电子产品的电磁干扰分析和抑制措施

合集下载

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。

根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。

1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

电源进线端通常采用如图1 所示的EMI 滤波器电路。

该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。

在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。

而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。

抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。

当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

因此,即使在大负载电流的情况下,磁芯也不会饱和。

而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。

2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。

采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。

可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。

如何在办公环境中有效抑制电磁干扰

如何在办公环境中有效抑制电磁干扰

如何在办公环境中有效抑制电磁干扰在当今数字化、信息化的办公环境中,电子设备的广泛应用带来了便利,但同时也带来了电磁干扰这一不容忽视的问题。

电磁干扰不仅可能影响设备的正常运行,还可能导致数据丢失、通信中断,甚至对人体健康产生潜在威胁。

因此,如何在办公环境中有效抑制电磁干扰成为了一个重要的课题。

首先,我们需要了解电磁干扰的来源。

办公环境中的电磁干扰源多种多样,常见的有电脑、打印机、复印机、扫描仪、无线设备(如WiFi 路由器、蓝牙设备)、照明设备以及电力线等。

这些设备在工作时会产生电磁辐射,如果它们的电磁兼容性不好,或者在空间布局上不合理,就容易相互干扰。

为了抑制电磁干扰,合理的布线是关键的一步。

电源线和信号线应尽量分开铺设,避免相互缠绕和交叉。

对于较长的线缆,可以采用屏蔽线来减少电磁辐射的泄漏。

在布线时,还应注意保持线缆的整齐和有序,避免形成混乱的线束,这样有助于减少电磁耦合。

电子设备的摆放位置也会对电磁干扰产生影响。

例如,将无线设备尽量远离敏感的电子设备,如电脑主机、显示器等。

打印机、复印机等大功率设备应与其他设备保持一定的距离,以减少其电磁辐射对周围设备的影响。

同时,避免将多个电子设备密集地堆放在一起,留出足够的空间有助于电磁能量的散发。

选择具有良好电磁兼容性的设备是从源头上减少电磁干扰的重要措施。

在购买办公设备时,应关注产品的电磁兼容性认证标志。

符合电磁兼容性标准的设备在设计和生产过程中已经采取了相应的措施来抑制电磁干扰,从而能够更好地在办公环境中稳定运行。

对于一些容易受到电磁干扰影响的设备,如精密测量仪器、音频设备等,可以使用电磁屏蔽装置。

电磁屏蔽罩、屏蔽室等可以有效地阻挡外部的电磁辐射,保护内部设备不受干扰。

此外,还可以在设备的接口处使用滤波器件,如电源滤波器、信号滤波器等,过滤掉不必要的电磁干扰信号。

接地也是抑制电磁干扰的有效手段之一。

良好的接地系统可以为电磁干扰提供一个低阻抗的通路,使其迅速流回大地,从而减少对设备的影响。

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施电磁干扰(EMI)是指在电磁环境中,由于电磁波的辐射、传导或耦合而引起的潜在问题。

在电子设备中,差模共模干扰是最常见和容易发生的电磁干扰形式之一、差模干扰是指在信号的正负两根导线上引入的干扰信号。

共模干扰是指在信号和地线之间或信号和屏蔽之间引入的干扰信号。

为了保证电子设备的正常工作,需要采取一系列抑制措施来抑制差模共模干扰。

1.使用差分信号传输:差模干扰是指在信号的正负两根导线上引入的干扰信号,而差分信号传输采用了两根互补的信号线,其中一根是信号线,另一根是信号线的反相线。

这样设计可以使得差模信号在两根导线上被平衡地引入,从而减小差模干扰的影响。

2.使用屏蔽线缆:差分信号传输可以减小差模干扰,但无法完全消除。

将信号线包裹在屏蔽层中可以进一步减小差模干扰的影响。

屏蔽线缆使用了金属屏蔽层,可以有效地吸收和屏蔽外部的电磁干扰,从而减小差模干扰。

3.采用均衡电路:在接收信号的端口,使用均衡电路可以进一步减小差模干扰的影响。

均衡电路可以将差模信号进行抵消,从而降低差模干扰对信号的影响。

4.使用差模输入输出接口:差模输入输出接口可以限制差模干扰信号的传播路径。

通过选择合适的差模输入输出接口,可以减小差模干扰信号的传播,从而减小对设备的影响。

1.接地:良好的接地可以减小共模干扰的影响。

在设计电子设备时,需要合理设置接地点,确保设备的各个部分都能够得到正确的接地。

2.屏蔽:在信号传输过程中,可以采用屏蔽层将信号线和地线之间隔离,从而减小共模干扰的影响。

屏蔽层采用金属材料制成,可以有效地吸收和屏蔽外部的电磁干扰。

3.使用滤波器:在信号线上安装共模滤波器可以减小共模干扰的影响。

共模滤波器可以选择合适的频率范围,将共模干扰信号滤除,从而保证信号的质量。

4.绕线方式:在布线时,可以通过适当的绕线方式来减小共模干扰的影响。

例如,采用环形绕线、交叉绕线等方法,可以使得信号线和地线之间的耦合减小,从而减小共模干扰。

医疗电子仪器使用中的干扰和抑制措施

医疗电子仪器使用中的干扰和抑制措施

医疗电子仪器使用中的干扰和抑制措施摘要:现如今,随着我国经济水平的逐步攀升以及科技技术的飞速发展下,大量精密仪器在我国医疗领域得到广泛的应用,并取得显著效果。

但在实际应用医疗电子仪器的过程中,我们可以发现这些仪器较为容易被外界干扰而失去一定功能,进而直接性的影响到医疗工作的有效开展。

基于此,本篇文章主要围绕于医疗电子仪器,所阐述使用过程中所受到的干扰,并依据相应干扰来提出较为有效的抑制措施,旨在进一步保障医疗电子仪器的有效性、成效性,充分发挥出自身的使用效果。

关键词:医疗电子仪器;干扰;抑制措施引言医疗电子仪器在使用过程中所出现的干扰情况会直接性的影响到自身的应用有效性,并给医疗工作的顺利开展带来诸多的障碍和困难。

因此,我们应当及时认知到有效抑制医疗电子仪器使用中所遇干扰的重要性、必要性,以此采取有效对策进行抑制,让所应有的医疗电子仪器能够正常运作及使用,准确获取到患者的诊断信息,为医疗工作的有序进行提供更多的有效助力。

一、医疗电子仪器使用过程中所遇的干扰(一)接地不当引起的干扰医疗电子仪器设备在正式运用前,其电源内会有接地线路,主要目的则是在发生故障后能够将溢出的电流导入于地下,但相应人员在接地的环节中,应当基于其适宜、科学的基础上操作,以免由于接地的不当而引发的干扰现象,给医疗电子仪器设备的正常使用带来影响。

即便区域相同,不同接地点间很有可能存在电势不相等的现象,如果在这种情况下仍然接地,是会引发大地环流现象的,进而给医疗电子仪器带来干扰[1]。

(二)电源线引起仪器内部的干扰医疗电子仪器设备的正常运作离不开电源的供电,其过程则是由电源线来传输电流至仪器。

但在这一环节中,极为容易受到电磁干扰而将受干扰的电流输入于医疗电子仪器内,进而致使仪器设备的内部产生干扰。

深究其内容发现,致使医疗电子仪器设备的内部出现干扰现象的原因较多,主要为以下几点内容:第一,医院内的医疗电子仪器设备较为丰富,但其设备在正常运转过程中会造成电磁的干扰;第二,其他医疗电子仪器设备的正常开启与停止应用都会给一个正常运转的仪器带来干扰,因为在仪器启停时,会产生一定的脉冲信号,以此在引入到正常运转仪器的内部时,会出现一定的干扰;第三,患者身体在与医疗电子仪器设备相连接的导线会产生电场耦合,进而致使干扰现象的产生。

探讨电磁干扰和射频干扰及其抑制措施

探讨电磁干扰和射频干扰及其抑制措施

1、引言随着电子系统的日益精密、复杂及多功能化,电子干扰问题日趋严重,它可使系统的性能发生变化、减弱,甚至导致系统完全失灵。

特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年电子产业的热点。

为此,不少国家的专业委员会相继制定了法规,对电子产品的电磁波不泄露、抗干扰能力提出了严格规定,并强制执行。

美国联邦通信委员会(FCC)于1983年颁布了20780文件,对计算机类器件的EMI进行限制;德国有关部门颁布了限制EMI的VDE规范,在放射和辐射方面的约束比FCC规范更严格;欧洲共同体又在VDE规范中增加了RF抗扰性、静电泄放和电源线抗扰性等指标。

FCC、VDE规范将电子设备分为A(工业类设备)和B(消费类设备)两类,具体限制如表1所示。

此外,还有一系列适用于电子EMI/RFI防护的标准文件:MIL-STD-461、MIL-STD-462、MIL-STD-463、MIL-STD-826、MIL-E-6051、MIL-I-6181、MIL-I-11748、MIL-I-26600、MSFC-SPEC279等,所有这些法规性文件对电子系统的干扰防护起到了重大的作用。

本文详细讨论了电子线路及系统中EMI/RFI的特征及其抑制措施。

2、EMI/RFI特性分析电子系统的干扰主要有电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,每个电子电气设备均可看作干扰源,这种干扰源不胜枚举。

EMI是在电子设备中产生的不需要的响应;RFI则从属于EMI;EMP是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感转换等)或外部原因(闪电、核爆炸等)引起,能耦合到任何导线上,如电源线和电话线等,而与这些导线相连的电子系统将受到瞬时严重干扰或使系统内的电子电路受到永久性损坏。

图1给出了常见EMI/RFI的干扰源及其频率范围。

图1、常见干扰源及频率范围2.1、干扰途径任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。

单相电动机的电磁干扰和抗干扰技术

单相电动机的电磁干扰和抗干扰技术

单相电动机的电磁干扰和抗干扰技术单相电动机广泛应用于家用电器、工业设备、农业机械等领域,为我们的生产生活提供了很大的便利。

然而,单相电动机在运行过程中常常伴随着电磁干扰问题。

电磁干扰对其他电子设备的正常工作产生不利影响,严重时甚至可能导致设备故障。

因此,为了提高单相电动机的可靠性和稳定性,抗干扰技术显得尤为重要。

一、单相电动机电磁干扰的原因1. 电磁辐射干扰单相电动机在运行过程中会产生电磁辐射,包括功率频率、高次谐波和脉动磁场等。

这些电磁辐射会传播到周围的电子设备中,干扰其正常工作。

尤其是功率频率电磁辐射,其频谱分布在几百赫兹至几千赫兹之间,与许多通信、显示等设备的工作频率范围存在重叠,因此容易引起干扰。

2. 电源线干扰单相电动机的运行过程中会产生脉动电流,这会导致电源线上出现电压和电流的不稳定。

这种电源线干扰可通过传导和辐射方式传播到其他设备中,引起它们的故障或操作不稳定。

3. 地线干扰单相电动机的地线通常与其他设备的地线共享。

因此,当电动机产生地线干扰时,可能会通过公共地线传播到其他设备中,干扰它们的正常工作。

二、抑制单相电动机电磁干扰的技术手段为了减小或消除单相电动机的电磁干扰,需要采取一些技术手段,如下所述:1. 滤波器的应用安装滤波器是抑制电磁干扰的常用措施之一。

滤波器可以将电动机产生的高频噪声滤掉,从而减小辐射干扰。

常见的滤波器包括差模滤波器和共模滤波器。

差模滤波器是通过串联电感和电容的方式,将差模信号滤出,减小干扰传播。

共模滤波器则是通过并联电感和电容的方式,将共模信号滤出。

2. 软启动技术单相电动机在启动时会产生较大的起动电流,这会引起电源线电压波动,进而影响其他设备的正常工作。

采用软启动技术可以逐渐增加电机的电源电压,使电机起动时电流逐渐升高,从而减小电网的波动。

3. 接地和屏蔽在单相电动机的设计中,合理的接地和屏蔽措施可以有效地减少电动机产生的电磁干扰。

通过保持电动机和其他设备之间的地线独立,并采取适当的屏蔽材料和结构,可以阻止干扰信号的传播。

抑制电磁干扰的基本措施

抑制电磁干扰的基本措施
美国电磁兼容标准
如FCC Part 15和FCC Part 18等,这些标准规定了电子设备的电磁干扰限制和测量方法 。
国家电磁兼容标准
中国电磁兼容标准
如GB/T 9254、GB/T 17799等,这些标准规定了电子设备的电磁兼容性要求和测试方法。
欧洲国家电磁兼容标准
如德国的DIN EN 55011、法国的NF C 3210等,这些标准与欧洲电磁兼容标准类似,适用于各个国 家的产品。提高敏感设备的抗干扰能力Fra bibliotek硬件升级
升级敏感设备的硬件,以提高其抗干扰能力。
软件算法优化
通过软件算法优化,提高敏感设备的抗干扰能力。
04
法律法规与标准
国际电磁兼容标准
国际电工委员会(IEC)制定的电磁兼容标准
如IEC 61000系列标准,包括电磁干扰测量、限制和评估方法等。
欧洲电磁兼容标准
如EN 55011、EN 55022和EN 55024等,这些标准规定了家用电器、照明设备和类似 设备的电磁兼容性要求。
改变电磁干扰源的工作方式
调制技术
通过改变信号的频率或相位,使信号 在特定的频率范围内传输,从而降低 电磁干扰的影响。
软开关技术
在电子设备中采用软开关技术,以减 少开关过程中产生的电磁噪声。
隔离电磁干扰源
屏蔽技术
使用导电材料对电子设备进行屏蔽,以隔离电磁干扰源。这可以有效抑制电磁 干扰的传播。
接地技术
滤波技术
滤波技术是通过滤除特定频率的电磁 波来抑制电磁干扰的一种方法。
常见的滤波器包括电容器、电感器和 复合滤波器等,它们能够有效地吸收 或反射特定频率的电磁波,从而减少 干扰信号对电路的影响。
接地技术
接地技术是将设备或系统与大地连接,以减少电磁干扰对设 备的影响。

电路抑制电磁干扰

电路抑制电磁干扰

电路抑制电磁干扰概述在现代电子设备广泛应用的背景下,电磁干扰成为一个不可忽视的问题。

电磁干扰可能导致电子设备的正常工作受到干扰甚至损坏,因此需要采取措施来抑制电磁干扰。

本文将介绍电路抑制电磁干扰的原理和方法。

电磁干扰的原因电磁干扰是由于电子设备之间的相互作用引起的。

这种相互作用可以通过空气中的电磁波传播来实现。

电子设备发出的电磁波可能干扰其他设备的正常工作,同时其他设备也可能发出电磁波干扰该设备。

电磁干扰的原因主要有以下几个方面:1.电源干扰:电源线上的电流变化会产生电磁波,这些电磁波可能通过电源线传播到其他设备,引起干扰。

2.信号干扰:信号线上的电流变化也会产生电磁波,这些电磁波可能通过信号线传播到其他设备,引起干扰。

3.地线干扰:地线上的电流变化同样会产生电磁波,这些电磁波可能通过地线传播到其他设备,引起干扰。

4.电磁波辐射:电子设备本身可能会产生电磁波辐射,这些电磁波可能干扰其他设备的正常工作。

电磁干扰的影响电磁干扰可能对电子设备的正常工作产生以下几个方面的影响:1.降低设备的性能:电磁干扰可能导致设备的性能降低,例如降低通信设备的传输速率、降低音频设备的音质等。

2.引起误操作:电磁干扰可能导致设备误操作,例如触摸屏设备受到干扰可能会出现误触发现象。

3.导致设备损坏:严重的电磁干扰可能导致设备损坏,例如电路板受到过高电压的干扰可能会烧毁。

电路抑制电磁干扰的方法为了抑制电磁干扰,我们可以采取以下几种方法:1.屏蔽:通过在电路周围添加屏蔽层,可以阻挡电磁波的传播,减少电磁干扰的发生。

屏蔽层可以采用导电材料,例如金属,以提供电磁波的屏蔽效果。

2.滤波:通过在电路中添加滤波器,可以滤除电磁波中的干扰信号,使得电路只接收到正常的信号。

滤波器可以采用电容、电感等元件组成,通过选择合适的参数来实现滤波效果。

3.接地:良好的接地系统可以将电磁波引入地线,减少电磁波对其他设备的干扰。

接地系统应该采用低阻抗的地线,以提供良好的接地效果。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。

2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。

3. 地线布局:合理布置地线,减少电磁干扰。

不同元器件的地线要分开布局,避免共
用一个接地点。

4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。

5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。

6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。

7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。

8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。

以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。

抑制电磁干扰的六种常用方法

抑制电磁干扰的六种常用方法

《抑制电磁干扰的六种常用方法》
电磁干扰是一种对计算机系统及其他电子设备造成的不可控的电磁脉冲,可以影响系统的性能,甚至导致系统故障。

因此,抑制电磁干扰是确保系统安全运行的重要措施。

下面介绍一下抑制电磁干扰的六种常用方法。

一、采用屏蔽技术。

屏蔽技术是将电磁干扰源和敏感设备之间的电磁波隔离开来,从而抑制电磁干扰的传播。

屏蔽技术可以用金属箔或金属铠装箔来实现,也可以采用特殊的电磁屏蔽材料,如铁钢箔和铝箔。

二、采用电磁屏蔽材料。

电磁屏蔽材料可以有效地吸收可能传播到被保护设备的电磁波,从而抑制电磁干扰的传播。

常用的电磁屏蔽材料包括铁钢箔、铜箔、铝箔和特殊电磁屏蔽材料等。

三、采用绝缘材料。

绝缘材料可以有效地阻止电磁波的传播,从而有效地抑制电磁干扰。

常用的绝缘材料包括橡胶、塑料、纸等,这些材料可以用于屏蔽线缆、电缆、连接器和电子元件等。

四、采用磁护屏。

磁护屏可以有效地抑制电磁脉冲,防止其影响被保护设备的性能。

磁护屏是一种带有磁吸铁片的箔,可以有效地吸收外界的电磁波,从而起到抑制电磁干扰的作用。

五、采用多层护屏。

多层护屏可以有效地增加电磁波吸收的隔离效果,从而抑制电磁干扰的传播。

多层护屏通常由金属箔、铝箔和电磁屏蔽材料组成,以确保电磁波的隔离效果。

六、采用电磁屏蔽结构。

电磁屏蔽结构是一种用于抑制电磁干扰的特殊结构,其特点是结构内部由金属箔、铝箔和电磁屏蔽材料组成,可以有效地抑制电磁波的传播。

以上就是抑制电磁干扰的六种常用方法,这些方法可以有效地抑制电磁干扰的传播,从而确保系统的安全运行。

电子设备抗干扰的技术措施

电子设备抗干扰的技术措施

干扰信号通过一 定途径进入 电子设备 , 不仅 影响设 备的正 常工作 , 甚至会使 设备 出现误动作 。 在 电子设备保养 维修过程 中,有些人 由于忽视 了干扰的影响,常常 因为元器件、导线 的 安装不 当, 导致 电子设备在检修后工作性能反而变 差。因此干 扰 与抗干扰不仅在设计 中必须重视 , 在 使用和 维护 中也必须重

_

消费 电子
电子 科 技
C o n s u me r E l e c t r o n i c s Ma g a z i n e
2 0 1 3 年 4月下
电子设备抗干扰的技术措施
葛根美
( 9 1 8 6 8 部 队,海南三亚 5 7 2 0 0 0 )

要 :电子设备 受到干扰 时不仅会 影响设备 性能 , 严 重时甚至会发 生误 动作 , 从 而造 成严重后 果。文章 主要
视。
干 扰源 的种类及抗干扰措施 ( 一) 热干扰 。 热干扰是指 电子元器件 由于热 能的作用使 电阻等元器件 内部 电子产生骚动所产生的干扰。 对付热干扰通 常采用导热性能 良好 的金属材料做成防护罩进行热屏蔽, 或采 用温度补偿元件和采用差分放大电路、 电桥 电路等对称平衡结 构等防护措施 。 ( 二) 机械干扰 。 机械干扰是指机械 的振动或冲击使设备 中的电路和元器件发生振动、 变形 , 从而使 电路参数发生变化。 对于机械干扰采取减震弹簧或减震橡胶垫等减震措施来解 决。 ( 三) 光干扰 。 半导体材料在 光照作用下会激发空穴一 电 子对 , 使半导体元器件产生 电势 或引起 阻值 的变化 , 从而影 响 设备 的正常工作 。 为了防止光干扰,通常将 具有光敏作用 的元 器件封装在不透光的壳体 内进行光屏蔽 。 ( 四)电磁干扰 。电磁干扰 是指电子电路在 电场和磁场 中 产生静 电感应和感应 电动势 , 从而对 电路 形成 的干扰 。 应对 电 磁干扰 的方法主要是静 电屏蔽和电磁屏蔽。 ( 五) 接触 噪声。 接触噪声是 由元器件之间的不完全接触 , 从而形成 电导率 的起伏引起的干扰 。 减 小流 过触 点的直流 电流 可减小接触噪声 的影响 。 二 、干扰途径及抑制干扰的措施 ( 一) 传导耦合的干扰 。 噪声经 由导体直接传 导耦合到 电 路 中而造成 的干扰称为传导耦合的干扰。 抑制传导耦合 的干扰 主要措施是 串接滤波器 , 具有去耦滤 波作用的积分电路 , 也可 有效地滤除传导干扰 。 ( 二) 、通过公共阻抗耦 合的干扰 。主要指 噪声电流通过 回路 问的公共 阻抗产 生的噪声 电压 传导给受干扰 的回路而形 成 的干扰 。 消 除公共阻抗耦合干扰一是采 取一点接 地法 , 二是 尽可能 降低公共阻抗 。 ( 三 )电容性耦合 的干扰 。 是指干扰 脉冲或高频干扰通过 分布 电容进入 电子 电路 , 对 电路形成的干扰。消除电容性耦合 的干扰方法一是减小分布 电容 ,二是进行静 电屏蔽。 ( 四)电感性耦合 的干 扰。电路 中的 回路近似于线圈,当 周 围的磁场发生变化时 , 就会感应出 电动 势, 从而对 电路形成 干扰 。减少 电感性耦合的方法是采取电磁屏蔽。 三 、提 高电子 电路的抗干扰能 力 削弱和消除 电子 电路对干扰的敏感性 , 是防护干扰 的重要

电机电磁干扰原因分析及解决办法

电机电磁干扰原因分析及解决办法

电机电磁干扰原因分析及解决办法1产生电磁干扰的原因(1)绕组中突变磁场产生干扰或老化如果通过电动机线圈绕组的电流通路切断,则线圈中的磁场突然消失,线圈上会产生上百伏,甚至上千伏的瞬变过电压。

这种电压对系统中其他电子装置产生巨大电能冲击,最终导致设备、系统的基本失控和逻辑判断出错,甚至击穿或烧毁系统中的其他机电元件。

瞬变过电压与负载的大小以及线路的阻抗有关。

(2)换向器与电刷间的火花放电。

对电刷式电动机而言,电刷和换向片之间产生火花放电,同时引起频谱极宽的噪声(从中波到甚高频波段内是连续分布的),它对无线广播、电视及各种电子设备在很大范围内造成干扰。

(3)其他。

诸多电子产品中的电动机均采用桥式整流和电容滤波电路整流后的直流电源。

因为其中整流二极管的导通角很小,只有在输入交流电压峰值附近才有高峰值的输入电流通过。

这种畸变的电流波形基本很低,但高次谐波却非常丰富,脉冲宽度约为5ms(1∕4T)o这种高峰值的电流脉冲不仅对供电电网造成严重污染,还对其他各种用电设备产生干扰。

2电路设计时电磁干扰的产生及抑制措施在电磁电路中的电磁兼容性很大范围是由线路贮藏和互相连接的成分决定的:从天线返回的信号能放射出电磁能量。

其最主要是由于电流幅值、频率和电流线圈的几何面积决定的。

通常,有3个主要的电磁干扰来源:电源、高频信号、振荡器电路。

下面分别分析产生原因及其防范措施。

首先,当1个CMOS反向换流器在改变输出状态时,两个晶闸管会有一段很短的时间同时导通。

这会使电流增长很快,导致在电源线路上出现电流尖峰,引起一段或长或短的电源线路的短路。

这被证实是产生电磁干扰的一个重要原因。

减弱电源电压的波动,使其接近1个100nF旁路电容器,是十分有效的。

然而由于电路的寄生成分,例如集成和电源线路的阻抗,旁路电容器不能有效减少电流峰值的,因此也不能减少辐射干扰。

为了抑制这些电流尖峰(至少在电源线路上),使其不扩展到其他部位,在极间耦合电容器和电源线路之间增加1个感应线圈,以方便干扰被抑制。

电磁继电器的电磁干扰现象与抑制方法

电磁继电器的电磁干扰现象与抑制方法

电磁继电器的电磁干扰现象与抑制方法嘿,朋友们!今天咱来聊聊电磁继电器的电磁干扰现象和抑制方法。

你想想啊,这电磁继电器就像个勤劳的小蜜蜂,在各种电路里忙忙碌碌地工作着。

但有时候呢,它也会惹出点小麻烦,这就是电磁干扰啦!就好比你正安静地听音乐呢,旁边突然有人大声喧哗,是不是挺烦人呀!电磁干扰出现的时候,那可真是让人头疼。

它可能会让你的电器设备变得怪怪的,一会儿抽风,一会儿又不正常工作了。

比如说,你家电视可能会突然出现雪花,或者音响发出奇怪的噪音,这都是电磁干扰在捣乱呢!那怎么对付这个小捣蛋鬼呢?嘿嘿,咱有办法!首先呢,可以从源头抓起呀,就像治理河流污染,先找到污染源头一样。

咱得给电磁继电器找个好地方安家,让它尽量少影响其他设备。

这就好比你把爱吵闹的小朋友放在一个单独的房间里,让他自己玩去,别打扰别人。

然后呢,给它穿上一层“防护服”,也就是一些屏蔽措施。

就像给人穿上厚厚的棉袄,能挡住寒风一样。

这些屏蔽措施能把电磁干扰给挡在外面,不让它乱跑。

还有啊,布线也很重要哦!把那些线整理得整整齐齐的,别让它们像乱麻一样纠缠在一起。

这就像你整理自己的房间,东西放得井井有条,找起来也方便,还不容易出乱子。

再说说接地吧,这可是个关键的环节呢!就好像给设备接上一根定海神针,让它稳稳地待着,不被电磁干扰轻易撼动。

咱平时使用的时候,也得注意一些小细节呀。

别把那些容易受干扰的设备放得离电磁继电器太近啦,就像你不会和一个爱捣蛋的家伙靠得太近一样。

总之呢,只要咱用心对待,电磁干扰这个小调皮是可以被我们制服的。

只要我们多留意,多采取一些措施,就能让我们的电器设备稳稳当当、顺顺利利地工作。

别让电磁干扰坏了我们的好心情和正常生活呀!大家说是不是这个理儿呢?电磁继电器的电磁干扰并不可怕,只要我们方法得当,就能和它和谐共处啦!。

电力系统中的电磁干扰分析与抑制

电力系统中的电磁干扰分析与抑制

电力系统中的电磁干扰分析与抑制电磁干扰是指在电力系统中由于各种原因引起的电磁波扰动信号对电力设备及其周围环境造成的干扰现象。

电力系统中的电磁干扰分析与抑制是相当重要的,因为电磁干扰可能对电力设备的正常运行和周围环境产生不良影响。

本文将对电力系统中的电磁干扰进行分析,并探讨相应的抑制方法。

首先,为了进行电磁干扰分析,我们需要了解电磁干扰的来源。

电力系统中的电磁干扰主要有以下几个来源:高压输电线路的辐射电场、高压电缆的辐射磁场、变压器的铁芯饱和现象、电力电子设备的开关和交流转直流(AC/DC)转换等。

这些都可能引起电磁信号的辐射和传播,从而干扰电力设备和周围环境的正常运行。

其次,要进行电磁干扰的分析,我们需要了解各种电磁干扰的特点和影响。

辐射电场和辐射磁场是常见的电磁干扰源,其干扰特点主要包括频率范围、幅度和波形等。

这些特点可通过电磁场测量仪器进行测量和分析。

除了干扰特点外,电磁干扰还可能对电力设备的性能产生不良影响,如降低其工作效率、导致通信信号损失和数据传输错误等。

一种常见的电磁干扰抑制方法是使用滤波器。

滤波器是一种电气设备,用于将特定频率范围内的电磁信号分离出来,从而阻止它们对电力设备和周围环境的干扰。

滤波器可根据频率范围和特性进行选择和设计,以实现对特定电磁波的抑制。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

此外,还可以采取地线与屏蔽等措施来抑制电磁干扰。

地线是将电力设备的金属外壳和地之间连接的导体,能够提供有效的接地保护,将干扰信号引流到地面。

屏蔽是用导电材料包裹电力设备,用以阻止电磁干扰信号的传播。

通过使用地线和屏蔽,我们可以显著减少电磁干扰对电力系统的影响。

此外,在设计和制造电力设备时,选择合适的电气元件和材料也非常重要,以避免或减少电磁干扰。

例如,在PCB设计中使用合适的布线规则和屏蔽技术,选择低噪声、低干扰的电子元件,以及合适的绝缘材料和接地设计等都可以减少电磁干扰。

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。

但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。

因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。

首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。

导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。

对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。

常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。

2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。

同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。

3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。

将开关电源的地线与其他设备的接地点连接,共用同一个地线。

对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。

金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。

2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。

同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。

3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。

此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。

2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。

3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。

4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。

电路设计中抑制和防止电磁干扰的措施有哪些

电路设计中抑制和防止电磁干扰的措施有哪些

电路设计中抑制和防止电磁干扰的措施有哪些1.接地接地是电子设备的一个很重要问题。

接地目的有三个:(1)接地使整个电路系统中的所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地干作。

(2)防止外界电磁场的干扰。

机壳接地可以使得由于静电感应而积累在机壳上的大量电荷通过大地泄放,否则这些电荷形成的高压可能引起设备内部的火花放电而造成干扰。

另外,对于电路的屏蔽体,若选择合适的接地,也可获得良好的屏蔽效果。

(3)保证安全工作。

当发生直接雷电的电磁感应时,可避免电子设备的毁坏;当工频交流电源的输入电压因绝缘不良或其它原因直接与机壳相通时,可避免操作人员的触电事故发生。

此外,很多医疗设备都与病人的人体直接相连,当机壳带有110V或220V电压时,将发生致命危险。

因此,接地是抑制噪声防止干扰的主要方法。

接地可以理解为一个等电位点或等电位面,是电路或系统的基准电位,但不一定为大地电位。

为了防止雷击可能造成的损坏和工作人员的人身安全,电子设备的机壳和机房的金属构件等,必须与大地相连接,而且接地电阻一般要很小,不能超过规定值。

电路的接地方式基本上有三类,即单点接地、多点接地和混合接地。

单点接地是指在一个线路中,只有一个物理点被定义为接地参考点。

其它各个需要接地的点都直接接到这一点上。

多点接地是指某一个系统中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。

接地平面,可以是设备的底板,也可以是贯通整个系统的地导线,在比较大的系统中,还可以是设备的结构框架等等。

混合接地是将那些只需高频接地点,利用旁路电容和接地平面连接起来。

但应尽量防止出现旁路电容和引线电感构成的谐振现象。

2. 屏面屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对。

电子自动化控制中的干扰因素及改善

电子自动化控制中的干扰因素及改善

电子自动化控制中的干扰因素及改善电子自动化控制中,干扰因素是指在控制过程中出现的各种干扰,它可能会影响到系统的正常运行和控制效果。

为了提高系统的稳定性和可靠性,我们需要采取一些措施来改善这些干扰因素。

一、电磁干扰电磁干扰是电子自动化控制中最常见的干扰因素之一,它包括电源线干扰、电磁辐射、电磁感应等。

在面对电磁干扰时,我们可以采取以下措施来改善:1. 使用抗干扰电源、电缆和设备,可以降低电磁干扰对系统的影响;2. 合理布线,避免线路之间的干扰,使用屏蔽线缆和隔离设备可以有效减少电磁辐射和感应;3. 使用滤波器和隔离器来抑制电磁干扰,可以有效提高系统的抗干扰能力;4. 加强地线和接地,减小电磁干扰的输入和输出。

二、温度干扰温度干扰是指温度的变化对系统稳定性和精度的影响。

在电子自动化控制中,温度变化可能导致元器件的参数发生变化,从而影响系统的控制效果和精度。

为了改善温度干扰,我们可以采取以下措施:1. 控制环境温度,避免环境温度的快速变化;2. 在关键元器件周围安装散热器,以提高系统的散热性能;3. 使用温度补偿器件和温度传感器来自动补偿温度变化对系统的影响;4. 使用温度稳定性较好的元器件和材料,以提高系统的稳定性和可靠性。

三、电力干扰电力干扰是指电力供应系统中的电力波动、电压突变和频率扰动等对系统的影响。

这些干扰可能导致系统崩溃、故障和误操作。

为了改善电力干扰,我们可以采取以下措施:1. 安装稳压器和UPS设备,以稳定供电,避免电力波动和电压突变对系统的影响;2. 使用电力滤波器和隔离变压器来消除电力干扰;3. 使用电力监测设备来监测电力质量,及时发现和处理异常。

四、人为干扰人为干扰是指因操作不当、误操作或意外操作等造成的干扰。

为了改善人为干扰,我们可以采取以下措施:1. 加强对操作人员的培训和指导,提高其专业水平和操作技能,减少人为干扰的发生;2. 设置合理的操作权限,限制非授权人员对系统的操作;3. 安装操作误判和误操作检测设备,及时发现和纠正人为干扰。

简析电力电子设备的电磁干扰及防范措施

简析电力电子设备的电磁干扰及防范措施

简析电力电子设备的电磁干扰及防范措施当电力电子设备被干扰信号进入之后,不仅会影响到设备的正常工作,还会使设备出现误动作,造成各种各样的损失,因此,如何能够有效预防电力电子设备的电磁干扰是非常重要的。

本文结合了电磁干扰的介绍来对电力电子设备的电磁干扰以及防范措施进行了分析。

标签:电力电子设备电磁干扰滤波器屏蔽一、引言在干扰信号通过一些途径进入到电力电子设备当中的时候,不仅会让设备的正常工作受到影响,有时候还会使设备出现误动作。

在电力电子设备的维修保养过程当中,有些维修人员由于不重视干扰造成的影响,经常会因为导线和元器件的安装不当使得电力电子设备在维修过后性能反而不如之前。

因此在设计中必须要非常重视干扰与抗干扰问题,在使用和维护的过程当中也要重视。

二、电磁干扰的来源(1)内部干扰内部干扰是指电力电子设备内部各个元件之间互相产生的干扰,主要有以下几种:第一,设备内部的线路在工作电源通过的时候,绝缘电阻以及分布电容等漏电会产生一定的干扰,具体与工作频率有关;第二,电源、地线以及传输导线的阻抗容易与信号产生互相耦合,导线之间也会有相互干扰的情况发生;第三,在电力电子设备运行的时候,由于某些元件的发热会对自身和其它元件造成影响,形成干扰;第四,一些电压较高且功率较大的部件会产生电场和磁场,受到耦合的影响会对其它部件的正常运行造成一定的干扰。

(2)外部干扰外部干扰主要是指设备、线路受到电子设备以外的因素影響而产生的干扰,主要包括有:第一,外部电源和高压通过绝缘时会有漏电的现象产生,从而对线路以及设备产生一定的干扰;第二,一些功率比较大的设备会因为较大的磁场而在互感耦合的作用之下干扰到设备和电子线路;第三,空间电磁波的也会对电子设备以及电子线路造成干扰;第四,设备所在的工作环境的稳定性也会对电子设备和线路的内部元器件造成影响,改变它们的参数,从而干扰到设备的正常运行。

三、如何有效抑制电磁干扰(1)屏蔽技术静电屏蔽。

电力电子技术中的电磁干扰如何抑制

电力电子技术中的电磁干扰如何抑制

电力电子技术中的电磁干扰如何抑制电力电子技术在现代电力系统中发挥着重要的作用,但同时也会带来电磁干扰的问题。

电磁干扰可以对电力设备的正常运行和周围环境造成负面影响。

因此,抑制电磁干扰成为电力电子技术发展中的一个重要课题。

本文将介绍电力电子技术中常见的电磁干扰形式以及抑制电磁干扰的方法和措施。

1. 电磁干扰的形式在电力电子技术中,常见的电磁干扰形式有辐射干扰和传导干扰两种。

辐射干扰是指电力电子设备产生的高频电磁辐射信号对周围电子设备的干扰,如无线电、电视等设备。

传导干扰则是指电力电子设备通过电力线路或者其他传导介质将电磁干扰传递给其他设备,引起故障或者干扰。

2. 抑制电磁干扰的方法为了有效抑制电磁干扰,在电力电子技术的设计和应用过程中,可以采取以下方法:2.1 电磁兼容设计电磁兼容设计是指在电力电子设备设计过程中,考虑到其电磁兼容性,并采取相应的措施来降低电磁辐射和传导干扰。

包括合理布局电路、减少电流回路的面积、选择合适的元器件和线缆等。

2.2 滤波器的应用滤波器是用来抑制电磁干扰的重要装置。

通过将滤波器连接到电力电子设备的输入和输出端口,可以有效地去除干扰信号。

常见的滤波器包括电源滤波器、线缆滤波器等。

2.3 接地和屏蔽措施良好的接地系统和屏蔽措施可以降低电力电子设备对外界和其他设备的干扰。

接地线的正确布置和接地电阻的控制是保证接地效果的关键。

屏蔽措施包括对设备进行金属屏蔽和电磁泄露的隔离。

2.4 控制策略的优化电力电子设备的控制策略也是影响电磁干扰的重要因素。

通过优化控制策略可以减少电磁干扰的产生。

例如,采用调制技术来降低开关频率,使用软开关技术等。

3. 电磁干扰抑制的工程实践在实际工程中,为了有效抑制电磁干扰,需要结合具体应用进行综合考虑。

例如,在电力变换器的设计和制造中,可以采用模块化设计,减少干扰源之间的相互影响;使用高频变压器和隔离层等。

同时,合理选择设计方案、加强测试验证也是关键。

4. 结论电力电子技术中电磁干扰的抑制是一个复杂的问题,但通过合理的设计和有效的措施,可以降低干扰对系统和周边设备的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(下转第180页)
193 2011•5(上)《科技传播》
应用技术 Applied Technology
2
桥墩处钢梁底部与设计高程偏差
±10

支座与设计中线关系
1
支座纵横梁扭转偏差
±2
2 固定支座纵横中点与设计位置顺桥向偏差
±10
3
支座底板四角相对高差
2
表 3 钢梁安装后的允许偏差
3.4 现场焊接
现场焊接除应按本技术要求相关规范标准的要求外 ,还应遵 守以下几个规定。
(上接第194页)
生成 DSP 代码。通过该工程实例 ,展现了一种全新的 DSP 控制系 统开发思路 ,实现了系统设计与模型仿真的统一 ,使得控制系统 从算法设计、建模仿真到系统实现的整个过程更加紧凑一致 ,大 大减轻了代码开发的难度 ,提高了开发效率与质量。
参考文献 [1]卢小锦,曾岳南.基于Matlab/Simulink的TMS320F2812 代 码开发[J].单片机与嵌入式系统应用,2009,2:79-81. [2]张详,杨志刚,张彦生.Matlab/Simulink模型到C/C++代 码的自动实现[J].中国测试技术,2005,31(1):111-113.
1)直接在电路芯片电源引脚间接入去耦电容或去耦电阻电 容 ,滤除通过电源走线进入芯片的高频干扰信号 ;
2)在产品交流 220 V 电源输入端设置电源滤波器 ,防止产品 工作时产生的高频干扰进入电网。
3 电磁能量的干扰机理及其抑制干扰来源
当电子产品中的高频导线(或铜排)中流过电流时 ,在导线 周围产生的磁场 ;开关电源的高频变压器及一切电感元件在工作 时必然产生的漏磁通。上述磁通穿过芯片或敏感电路模块 ,半导 体中的带电粒子(电子和空穴)在磁场中受到洛伦兹力 ,偏离原 来的运动方向 ,使芯片和模块的工作电流波形受磁场变化的调制 而发生畸变 ,导致这些芯片或电路模块的正常工作受到干扰。信 号电流总是在闭合回路中流动。当外部干扰磁通穿越闭合回路包 围的面积时 ,会在闭合回路中感应电流 ,同样会造成电流波形畸变。 抑制电磁能量干扰的基本措施有以下方法。
1 电磁发射和磁场干扰的产生机理
1)电磁发射 各种数字电路芯片和高频模拟电路芯片运行过程中 ,因 PCB 走线或产品各部分连线的设计不合理而产生天线效应 ,发出电磁 波引起的射频干扰。当电磁波能量达到一定值时 ,将会影响周围 电子设备和自身的正常工作。 2)磁场干扰 产品内部的电源线和高频工作的电感性元件工作时产生的磁 场通过辐射方式干扰产品运行 ,造成的工作紊乱。
2)采用贴片元件 ,缩短高频工作芯片的外引脚 ,减小传输高 频信号走线的长度 ,可抑制天线效应 ,减少高频信号辐射能量。
2.2 隔离干扰信号的传播途径
在电子设备中接地是抑制电磁噪声和防止电磁干扰重要方法 之一。最简单有效的隔离方法是屏蔽 ,也称“屏蔽接地”,指为抑 制干扰而采用的屏蔽层(体)的接地 ,以起到良好的抗干扰作用。 常用的屏蔽有 3 种方法 :
(上接第207页)
4 结论 不要盲目的以为 Android 系统只能应用在智能手机平台上 , 同样的在其他非手机领域 Android 系统也有许多突破性的应用 , 如 导 航 设 备、 电 子 书 平 台、 数 字 娱 乐 设 备 等。 相 信 不 久 的 未 来 Android 系统将会有个很好的发展不仅在智能手机平台。
3.1 屏蔽干扰磁场方法
最常用的抑制磁场辐射干扰的措施是采用导电或导磁材料屏 蔽。
1)变化的干扰磁通穿过导电材料(如薄铜皮)时 ,会在其中 产生涡流 ,并生成方向相反的磁通 ,可以削弱穿过导电屏蔽层的 干扰磁通 ;
2)高频变压器磁芯外包一层形成短路环的薄铜皮 ,可有效抑 制变压器漏磁通外泄 ;
3)用导磁材料(铁板或钢板)做设备的机箱 ,是整机磁屏蔽 的常用方法。这种方法不仅可以抵抗外部干扰磁通进入电子设备 , 而且能避免内部磁通外泄。屏蔽材料导磁性越好 ,板越厚 ,机箱 不易发生磁饱和 ,屏蔽效果也越好。
文献标识码 A
文章编号 1674-6708(2011)42-0193-02
0 引言
电子电气产品在正常工作时 ,同时向周围空间辐射电磁骚扰 , 在辐射的骚扰场强往往在某些频率段超过限值将会影响周围电子 设备和自身的正常工作。因此了解超标的原因和电磁发射和磁场 干扰的抑制方法 ,对产品电磁兼容(EMC)性设计十分重要结构的工厂制作 ,必须按施工图、本技术要求及有关规范 , 进行施工及验收。产品出厂时 ,应提交下列资料 :
1)产品合格证(包括质量检验报告); 2)钢材及其它材料的质量证明书或试验报告 ; 3)施工图、拼装简图和设计变更文件 ; 4)焊缝重大修补记录 : 5)工厂试拼装记录 ; 6)构件发运和包装清单。
3.2 减小信号电流的回路面积
减小信号电流回路面积的目的是减少穿越其中的干扰磁通。 常用措施 :
1)采用双绞线 ,使信号电流的去线和回线紧密绞合 ,可以缩 小回包围的面积 ;
2)用屏蔽线做外部引入的信号线。使用时将心线作为信号电 流去线 ,铜丝编织的屏蔽层作为信号电流的回线 ,必须单端接信 号地。这种方法的回路面积小于双绞线 ,屏蔽层还能实现磁场屏 蔽;
2)吊装用的配件 ,在钢梁现场完成后应予以割除 ,一般分二 次切割 ,第—次切割作为预热用 ,第二次则完全切除。起吊配件 切割后 ,一律用砂轮打磨。起吊配件切割后的剩余高度一般不宜 超过 20mm,以 10mm~5mm 为好 ,严禁切割时损伤构件 ;
3)现场焊接应遵循纵向焊缝从跨中向两端、横向焊缝宜从中 线向两侧对称施焊的原则编写焊接顺序文件 ,尽量减少焊接变形 及焊缝拘束应力 ;
《科技传播》2011•5(上) 180
1)现场安装定位 ,不得随意在钢梁构件上引弧 ;不得任意在 钢梁上焊接施工用临时附件 :不得随意将钢梁作为工地一般电焊 的接地使用 ;不得任意在钢梁构件各部位上进行敲打等。并且必 须作出明文规定 ,作为一项操作纪律 ,严格执行。
—旦发生违反上述规定的情况 ,应进行现场无损探伤检查 , 并进行相应处理 ;
3)在保证绝缘安全的前提下 ,PCB 中的信号线与地线尽量 靠近以缩小信号电流回路包围的面积 ;
4)选用 PCB 上的 IC 芯片和电路模块时 ,在保证电路功能的 条件下 ,应尽量选用电源进线引脚和零伏线引脚靠近的封装 ;
5)PCB 设计时 ,在确保绝缘安全的前提下 ,使电源线和零伏 线靠近布置。
4 结论
机为 0.7cm,1 233kHz 为 1.4 cm。因为放电球间隙太大不利于放电 , 同时会影响发射机的正常工作 ,某种程度会损坏天调网络的元器 件。如果放电球间隙太小 ,当发射机调幅度过大时 ,会造成放电 时瞬间短路 ,也影响发射机正常播出。
参考文献 [1]张丕灶,沈大山,中波发射天线匹配网络矢端线分析法 [J].广播与电视技术,1993(4).
4)现场焊接应设置防风、防雨措施及防止焊接对环境、交通 影响的安全罩 ,遮盖全部焊接处 ,雨天不得焊接(梁内除外)。所 有外露构件在不能使用 C02 气体保护焊施工条件时不允许采用 C02 气体保护焊焊接 ,焊接时应增设防风罩。梁内采用 C02 气体保护 焊时 ,必须使用通风防护安全措施 ;
5)所有结构外壳板上开设的通焊孔 ,临时工艺孔等在相应焊 接、安装完成后予以封闭。
1)采用导磁金属材料外壳封装 ,外壳可靠接地(大地); 2)容易产生高频辐射的局部电路或 IC 芯片加金属屏蔽罩 , 屏蔽罩接信号地 ; 3)电路板中传输高速数字信号或高频模拟信号的走线两侧敷 铜并接信号地 ,实现与其他信号线的隔离。
2.3 滤波
滤波器既可抑制从电子设备引出的传导干扰 ,又能抑制从电 网引入的传导干扰。EMI(电磁干扰)滤波器主要是用于抑制干扰 的滤波器。EMI 滤波器由线性元件电路组成 ,安装在电源线与电 子设备之间。它可使电源频率通过 ,而阻止高频噪声通过 ,对提 高设备的可靠性有重要作用。
2 电子产品的电磁发射及其抑制
在电子产品中 ,数字电路芯片端口信号跳变沿的频率可达数 百兆赫兹 ,有些模拟电路信号频率达到兆赫兹以上 ,这些数字或 模拟信号都可能通过导线传导干扰或向空中辐射干扰 ,影响电子 设备自身并干扰其他电子设备。抑制电磁发射的基本措施有以下 方法。
2.1 降低干扰信号的能量
1)在不影响产品整体工作性能的前提下 ,减小数字信号的跳 变速率或降低数字信号的传输速度 ;
(上接第193页)
关 EMC 的基本原理 ,认真分析和试验 ,就能找到合适的解决问题 的方法。
参考文献 [1]钱振宇.电磁兼容测试和对策技术[J].电器技术. [2]陈穷.电磁兼容性工程设计手册[M].北京:国防工业出版 社. [3]GB/T-13926.工业过程测量和控制装置的电磁兼容性[S].
(上接第218页)
Information Technology 信息科技
电子产品的电磁干扰分析和抑制措施
潘远翠 达州职业技术学院 ,四川达州
635000
摘 要 本文分析了电子产品中的电磁发射和磁场干扰的产生机理 ,并介绍了有效抑制和防止干扰的各种技术措施。
关 键 词 电子产品 ;电磁干扰 ;分析 ;抑制措施
中图分类号 TN03
4.2 现场安装验收
1)本桥钢结构的现场安装 ,必须按施工图、本技术要求及有 关规范进行安装及验收 :
2)现场组拼的施工验收 ,须按工厂制作的验收要求执行 ,并 提交相应的质量检验报告及其它相关文件 ;
3)安装后的钢桥验收 ,应待全部涂装完成后进行 ,其质量要 求应符合《公路工程质量检验评定标准》(JTJ071)的规定。
参考文献 [1]高煥堂.Android应用框架原理与程序设计[M],2009. [2]韩超,梁泉.Android 系统原理及开发要点详解[M].电子 工业出版社,2010(1). [3]周毅敏,陈榕.Dalvik 虚拟机进程模型分析[J].计算机技 术与发展,2010(2). [4]崔烨.基于 L inux 平台的智能手机软件设计与实现[D]. 电子科技大学计算机科学与工程学院,2007.
相关文档
最新文档