋白质包括酶或酶抑制因 子和食品科学与营养有关,例如肉类嫩化中的蛋 白酶、水果成熟中的果胶酶以及豆类中的胰蛋白 酶抑制因子都是蛋白质。 (2)功能性质调查 不同种类食品中的蛋白质都有 其独特的食品功能性质,例如小麦面粉中的麦醇 溶蛋白和麦谷蛋白具有成面团性,牛乳中的酪蛋 白在干酪制作中具有凝结作用,而鸡蛋卵清蛋白 具有起泡能力。
二蛋白质的含量测定凯氏定氮法凯氏定氮法是测定总有机氮量较为准确操作较为简单的方法之一可用于所有动植物食品的分析及各种加工食品的分析可同时测定多个样品故国内外应用较为普遍是个经典分析方法至今仍被作为标准检验方法样品与浓硫酸和催化剂一同加热消化使蛋白质分解其中碳和氢被氧化为二氧化碳和水逸出而样品中的有机氮转化为氨与硫酸结合成硫酸铵
196-习题作业-食品中蛋白质和氨基酸的测定 习题作业
习题九、食品中蛋白质的测定一、填空题1.凯氏定氮法是通过对样品总氮量的测定换算出蛋白质的含量,这是因为。
2.凯氏定氮法消化过程中浓H2SO4的作用是 ;CuSO4的作用是。
3.凯氏定氮法测定蛋白质含量时,在消化步骤中,有时需加入少量辛醇并注意控制热源强度,目的是 ;在蒸馏步骤中,清洗仪器后,然后将吸收液置于冷凝管下端并要求 ,然后从加样口加入 再加入10mL40%NaOH至反应管内的溶液有黑色沉淀生成或变成深蓝色,然后通水蒸汽进行蒸馏;蒸馏完毕,首先应,再停火断气。
4.氨基酸态氮反映的是样品中 的总量。
5.凯氏定氮法测定蛋白质含量过程中,样品经消化进行蒸馏之前加入NaOH的目的是 ,这是溶液的颜色会变为 ,是因为 ,如果颜色没有发生变化,应该 。
6.氨基酸态氮测定时,加入甲醛的作用是 。
7.凯氏定氮法共分四个步骤 、 、 、 。
8.消化加热应注意,含糖或脂肪多的样品应加入 作消泡剂。
9.消化完毕时,溶液应呈 颜色。
10.凯氏定氮法测定蛋白质含量时,滴定用甲基红-溴甲酚绿混合指示剂,其在碱性溶液中呈 色,在酸性溶液中呈 色。
11.凯氏定氮法加入K2SO4的目的是 。
12.构成蛋白质的基本物质是 。
蛋白质区别于其他有机化合物的主要标志是。
13.凯氏定氮法碱化蒸馏后,用 吸收液。
二、判断题1.凯氏定氮法测定蛋白质时,加碱蒸馏前应将冷凝管的下端先没入硼酸吸收液中;蒸馏完毕,直接切断热源即可。
( )2.凯氏定氮法测得的蛋白质含量是样品中粗蛋白质的含量。
( )3.用复合电极测定溶液的pH时,必须首先进行定位校正。
( )4.某实验员在滴定分析中用最小刻度为0.1mL,标称容量为25mL的滴定管进行滴定,最后记录结果为16.4mL。
( )三、名词解释粗蛋白含量 蛋白质系数四、问答题1.凯氏定氮法测定蛋白质的原理及操作步骤如何?加入的各种试剂起什么作用?操作过程中有哪些注意事项?2.蛋白质蒸馏装置的水蒸气发生器中的水为什么要用硫酸调成酸性?3.凯氏定氮法测定蛋白质含量的测定结果为什么要乘以蛋白质系数?五、综合题现测定某试样中蛋白质的含量。
蛋白质和氨基酸测定方法
第十章 蛋白质和氨基酸的测定第一节 概述蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,是生物体发育及修补组织的原料。
一切有生命的活体都含有不同类型的蛋白质。
人体内的酸、碱及水分平衡,遗传信息的传递,物质代谢及转运都与蛋白质有关。
人及动物只能从食物中得到蛋白质及其分解产物,来构成自身的蛋白质,故蛋白质是人体重要的营养物质,也是食品中重要的营养成分。
蛋白质在食品中含量的变化范围很宽。
动物来源和豆类食品是优良的蛋白质资源。
部分种类食品的蛋白质含量见表10-1表10-1 部分食品的蛋白质含量蛋白质是复杂的含氮有机化合物,摩尔质量大,大部分高达数万~数百万,分子的长轴则长达1nm ~100nm ,它们由20种氨基酸通过酰胺键以一定的方式结合起来,并具有一定的空间结构,所含的主要化学元素为C 、H 、O 、N ,在某些蛋白质中还含有微量的P 、Cu 、Fe 、I 等元素,但含氮则是蛋白质区别于其它有机化合物的主要标志。
不同的蛋白质其氨基酸构成比例及方式不同,故各种不同的蛋白质其含氮量也不同。
一般蛋白质含氮量为16%,即1份氮相当于6.25份蛋白质,此数值(6.25)称为蛋白质系食 品 种 类 蛋白质的质量分数(以湿基计)/% 食 品 种 类 蛋白质的质量分数(以湿基计)/%谷类和面食大米(糙米、长粒、生) 7.9大米(白米、长粒、生、强化) 7.1小麦粉(整粒) 13.7玉米粉(整粒、黄色) 6.9意大利面条(干、强化) 12.8玉米淀粉 0.3乳制品牛乳(全脂、液体) 3.3牛乳(脱脂、干) 36.2切达干酪 24.9酸奶(普通的、低脂) 5.3水果和蔬菜苹果(生、带皮) 0.2芦笋(生) 2.3草莓(生) 0.6莴苣(冰、生) 1.0土豆(整粒、肉和皮) 2.1 豆类 大豆(成熟的种子、生) 36.5 豆(腰子状、所有品种、 23.6 成熟的种子、生) 豆腐(生、坚硬) 15.6 豆腐(生、普通) 8.1 肉、家禽、鱼 牛肉(颈肉、烤前腿) 18.5 牛肉(腌制、干牛肉) 29.1 鸡(可供煎炸的鸡胸肉、 23.1 生) 火腿(切片、普通的) 17.6 鸡蛋(生、全蛋) 12.5 鱼(太平洋鳕鱼、生) 17.9 鱼(金枪鱼、白色、罐 26.5 装、油浸、滴干的固体)数。
徐州工程学院食品科学与工程《食品分析》讲义 第十章 蛋白质和氨基酸的测定
二、双缩脲法 1、原理 当脲被小心地加热至150~160 ℃时,可由两个分子同 脱去一个氨分子而生成二缩脲(也叫双缩脲),反应 如下。 H2NCONH2+H—N(H)—CO—NH2→ ℃H2NCONHCONH2+NH3↑ 双缩脲在碱性条件下,能与硫酸铜作用生成紫红色的 配合物,称为双缩脲反应。 由于蛋白质分子中含有肽键(—CO—NH—),与双缩 脲结构相似,所以也能呈现此反应而生成紫红色配合 物,在一定条件下其颜色深浅与蛋白质含量成正比, 据此可用吸光度法来测蛋白质含量。该配合物在540~ 560 nm波长有最大吸收。 适用范围:本法灵敏度较低,但操作简单快速,故在 生物化学领域中测定蛋白质含量时常用此法。
(2)样品测定:吸取一定量的样品稀释 液于比色管中,按上述标准曲线绘制方 法操作,以空白管调零,测定A595 nm 值,从标准曲线上查出蛋白质的质量浓 度,求出样品的蛋白质的含量。
ቤተ መጻሕፍቲ ባይዱ
4、注意事项 (1)所有玻璃仪器要清洗干净并要干燥, 取样要准确。 (2)在试剂加入后的5~20 min内测定 吸光度,因为在这段时间内颜色是最稳 定的。测定中,蛋白质-染料复合物会 有少部分吸附于比色杯壁上,测定完后 可用乙醇将蓝色的比色杯洗干净。
3、操作步骤 (1)标准曲线绘制:取7支比色管,分别加入 标准蛋白质溶液、水和考马斯亮蓝试剂, 即用0.1 mg/mL的标准蛋白质溶液给各比色 管分别加入0 mL、0.1 mL、0.2 mL、0.4 mL、0.6 mL、0.8 mL、1 mL,然后用无离 子水补充到1 mL。最后各试管中分别加入 5.0 mL考马斯亮蓝G-250试剂,每加完一管, 立即混合。用标准蛋白质含量为横坐标, 用吸光度值A595 nm为纵坐标,作图,即得 到一条标准曲线。
食物蛋白质氨基酸评分实验讲义
食物蛋白质氨基酸评分实验(查表计算法)(编写人: 南方医科大学公共卫生与热带医学学院甘露) (一)实验目的1. 掌握食物蛋白质氨基酸评分的计算方法;2. 通过对膳食中不同食物的蛋白质进行氨基酸评分,评价膳食中蛋白质的营养价值,并提出膳食改进建议。
(二)实验原理1. 氨基酸模式和限制氨基酸氨基酸模式(amino acid pattern):指某种蛋白质中各种必需氨基酸的构成比例。
计算方法为将该种食物蛋白质中的色氨酸含量定为1,分别计算其他必需氨基酸的相应比值,这一系列的比值就是该种蛋白质的氨基酸模式。
优质蛋白质(High Quality Protein):当食物蛋白质的氨基酸模式与人体蛋白质氨基酸模式相近时,必需氨基酸被机体利用的程度也越高,食物蛋白质的营养价值也相对越高。
这种蛋白质也被称为优质蛋白质,如动物性蛋白质中蛋、奶、肉、鱼等以及大豆蛋白,均属于优质蛋白。
参考蛋白(reference protein):鸡蛋蛋白质与人体蛋白质氨基酸模式最为接近,在实验中常以它作为参考蛋白。
限制氨基酸(limiting amino acid,LAA):食物蛋白质中一种或几种必需氨基酸相对含量较低,导致其它的必需氨基酸在体内不能被充分利用而浪费,造成其蛋白质营养价值降低,这些含量相对较低的必需氨基酸为限制氨基酸。
其中含量最低的为第一限制氨基酸,余者以此类推。
2. 氨基酸评分(Amino Acid Score,AAS):是用被测食物蛋白质的必需氨基酸与推荐的理想模式或参考蛋白的氨基酸模式进行比较,计算出比值,比值最低者为第一限制氨基酸。
即为该食物蛋白质的氨基酸评分。
3. 蛋白质的互补作用:将不同的食物适当混合,这些食物蛋白质之间可以取长补短,使其必需氨基酸的构成更加接近人体氨基酸需要量模式,从而提高蛋白质在体内的利用率,此为蛋白质互补作用。
食物蛋白质互补作用原则:生物学种属越远越好,搭配种类越多越好,同时食用最好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.合成色素的提取
聚酰胺吸附色素
3.定性分析 14. 定量分析 5 .薄层层析法、高效液相色谱法测定的基本要 求
三、甜味剂的测定
糖精钠的测定:糖精是应用较为广泛的人工甜味 剂 其学名为邻—磺酰苯甲酰亚胺其结构式为:
1.HPLC法 2.酚磺酞比色法 [原理] 样品中的糖精钠在酸性条件下用乙醚提 取分离后,与酚和硫酸在175 ℃作用,生成酚 磺酞,再与氢氧化钠反应产生红色溶液,与标 准系列比较定量。 [说明] ①本法受温度影响较大,要使糖精充分与 酚在硫酸作用下生成酚磺酞,应严格控制在 175士2℃温度下反应 2小时。②苯甲酸等有机 物对测定有干扰,故要通过碱性氧化铝层析柱 以排除干扰。 3. 紫外分光光度法
二、蛋白质和氨基酸的分类
三、蛋白质的一般性质
1. 物理性质
2 .化学性质
第二节 蛋白质的测定
蛋白质的测定方法分两大类:一类是利用蛋白质 的共性即含氮量、肽键和折射率等测定蛋白质 含量;另一类是利用蛋白质中的氨基酸残基、 酸性和碱性基因以及芳香基团等测定蛋白质含 量 。 具体测定方法:凯氏定氮法是最常用的,国内 外应用普遍;双缩脲反应、染料结合反应、酚 试剂法; 国外:红外分析仪
④ 样品中若含脂肪较多时,消化过程中易产生大 量泡沫,为防止泡沫溢出瓶外,在开始消化时 应用小火加热,并时时摇动;或者加入少量辛 醇或液体石蜡或硅油消泡剂,并同时注意控制 热源强度。 ⑤ 当样品消化液不易澄清透明时,可将凯氏烧 瓶冷却,加入30%过氧化氢 2—3 m1 后再继 续加热消化。 ⑥ 若取样量较大,如干试样超过5 g 可按每克 试样5 m1的比例增加硫酸用量。
[步骤] 整个过程分三步:消化、蒸馏、吸收与 滴 定 1.消化 总反应式: 2NH2(CH2)2COOH+13H2SO4= (NH42SO4+6CO2+12SO2+16H2O
为了加快消化速度,一般添加硫酸钾、硫酸铜等 催化剂,也可加入氧化剂。
(1)加硫酸钾:作为增温剂,提高溶液沸点, 纯硫酸沸点 340℃,加入硫酸钾之后可以提高 至400℃以上。也可加入硫酸钠,氯化钾等提 高沸点,但效果不如硫酸钾。
在镉柱中,镉定量地将 NO3-还原成NO 2Cd十N03CdO十N02-
镉柱经使用后用稀盐酸除去表面的氧化镉可重新 使用 CdO十2HCl→CdCl2十H2O
[注意]:在制取海绵状镉和装填镉柱时最好在 水中进行,勿使镉粒暴露于空气中以免氧化。 3.其他方法 紫外分分光度法同时测定硝酸盐 亚硝酸盐 ;荧光法测定亚硝酸盐含量; 离子选择性电极法测定硝酸盐 ;气相色谱法测定 硝酸盐和亚硝酸盐
一、常量凯氏定氮法 食品和其原料中蛋白质含量的测定,主要(也是 最常用的)用凯氏定氮法测定总氮量,然后乘 一个蛋白质换算系数。这里也包括非蛋白的氮, 所以只能称为粗蛋白的含量(但马铃薯等非蛋 白氮多的要单测)。
蛋白质的含氮量一般为 15%~ 17.6%,有的上下 浮动,可以测出总氮. N/16%=N×6.25=蛋白质含量
蛋白质是生命的物质基础,人体 11%~13%总热量来自蛋白质。无论动 物、植物都含有蛋白质,只是含量及类 型不同。 蛋白质是食品的最重要质量指标,其含 量与分解产物直接影响食品的色、香、 味。
一般说来,动物性食品的蛋白质含量高于植物性 食品。例如牛肉中蛋白质含量为 20.0%左右, 猪肉 9.5% , 兔肉 21% , 鸡肉 20% , 牛 乳 3.5%, 带鱼 18.0%, 大豆 40% , 面 粉 9.9%, 菠菜 2.4%, 黄瓜 1.0%, 苹 果 1.4% 测定食品中的蛋白质的含量,对于评价 食品的营养价值,合理开发利用食品资源、提 高产品质量、优化食品配方、指导经济核算及 生产过程控制均具有极其重要的意义。
从而赋予食品鲜艳的红色。同时,亚硝酸盐对 抑制微生物的增殖有一定作用,与食盐并用可 增加抑菌,对肉毒梭状芽孢杆菌有特殊抑制作 用。
发色剂的毒性 亚硝酸盐和硝酸盐作为食品添加剂, 过多地使用对人体产生毒害作用。亚硝酸盐与 仲胺反应生成具有致癌作用的亚硝胺。
1. 亚硝酸盐的测定
(GB/T 5009.33—2003) 《食品中亚硝酸盐 与硝酸盐的测定》
(2)加硫酸铜:作为催化剂。还可以作消化终 点指示剂(做蒸馏时碱性指示剂)。还可以加 氧化汞、汞(均有毒,价格贵)、硒粉、二氧 化钛。 (3)加氧化剂 如双氧水、次氯酸钾等加速有 机 物氧化速度。 装置: 219页(要防止爆沸)。
消化液 + 40%氢氧化钠加热蒸馏, 放出氨气。
3. 吸收与滴定
<1>用4%硼酸吸收,用盐酸标准溶液滴定,指示 剂用混合指示剂(甲基红—溴甲基酚绿混合指 示剂)国标用亚甲基兰+甲基红。
四、防腐剂的测定
防腐剂是能防止腐败、变质、抑制食品中微生物 繁殖,延长食品保存期的一类物质的总称。虽 然有些防腐剂被认为是比较安全的,但长期或 大量使用不行,应尽量少用甚至不用。 防腐剂还在烟草、化妆品、牙膏、药品中应用
防腐剂的品种:苯甲酸、苯甲酸钠、山梨酸、山 梨酸钾、EDTA二钠、 亚硝酸钠、丙酸及其盐、 乳酸链球菌素等。 新开发的:果胶分解产物、香辛料提取物、琼脂 低聚糖、甜菜碱、日扁柏醇、类黑精、葡萄糖 氧化酶、熏液、富马酸二甲酯、溶菌酶、鱼精 蛋白等。
盐酸萘乙二胺比色法
[原理] 样品经沉淀蛋白质,除去脂肪后,在弱 酸条件下,亚硝酸盐与对氨基苯磺酸重氮化, 再与盐酸萘乙二胺偶合形成紫红色染料,其最 大吸收波长为 538 nm,可测定吸光度并与标 准比较,定量。 [注意] 盐酸萘乙二胺有致癌作用,使用时应注 意安全。
2。硝酸盐的测定
镉柱法
[原理] 样品经沉淀蛋白质、去除脂肪后,得到 提取液,将提取液通过镉柱,在pH9.6~9.7的 氨缓冲液中,使其中的硝酸根还原为亚硝酸根, 然后利用盐酸萘乙二胺法测定亚硝酸盐的总量, 由总量减去还原前亚硝酸盐含量即为由硝酸盐 还原产生的亚硝酸盐含量。再乘以换算系数, 即得硝酸盐含量。
二、食品添加剂的使用及管理
第二节 食品添加剂的测定
食品添加剂的检测也是先分离再测定。 分离——蒸馏法、溶剂萃取法、色层分离等。 测定——比色法、紫外分光光度法、TLC、HPLC等。
、发色剂的测定 发色剂又名护色剂或呈色剂,是能够使肉与肉制 品呈现良好色泽的物质。 常用的有亚硝酸盐、硝酸盐。 发色剂的发色机理: 亚硝酸盐和硝酸盐→亚硝基(NO) +肌红蛋白 → 亚硝基肌红蛋白(MbNO) →巯基(一SH) →亚硝 基血色原(鲜红色的)
⑦ —般消化至呈透明后,继续消化30分钟即可, 但对于含有特别难以氨化的氮化合物的样 品.如含赖氨酸、组氨酸、色氨酸、酪氨酸或 脯氨酸等时,需适当延长消化时间。有机物如 分解完全,消化液呈蓝色或浅绿色,但含铁量 多时,呈较深绿色。 ⑧ 蒸馏装置不能漏气。 ⑨ 蒸馏前若加碱量不足,消化液呈蓝色不生成 氢氧化铜沉淀,此时需再增加氢氧化钠用量。 氢氧化铜在70~90℃时发黑。 ⑩ 蒸馏完毕后,应先将冷凝管下端提离液面清 洗管口,再蒸1分钟后关掉热源.否则可能造 成吸收液倒吸。
2 .分类 食品添加剂的种类很多,按其来源分为天然食品 添加剂和化学合成添加剂 天然食品添加剂:利用动、植物组织或分泌物及 以微生物的代谢产物为原料,经过提取、加工 所得到的物质。如:Vc、淀粉糖浆、植物色素 等。 化学合成添加剂:通过一系列化学手段 所得到 的有机或无机物质。
3.测定意义
为了保障食品安全!
(1) 滴定法测苯甲酸 (适于样品中苯甲酸 含 0.1 %以上) 苯甲酸 微溶于水,用乙醚从样品中提取,蒸 去乙醚,以标准NaOH滴定。若样品中是苯甲酸 钠,先让其与酸作用成苯甲酸,再按上法测定。 (2)其他方法 薄层色谱法; 紫外分光光度法 气相色谱法
2.山梨酸的测定 山梨酸又名花楸酸,(CH3CH=CHCH=CHCOOH), 为 无色、无嗅的针状结晶,难溶于水。 山梨酸钾易溶于水,难溶于有机溶剂,与酸 作用生成山梨酸。比苯甲酸更安全,在体内最 后成CO2和水。 测定方法有:硫代巴比妥酸比色法、紫外 分分光度法、薄层色谱法、气相色谱法、 高效 液相色谱法
五 漂白剂的测定 漂白剂是为使食品保持特有的色泽、退色或不褐 变。依靠漂白剂的氧化或还原能力,破坏食品 的变色因子。 (1) 食品中的漂白剂本身无营养价值。
(2) 严格控制使用量,因为对人体健康有一定 影响。
( 3 )要求对食品的品质、营养价值及保存期不 应有不良影响。 二氧化硫及亚硫酸钠的测定: 二氧化硫及亚硫酸盐的测定方法有多种。
禁用的防腐剂:水杨酸、甲醛、硼酸、 β - 奈酚、 焦碳酸二乙酯等。
1
苯甲酸的测定 苯甲酸又名安息香酸。为白色有丝光的鳞片或针 状结晶,微溶于水, 使用不便,实际生产多用 其钠盐。苯甲酸钠易溶于水和乙醇,难溶于有 机溶剂,与酸作用生成苯甲酸。 苯甲酸及其钠盐主要用于酸性食品的防腐, 在pH 2.5—4其抑菌作用较强,当pH>5.5时, 抑茵效果明显减弱。对霉菌和酵母菌效果甚差。 苯甲酸进入人体后,大部分与甘氨酸结合形成无 害的马尿酸,其余部分与葡萄糖醛酸结合生成 苯甲酸葡萄糖醛酸甙从尿中排出,不在人体积 累。苯甲酸的毒性较小。
凯氏定氮法由Kieldhl于1833年提出,现发展为 常量、微量、自动定氮仪法,半微量法及改良 凯氏法。 书中只介绍前三种。
[原理] 样品与浓硫酸和催化剂一同加热消化,使 蛋白质分解,其中碳和氢被氧化为二氧化碳和 水逸出,而样品中的有机氮转化为氨与硫酸结 合成硫酸铵。然后加碱蒸馏,使氨蒸出。 ①用H3BO3吸收后再以标准HCl溶液滴定。根据标 准酸消耗量可以计算出蛋白质的含量。 ②也可以用过量的标准H2SO4或标准HCl溶液吸收 后再以标准NaOH滴定过量的酸。
第八章 食品中蛋白质和氨基酸的测 定
一、 测定意义 蛋白质是含氮的有机化合物,分子量很大。主 要由 C、H、O、N、S 五种元素组成。某些蛋 白质中还含有微量的 P、Cu、Fe、I 等。 在食品和生物材料中常包括蛋白质,可能还 包括有非蛋白质含氮的化合物,(如核酸、含 氮碳水化合物、生物碱等;含氮类脂、卟啉和 含氮的色素)。