数学分析》第六章微分中值定理及其应用(3)
第六章 微分中值定理及其应用
由此可得
.
例2 设轴为镜面,光线由点处入射至上点R,经反射后过点Q(图6-2).试用光线沿最省时间的路径传播原理,验证光线反射规律:入射角等反射角.
图6-2
解 设光线由点P出发在平面镜上点R处反射后通过点Q,上述三点分别有坐标为,于是
,
,
光线走过总的路径为
.
因为光线是沿最省时间的路线传播,而光速是常数,所以通过求的极小值,便可确定点R的位置.为此令
由图6-2可见是入射角的余弦,而是反射角的余弦,于是有
即入射角等于反射角.
说明 由于本例是要证明,而不要求具体算出点R的坐标和的最小值,因此当由极值的必要条件推出了结果后,解题过程便告结束.这与通常求极值或最大(小)值的问题稍有不同.
于是解得唯一的极值点为
.
易见时,时,即为极小值点.由于唯一的极值点为最值点,因此当力F与水平方向夹角,力F最小.
注 力学中称为摩擦角.
例4 设函数
(n为正整数).
其中函数当时连续,且.试问点是否为的极值点?当它是极值点时,讨论它是何种极值点?
解 ,
不妨设,由连续函数的局部保号性,在某领域中.
证 因为为方程的n重根,于是该方程有2n个实根,现要证明有n个相异的实根。
=
方程以x=0为单根,重根,因为,由罗尔定理,使得于是有两个单根;又因
其中为二次多项式,故方程还有两个n-2重根。
由此可推测当导数增高一次,相异单根增加一个,但重根各下降一次,现用归纳法证明相应结论。
. பைடு நூலகம்
不妨设,于是有
.
在上对应用达布定理,使得
,
这样就证得
数学分析22第六章 微分中值定理及其应用-微分中值定理.DOC
第六章 微分中值定理及其应用引言在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法。
这样一来,类似于求已知曲线上点的切线问题已获完美解决。
但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。
另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理。
本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用。
§1.微分中值定理[教学目的] 掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。
[教学要求] 深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。
[教学重点] 中值定理。
[教学难点] 定理的证明。
[教学难点] 系统讲解法。
一、一个几何命题的数学描述为了了解中值定理的背景,我们可作以下叙述:弧AB 上有一点P ,该处的切线平行与弦AB 。
如何揭示出这一叙述中所包含的“数量”关系呢?联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧 AB 的函数是y=f(x),x [a,b]的图像,点P 的横坐标为x 。
如点P 处有切线,则f(x)在点x 处可导,且切线的斜率为()f ;另一方面,弦AB 所在的直线斜率为()()f b f a b a ,曲线y=f(x)上点P 的切线平行于弦AB ()()()f b f a f b a。
撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及函数在端点的函数值。
这样这个公式就把函数及其导数联系起来。
在二者之间架起了一座桥梁,这座“桥”就是导数在研究函数方面应用的理论基础。
鉴于(,)a b ,故把类似公式称为“中值公式”;把类似的定理称为中值定理。
华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(微分中值定理及其应用)
则存在 ξ∈(a,b),使得
(6-4)
2.丌定式极限
(1) 型丌定式极限
若函数 f 和 g 满足:
①
②在点 的某空心邻域
上两者都可导,且
③
(A 可为实数,也可为
);
则
(2) 型丌定式极限
若函数 f 和 g 满足:
①在 的某邻域
上两者ห้องสมุดไป่ตู้导,且
;
②
;
lim f x lim g x
xx0
xx0
③
(2)拉格朗日型余项 (6-7)式称为泰勒公式,它的余项为
(6-7)
称为拉格朗日型余项,所以(6-7)式又称为带有拉格朗日型余项的泰勒公式. (3)n=0 时,泰勒公式(6-7)在 x=0 时的特殊形式为
称为(带有拉格朗日余项的)麦克劳林公式.
四、函数的极值不最大(小)值 1.极值判别 (1)极值的第一充分条件 设 f 在点 x0 连续,在某邻域 U0(x0;δ)上可导,
(2)推论
设函数在区间 I 上可微,若 f′(x)>0(f′(x)<0),则 f 在 I 上严格递增(严格递减).
(3)达布(Darboux)定理
若函数 f 在[a,b]上可导,且 f′+(a)≠f′-(b),k 为介于 f′+(a),f′-(b)乊间的
仸一实数,则至少存在一点 ξ∈(a,b),使得
5 / 78
圣才电子书 十万种考研考证电子书、题库视频学习平台
①若当
时 f′(x)≢0,当
时 f′(x)≣0,则 f 在点 x0
取得极小值.
②若当
时 f′(x)≣0,当
时 f′(x)≢0,则 f 在点
x0 取得极大值.
微分中值定理应用
微分中值定理应用微分中值定理是微积分中的一个基本定理,它描述了函数在某个区间内的平均变化率与某个点的斜率之间的关系。
这个定理在实际问题中具有重要的应用价值,可以帮助我们更好地理解函数在一段区间内的性质和变化规律。
本文将介绍微分中值定理的基本概念,并探讨其在实际问题中的应用。
微分中值定理简介微分中值定理是微积分中的基本定理之一,主要有拉格朗日中值定理和柯西中值定理两种形式。
拉格朗日中值定理是最基本的形式,它陈述了如果函数在一个闭区间内连续,在该区间内可导,则在开区间内一定存在某个点,该点的导数等于该区间内函数的平均变化率。
数学表达式如下:假设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么存在$\\xi\\in (a, b)$,使得:$$f'(\\xi) = \\frac{f(b) - f(a)}{b - a}$$柯西中值定理则是在特定情况下的推广形式,要求函数满足一定的条件。
这两种中值定理都提供了函数在某个区间内平均变化率与某个点的斜率之间的关系,为我们在实际问题中应用微分中值定理提供了理论基础。
微分中值定理在实际问题中的应用微分中值定理在实际问题中的应用非常广泛,从物理学到经济学,都可以看到它的身影。
下面我们将介绍微分中值定理在几个具体问题中的应用。
1. 物理学中的应用在物理学中,运动学是一个典型的应用领域。
通过微分中值定理可以推导出匀速直线运动中某个时刻的速度与平均速度之间的关系。
设$t\\in[0,T]$表示时间,v(t)表示物体在时刻t的速度。
根据微分中值定理,存在$t \\in (0, T)$,使得:$$v'(t) = \\frac{v(T) - v(0)}{T}$$这个公式告诉我们,在匀速直线运动中,某个时刻的速度等于整段时间内的平均速度,这个关系可以帮助我们更好地理解物体的运动规律。
2. 经济学中的应用在经济学中,利润和成本是一个重要的问题。
通过微分中值定理,我们可以导出某个时刻产量与平均产量之间的关系。
数学《微分中值定理及其应用》讲义
第六章微分中值定理及其应用1. 教学框架与内容教学目标①掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.②了解柯西中值定理,掌握用洛必达法则求不定式极限.③理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.④掌握函数的极值与最大(小)值的概念.⑤掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.⑥掌握函数图象的大致描绘.教学内容①罗尔中值定理;拉格朗日中值定理;用导数判别函数的单调性.②柯西中值定理;洛必达法则求各种不定式极限.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.④函数的极值的第一、二充分条件; 求闭区间上连续函数的最值及其应用.⑤函数的凸性与拐点的概念,应用函数的凸性证明不等式; 左、右导数的存在与连续的关系.⑥根据函数的性态表以及函数的单调区间、凸区间,大致描绘直角坐标系下显式函数图象.2. 重点和难点①中值定理证明中辅助函数的构造.②洛必达法则定理的证明.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.④函数的极值的第三充分条件.⑤运用詹森不等式证明或构造不等式.⑥参数形式的函数图象.3. 研究性学习选题● 如何运用中值定理对一些习题整理归类,思考中值定理的应用技巧(构造函数).● 利用导数证明不等式总结利用导数证明不等式的方法.● 不定式极限回顾总结求函数极限的方法.● 运用泰勒公式求极限,等价无穷小的代换问题.总结常见函数的泰勒公式,举例说明其在求不定式极限中的应用, 分析等价无穷小的代换问题.● 凸函数性质研究总结凸函数的性质.4. 综合性选题,写小论文★如何构造辅助函数.5. 评价方法◎课后作业,计30分.◎研究性学习布置的五个选题(选最好的两个计分)合计30分.◎小论文计10分.◎小测验计30分§1 中值定理和函数的单调性在这一章,我们主要由导函数f '的性质来推断函数f 本身的性质(主要研究f 的单调性,凸凹性,图像等) 而微分中值定理是我们研究的主要工具(微分中值定理主要包括Rolle 中值定理,Lagrange 中值定理,Cauchy 中值定理及Taylor 公式) 我们首先介绍Rolle 中值定理. 一、中值定理 1.Rolle 中值定理定理 (Rolle ) 设函数f 满足下列条件: 1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导; 3) ()()f a f b =,则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.Rolle 中值定理的几何意义:在每一点都可导的连续曲线上,如果两端点的高度相同,则该曲线至少存在一条水平切线.注1 Rolle 定理的条件仅充分而不必要且缺一不可. (作图说明)例1 证明: 10x x ++=3只有一个实根且在(1,0)-中. 2.Lagrange 中值定理定理 (Lagrange ) 设函数f 满足下列条件:1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导, 则在(,)a b 内至少∃一点ξ,使得()()()f b f a f b aξ-'=-.几何意义 在满足定理条件的曲线()y f x =至少存在一点(())P f ξξ,, 使得 曲线在该点处的切线平行于曲线端点的连线.注 2 中值点(,)a b ξ∈对ξ的不同表示有不同形式的Lagrange 公式a) ()()()()f b f a f b a ζ'-=-, (,)a b ξ∈; b) ()()(())()f b f a f a b a b a θ'-+--=, 01θ<<; c) ()()()f a h f a f a h h θ'+-=+, 01θ<<.推论1 若函数f 在区间I 上可导,且()0f x '≡,x I ∈, 则f 在I 上恒为常数.推论 2 设f ,g 在区间I 上均可导, 且()()f x g x ''≡, x I ∈则存在常数c , 使得()()f x g x c =+,x I ∈.推论3 设f 在区间I 上可导,且()f x M '≤,则任何12x x I ∈,,1212()()f x f x M x x -≤-从而导函数有界的函数必一致连续 (Lipschitz 连续).推论4 (导数极限定理) 设f 在0x 点某邻域0()U x +内连续,在00()U x +内可导, 且极限00lim ()(0)x x f x f x +→''=+存在,则f 在0x 右可导,且 000()lim ()(0)x x f x f x f x ++→'''+==对左导数有类似的结论,事实上,我们有下面的定理.定理 设函数f 在0x 的某邻域0()U x 内连续,在0()U x ︒可导,若极限0lim ()x x f x →'存在,则0()f x '存在且00()lim ()x x f x f x →''=.注 3 由导数极限定理与导数具有介值性(Darboux 定理)知, 若函数f 在区间I 上可导,则在区间I 上的每一点,要么是()f x '的连续点,要么是'f 的第二间断点,即导函数不可能有第一类间断点.推论5 若f 在[,]a b 上可导,且f '单调,则f '必连续. (导数极限定理适用于求分段函数的导数) 例2 求分段函数()f x 的导数. [说明定理的作用]sin ,()ln(1),x x x f x x x ≤⎧+=⎨>+⎩20,0,注4 对推论5,当0(0)f x '+不存在时,未必有0()f x '不存在.例3 设sin , () 0,x x f x xx ⎧≠⎪=⎨⎪=⎩210,0,求(00)f '+,(0)f '.3. Cauchy 中值定理定理 (Cauchy ) 设函数f 和g 满足1) 在[,]a b 上连续; 2) 在(,)a b 上可导; 3) ()f x '和()g x '不同时为零; 4) ()()g a g b ≠,则存在(,)a b ξ∈,使得()()()()()()f f b f ag g b g a ξξ'-='- 几何意义证明 (先给一个错误证明)(如何构造函数?)一般的中值定理 设f ,g [,]a b R →连续且(,)a b 内可导,则存在(,)a b ξ∈, 使得[()()]()()[()()]f b f a g f g b g a ξξ''-=-.注5 上式不过是Cauchy 定理形式上的变形,但条件更简单,因而更具一般性. 例 4 考察2()f x x =,3()g x x =,[1,1]x ∈-相应的中值形式.二、中值定理的应用1. 证明中值点的存在--------关键构造函数例5 1) 设f 在闭区间[,]a b (0)a >上连续,(,)a b 内可导, 则存在(,)a b ξ∈, 使得()()ln()()bf b f a f aξξ'-=⋅⋅.2) 对函数()f x x =2确定()()()f x h f x h f x h θ'+-=⋅+中的θ, 1()2θ=.例6 设函数f 在闭区间[,]a b 上连续,(,)a b 上可导, 且()()0f a f b ==,试证明:存在(,)a b ξ∈使()()0f f ξξ' +=. (多种变形)2. 证明恒等式 (原理: 证明其导数为0,再任取一特殊值) 例7 证明: 对任何x R ∈,arctan arccot x x π+=2.例8 设f ,g 可导且()f x ≠0,又()()0()'()f xg x f x g x=',则存在常数c , 使得()()g x c f x =⋅. (若条件改作()()()()0f x g x f x g x ''+=,则结论应为?)例9 设函数f 对任何,x h R ∈,2()()f x h f x Mh +-≤,0M >为常数,则f 为常值函数.3. 证明不等式 (利用中值定理,估计中值或(0,1)θ∈) 例10 证明0h >时,2arctan 1hh h h <<+例11 (Bernoulli 不等式) 对1x >-有 1) (1)1p x px +≥+,若0p ≤或1p ≥; 2) (1)1p x px +≥+,若0p ≤≤1; 等号当且仅当0p =或1p =或0x =成立.4. 证明方程根的存在性 [注意利用连续函数介值性与导数中值定理的区别] 例12 证明: 方程sin cos 0x x x +⋅=在(0,)π内有实根.例13 证明: 方程32432+ax bx cx a b c ++=+在(0,1)内有实根.5. 研究函数的单调定理 设f 在区间I 上可导,则f 在I 上递增(减)⇔()()00f x x '≥≤,x I ∈.定理 设f 在(,)a b 上可导,则f 在(,)a b 内单调严格递增(减)⇔ 1) (,)x a b ∀∈,()()00f x '≥≤2) f 在(,)a b 的任何区间上()0f x '≡推论 6 若f 在区间I 上可导, ()()00f x '><,则f 在I 上严格递增(减)推论 7 若f 在区间I 上可导,则f 在f '的相邻零点之间必严格单调. (说明多项式函数必有有限个单调区间)例14 设()f x x x =-3,求f 的单调区间.例15 证明: 1) 1x x >+e ,()0x ≠;2) ()()22ln 1221x x x x x x -<+<-+. 0x >.例16 利用函数单调性,重证Bernoulli 不等式(利用()f x '')例17 证明: 0x >时,sin x x x >-33!.练习 1) x >12时,2ln(1)arctan 1x x +>-.2) tan (0)sin 2x x x x x π<<<.习 题1. 用中值定理证明sin sin x y x y -≤-,,x y R ∀∈.2. 若f 在[,]a b 上可导,且'()f x m ≥,则()()()f x f a m x a ≥+- [,]x a b ∀∈3. 证明:函数()f x 在1(0,)π上存在ξ,使得'()0f ξ=,其中11sin 0()0x x f x xx π⎧⋅<≤⎪=⎨⎪=⎩4. 求函数2()3f x x x =-的单调区间.5. 证明: 若函数g f ,在区间],[b a 上可导,且)()(),()(a g a f x g x f ='>', 则在],(b a 内有)()(x g x f >.6. 应用函数的单调性证明下列不等式:1) )3,0(,3tan 3π∈->x x x x ;2)2sin xx x π<< (0,)2x π∈.3) 0,)1(2)1ln(222>+-<+<-x x x x x x x . 7. 设f 在[,]a b 上二阶可导,且()()0f a f b ==,且存在点(,)c a b ∈使得()0f c >, 证明: 至少存在一点(,)a b ξ∈使得"()0f ξ<.8. 设f 在[,]a b 上n 阶可导,若f 在[,]a b 上有1n +个零点,求证:()n f 在[,]a b 上 至少有一个零点.9. 试问函数32)(,)(x x g x x f ==在区间]1,1[-上能否应用Cauchy 中值定理得到 相应的结论, 为什么?10. 设函数f 在点a 处具有连续的二阶导数, 证明: )()(2)()(lim2a f ha f h a f h a f h ''=--++→. 11. 设函数f 在点a 的某个领域具有二阶导数, 证明: 对充分小的h ,存在θ,10<<θ,使得2)()()(2)()(2h a f h a f h a f h a f h a f θθ-''++''=--++. 12. 若f 在[,]a b 上可微,则存在(,)a b ξ∈, 使得22'2[()()]()()f b f a b a f ξξ-=-.13. 设f 在[,]a b 上连续, (,)a b 上可导,且()()0f a f b ==,证明:对任何R λ∈, 存在c R ∈,使得 '()()f c f c λ=.14. 设f 在R 上可导,且x R ∀∈,'()1f x ≠, 证明: 方程()f x x =至多有一个根. 15. 设)(x p 为多项式, a 为0)(=x p 的r 重实根. 证明: a 必定是函数)(x p '的1-r 重实根.16. 设0,>b a .证明方程b ax x ++3=0不存在正根. 17. 证明:x x x x sin tan >,)2,0(π∈x .§2 未定型极限未定型(不定式)00 ∞∞(∞⋅∞∞-∞∞000,,0,1,等) 以导数为工具研究上述未定型极限,该方法称为'L Hospital 法则一、0型未定型极限定理 ('L Hospital ) 若函数f 和g 满足1) 0lim ()lim ()0x x x x f x g x →→==; 2) 在0x 的某去心邻域0()U x ︒都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A R A ∈=±∞∞,,,则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例1 1) 0sin lim x xx→ 2) 132lim 1x x x x x x →-+--+3323) lim (arctan )x x x π→+∞-2 4) 21cos lim cos tan x xx xπ→++5) 0lim x +→ 6) 012limln(1)xx e x x →-++122()7) 20ln(1sin 4)lim arcsin x x x x →++() 8) 02lim sin x x x e e x x x-→---注1 1) 在定理中,0x x →可改作0x x x x →→±∞→∞+,,等2) 若f g '',或f g '''',满足定理条件,可多次应用L 法则 3) 'L Hospital 条件仅是充分的,而不必要,即()lim()x x f x g x →''不存在0()lim ()x x f x g x →⇒不存在.例2 1) cos lim x x x x →∞+ 2) 0sinlim sin x x x x →⋅21二、∞∞型未定型极限 定理 ('L Hospital ) 若函数f 和g 满足 1) 0lim ()() (lim ())x x x x g x f x →→=+∞-∞未必为无穷;2) 若0x 的某右去心邻域0()U x ︒内f ,g 都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A A =±∞∞可看作实数或,, 则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例3 1) ln lim x xx→+∞ 2) lim x x x e →+∞3----------回顾阶的比较3) 0ln(sin )limln(sin )x ax bx → 4) 2tan lim tan 3x xx π→三、其他未定型极限 1. 0⋅∞型 000∞⋅∞==∞ 例4 1) 0lim ln x x x +→ 2) 01limcot ln 1x xx x→+⋅-.2.∞-∞型 110000∞-∞=-= 例5 1) 011lim()sin x x x →- 2) 11lim()-1ln x x x x→-.3. 00型 0ln 00ln 000ee e ⋅⋅∞===例6 1) 0lim xx x +→ 2) 1ln 0lim sin kxx x ++→.4.1∞型ln1ln101ee e ∞∞∞⋅∞⋅===例7 1) 111lim xx x -→ 2) ()21lim cos x x x →.5: 0∞型ln 0ln 0ee e ∞⋅∞⋅∞∞===.例8 1) ln lim ()xx x →+∞1 2) ln 0lim(cot )xx x +→1.练习 P 133 5.例9 设()()0x g x f x xx ≠⎧⎪=⎨⎪=⎩00, 已知(0)(0)0g g '==,(0)g ''=3,试求(0)f '.例10 证明2()x f x x e -=3为R 上的有界函数.习 题1. 求下列未定型极限1) 01lim sin x x e x →- 2) 612sin lim cos3x xx π→-3) 0ln(1)lim1cos x x x x →+-- 4) 0tan lim sin x x xx x→--5) 011lim()1x x x e →-- 6) 111lim xx x -→7) sin 0lim(tan )x x x → 8) 22011lim()sin x x x→- 2. 考虑下列极限应用'L Hospital 法则的可能性.1) lim x →+∞ 2) sin lim sin x x xx x →∞-+3. 计算1) 0ln(1)lim ln(1)x x x x x →-++ 2) 211000lim x x e x -→3) 30tan sin limx x x x →- 4) 201cot lim x x xx →⎛⎫- ⎪⎝⎭ 5) ln lim(ln )xx x x x →+∞ 6) 10(1)lim xx x e x→+-7) 20()lim x x x a x a x →+- 8) 10lim()x xx x e →+9) 1110lim (,,0)xx xnn x a a a a n →⎛⎫++> ⎪⎝⎭4. 教材1337P .5. 证明: 2()ln(1)/f x x x =+在(1,)+∞上有界.§3 Taylor 公式多项式函数是一种简单的函数,因而对任一函数,我们考察是否存在相应的多项式去逼近该函数. 在讨论这个问题之前,我们还是应先讨论一下多项式函数本身的性质.设012()...()n n n P x a a x a x a x a ++++≠2n=0, 易见0(0)n a P =,1(0)n a P '=,……,()(0)!n nn P a n =自然对于一般的函数f , 假设它在0x 处有直到n 阶的导数,由这些导数构成了一个新的多项式,记为:()00000()()()()()()!n n n f x T x f x f x x x x x n '= +- +...+-此时n T 与f 有何类的性质?00()()k k n T x f x =()() k n ≤≤(0)因而我们说()n T x 与f 在某种意义下“很接近” , 称()n T x 为f 在0x 处的Taylor多项式,而()n T x 的系数()0()!k f x k 称为Taylor 系数,记()()()n n R x f x T x =-称为余项. 我们将证明0()n n R x x x =-o(()),这实际就是带Peano 余项的Taylor 展式.一、带Peano 余项的Taylor 公式——误差的定性刻画定理 若函数f 在0x 处存在直至n 阶导数,则有0()()n n f x T x x x =+-o(())即()200000000()()()()()()()()!n n n f x f x f x f x f x x x x x x x x x n '''=+-+-++-+-...o(())2!.上述公式我们就称为f 在0x 处的Taylor 公式, ()()()n n R x f x T x =-称为Taylor 公式的余项,形如0n o x x -(())的余项称为带Peano 余项的Taylor 公式.注 1 00x =时,称()2(0)(0)()(0)(0)!n nn f f f x f f x x x x n '''=+++++...o()2!为带Peano 余项的Maclaurin 公式. 例1 验证下列Maclaurin 公式.1) 1!nxn x x e x o x n =+++++2...()2!2) ()11sin 1 (1)(1)!m m m x x x x o x m --=-+++-+-35223!5!2 3) 1cos 1...(1)(2)!m m m x x x x o x m +=-+++-+2422()2!4! 4) 1ln(1)1...(1)nn n x x x x o x n-+=-+++-+23()23 5)11n n x x x o x x=+++++-21...() 6) (1)(1)1(1)1!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++++2()...()2!1(1)(23)!!1(2)!!n nn n x x x o x n ---=+++++211!!...()24!! 二、带Lagrange 型余项的Taylor 公式——误差的定量刻画定理 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在(,)a b 内存在1n +阶导函数,则对任何0[,]x x a b ∈,至少存在一点(,)a b ξ∈使得()20000000()()()()()()()()!n nf x f x f x f x f x x x x x x x n '''=+-+-++-...2!(1)10()()(1)!n n f x x n ξ+++-+称为Lagrange 型余项,故上式又称为带有Lagrange 型余项的Taylor 公式,而00x =时,()(1)21(0)(0)()()(0)(0)!(1)!n n n n f f f x f x f f x x x x n n θ++'''=++++++...2! (0,1)θ∈ 称为(带Lagrange 型余项的) Maclaurin 公式. 例 2 将例1中的公式改为带Lagrange 型余项的Maclaurin 公式1) 11!1n xxn x x e e x x n n θ+=++++++2...2!()!, 01θ<<,(,)x ∈-∞+∞ 2) 1121cos sin 1...(1)(1)(1)!(21)!m m m m x x x x x xm m θ--+=-+++-+--+3523!5!2 01θ<<,(,)x ∈-∞+∞3) 122cos cos 1...(1)(1)(2)!(22)!mm m m x x x x x x m m θ++=-+++-+-+2422!4! 01θ<<,(,)x ∈-∞+∞4) 111ln(1)1...(1)(1)(1)(1)nn n nn x x x x x n n x θ+-++=-+++-+-++2323 01θ<<,(,)x ∈-∞+∞5) 1111(1)n nn x x x x x x θ++=+++++--21... 01θ<<,(,)x ∈-∞+∞ 6) (1)(1)1(1)1!n n x x x x n ααααααα--⋅⋅⋅-++=++++2()...2!11(1)(1)(1)!n n n x x n ααααθ--+-⋅⋅⋅-+++()01θ<<,(,)x ∈-∞+∞三、函数的Taylor 公式(Maclaurin 公式) 1. 直接展开(例1,例2)例3 将tan y x =展到含5x 的具Peano 余项的Maclaurin 公式2. 间接展开 利用已知的展开式施行代数运算或变量代换,求得新的展开式. 例4 1) 分别求2sin x ,22x e -具Peano 余项的Maclaurin 展式;2) 求2cos x 的具Peano 余项的Maclaurin 展式; 3) 求35x+1在0x =处具Peano 余项的Maclaurin 展式;4) 分别求23x x --21在0x =处具Peano 余项的Maclaurin 展式;在1x =处具Peano 余项的Taylor 展式;5) 求2x x -21+3在1x =处具Peano 余项的Taylor 展式.四.Taylor 公式的应用举例 1. 利用Taylor 公式求极限例5 1) 2240cos lim x x x e x -→-.2) 02lim x x x a a x-→+-2.3) 21lim[ln(1)]x x x x →∞-+.2. 利用Taylor 公式求高阶导数值例6 设22()x f x e -=,求98(0)f ,99(0)f .3. 计算函数的近似值例7 证明: e 为无理数,并求e 精确到610-的近似值.4. 利用展式证明不等式例8 若函数f 在区间[,]a b 上恒有()0f x ''≥,则对(,)a b 内任何两点12,x x 都有1212()()()2f x f x x xf ++≥2例9 设函数f 在[,]a b 上二阶可导,()()0f a f b ''==,证明: 存在一点(,)a b ξ∈使得 2()()()()f f b f a b a ξ''≥--4.例10 当[0,2]x ∈时,() ()f x f x ''≤≤1,1, 证明: |'()| 2.f x ≤5. 中值点的存在性及其性质例11 设f 在[,]a b 上三阶可导,证明: 存在(,)a b ξ∈, 使得3()()()[()()]()()2f b f a b a f a f b b a f ξ'''''=+-+--1112例12 证明:若函数f 在点a 处二阶可导,且()f a ''≠0,则对Lagrange 公式()()()f a h f a f a h h θ'+-=+⋅ 01θ<<中的θ,有0lim h θ→=12.练习 证明:若0x >,则存在11()[,]42x θ∈, 使得=;2. 01lim ()4x x θ→=,1lim ()2x x θ→+∞=.习 题一、给出下列函数带Peano 型余项的Maclaurin 公式.1. ()f x =2. arctan x 到含5x 的项3.()tan f x x =到含5x 的项4. 2()sin f x x =5. ln(2)x +6. ln(1)x e x +到3x 的项 二、利用Taylor 公式求下列函数极限1. 30sin (1)lim x x e x x x x →-+2. 201cot lim x x x x →⎛⎫- ⎪⎝⎭ 3. 21lim[ln(1)]x x x x→∞-+4. 20lim sin x x e x x x →+-5. 74lim x x →+∞三、求下列函数在指定点处的带Lagrange 型余项的Taylor 公式 1. ln(1)x +在1x =处 2.2123x x --在2x =处 3.sin x 在4x π=处四、求下列极限1. 12ln(1)1lim(1)x x x --→- 2. 20ln(1)lim x x xe x x→-+ 3. 201sinlimsin x x x x→⋅ 4. sin lim sin x x x x x →+∞-+ 五、设函数f 在[0,]a 上具有二阶导数,且"()f x M ≤,f 在(0,)a 内取最大值,求证 ''(0)()f f a Ma +≤. 六、设f 在[,]a b 上二阶可导, ''()()0f a f b ==. 证明:'2[,]4sup ()()()()x a b f x f b f a b a ∈≥--.§4 函数的极值与最值一、极值判别1.可微极值的必要条件----Fermat 定理定理 (Fermat ) 若f 在0x 可导,且0x 为f 的极值点,则0()0f x '=. (可导的极值点必为驻点) . 可疑极值点: 驻点,不可导点. 2. 极值点的充分条件定理 (极值的第一充分条件) 设f 在0x 连续,在其去心邻域0(,)U x δ︒内可导 若 1) 当00(,)x x x δ∈-,()f x '≤0,而00(,)x x x δ∈+时,()f x '≥0; 2) 当00(,)x x x δ∈-,()f x '≥0,而00(,)x x x δ∈+时,()f x '≤0; [1),2)说明f '在0x 两侧异号时] 则f 在0x 处取得极值. 若f '在0x 两侧不异号时,则f 在0x 处不能取得极值. 注 在上述定理条件中未假设f 在0x 处可导.⎡⎤⎣⎦分析引入第二充分条件 当f 在0x 不仅可导而且是二阶可导时,我们有 定理 (极值的第二充分条件) 设f 在0x 的某邻域0U x δ(,)内一阶可导,在0x x = 处二阶可导,且00()0,()f x f x '''=≠0, 则 1) 若0()0f x ''<,则f 在0x 处取得极大值; 2) 若0()0f x ''>,则f 在0x 处取得极小值.[()]f x x =2利用去记忆例1 求()(2f x x =-的极值点与极值.例2 求()f x x x=+2432的极值与极值点.第二充分条件中0()0f x '=,0()f x ''≠0,若0()f x ''还等于0怎么办? 则我们可考察更高阶导数,一般地, 我们有定理 (极值的第三充分条件) 设f 在0x 的某邻域内存在直到1n -阶导数,而在0x 处存在n 阶导数(n 阶可导) 且0()0k f x =,1,2,...,1k n =-, ()0()0n f x ≠, 则1) 当n 为奇数时,f 在0x 不能取得极值;2) 当n 为偶数时,f 在0x 处取得极值且当()0()0n f x <时,取得极大值; 而()0()0n f x >时, 取得极小值. 例3 求3()(1)f x x x =-4的极值.注 上述三个定理均为极值的充分条件,而非必要.例4 1) ,,()0,0,x x e f x x -⎧≠⎪=⎨=⎪⎩210在0x =处取得极小值,而()(0)0n f = ()n N ∀∈.2) 2,sin ,(),,x x f x xx ⎧≠⋅⎪=⎨=⎪⎩41000在0x =处取得极小值,考察f 在0x =是否满足第一第二充分条件.二、函数的最值最值与极值的区别与联系,整体与局部,最值点(,)a b ∈,则最值点必为相应的极值点,所以可能的最值点为端点,极值点,进一步设f 在闭区间[,]a b 上连续,且仅有有限个可疑极值点12,(,)n x x x a b ∈,..., 则 {}1[,]max ()max (),(),(),...,()n x a b f x f a f b f x f x ∈=;{}1[,]min ()min (),(),(),...,()n x a b f x f a f b f x f x ∈=.注 1) 由最值性定理,闭区间上的连续函数必有最大最小值.2) 上述结论中可疑点为导数不存在及导数为0的点,而无需判断 它们是否真的是极值点.例5 ()2912f x x x x =-+32在闭区间15[,]42-上的最大值与最小值.函数最值的几种特例 1) 单调函数的最值;2) 如果函数f 在区间[,]a b 上连续,且仅有唯一的极值点. 则若0x 是f 的 极大(小) 值点,则0x 必是()f x 在[,]a b 上的最大(小) 值点. (反证) 3) 如果函数f 在区间[,]a b 上可导,且仅有一个驻点0x ,则结论与2)同. 4) 对某具有实际意义的函数,可常用实际判断确定函数的最大(小)值.例6 设,A B两村距输电线分别为1km,1.5km,CD长为3km,现两村合用一变压器供电,问变压器设在何处使输电线总长AE BE最短.例7 如图所示,剪去正方形四角同样大小的正方形后制成一个无盖盒子,问剪去小方块的边长为何值时使盒子的容积最大?例8 [无盖水箱的例子]习 题1. 求下列函数的极值:1) 212)(x x x f +=; 2) )1ln(21arctan )(2x x x f +-= 2. 求函数543551y x x x =-++在[1,2]-上的最值与极值.3. 求函数242(1)()1x x f x x x +=-+的极值.4. 设421sin ,0,()0,0,x x f x xx ⎧≠⎪=⎨⎪=⎩ 1) 证明:0=x 是极小值点;2) 说明f 的极小值0=x 处是否满足极值的第一充分条件或第二充分条件. 5. 设)(x f 在区间I 上连续,并且在I 上仅有唯一的极限值0x , 证明: 若0x 是f 的 极大(小)值点, 则0x 必是)(x f 在I 上的最大(小)值点.6.有一个无盖的圆柱形容器,当给定体积为V 时,要使容器的表面积为最小, 问底的半径与容器高的比例应该怎样?§5 函数的凸性, 拐点, Jensen 不等式一、凸性定义及判定 1. 凸函数定义(由直观引入,强调曲线弯曲方向与上升方向以2y x =,y =) 定义 设f 为定义在区间I 上的函数,若对I 上的任意两点,x x 12和任意实数(0,1)λ∈,总有22((1))()(1)()f x x f x f x λλλλ+-≤+-11,则称f 为I 上的凸函数. 反之若总有22((1))()(1)()f x x f x f x λλλλ+-≥+-11,则称f 为I 上的凹函数. 如果上两式中的不等式均为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 易见f 为I 上的凸函数⇔f -为I 上的凹函数 几何意义(凸函数) 曲线上任两点的连线(线段) 总在区间的上方. (引出割线斜率) 2. 凸函数性质与判定引理 f 为区间I 上的凸函数⇔对I 上任意三点123x x x <<总有32212132()()()()f x f x f x f x x x x x --≤--注 同理可证 f 为I 上的凸函数⇔对区间I 上任意三点123x x x <<有313221213132()()()()()()f x f x f x f x f x f x x x x x x x ---≤≤---割线的极限 → 切线↓ ↓割线斜率递增 → 切线斜率应该为递增定理 设f 为区间I 上的可导函数,则下列命题等价 1) f 为I 上的凸函数(严格凸函数); 2) f '为I 上的增函数(严格增函数);3) 对I 上的任两点12,x x ,有21121()()()()f x f x f x x x '≥+-,12,x x I ∈,(21121()()()()f x f x f x x x '>+-, 12,x x I ∈, 12x x ≠) .注 由定理可见凸函数的几何意义1) 曲线上任两点的割线在曲线的上方(定义) ; 2) 切线的斜率(割线的斜率) 递增; 3) 曲线在其上任一点处切线的上方.推论 1) 设f 为I 上的二阶可导函数,则f 为凸函数⇔()0f x ''≥(x I ∈) ;2) ()0f x ''≥且在I 的任何子区间上f f ''≡⇔0在I 上严格凸; 3) ()0f x ''>则f 在I 上严格凸.注 f ''的符号确定函数f 的凸凹性,f '的符号确定单调性例1 讨论函数()f x =()arctan g x x =的凸凹性。
微分中值定理及其应用
第六章 微分中值定理及其应用§1 Lagrange 定理和函数的单调性【教学目的与要求】:1、熟练掌握罗尔中值定理和拉格朗日中值定理。
2、能应用拉格朗日中值定理证明不等式。
3、了解拉格朗日中值定理的推论1和推论2。
4、掌握拉格朗日中值定理的推论3(导数的极限定理),并能利用它求分段函数的导数。
5、掌握函数在区间上单调的充要条件及严格单调的充要条件,并能运用它证明函数的单调区间。
【重点】:拉格朗日中值定理及函数单调(或严格单调)的充要条件。
【难点】:1、拉格朗日中值定理证明中辅助函数的引入。
2、利用导数证明不等式的技巧。
一 、Roll 中值定理与Lagrange 中值定理定理6.1 (Roll 定理) 若f 满足:(1)f [],C a b ∈(2)f 在(),a b 可导 (3)()()f a f b =,则()(),,.,0a b s t f ξξ'∃∈=证明:[],,f C a b ∈故f 必在[],a b 有最大值M 和最小值m ,若M=m ,则f 为[],a b 上的常值函数,结论显然;若M ≠m,则M 与m 必有其一在(),a b 内部某点ξ取得,故ξ为必极值点,由Fermat Th 知 ()0f ξ'=.注:1)三个条件缺一不可2)几何意义例1 f 在R 上可导,若()0f x '=无实根,则()f x =0至多只有一实根定理 6.2(Lagrange Th ) 若f 满足1)[],f C a b ∈,2)(),f a b 在可导,则()()()(),..f a f b s t f b a ξξ-'∃∈=-a,b —— Lagrange 中值公式说明:1、特解; 2、几何意义证明:作辅助函数()()()()()()f b f a F x f x f a x a b a -=----即可。
Lagrange 中值公式的基本形式()()()()()()()()()()()()(),,,01,01f b f a f b a a b f b f a f a b a b a f a h f a f a h h ξξθθθθ'-=-∈'-=+--<<'+-=+<<例2 证明对一切h>-1,h ≠0 成立不等式()ln 11hh hh <+<+证明:考虑函数()()ln 1f x x =+,x 在0与h 之间,显然在0到h 组成的闭区间上连续,开区间上得()()ln 1ln 1ln1.011h h h h θθ+=+-=<<+,当h>0时,11.h h θ+<+11h hhh h θ∴<<++①;当-1<h<0时,1>1+θh>1+h>0 11h h hh h θ∴<<++ ②;由①②知,当h>-1时,且h ≠0时, ()ln 11hh hh <+<+推论1 若f 在区间I 上可导,且()'0.f x ≡则f 为I 上的一个常量函数.证:1,2x x ∀∈I,设12x x <,则f 在]12,x x ⎡⎣上满足Lagrange 中值定理的条件.)(12,x x ξ∴∃∈, s.t.()()()()2121'0f x f x f x x ξ-=-=;()()12f x f x ∴=这说明I 上任意两点处f 的值皆相等,故f 在I 上为常量函数.例 证明:在]1,1⎡-⎣上恒有arcsin arccos 2x x π+=证明:设()f x =arcsin arccos x x + ]1,1x ⎡∈-⎣,则f(x)在[-1,1]上连续,在[-1,1]可导.且()'0f x ⎛⎫=+≡ ⎝, ()f x c ∴≡]1,1x ⎡∈-⎣ 而()02f π=, ()arcsin arccos 2f x πθθ∴=+≡推论2 若f ,g 在I 上皆可导,且()()''f x g x =,则在I 上()f x 与()g x 至多只相差一个常数,即 ()()f x g x c =+(c 为常数)推论 3 (导数极限定理) 设f 在0x 的某邻域()0U x 内连续,在()00U x 内可导,且()0lim 'x x f x →存在,则f 在0x 可导,且()()00'lim 'x x f x f x →=证明:按左右导数证之.()00x x +∀∈⋃,f 在[]0,x x 上满足Lagrange 定理 条件,)(0,x x ξ∴∃∈, s.t. ()()()00'f x f x f x x ξ--- 又0x x ξ<<,∴当0x x +→时,0x ξ+→, 对上式两边取极限.设()()()()()000000lim lim 'lim ''0x x x x x f x f x f f f x x x ξξξ+++→→→-===+-,同理可设()()00''0f x f x -=- ,又()0lim 'x x f x →存在,记为K ,故 ()()00'0'0f x f x K +=-= ()()()()000'''lim 'x x f x f x K f x K f x +-→∴==∴==例3 求分段函数2sin 0()ln(1)0x x x f x x x ⎧+≤=⎨+>⎩的导数. 解:略定理 区间I 上处处可导的函数f 其导函数在I 上不可能有第一类间断点.二 、 单调函数定理6.3 设f 在I 上可导,则f 在I 上递增(减)的充要条件是()()'00f x ≥≤证明:若f 为增函数,0.x ∀∈I 当0x x ≠时,()()000f x f x x x -≥-,由不等式性知()()()0000lim'0x x f x f x f x x x →-=≥-,反之,若f 在I 上恒有()'0f x ≥,则对12,,x x ∀∈I 且1 2.x x <对f在]12,x x ⎡⎣上用Lagrange 中值定理,当)(12,x x ξ∈,s.t. ()()()()2121'0f x f x f x x ξ-=-≥()()21f x f x ∴≥ f ∴在I 上增。
高中数学(人教版)第6章微分中值定理及其应用泰勒公式课件
Pn( n ) ( x0 ) an . n! 上式表明 Pn(x) 的各项系数是由其在点 x0 的各阶
导数所确定的.
设 f (x) 在 x0 处 n 阶可导. 如果
f ( x ) Pn ( x ) o(( x x0 )n ),
即
f ( x ) Pn ( x ) lim 0, n x x0 ( x x0 )
( 3 ) 式称为 f ( x )在点 x0 处的带有佩亚诺型余项的 n
阶泰勒公式. 注1 即使 f ( x ) 在点 x0 附近满足
f ( x ) Pn ( x ) o(( x x0 )n )
( 4)
也不能说明 Pn ( x ) 一定是 f (x) 的n 阶泰勒多项式.
带有佩亚诺型余项的泰勒公式
带有佩亚诺型余项685-1731, 英国 ) 麦克劳林( Maclaurin,C. 1698-1746, 苏格兰 )
带有佩亚诺型余项的泰勒公式
例1 验证下列公式
2 n x x x 1. e x 1 o( x n ); 1! 2! n!
即 f ( x 0 ) f ( x0 ) f ( x ) f ( x0 ) ( x x0 ) ( x x0 ) 2 1! 2! f ( n ) ( x0 ) ( 3) ( x x0 )n o(( x x0 )n ). n! n 证 设 Rn ( x ) f ( x ) Tn ( x ) , Qn ( x ) ( x x0 ) , 故只需证
x
的麦克劳林 由定理 6.8 的注 2, 可知上式就是 e 公式, 由泰勒系数公式可知 x 98和x 99的系数为 1 ( 98) ( 1)49 1 ( 99) f 49 , f ( 0) 0 , 98! 2 49! 99!
第六章 微分中值定理及其应用
-3-
例 1. 证明不等式
b−a b b−a < ln < , (0 < a < b) 。 b a a 1 1 分析 把不等式可以改写成 (b − a ) < ln b − ln a < (b − a ) 可见中项是函数 ln x b a
在区间 [ a , b] 两端值之差,而 ( b − a ) 是该区间的长度,于是可对 ln x 在 [ a , b] 上使用拉格朗 日中值定理。 证 明 : 设 f ( x ) = ln x , 则 f '( x ) =
f ( x) = f ( x0 ) +
f ′( x0 ) f ( n ) ( x0 ) f ( n +1) (ξ ) ( x − x0 ) + L + ( x − x0 ) n + ( x − x0 ) n +1 1! n! (n + 1)!
9. 设 f 在点 x0 连续,在某邻域 U( x0 , δ )内可导, (1)若当 x ∈ ( x0 − δ , x0 ) 时, f ′( x0 ) ≤ 0 ;当 x ∈ ( x0 , x0 + δ ) 时, f ′( x0 ) ≥ 0 ,则 f 在 点 x0 取得最小值; (2)若当 x ∈ ( x0 − δ , x0 ) 时, f ′( x0 ) ≥ 0 ;当 x ∈ ( x0 , x0 + δ ) 时, f ′( x0 ) ≤ 0 ,则 f 在 点 x0 取得最大值; (3)若 f ′( x ) 在 ( x0 − δ , x0 ) 和 ( x0 , x0 + δ ) 内不等号,则点 x0 不是极值点。 10. 设 f 在点 x0 的某邻域 U( x0 , δ )内一阶可导,在 x= x0 处二阶可导,且 f ′( x0 ) = 0 ,
数学分析教案 华东师大版第六章 微分中值定理及其应用
第六章微分中值定理及其应用教学目的:1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础;2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限;3.掌握泰勒公式,并能应用它解决一些有关的问题;4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象;5.会求函数的最大值、最小值,了解牛顿切线法。
教学重点、难点:本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值及凸性;难点是用辅助函数解决问题的方法。
教学时数:14学时§ 1 中值定理(4学时)教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。
教学要求:深刻理解中值定理及其分析意义及几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。
教学重点:中值定理。
教学难点:定理的证明。
教学难点:系统讲解法。
一、引入新课:通过复习数学中的“导数”及物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。
在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。
因此,我们首先要磨锋利导数的刀刃。
我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题)二、讲授新课:(一)极值概念:1.极值:图解,定义 ( 区分一般极值和严格极值. )2.可微极值点的必要条件:Th ( Fermat ) ( 证 )函数的稳定点, 稳定点的求法.(二)微分中值定理:1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性.grange中值定理: 叙述为Th2. ( 证 ) 图解 .用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157.Lagrange中值定理的各种形式. 关于中值点的位置.推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有(证)但是, 不存在时, 却未必有不存在. 例如对函数虽然不存在,但却在点可导(可用定义求得).Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在内可导. 若极限存在, 则也存在, 且( 证 )由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函数的连续点,要么是的第二类间断点.这就是说,当函数在区间I上点点可导时,导函数在区间I上不可能有第二类间断点.推论4 ( 导函数的介值性 ) 若函数在闭区间上可导, 且( 证 )Th ( Darboux ) 设函数在区间上可导且. 若为介于及之间的任一实数, 则设对辅助函数, 应用系4的结果. ( 证 )3.Cauchy中值定理:Th 3 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点使.证分析引出辅助函数. 验证在上满足Rolle定理的条件,必有, 因为否则就有.这及条件“和在内不同时为零”矛盾.Cauchy中值定理的几何意义.(三)中值定理的简单应用:1. 证明中值点的存在性例1 设函数在区间上连续, 在内可导, 则, 使得.证在Cauchy中值定理中取.例2设函数在区间上连续,在内可导,且有.试证明: .2.证明恒等式:原理.例3证明: 对, 有.例4设函数和可导且又则.证明.例5设对, 有, 其中是正常数. 则函数是常值函数. (证明 ).3.证明不等式:例6证明不等式: 时, .例7证明不等式: 对,有.4. 证明方程根的存在性:证明方程在内有实根.例8证明方程在内有实根.§ 2 柯西中值定理和不定式的极限(2学时)教学目的:1. 掌握讨论函数单调性方法;2. 掌握L’Hospital法则,或正确运用后求某些不定式的极限。
数学分析 微分中值定理及其应用 教案
P
)
()
()()()()(ξξg f a g b g a f b f '=--
柯西中值定理的几何意义 若连续 曲线
由参数方程
],[)
()
(b a x x g Y x f X ∈⎪⎩⎪⎨⎧==
给出,除端点外处处有不垂直于 轴 的切线,则 上存在一点 P 处的切线平 行于割线
.。
注意曲线 AB 在点 ),(Y X 处的切线的斜率为
,
)(1ξF )(2ξF )
(a F A
)
(b F B
)(
x F N
M
x
o
y
⎩⎨
⎧==)
()(x f Y x F X 而弦 的斜率为
.
受此启发,可以得出柯西中值定理 的证明如下:
由于
,
类似于拉格朗日中值定理的证明,作一辅助函数
容易验证
满足罗尔定理的条件且
根据罗尔定理,至少有一点使得
即
由此得
注2:在柯西中值定理中,取,则公式(3)可写成
这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则. 这恰恰是罗尔定理.
注3:设在区间I上连续,则在区间I上为常数,.
三、利用拉格朗日中值定理研究函数的某些特性。
数学分析6微分中值定理及其应用总练习题详解
第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。
微分中值定理的证明及应用
微分中值定理的证明及应用微分中值定理(Mean Value Theorem)是微积分中的一个重要定理,可以用来证明一些关于连续函数、可导函数以及函数的性质的定理,也可以用于解决一些实际问题。
下面将从两个方面,即证明与应用,进行详细讨论。
一、微分中值定理的证明1.拉格朗日中值定理的证明:设函数f(x)在[a,b]上连续,在(a,b)内可导。
根据费马定理,我们可以知道在(a,b)内存在一个点c,使得f'(c)=0。
即斜率为0.如果c点不是唯一,则取多个c点即可。
下面分两种情况进行讨论。
情况一:如果c=a或c=b,即在区间开头或结尾处取得斜率为0的点。
不妨设c=a,那么有f(a+h)-f(a)=f'(c)×h=0(因为斜率为0),所以得到f(b)-f(a)=0。
这个结论即为拉格朗日中值定理的结论。
情况二:如果c在(a,b)内,即在区间内部取得斜率为0的点。
定义一个新函数g(x) = f(x) - kc (k为实数),显然g(x)在[a,b]上连续,在(a,b)内可导,且g(a)=g(b)。
根据罗尔定理(Rolle's theorem),在(a,b)上存在一个点d,使得g'(d)=0,也就是说f'(d)-kc=0。
解得f'(d)=kc,而c点为f(x)在(a,b)上的极大值点或极小值点,即斜率为0。
故存在一个点d在(a,b)内,使得f'(d)=0;再利用拉格朗日中值定理的情况一即可得拉格朗日中值定理的结论。
2.柯西中值定理的证明:设函数f(x)和g(x)在[a,b]上连续,在(a,b)内可导,且g'(x)≠0,则存在一个点c在(a,b)内,使得(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c)。
定义一个新函数h(x) = f(x) - kg(x)(k是实数),显然h(x)在[a,b]上连续,在(a,b)内可导,且h(a)=h(b)。
数学分析 第六章 中值定理ppt课件
即f()f(b )f(a)0
ba f()f(b)f(a).
ba
或 f ( b ) f ( a ) f ()b ( a ).
25.03.2020
拉格朗日中值公式
18
f(b ) f(a ) f()b ( a ). 拉格朗日公式
在区[a间 ,x]上用 L定理得 f(x ) f( a ) f()(x a ).
且 f( 0 ) 1 ,f( 1 ) 3 . 由零点定理 x 0 ( 0 ,1 )使 ,f( x 0 ) 0 .即为方程的小于1的正实根. 设x 1 另 (0 ,1 )x 有 1 , x 0 , 使 f(x1)0. f(x)在x0,x1之间满足罗尔 件定理的条
至少存 (在 x 在 0,x 1之 一 )使 ,间 个 得 f()0.
f(x ) 2 (x 1 ),取 1 ,(1 ( 1 ,3 ))f()0.
25.03.2020
9
【证】 f(x)在 [a,b]连,续 必有最M 大 和值 最小 m. 值 (1)若 Mm. 则f(x)M .
由此 f(x得 )0. (a,b), 都f有 ()0.
(2)若 Mm . f(a)f(b), 最值不可能同时在取端得.点设 Mf(a),
2
22
例4 若 f ( x ) g ( x )则 ,f ( x ) g ( x ) C .
证明: 令 F (x ) f(x ) g (x ) F ( x ) f ( x ) g ( x ) 0 ,
F (x ) C , 即 f(x ) g (x ) C .
25.03.2020
23
f ( b ) f ( a ) f ( ) b a ( )( ( a , b ) ).
f ( x ) f ( a ) f () ( x a )(介 x ,a 之 于 ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x)1 4 0
-0.05 -0.075
(2k1)
2
当
x
1 2k
时,
f(x)10
0.05
0.1
注意 k可以任意大,故在 x0 0点的任何邻 域内,f (x) 都不单调递增.
编辑ppt
13
练习题
一、填空题: 1、函数y 2x3 6x2 18x 7单调区间为________ _____________. 2、函数y 2x 在区间[-1,1]上单调________, 1 x2 在_________上单调减. 3、函数y x2 lnx2的单调区间为____________, 单减区间为_____________.
2
2
f ( x ) 0 , f ( x ) 单 增 ; 方 法 ( 2 ) f ( x ) 0 ,
利用泰勒公式]
编辑ppt
15
练习题答案
一 、 1 、 ( , 1 ], [ 3 , ) 单 调 增 加 ,[ 1 ,3 ] 单 调 减 少 ; 2 、 增 加 , ( , 1 ], [1 , ) 3 、 ( , 1 ] ,[1 , ) ; [ 1 ,0 ), ( 0 ,1 ]; ( , 1 ], ( 0 ,1 ] .
函数单调减少;
在(0, )内 , y 0, 函数单调增.加
注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
编辑ppt
5
单调区间求法
问题:如上例,函数在定义区间上不是单调的, 但在各个部分区间上单调.
定义:若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
解 D:(, ) .
f(x) 2, (x0) 33x
当x0时,导数不.存在
y3 x2
当 x0时f, (x)0, 在(,0]上单调减少;
当 0x 时f, (x)0, 在[0,)上单调增加;
单调区间为 (,0], [0,).
编辑ppt
8
注意:区间内个别点导数为零,不影响区间的单调性. 例如, y x3, yx00, 但在 ( ,)上单调.增
例4 当 x 0 时 ,试 x l证 n 1 x ( )成 . 立 证 设 f(x ) x ln 1 x (),则f(x) x .
1x f ( x ) 在 [ 0 , ) 上 ,且 ( 0 连 , ) 可 续 f ( x ) 导 0 ,
在[0,)上单调增加 f; (0)0,
当x0时,x ln 1 x () 0 ,即 xln 1 (x).
编辑ppt
9
三、小结
单调性的判别是拉格朗日中值定理的重要应用.
定理中的区间换成其它有限或无限区间,结论 仍然成立. 应用:利用函数的单调性可以确定某些方程实 根的个数和证明不等式.
编辑ppt
10
思考题
若 f(0 ) 0 , 是 否 能 断 定 f(x )在 原 点 的
充 分 小 的 邻 域 内 单 调 递 增 ?
解方 f(x程 )0得, x11,x22. 当 x1时, f(x)0, 在(,1]上单调增加;
当 1x2时,f(x)0, 在[1,2]上单调减少;
当 2x 时, f(x)0, 在[2,)上单调增加;
单调区间为 (,1],[1,2], [2,).
编辑ppt
7
例3 确定函 f(x数 )3 x2的单调. 区间
编辑ppt
11
思考题解答
不能断定.
例 f(x)x2x2sin1x, x0
0,
x0
f(0) lx i0 m (12xsi n 1x)10
但 f(x ) 1 4 x si1 n 2 c1 o , s x 0 xx
编辑ppt
12
当
x
(2k
1
1)
时,
2
-0.1
0.075 0.05
0.025
-0.05 -0.025
f(x 2)f(x 1).yf(x)在 [a,b]上单调 . 增
若 (a ,b 在 )内 f(x ) , 0 , 则 f()0,
f(x 2)f(x 1) . yf(x)在 [a,b]上单调 . 减
编辑ppt
4
例1 讨论y函 ex 数 x1的单.调性
解 yex1.又 D :(, ) .
在( ,0)内 , y 0,
第六章 微分中值定理及其应用
编辑ppt
1
§3 函数的增减性
编辑ppt
2
单调性的判别法
y
yf(x) B
A
yA yf(x) B
oa
bx
f(x)0
oa
bx
f(x)0
定理 设函y数 f(x)在[a,b]上连续(a, ,b)内 在可
导 ( . 1) 如果(a在 ,b)内f(x)0,那末y函 f(数 x)
在[a,b]上单调增 (2)加 如; 果(a在 ,b)内f(x)0,
二 、 确 定 下 列 函 数 的 单 调 区 间 :
1、 y 10 ; 4x39x26x
2、 y3(2xa)a (x)2 (a0); 3、 yxsi2n x.
编辑ppt14三、证明下 Nhomakorabea不等式:
1 、 当 x 0 时 , 1 x ln( x 1 x 2 ) 2、当 x 4时,2x x2 ; 3 、 若 x 0 , 则 sin x x 1 x 3 .
导数等于零的点和不可导点,可能是单调区间 的分界点.
方法: 用方f程 (x)0的根f及 (x)不存在的点
来划分函 f(x)数 的定义,区 然间 后判断区间
数的符 . 号
编辑ppt
6
例2 确定函f(数 x)2x3 9x2
12x3的单调.区间
解 D:(, ) .
f(x)6x21x 8 1 26 (x 1 )x ( 2 )
6
1 x2 ;
四 、 方 程 ln x ax ( a 0 ) 有 几 个 实 根 .
五 、 设 f ( x ) 在 [a , b ] 上 连 续 , 在 (a , b ) 内 f ( x ) , 试 证 明 : 对 于 [a , b ]上 任 意 两 x1 ,x 2 有
f ( x1 x2 ) f (x1) f (x2 )[提示:方法(1)
那末函 y数 f(x)在[a,b]上单调. 减少
编辑ppt
3
证 x 1,x 2 (a ,b )且 , x1x2,应用拉氏定理,得
f ( x 2 ) f ( x 1 ) f ( ) x 2 x ( 1 )( x 1 x 2 ) x2x10,
若 (a ,b 在 )内 f(x ) , 0 , 则 f()0,