人教版七年级上册数学学案:1.5.1有理数的乘方(2)

合集下载

人教版七年级上册数学教案:1.5.1有理数的乘方

人教版七年级上册数学教案:1.5.1有理数的乘方
2.多个不为0的数相乘,积的符号怎样确定?
合作探究
1.计算:
2. ;
3.已知n是正整数,那么 ,
4.如果一个有理数的偶次幂是非负数,那么这个有理数是。
A.正数 B.负数 C.0 D.任何有理数
5.平方等于9的数是,立方等于27的数是,平方等于本身的数是,立方等于本身的数是
课堂检测
1.把 写成乘方形式。
课堂小结
收获是
遇到的困难是
布置作业
个性化设计
教学反思
1.5.1.1 有理数的乘方
教学目标
知识与技能:会进行乘方的运算.
过程与方法:理解乘方的意义,探究有理数乘方的符号法则.
情感、态度与价值观:通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力.
教学重点
乘方的意义及运算.
教学难点
乘方的运算.
教学过程
情境引入
1.乘法运算的符号法则及运算方法:
③ -1,3,-9,27,-81,243,…
(1)第①行数有什么规律? (2)第②行数与第①行数有什么关系?
(3)第③行数与第①行数有什么关系? (3)取每行数的第10个数,计算这三个数的和
课堂检测
1.计算:
2. 、 为有理数,且 ,求 的值;
3.
4.一根1米长的绳子,第一次剪去 ,第二次剪去剩下的 ,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?
2.计算: , ,
3.下列运算正确的是
A. B. C. D.
4.若 ,则
若 ,则
课堂小结
收获是
遇到的困难是
布置作业
个性化设计
教学反思
1.5..1.2 有理数的乘方
教学目标

人教版七年级上册数学1.5.1《有理数的乘方》教学设计

人教版七年级上册数学1.5.1《有理数的乘方》教学设计
5.拓展延伸,激发思维
引导学生探讨乘方的逆运算,如开平方、开立方等,激发学生的思维,为后续学习打下基础。
6.总结反馈,查漏补缺
通过课堂小结,让学生回顾本节课的学习内容,发现并弥补自己的知识漏洞。
7.课后作业,巩固提高
布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并适当拓展。
8.关注个体差异,实施个性化教学
(2)一个正方体的边长是5cm,求它的表面积和体积。
4.思考题:
(1)如何计算负数的奇数次幂和偶数次幂?
(2)有理数的乘方在实际生活中有哪些应用?
作业要求:
1.认真完成作业,字迹清楚,保持卷面整洁。
2.注意有理数乘方的计算法则,避免常见错误。
3.对于应用题和思考题,尽量用自己的语言进行解答,体现思考过程。
2.教师引导学生通过具体的例子,总结有理数乘方的计算法则。
师:请同学们观察以下算式,并总结有理数乘方的计算法则。
算式:(-2)^2, (-2)^3, (-2)^4, ...
生:负数的偶数次幂是正数,负数的奇数次幂是负数。
3.教师强调有理数乘方计算法则中的注意事项,并进行讲解。
(三)学生小组讨论,500字
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的定义,知道乘方的意义是表示几个相同因数的乘积。
2.掌握有理数乘方的计算法则,能够准确进行有理数乘方运算。
3.能够运用有理数乘方的知识解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.观察生活中的乘方现象,培养学生发现问题的能力。
2.学生分享学习心得,教师给予鼓励和肯定。
3.教师布置课后作业,要求学生在课后巩固所学知识,并为下一节课做好准备。

人教版七年级上册教案:1.5.1乘方

人教版七年级上册教案:1.5.1乘方
5.激发学生的数学探究精神:鼓励学生在乘方学习中提出问题、分析问题、解决问题,培养其探究精神和创新意识。
本节课的核心素养目标旨在培养学生具备抽象、推理、建模、运算等综合能力,为新教材要求下的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)乘方的定义与表示方法:乘方是快速计算相同因数乘积的简便运算,理解乘方的概念及其表示方法(an表示n个a相乘)是本节课的核心内容。教师应通过实例讲解和强调,确保学生掌握乘方的定义和表示方法。
人教版七年级上册教案:1.5.1乘方
一、教学内容
人教版ห้องสมุดไป่ตู้年级上册教案:1.5.1乘方
1.乘方的定义:理解乘方的概念,了解乘方是快速计算相同因数乘积的简便运算。
2.乘方的表示方法:掌握an表示n个a相乘,其中a为底数,n为指数。
3.有理数的乘方:掌握正整数、零、负整数的乘方法则,了解乘方的性质。
4.乘方的计算:学会运用乘方的性质进行乘方运算,解决实际问题。
实践活动环节,学生们分组讨论和实验操作的热情很高,但在讨论过程中,部分学生过于依赖小组其他成员,自己的思考不够独立。在接下来的教学中,我会注意引导学生独立思考,鼓励他们在小组讨论中积极表达自己的观点。
学生小组讨论环节,整体效果较好,学生们能够围绕乘方在实际生活中的应用展开讨论。但在引导与启发过程中,我发现部分学生的逻辑思维能力还有待提高。针对这一点,我打算在今后的教学中,多设计一些开放性的问题和练习,帮助学生提高逻辑思维能力。
在总结回顾环节,学生们对乘方的基本概念、重要性和应用有了更加深刻的认识。但在整个教学过程中,我也发现了一些不足之处。例如,对于教学难点和重点的解析,可能还需加强针对性,通过更多实例和对比分析,帮助学生突破难点。

人教版七年级上册数学第1章1.5.1有理数的乘方(教案)

人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
三、教学难点与重点
1.教学重点
(1)有理数乘方的定义:重点理解正整数指数、零指数、负整数指数的乘方运算。
-正整数指数乘方:a^n(a为有理数,n为正整数),如2^3=8。
-零指数乘方:负整数指数乘方:a^(-n)=1/(a^n)(a≠0,n为正整数),如2^(-3)=1/8。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调正整数指数、零指数、负整数指数乘方的概念,以及同底数乘方的运算法则。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际折叠纸张来观察面积的变化,演示有理数乘方的实际原理。
人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
一、教学内容
人教版七年级上册数学第1章《有理数》1.5.1节“有理数的乘方”,主要包括以下内容:
1.有理数的乘方定义:理解有理数乘方的概念,掌握正整数指数、零指数、负整数指数的乘方运算。
2.有理数乘方的法则:掌握同底数乘方的运算法则,了解不同底数乘方的性质。
(2)有理数乘方的法则:重点掌握同底数乘方的运算法则。
- a^m × a^n = a^(m+n),如2^2 × 2^3 = 2^(2+3) = 2^5。

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级上册数学教学案:1.5 有理数的乘方

人教版七年级上册数学教学案:1.5 有理数的乘方

1.5.1 有理数的乘方(1)第一课时三维目标一、知识与技能(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.二、过程与方法通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.三、情感态度与价值观培养探索精神,体验小组交流、合作学习的重要性.教学重、难点与关键1.重点:正确理解乘方的意义,掌握乘方运算法则.2.难点:正确理解乘方、底数、指数的概念,并合理运算.3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义.四、课堂引入1.几个不等于零的有理数相乘,积的符号是怎样确定的?几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?五、新授边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.a·a简记作a2,读作a的平方(或二次方).a·a·a简记作a3,读作a的立方(或三次方).一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n 次幂.例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?(35)2与235呢?(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.(-2)3与-23的意义不相同,其结果一样.(-2)4的底数是-2,指数是4,读作-2的四次幂,表示(-2)×(-2)×(-2)×(-2),•结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.(35)2的底数是35,指数是2,读作35的二次幂,表示35×35,结果是925;235表示32与5的商,即335,结果是95.因此,当底数是负数或分数时,一定要用括号把底数括起来.一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-12)5;(4)33;(5)24;(6)(-13)2.解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16(3)(-12)5=(-12)×(-12)×(-12)×(-12)×(-12)=-132(4)33=3×3×3=27(5)24=2×2×2×2=16(6)(-13)2=(-13)×(-13)=19例2:用计算器计算(-8)5和(-3)6.解:用带符号键(-)的计算器.开启计算器后按照下列步骤进行:((-) 8 )∧ 5 =显示:(-8)^ 5-32768 即(-8)5=-32768((-) 3 )∧ 6 =显示:(-3)^ 6729 即(-3)6=729用带符号转换键 +/-的计算器:8 +/-∧ 5 =显示:-327683 +/-∧ 6 =显示:729所以(-8)5=-32768 (-3)6=729因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.六、巩固练习1.课本第52页练习1、2.七、课堂小结正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n•两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a 相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等.八、作业布置1.课本第47页习题1.5第1题,第48页第11、12题.九、板书设计:1.5.1 有理数的乘方(1)第一课时1、负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.2、随堂练习。

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。

二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。

但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。

三. 教学目标1.了解乘方的概念,理解乘方的意义。

2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.乘方的概念。

2.有理数的乘方规则。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.小组合作学习的小组划分和任务分配。

七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。

2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。

3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。

教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。

4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。

5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。

教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。

6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。

新人教版初中数学七年级上册《第一章有理数:1.5.1乘方:有理数的乘方》优质课导学案_2

新人教版初中数学七年级上册《第一章有理数:1.5.1乘方:有理数的乘方》优质课导学案_2

1.5.1 有理数的乘方一、教学目标:1.知识与技能理解并掌握有理数的乘方、幂、底数、指数的概念及意义;通过观察、推理,归纳出有理数乘方的符号法则,能够正确进行有理数的乘方运算.在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。

引导学生通过观察、推理,归纳出有理数乘方的符号法则,培养学生分析、解决问题的能力。

3.情感态度与价值观在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。

二、重、难点与关键1.重点:有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

2.难点:有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

3.关键:弄清底数、指数、幂等概念,注意区别-a n 与(-a )n 的意义.教学过程一、问题情境问题1: 教师提问:同学们你们喜欢吃拉面吗?认真观看视频后完成表格问题2:对折n 次就有n 个2相乘,即22222个n ⨯⨯⨯,像这样的式子表示起来很复杂,那么有没有一种简单的记法呢?师生活动:教师创设情境,学生认真观看后,完成表格。

设计意图:吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,引出课题。

二、新知讲授活动1:思考: 边长为a 的正方形的面积是a·a ,棱长为a 的正方体的体积是a·a·a .a·a 简记作a 2,读作a 的平方(或二次方).a·a·a 简记作a 3,读作a 的立方(或三次方).猜想:4个a 相乘呢?5个a 相乘呢?100个a 相乘呢? 一般的,求n 个相同因数的积的运算叫做乘方an a a a a 个⨯⨯⨯ 乘方的结果叫做幂,记作n a ,其中a 叫做底数,n 叫做指数.读作:a 的n 次方或a 的n 次幂。

人教版-数学-七年级上册-【教案二】1.5.1有理数的乘方

人教版-数学-七年级上册-【教案二】1.5.1有理数的乘方

1.5.1有理数的乘方(2)1、知识目标:通过实例感受当底数大于1或小于1时,乘方运算结果的增大或减少速度;能进行较复杂的有理数乘方运算。

2、能力目标:能对具体情境中的数学信息做出合理的推断,能对较大的数学信息做出合理的解析。

3、情感目标:乐于接受社会环境中的数学信息,愿意谈论某些数学话题。

一、前置准备1、n个相同因数a乘积,记作______,这种运算叫_____.2、每人准备一张大演草纸,将它对折,这种纸大约0.1mm厚,那么对折两次后有_____厚,对折三次后有_____厚。

二、自主探究1、若一层楼高3米,那么你的纸大约对折_____次后可有一层楼高。

2、这种对折,纸的厚度增加的很快,对不对?3、刚才的动手操作有一定的数学规律?下边大家做好这几道题后就会发现这一规律。

4、计算1)22=_____,23=_____,24=_____2)(0.2)2=_____,(0.2)3=_____,(0.2)4=_____3) ( ½)2=_____,( ½)3=_____,( ½)4=_____规律:当底数大于1时,乘方运算的结果_____得快,当底数大于0小于1时,乘方运算的结果_____得快三、合作交流1、完成课本43页例3后讨论一下各“-”号的用途。

总结:先计算_____的结果,再加上符号2、独立完成下列计算1)-(-3/2)22)-(3/2)23)-224)-(-22/3)5)-32/23、交流一下上边各题的结果4、完成43页例4后观察讨论一下结果,你能发现什么规律?四、归纳总结1、算一下我们到现在一共学了几种运算了?分别是____、____、____、____、____2、乘方的意义是利用____运算完成乘方运算3.乘方运算中“-”在括号内的说明底数为____,“-”在括号外,乘方运算完后再看添加与否五、当堂训练1、课本44页随堂练习2、47页习题1.5第3题3、(-2×3)2=_______,-2×32=_______4、-23-3×(-1)3-(-14)5、-22×(-½)2÷(0.25)31.在有理数-3,-(-3),︱-3︱,-32,(-3)3,-33中负数有()个A 3 B4 C 5 D 62.下列各数互为相反数的是()A、-32与23B、32与(-2)3C、(-3)2与-32D、-32与-(-3)23.若︱a-2︱+(b-5)2=0,则a b=_________4.若a2 <10则非负整数a的值为_________5.计算(-1)2004+(-3)2×︱-1/10︱-(-4)3÷(-2)5____6.规定一种运算“△”满足: a△b=a2-b3求(-5)△(-2)的值。

【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)

【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)

有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。

分 4 人小组议论。

小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。

培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。

值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。

人教版数学七年级上1.5.1有理数的乘方教学设计

人教版数学七年级上1.5.1有理数的乘方教学设计
通过生活中的实例,如平方、立方等,引导学生发现乘方的规律,激发学生的兴趣,从而引出乘方的定义。
2.分步骤讲解,突破难点
(1)借助具体实例,讲解乘方符号法则,帮助学生理解和记忆。
(2)通过对比不同乘方运算,引导学生发现运算简便方法,提高解题效率。
(3)设计具有挑战性的题目,让学生在解决实际问题时,运用乘方知识建立数学模型。
人教版数学七年级上1.5.1有理数的乘方教学设计
一、教学目标
(一)知识与技能
1.理解乘方的定义,知道乘方的意义是将几个相同因数相乘的运算。
2.掌握有理数乘方的符号法则,包括同号得正、异号得负的规律。
3.学会进行有理数乘方运算,能够准确计算出结果,并掌握乘方运算的简便方法。
4.能够运用乘方知识解决实际问题,如计算面积、体积等。
3.教师总结与拓展
教师对乘方知识进行总结,并提出拓展性问题,激发学生的思考,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对有理数乘方知识的掌握,培养其运用乘方解决实际问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第25页第3、4、5题,强化对有理数乘方定义和符号法则的理解。
(2)根据课堂所学的简便方法,计算以下乘方运算:(-2)^3、(-3)^4、2^5、3^6,并解释运算过程中符号的变化规律。
(3)结合实际情境,编写两个应用有理数乘方的实际问题,并与同学交流讨论解题方法。
2.选做题:
(1)探索有理数乘方在生活中的应用,如面积、体积等,撰写一篇小论文,不少于300字。
(2)研究乘方运算的规律,如负数的奇数次幂和偶数次幂的性质,整理成笔记,与同学分享。
3.思考题:
(1)为什么负数的偶数次幂等于正数,而奇数次幂等于负数?

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。

本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。

但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。

三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。

2.能够进行有理数的乘方运算,并解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的乘方概念的理解。

2.乘方法则的掌握和运用。

3.有理数乘方运算的熟练掌握。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。

2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。

2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。

3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。

2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。

同时,教师引导学生观察和总结乘方的规律。

3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。

4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。

1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)

1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)

月份 用水量/立方米 水费/元
4
16
33.60
5
25
65.00
(1)请你算一算,这个地区水费的“调节价”为每立方米多少钱? (2)若该用户6月用水量为30立方米,请你算一算,他6月的水费是多 少元?
【详解】(1)“基本价”:33.6÷16=2.1(元) “调节价”:[65-(20×2.1)]÷(25-20)=4.6(元) (2)20×2.1+(30-20)×4.6=88(元)
【详解】解∶根据题意得:4个队一共要比场4×(42−1) = 6比赛,每个 队都要进行3场比赛,∵各队的总得分恰好是四个连续奇数,甲、乙、丙、 丁四队的得分情况只能是7,5,3,1 所以,甲队胜2场,平1场,负0场. 乙队胜1场,平2场,负0场. 丙队胜1场,平0场,负2场. 丁队胜0场,平1场,负2场. 战胜丁的球队是甲和丙, 故选D.
在这些数中加上适当的运算符号就能得到100.
1+1+3×4+5×6+7×8+100
问题1 小学的四则混合运算的顺序是怎样的? 先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号 外,括号计算顺序:先小括号,再中括号,最后大括号.
问题2 我们目前都学习了哪些运算? 加法、减法、乘法、除法、乘方. 一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有 理数的混合运算.
练一练
1.如图是一个运算程序:若第一次输入a的值为8,则2022次輸出的结 果是 . 【详解】解:由题意得:当第一次输入a的值为8时, 则第二次输出的结果为4; ∴第三次输出的结果为2, 第四次输出的结果为1, 第五次输出的结果为4, 第六次输出的结果为2, 第七次输出的结果为1,…..; ∴从第二次开始,按照4、2、1循环输出结果, ∴(2022-1)÷=673······2, ∴第2022次输出的结果为2.故答案为:2.

七年级初一数学上册1.5.1有理数的乘方导学案新版新人教版2

七年级初一数学上册1.5.1有理数的乘方导学案新版新人教版2

1.5.1 有理数的乘方学习目标1、我能记住乘方的意义、有理数乘方的符号法则,会进行乘方的运算;2、底数、指数和幂的概念,会求有理数的正整数指数幂,我能记住有理数混合运算顺序;3、我能积极讨论,参与群学,敢于展示,用于质疑、补充。

学习难 点: 有理数乘方的意义,求有理数的正整数指数幂学习重 点: 有理数乘方结果(幂)的符号的确定.一、自主学习知识点一 乘方的相关概念求n 个 的 的运算叫做乘方。

乘方的结果叫做 。

在n a 中,a 叫做 ,n 叫做 , 当n a 看作a 的n 次方的结果时,也可以读作特别地一个数也可以看作这数本身的一次方,如5就是5的一次,即155=,指数为1通常 不写。

知识点二 乘方的符号法则(1) 负数的奇数次幂是 ,负数的偶数次幂是 。

(2)正数的任何次幂都是 。

(3)0的任何正整数次幂都是 。

说明:若底数是负数、分数或含运算关系的式子时,必须要用 把底数括起来,以体现底数的整体性。

知识点三 有理数混合运算顺序(1)先 ,再 ,最后 ;(2)同级运算, 依次进行;(3)如果有括号,就先计算 的运算,按 , , 依次进行.二、合作探究合作探究一 (1)2)3(-的底数是 ,指数是 ,结果是 ;(2)2)3(--的底数是 ,指数是 ,结果是 ;(3)33-的底数是 ,指数是 ,结果是 。

合作探究二 =-3)2( ;=-3)21( ;42= ;=30 ; =⎪⎭⎫ ⎝⎛3211 ; =⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-343 ,=-433 ; 合作探究三(1)在2+23×(-6)中,存在着 种运算。

这个式子应该先算 、再算 、 最后算 。

(2)计算:()⎪⎭⎫⎝⎛-÷----721322246三、当堂检测(1、2、3题是必做题,4、5题是选做题)1.将下列各式写成乘方(即幂)的形式:(1)(—2.3)×(—2.3)×(—2.3)×(—2.3)×(—2.3)= .(2)(—14)×(—14)×(—14)×(—14)= .(3)x •x •x •……•x (2008个)=2.填空 ⑴102表示____个____相乘;⑵()56-表示____个_____相乘;3.计算(1)(-4)3; (2)(-2)4; (3)(-12)5; (4)33; (5)2233311(12)674⎡⎤--+-⎢⎥⎣⎦÷×(-)4. 已知2-=a ,1-=b ,求(2a )2-22b -(ab )3+a 3b 的值.5. 若0)3(22=-++y x ,求y x xy 322-的值.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个实数中最大的是( )A .5B .0C .1D .2-【答案】A【解析】根据实数的大小比较法则排列大小,得到答案.【详解】-2<0<1<5,∴最大的数是5, 故选:A .【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B =∠DCE ;④AD ∥BC 且∠B =∠D .其中,能推出AB ∥DC 的是( )A .①④B .②③C .①③D .①③④ 【答案】D【解析】12∠∠=①,//AB DC ∴;34//AD CB ∠∠=∴②,;B DCE ∠∠=③,//AB CD ∴;//AD BE ④,180BAD B ∠∠∴+=,B D ∠∠=,180BAD D ∠∠∴+=,//AB CD ∴, 则符合题意的有①③④,故选D .3.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为( )A .2B .3C .7D .16【答案】C【解析】分析:先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可. 详解:此三角形第三边的长为x ,则9-6<x <9+6,即3<x <15,只有选项C 符合题意.故选:C .点睛:本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 4.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A .3个B .2个C .1个D .0个【答案】C 【解析】①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD ,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.人体中红细胞的直径约为0.000007m ,将0.000007m 用科学记数法表示数的结果是( ) A .50.710m -⨯B .60.710m -⨯C .5710m -⨯D .6710m -⨯ 【答案】D【解析】根据科学记数法的定义进行分析解答即可.【详解】60.000007710m m -=⨯.故选D.【点睛】在把一个绝对值小于1的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0)的相反数.6.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23【答案】C 【解析】解:根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95可得不等式组()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③,解不等式①得,x≤47;解不等式②得,x≤1;解不等式③得,x>11,所以不等式组的解集为11<x≤1,即x 的取值范围是11<x≤1.故选C .点睛:本题考查了一元一次不等式组的应用,根据题目所给的信息,并运用运输程序并列出不等式组是解题的关键.7.在某次数学测试中,满分为100分,各测试内容及所占分值的分布情况如下扇形统计图,则以下结论正确的是( )①一元一次不等式(组)部分与二元一次方程组部分所占分值一样②因式分解部分在试卷上占10分③整式的运算部分在整张试卷中所占比例为25%④观察、猜想与证明部分的圆心角度数为72°A .①②③B .②③④C .①④D .①②③④【答案】D【解析】由扇形统计图中的数据,依据“所占分数=所占比例×总分”“所占圆心角=所占比例×360°”及其变形公式,即可一一判断.【详解】解:观察扇形统计图可知:因为一元一次不等式(组)部分与二元一次方程组部分所占比例都是15%,所以它们所占分值一样,①正确.②因为因式分解部分在试卷上所占比例是10%,所以占10分,②正确.③因为整式的运算部分所对的圆心角为90°,所以在整张试卷中所占比例为25%,③正确.④因为观察、猜想与证明部分所占百分比为100%-10%-15%-15%-15%-25%=20%,所以圆心角度数为20%×360°=72°,④正确,故选:D.【点睛】本题考查扇形统计图,解题的关键是读懂统计图信息,掌握“所占分数=所占比例×总分”“所占圆心角=所占比例×360°”及其变形公式.8.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【答案】D【解析】试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=1.故选D.9.若科技馆在学校的南偏东方向,则学校在科技馆的()A.北偏西方向B.北偏东方向C.南偏东方向D.南偏西方向【答案】A【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角【详解】因为科技馆在学校的南偏东25°方向,所以学校在科技馆北偏西25°方向.故选A.本题考查了方向角,正确理解方向角的意义是解题的关键.10.直角坐标系中点P(2,2)a a +-不可能所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】由题可知a 2a 2+>-,所以不可能在第二象限,即可得出答案【详解】解:A.若点P 在第一象限,所以横纵坐标均为正,即2020a a +>⎧⎨->⎩,解得a>2;所以可以在第一象限; B.若点P 在第二象限,则有2020a a +<⎧⎨->⎩,无解,所以不可能在第二象限; C.若点P 在第三象限,则有2020a a +<⎧⎨-<⎩,解得a<-2,所以可以在第三象限 D. 若点P 在第四象限,则有2020a a +>⎧⎨-<⎩,解得2a 2-<<,所以可以在第四象限 故选B【点睛】此题考查四个象限中点的符号,熟练掌握四个象限中点的坐标正负是解题关键二、填空题题11.在二元一次方程62y x =-中,当2x =时,y 的值是__________.【答案】2【解析】把x=2代入62y x =-即可求解.【详解】把x=2代入62y x =-,得y=6-2×2=2,故填:2.【点睛】此题主要考查二元一次方程的解,解题的关键是熟知二元一次方程的解的含义.12.商家花费380元购进某种水果40千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_____元/千克.【解析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.【详解】设商家把售价应该定为每千克x元,根据题意得:380 (15%)40x-,解得,10x≥,故为避免亏本,商家把售价应该至少定为每千克1元.故答案为:1.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.在平面直角坐标系中,将点A向右平移2个单位长度后得到点A′(3,2),则点A的坐标是_______.【答案】(1,2).【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,【详解】∵将点A向右平移2个单位长度后得到点A′(3,2),∴点A的坐标是(3﹣2,2),即点A的坐标为(1,2).考点:坐标与图形的平移变化.14.已知某组数据的频率为0.35,样本容量为500,则这组数据的频数为__________.【答案】175【解析】根据频率=频数总数,求解即可.【详解】解:频数=500×0.35=1.故答案为:1.【点睛】本题考查了频率的计算公式,解题的关键是掌握公式:频率=频数总数.15.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙,丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有45本,则丙类书有_____本.【答案】1【解析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1-15%-45%,所占的比例乘以总数即可求得丙类书的本数.【详解】解:总数是:45÷15%=300(本),丙类书的本数是:300×(1-15%-45%)=300×40%=1(本),故答案为1.【点睛】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.16.如图,象棋盘上,若“将”位于点(1,2)-,“车”位于点(3,2)--,则“马”位于点___.【答案】(4,1)【解析】先利用“将”所在点的坐标画出直角坐标系,然后写出“马”所在点的坐标即可.【详解】根据题意,“将”位于点()1,2-,“马”位于点()4,1.故答案为:()4,1.【点睛】本题考查了坐标确定位置,解题关键在于平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.17.篮球赛一般按积分确定名次,胜一场得2分,负一场得1分,弃权得0分.某次篮球联赛中,火炬队与月亮队要争夺一个出线权,火炬队目前的战绩是17胜13负,后面还要比赛6场;月亮队目前的战绩是15胜16负,后面还要比赛5场,为确保出线,火炬队在后面的比赛中至少要胜______场.【答案】1【解析】先算出各队目前的得分,设火炬队在后面的比赛中至少要胜x场,根据题意列出不等式的即可求解.【详解】目前火炬队得出得分为:17×2+13=17分,后面还要比赛6场;月亮队得出得分为:15×2+16=16分,后面还要比赛5场,∴月亮队最多胜5场,得分为16+2×5=56为确保出线,根据题意可得17+2x+(6-x)>56解得x>3故答案为:1.【点睛】此题主要考查不等式的应用,解题的关键是根据题意列出不等式求解.三、解答题18.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23)(2)解方程:3157146 x x---=【答案】(1)-9;(2)x=﹣1.【解析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32)=﹣1×[﹣4﹣2]×(﹣32)=﹣1×(﹣6)×(﹣32)=﹣9;(2)3(3x﹣1)﹣12=2(5x﹣7)9x﹣3﹣12=10x﹣149x﹣10x=﹣14+3+12﹣x=1x=﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.19.已知,点A,点D分别在y轴正半轴和负半轴上,AB DE∥.(1)如图1,若44m m =-+,BAD m OED ∠=∠,求CAD ∠的度数;(2)在BAO ∠和DEO ∠内作射线AM ,EN ,分别与过O 点的直线交于第一象限内的点M 和第三象限内的点N .①如图2,若AM ,EN 恰好分别平分BAO ∠和DEO ∠,求AMN ENM ∠-∠的值;②若1MAO BAM n ∠=∠,1NEO NED n∠=∠,当4060AMN ENM ︒<∠-∠<︒,则n 的取值范围是__________.【答案】(1)60CAD ∠=︒;(2)①45AMN ENM ∠-∠=︒;②425n << 【解析】(1)利用二次根式的性质求得m 的值,根据三角形内角和定理结合已知条件构建方程,再利用平行线的性质即可求解;(2)①过M 作MF ∥AB ,NG ∥AB ,根据角平分线的性质和平行线的性质,求得∠AMN-∠ENM = α – θ,再根据平行线的性质和三角形内角和定理即可求解;②设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,根据①的解法即可求得∠AMN-∠ENM=n 90 1n ︒+,再解不等式组即可求解. 【详解】(1)∵44m m =-44m m -=-, ∴4040m m -≥⎧⎨-≤⎩, 解得:4m =,∴∠BAD=4∠OED ,∵∠OED+∠ODE=90︒①,∠BAD+∠ODE=180︒,即4∠OED +∠ODE=180︒②,联立①②解得:∠OED=30︒,∠ODE=60︒,∵AB ∥DE ,∴∠CAD=∠ODE=60︒;(2)①∵AM 、EN 是∠BAO 、∠DEO 的平分线,∴设BAM MAO α∠=∠=,OEN NED θ∠=∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=α,∠FMN=∠MNG ,∠GNE=∠NED=θ,∴∠AMN=∠FMA+∠FMN= α +∠FMN ,∠ENM=∠GNE +∠MNG =θ +∠FMN ,∴∠AMN-∠ENM= α +∠FMN- θ-∠FMN= α – θ;∵∠ODE+∠OED=∠ODE+2 θ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即2α+∠ODE=180︒,∴2α –2?θ=90︒,∴∠AMN-∠ENM=α–θ=45︒; ②∵1MAO BAM n ∠=∠,1NEO NED n ∠=∠,∴设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=n α,∠FMN=∠MNG ,∠GNE=∠NED=n θ,∴∠AMN=∠FMA+∠FMN=n α +∠FMN ,∠ENM=∠GNE +∠MNG =n θ +∠FMN ,∴∠AMN-∠ENM=n α +∠FMN-n θ-∠FMN=n α –n θ=()–n αθ; ∵∠ODE+∠OED=∠ODE+()1n θ+ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即()1n α++∠ODE=180︒,∴()1n α+–()1n θ+=90︒,即α–θ=901n ︒+, ∴∠AMN-∠ENM=()–n αθ=n 90 1n ︒+; ∵4060AMN ENM ︒<∠-∠<︒,∴n 9040601n ︒︒<<︒+, 解不等式n 90601n ︒<︒+,化简得:n 213n <+, 解得:2n <,解不等式n 90401n ︒︒<+,化简得:n 419n >+, 解得:45n >, ∴n 的取值范围是425n <<. 【点睛】本题考查了角的计算,解不等式组,角平分线的定义以及n 等分角的性质,平行线的性质,三角形内角和定理,准确识图,理清图中各角度之间的关系,用方程的思想解答是解题的关键.20.如图14所示,∠1=40°,∠2=65°,AB ∥DC ,求∠ADC 和∠A 的度数.【答案】∠ADC=105°;∠A=75°.【解析】试题分析:由AB ∥DC 可知∠1=∠BDC=40°,所以∠ADC=∠2+∠BDC=105°;据三角形内角和定理,即可得求得∠A的度数.试题解析:∵AB∥DC,∴∠1=∠BDC=40°(两直线平行,内错角相等),又∠2=65°,∴∠ADC=∠2+∠BDC=105°;据三角形内角和定理,可得∠A=180°-∠1-∠2=75°.21.如图,已知△ACE是等腰直角三角形,∠ACE=90°,B点为AE上一点,△CAB经过逆时针旋转后到达△CED的位置.问:(1)旋转中心是哪个点?旋转角是哪个角?旋转了多少度?(2)图中哪两个三角形全等?(3)若∠ACB=20°.则∠CDE=,∠DEB=.【答案】(1)C点;∠ACE或∠BCD;90度;(2)△CAB和△CED全等;(3)115°,90°.【解析】(1)利用旋转的定义求解;(2)根据旋转的性质进行判断;(3)先利用等腰直角三角形的性质得∠A=∠CEA=45°,则根据三角形内角和可计算出∠ABC=115°,再根据旋转的性质得∠CDE=∠ABC=115°,∠CED=∠A=45°,从而得到∠DEB=90°.【详解】(1)旋转中心是C点;旋转角为∠ACE或∠BCD;旋转了90度;(2)图中△CAB和△CED全等;(3)∵△ACE是等腰直角三角形,∠ACE=90°,∴∠A=∠CEA=45°.∵∠ACB=20°,∴∠ABC=180°﹣45°﹣20°=115°.∵△CAB经过逆时针旋转后到达△CED的位置,∴∠CDE=∠ABC=115°,∠CED=∠A=45°,∴∠DEB=45°+45°=90°.故答案为:115°,90°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形.22.已知42x y =⎧⎨=-⎩与11x y =⎧⎨=⎩都是方程kx b y +=的解,求k 和b 的值. 【答案】12k b =-⎧⎨=⎩【解析】把x 与y 的两对值代入方程计算即可求出k 与b 的值.【详解】解:由题意,得421k b k b +=-⎧⎨+=⎩. 解得12k b =-⎧⎨=⎩ 【点睛】此题考查二元一次方程的解,解题关键在于将解代入方程得到关于k ,b 的方程组.23.如图1,//AB CD ,点E 是直线AB ,CD 之间的一点,连接EA 、EC .(1)问题发现:①若45A ∠=,30C ∠=,则AEC ∠ .②猜想图1中EAB ∠、ECD ∠、AEC ∠的数量关系,并证明你的结论.(2)拓展应用:如图2,//AB CD ,线段MN 把ABCD 这个封闭区域分为I 、II 两部分(不含边界),点E 是位于这两个区域内的任意一点(不在边界上),请直接写出EMB ∠、END ∠、MEN ∠的数量关系.【答案】(1)①75,②AEC EAB ECD ∠=∠+∠,见解析;(2)当点E 位于区域I 时,360EMB END MEN ∠+∠+∠=,当点E 位于区域II 时, EMB END MEN ∠+∠=∠.【解析】(1)①过点E 作EF ∥AB ,再由平行线的性质即可得出结论;②、根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB 、∠END 、∠MEN 的关系.【详解】解:(1)①如图1,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∵∠A=45°,∠C=30°,∴∠1=∠A=45°,∠2=∠C=30°,∴∠AEC=∠1+∠2=75°;②猜想: AEC EAB ECD ∠=∠+∠.理由:如图1,过点E 作//EF CD ,∵//AB DC∴//EF AB (平行于同一条直线的两直线平行),∴1EAB ∠=∠,2ECD ∠=∠(两直线平行,内错角相等),∴12AEC EAB ECD ∠=∠+∠=∠+∠(等量代换);(2)当点E 位于区域I 时, 360EMB END MEN ∠+∠+∠=,理由:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E 位于区域II 时, EMB END MEN ∠+∠=∠.理由:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BMN=∠FEM ,∠DNE=∠FEN ,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN .故答案为:(1)①75,②AEC EAB ECD ∠=∠+∠,见解析;(2)当点E 位于区域I 时, 360EMB END MEN ∠+∠+∠=,当点E 位于区域II 时, EMB END MEN ∠+∠=∠.【点睛】本题考查平行线的性质,根据题意画出图形,利用数形结合求解是解题的关键.24.如图是由四个小正方形组成的L 形图案,请你再添加一个小正方形使它们能组成一个轴对称图形(给出三种不同的方法).【答案】详见解析【解析】根据轴对称图形的定义画图即可.【详解】解:如图所示:【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形是解题的关键.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中__________的路程与时间的关系,线段OD表示赛跑过程中__________的路程与时间的关系;(2)兔子在起初每分钟跑多少千米?乌龟每分钟爬多少米?(3)兔子醒来后,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子在途中一共睡了多少分钟?【答案】(1)兔子,乌龟;(2)700米,乌龟每分钟爬50米;(3)兔子在途中一共睡了28.5分钟.【解析】(1)根据乌龟和兔子的故事判断;(2)根据图像来计算即可;(3)先计算出兔子醒来后跑的时间,再用乌龟跑的时间加上0.5,减去兔子跑的总时间.【详解】解:(1)兔子,乌龟÷=(米)(2)结合图象得出:兔子在起初每分钟跑700米,15003050∴乌龟每分钟爬50米;(3)∵48千米=48000米÷=(米/分)∴4800060800-÷=()(分钟)150********+-⨯=(分钟)300.51228.5∴兔子在途中一共睡了28.5分钟.【点睛】本题考查的是函数的图像,熟练掌握函数的图像是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .23x y -和25yx 不是同类项B .24a b -的系数和次数分别是1和4C .358x y xy +=D .()233m m n m n --=-+ 【答案】D【解析】根据同类项定义判断A 、C 选项,根据单项式系数和次数定义判断B 选项,根据去括号法则判断D 选项.【详解】A .﹣3x 2y 和5yx 2是同类项,不符合题意;B .﹣a 2b 4的系数和次数分别是﹣1和6,不符合题意;C .3x 和5y 不是同类项,不能合并,不符合题意;D .2m ﹣3(m ﹣n )=2m ﹣3m +3n =﹣m +3n ,符合题意.故选D .【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则和相关定义是解答本题的关键. 2.下列哪个选项中的不等式与不等式582x x >+组成的不等式组的解集为853x <<.( ) A .50x +<B .210x >C .3150x -<D .50x --> 【答案】C【解析】分析:首先计算出不等式5x >8+2x 的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.详解:5x >8+2x ,解得:x >83, 根据大小小大中间找可得另一个不等式的解集一定是x <5,故选C .点睛:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.3.不等式3(x+1)>2x+1的解集在数轴上表示为( )A .B .C .D .【答案】A 【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:去括号得,3x+3>2x+1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选:A .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.4.一般地,在平面直角坐标系中,任何一个二元一次方程的解可以看成是一个点的坐标,那么,以二元一次方程的解为坐标的点的全体叫做这个二元一次方程的图象.根据作图我们发现:任何一个二元一次方程的图象都是一条直线.根据这个结论,如图,如果一个点的坐标可以用来表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是( )A .MB .NC .ED .F【答案】C 【解析】根据已知中结论,得出两直线的交点的横纵坐标即为方程组的解【详解】由题中结论可得,这个点是两直线的交点E ;故选:C【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5.若一个数的一个平方根为9,那么它的另一个平方根是()A.3;B.3-;C.9;D.9-.【答案】D【解析】根据一个正数有两个平方根,它们互为相反数求出即可.【详解】∵一个数的一个平方根为9,∴它的另一个平方根是-9,故选:D.【点睛】考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.6.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.409秒B.16秒C.403秒D.24秒【答案】B【解析】分析题意,首先通过作图,找出A处受噪声影响火车经过的路段;根据题意可以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,求AC的长;然后根据勾股定理求出BC的长,由垂径定理即可得到BD的长,再根据火车行驶的速度,进而求出对A处产生噪音的时间.【详解】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故答案选B.【点睛】本题主要考查了勾股定理,解本题要点在于找出受影响的路段,从而求出BD的长.7.将图1中五边形ABCDE纸片的点A以BE为折线向下翻折,点A恰好落在CD上,如图2所示:再分别以图2中的,AB AE为折线,将,C D两点向上翻折,使得A、B、C、D、E五点均在同一平面上,如图3所示.若图1中122A︒∠=,则图3中CAD∠的度数为()A.58︒B.61︒C.62︒D.64︒【答案】D【解析】根据平角的定义和定理和折叠的性质来解答即可.【详解】解:由图2知,∠BAC+∠EAD=180°−122°=58°,所以图3中∠CAD=122°−58°=64°.故选:D.【点睛】本题考查了折叠的性质,结合图形解答,需要学生具备一定的读图能力和空间想象能力.8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.18【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=1 10.故选B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.已知,如图,方程组y kx by mx n=+⎧⎨=+⎩的解是()A.11xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=-=⎧⎨⎩D.2xy=-⎧⎨=⎩【答案】C【解析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】根据函数y=kx+b和y=mx+n的图象知,一次函数y=kx+b与y=mx+n的交点(−1,1)就是该方程组的解。

人教版数学七年级上册1.5.1《有理数的乘方》教学设计2

人教版数学七年级上册1.5.1《有理数的乘方》教学设计2

人教版数学七年级上册1.5.1《有理数的乘方》教学设计2一. 教材分析《有理数的乘方》是人民教育出版社出版的初中数学七年级上册第1章第5节的内容。

这一节主要介绍了有理数的乘方概念、性质及运算法则。

通过学习,学生能够理解有理数乘方的含义,掌握有理数乘方的基本性质,熟练运用有理数乘方的运算法则进行计算。

本节课的内容是初中有理数乘方的基础,对于后续的学习具有重要意义。

二. 学情分析学生在七年级上册已经学习了有理数的加减乘除运算,对于有理数的基本概念和运算规则有一定的了解。

但是,对于有理数的乘方,学生可能还比较陌生,需要通过实例和讲解来理解和掌握。

此外,学生可能对于负数的乘方和分数的乘方存在一定的困惑,需要老师在教学中进行重点解释和引导。

三. 教学目标1.知识与技能目标:学生能够理解有理数的乘方概念,掌握有理数乘方的性质和运算法则,能够运用有理数乘方的知识解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探索有理数乘方的规律,培养学生的逻辑思维能力和运算能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,克服学习中的困难,增强自信心,培养对数学学科的兴趣。

四. 教学重难点1.教学重点:有理数的乘方概念、性质及运算法则。

2.教学难点:负数的乘方、分数的乘方及其运算规则。

五. 教学方法1.情境教学法:通过生活实例和趣味问题,激发学生的学习兴趣,引导学生自主探索有理数乘方的规律。

2.讲解法:老师对有理数乘方的概念、性质和运算法则进行详细讲解,让学生清晰地理解知识点。

3.互动教学法:老师与学生进行提问、讨论等互动,引导学生积极思考,提高学生的参与度。

4.练习法:布置针对性的习题,让学生在实践中巩固有理数乘方的知识。

六. 教学准备1.教学课件:制作课件,展示有理数乘方的知识点、实例和练习题。

2.教学素材:收集与有理数乘方相关的生活实例和趣味问题。

3.习题库:准备一定数量的有理数乘方练习题,用于课堂巩固和课后作业。

人教版七年级上数学第1章有理数 1.5.1乘方 学案(含答案)

人教版七年级上数学第1章有理数 1.5.1乘方 学案(含答案)

1.5.1乘方知识要点:1.定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a中,a叫做底数,n叫做指数。

当a n看作a的n次方的结果时,也可读作“a的n次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数.3.正数的任何次幂都是正数,0的任何次幂都是04.一个大于1的正数作底数,指数越大,乘方的结果越大,而一个小于1的正数作底数,指数越大,乘方的结果就越小。

5.如有括号,先进行括号内的运算,按小括号、中括号、大括号依次进行6.如果没有括号,先乘方,再乘除,最后加减;同级运算,按照从左到右的顺序进行一、单选题1.当时,代数式的值为,那么当时,的值为()A. B. C. D.【答案】A2.若与互为相反数,则的值为()A. B. C. D.【答案】D3.下列各组数中,相等的一组是()A.与B.与C.与D.与【答案】C4.若,则的值是()A.-1B.1C.0D.2016【答案】B5.根据流程图中的程序,当输入数值x为-2时,输出数值y为()A.4B.6C.8D.10【答案】B6.下面是一组按规律排列的数:1,2,4,8,16,…,第2020个数应是()A. B. C. D.以上答案均不对【答案】A7.下列各组数中,互为相反数的是()A.与B.与C.与D.与【答案】B8.计算等于()A.-9B.-6C.6D.9【答案】D9.下列说法正确的是()A.表示的积B.任何有理数的偶次方都是正数C.一个数的平方是,这个数一定是D.与互为相反数【答案】D10.计算的结果是( ) A.B. C. D. 【答案】A11.计算20072008(0.25)(4)-⨯-等于( ). A .1-B .1C .4-D .4【答案】C 12.观察下列算式:122=,224=,328=,4216=,….根据上述算式中的规律,请你猜想102的末尾数字是( )A .2B .4C .8D .6【答案】B二、填空题13.计算: - - -________. 【答案】1014. = ________.【答案】0 15.把333444⨯⨯写成乘方运算形式是________. 【答案】334⎛⎫ ⎪⎝⎭16.按照图中所示的操作步骤,若输入x 的值为-3,则输出的有理数是_______.【答案】8三、解答题17.计算:(1);(2);(3);(4).【答案】(1)-25;(2)6;(3)256;(4)-4518.当你把纸对折一次时,可以得到2层,对折2次时可以得到4层,对折3次时可以得到8层,照这样折下去:(1)你能发现层数与折纸次数的关系吗?(2)计算对折5次时的层数;(3)如果每层纸的厚度是0.05毫米,求对折10次之后纸的总厚度.【答案】(1)对折n次是2n层(2)32层(3)51.2毫米19.有“*”代表一种运算,规定2=+,试求:*2a b a b-.(1)5*6;(2)(2)*(3*4)【答案】(1)37;(2)3820.已知:a b ,互为相反数,c d ,互为倒数,且a 不等于零.求20172016()100a b a c d a b +⎛⎫+-⨯ ⎪⎝⎭的值.【答案】-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 1.5.1有理数的乘方(2)
备课组: 七年级数学 执笔者: 课型:新课 讲学时间: 审核者: 学习目标:
1.能确定有理数加、减、乘、除、乘方混合运算的顺序;
2.会进行有理数的混合运算;
3.培养学生正确迅速的运算能力。

学习过程
一、创设情境,导入新课
1. 在2+23×(-6)这个式子中,存在着哪几种运算?
二、合作交流,解读探究
(一)运算顺序
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
例1 计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-
21×[3×(-32)2-(-1)4]+41÷(-2
1)3.
例2 一. 观察下面三行数: -2,4,-8,16,-32,64, ...;(1)
0,6,-6,18,-30,66, ...;(2)
-1,2,-4,8,-16,32, (3)
1.第(1)行数按什么规律排列?
2.第(2)(3)行数与第(1)行数分别有什么关系?
3.取每行数的第10个数,计算这三个数的和
三、新知应用
1.计算:
(1)221-
-221+(-1)101-23×(0.5-32)÷910;
(2)1÷(1
61)×(-76)÷(-12); (3)(-2)3+3×(-1)2-(-1)4;
(4)[2
233215383]2141)()()()(-⨯-+-÷--; (5)5÷[)(22
1231--]×6.
3.若0)3(22
=-++y x ,求y x xy 322
-的值.
4.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a 等于-1,则A 等于多少?
5、观察下面三行数:
(1)第一行数按什么规律排列?
(2)第二、第三行数与第一行数分别有什么关系?
(3)分别取这三行数的第10个数,计算这三个数的和.
小结:
作业:
课后反思:。

相关文档
最新文档