对数的运算法则(1)
对数 运算 法则
对数运算法则是一套用于简化和计算包含对数的表达式的规则。
这些法则可以总结为以下几点:
1. 乘法法则:`log_a(M) + log_a(N) = log_a(MN)`,表示两个数的对数相加等于这两个数相乘的对数。
2. 除法法则:`log_a(M) - log_a(N) = log_a(M/N)`,表示两个数的对数相减等于这两个数相除的对数。
3. 幂的法则:`log_a(M^n) = n * log_a(M)`,表示一个数的幂的对数等于这个数的对数乘以该幂。
4. 方根法则:`log_a(M^(1/n)) = log_a(M)/n`,表示一个数的方根的对数等于这个数的对数除以根号的指数。
5. 特殊值:`log_a(a) = 1`,任何数的对数以其自身为底都是1。
6. 自然对数和常用对数:在没有指定底数的情况下,`ln`通常指自然对数(以e为底),而常用对数(以10为底)通常不写底数,直接写作`log`。
7. 对数恒等式:例如,`ln(e) = 1`,因为任何数的对数以其自身为底都是1。
这些法则是对数运算的基础,并且广泛应用于代数、微积分以及其他数学分支中。
掌握这些法则对于解决涉及指数和对数的数学问题至关重要。
对数的运算法则及公式例题
对数的运算法则及公式例题
对数的运算法则主要包括以下几个方面:
1. 对数的乘法法则:
logₐ(MN) = logₐM + logₐN
2. 对数的除法法则:
logₐ(M/N) = logₐM - logₐN
3. 对数的幂法法则:
logₐMᵇ= b * logₐM
4. 对数的换底法则:
logₐM = logᵦM / logᵦa
公式例题:
1. 求log₃(9)的值。
解:根据对数的定义,3的多少次方等于9,很明显3的2次方等于9,即log₃(9) = 2。
2. 求log₄(16)的值。
解:同样根据对数的定义,4的多少次方等于16,显然4的2次方等于16,因此log₄(16) = 2。
3. 求log₂(8)的值。
解:根据对数的定义,2的多少次方等于8,很明显2的3次方等于8,即log₂(8) = 3。
4. 求log₈(2)的值。
解:根据对数的定义,8的多少次方等于2,很明显8的-1次方等于2,因此log₈(2) = -1。
5. 求log₅(25)的值。
解:根据对数的定义,5的多少次方等于25,很明显5的2次方等于25,因此log₅(25) = 2。
对数计算法则公式
对数计算法则公式对数计算法则公式1. 对数乘法法则公式:log(a * b) = log(a) + log(b)说明:对数乘法法则用于计算两个数相乘的对数,它说明了将两个数相乘的对数等于将这两个数分别取对数后相加。
示例:假设要计算 10 * 100 的对数,根据对数乘法法则,可以先取出两个数各自的对数,然后将这两个对数相加,即:log(10 * 100) = log(10) + log(100)由于 log(10) = 1 和 log(100) = 2,所以:log(10 * 100) = 1 + 2 = 3因此,10 * 100 的对数等于 3。
2. 对数除法法则公式:log(a / b) = log(a) - log(b)说明:对数除法法则用于计算两个数相除的对数,它说明了将一个数除以另一个数的对数等于将这两个数分别取对数后相减。
示例:假设要计算 100 / 10 的对数,根据对数除法法则,可以先取出两个数各自的对数,然后将这两个对数相减,即:log(100 / 10) = log(100) - log(10)由于 log(100) = 2 和 log(10) = 1,所以:log(100 / 10) = 2 - 1 = 1因此,100 / 10 的对数等于 1。
3. 对数幂法则公式:log(a^b) = b * log(a)说明:对数幂法则用于计算一个数的指数形式的对数,它说明了将一个数的指数形式的对数等于将这个数的底数取对数后乘以指数。
示例:假设要计算 10^2 的对数,根据对数幂法则,可以先取出底数 10 的对数,然后将其乘以指数 2,即:log(10^2) = 2 * log(10)由于 log(10) = 1,所以:log(10^2) = 2 * 1 = 2因此,10^2 的对数等于 2。
4. 对数换底公式公式:logₐ(b) = log(c, b) / log(c, a)说明:对数换底公式是用来将一个对数从一个底数转换成另一个底数的公式。
对数的运算法则及公式
对数的运算法则及公式对数是数学中的一个重要概念,它在科学计算、工程技术、经济金融等领域中都有广泛的应用。
对数的运算法则能够帮助我们简化计算并解决一些复杂的问题。
在本文中,我们将讨论对数的运算法则及公式,包括基本法则和常用公式。
一、对数的基本法则1.对数的定义对任意正数a和正数b,以a为底,b为真数的对数记作loga b,其中a被称为底数,b被称为真数。
公式的意义是以a为底,对数值得到b。
例如,如果2^3 = 8,那么log2 8 = 32.对数的换底公式对数的换底公式是loga b = logc b / logc a,其中a、b、c为正数,且a、b不等于1、这个公式可以用来将对数的底数从一个常用的底数转换为另一个常用的底数。
例如,要计算log2 16,可以使用换底公式将其转换为log10 16 / log10 23.对数的乘法法则对数的乘法法则是loga (b * c) = loga b + loga c,其中a、b、c为正数,且a、b不等于1、这个法则说明,对数中的乘法可以转换为对数的加法。
4.对数的除法法则对数的除法法则是loga (b / c) = loga b - loga c,其中a、b、c为正数,且a、b不等于1、这个法则说明,对数中的除法可以转换为对数的减法。
5.对数的幂法法则对数的幂法法则是loga (bn) = n * loga b,其中a、b为正数,且a、b不等于1,n为任意实数。
这个法则说明,对数中的幂运算可以转换为对数的乘法。
6.对数的倒数法则对数的倒数法则是loga (1/b) = -loga b,其中a、b为正数,且a、b不等于1、这个法则说明,对数中的倒数可以转换为对数的相反数。
7.对数的幂运算法则对数的幂运算法则是a^loga x = x,其中a、x为正数,且a不等于1、这个法则说明,一个数的对数值乘以底数的指数幂等于这个数本身。
二、常用的对数公式1.常用对数公式常用对数公式是以10为底的对数函数,记作lg x。
log公式运算法则
log公式运算法则
下面是常见的log公式运算法则:
1.对数乘法法则
log(a*b)=log(a)+log(b)
这条公式表示,两个数的乘积的对数等于这两个数各自的对数的和。
例如,log(2*3)=log(2)+log(3)=0.301+0.477=0.778。
2.对数除法法则
log(a/b)=log(a)-log(b)
这条公式表示,一个数的商的对数等于这个数的对数减去被除数的对数。
例如,log(6/2)=log(6)-log(2)=0.778-0.301=0.477。
3.对数幂法则
log(a^b)=b*log(a)
这条公式表示,一个数的幂的对数等于这个幂与底数的乘积。
例如,log(2^3)=3log(2)=30.301=0.903。
4.对数换底公式
log(a)=log(b)/log(c)
这条公式表示,底数为c的对数可以用底数为b的对数表示,即log(a)=log(b)/log(c)。
例如,log(100)=log(10)/log(2)=1/0.301=3.321。
这些对数公式在数学和科学的各种领域中都有广泛的应用。
1/ 1。
log公式大全计算公式
log公式大全计算公式
log运算法则是一种经典的数学运算,在各种高等数学课程中都有涉及。
log运算法则主要用于计算幂和对数。
以下是一些常见的log 运算法则公式:
1. 对数的乘法法则:loga(mn) = loga m + loga n。
2. 对数的除法法则:loga(m/n) = loga m - loga n。
3. 自然对数的性质:ln(1) = 0。
4. 换底公式:logb(a) = logc(a) / logc(b)。
5. 换底公式的推导公式:logb(a) * loga(b) = 1。
6. loge(x) = ln(x)。
7. lg(x) = log10(x)。
8. loga(b) * logb(a) = 1。
9. loga(b) / loga(c) = logc(b) / logc(a)。
10. logc(c^x) = x。
11. logc(a * b) = logc(a) + logc(b)。
12. logc(a / b) = logc(a) - logc(b)。
13. logc(sqrt[n](a)) = logc(a) / n。
14. logc(a^n) = n * logc(a)。
这些公式在计算对数和幂时非常有用,可以帮助我们快速得到结
果。
记住这些公式需要理解和练习,建议多做习题以加深对这些公式的理解和掌握。
对数运算法则推导
对数运算法则推导对数运算是一种重要的数学操作,它被广泛应用在科学和工程计算中。
它的概念和运用范围十分广泛,对数的推导也非常复杂,现在,我们将介绍对数运算法则的推导,帮助大家进一步了解对数运算。
首先,要认识对数的基本定义:若x>0,则自然数a的对数是满足a=b^x的b的底数,记作loga=x。
其中,a称作真数,x称作对数,b称作底数。
由此可知,一个对数是一个数学表达式,形式为loga=x,它表示以b为底,a的对数等于x。
其次,我们来认识下基本运算法则:(1)乘法法则:若a,b>0,则logab=loga+logb,即logab=x+y,其中x=loga,y=logb。
由此可知,如果要求解logab,则可先求得loga和logb再相加,即可求得logab。
(2)除法法则:若a,b>0,则loga/b=loga-logb,即loga/b=x-y,其中x=loga,y=logb。
由此可知,如果要求解loga/b的值,则可先求得loga和logb 再相减,即可求得loga/b的值。
(3)变换法则:如果ab>0,则logab=bloga,即logab=yx,其中x=b,y=loga。
由此可知,如果要求解logab,则可先求得b的值和loga的值,再将b与loga相乘,即可求得logab的值。
(4)积性法则:如果x,y>0,则logax=xloga,即logax=xy,其中x=x,y=loga。
由此可知,如果要求解logax的值,则可先求得x的值和loga 的值,再将x与loga相乘,即可求得logax的值。
最后,还有一些其他的运算法则,如反自然数法则、指数法则等,这些法则也同样重要,但是不在此讨论范围内。
综上所述,对数运算法则的推导有乘法法则、除法法则、变换法则以及积性法则。
通过注意这些法则,大家应该可以更快、更好的掌握对数运算的基本原理,掌握基本的运算法则,从而能够对对数运算有更深一步的认识和理解。
对数的运算法则
(4) log4 3+log8 3log3 2 (5) log4 3+log8 3log3 2+log9 2
例2 已知 log18 9 a ,18b 5 ,求 log36 45 的值.
a+b 2-a
拓展提升 将对数形式化为代数形式时忽略范围限 制(误区警示)
[典例] 设 lg a+lg b=2lg(a-2b),则 log4ab的值为 ________.
0
其他重要公式1:
log a
N
log c N log c a
(a,c (0,1) (1,), N 0)
这个公式叫做换底公式
证明:设 log a N p
由对数的定义可以得: N a p ,
log c N log c a p , logc N p logc a,
p logc N 即证得 logc a
[变式训练] 已知 2lg(x+y)=lg(2x)+lg(2y),则xy= ____.
小结 积、商、幂的对数运算法则:
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N
logaM
loga N
(2)
logaMn nlogaM(n R) (3)
(6)底数a的取值范围: (0,1) (1,) 真数N的取值范围 : (0,)
新内容 积、商、幂的对数运算法则:
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N
logaM
loga N
(2)
对数函数的运算法则及公式
对数函数的运算法则及公式对数函数是数学中常见的一种函数类型,它在许多领域中都有着重要的应用。
本文将介绍对数函数的运算法则及公式,以及其在实际问题中的应用。
一、对数函数的定义对数函数是指以某个正数为底数的幂函数的反函数,即函数f(x) = loga(x),其中a为正数且a≠1,x为正实数。
对数函数的定义域为正实数集合,值域为实数集合。
二、对数函数的运算法则1. 对数函数的乘法法则loga(MN) = logaM + logaN这个法则表明,两个数的乘积的对数等于这两个数的对数之和。
例如,log10(1000) = log10(10×10×10) = log1010 + log1010 + log1010 = 3。
2. 对数函数的除法法则loga(M/N) = logaM - logaN这个法则表明,两个数的商的对数等于这两个数的对数之差。
例如,log10(100/10) = log10(100) - log10(10) = 2 - 1 = 1。
3. 对数函数的幂次法则loga(Mp) = plogaM这个法则表明,一个数的幂的对数等于该数的对数乘以这个幂。
例如,log10(1000²) = 2log101000 = 6。
4. 对数函数的换底公式logaM = logbM / logba这个公式表明,一个数在不同底数下的对数之间存在一个比例关系。
例如,log10(1000) = log2(1000) / log210 = 3log22/ log210 = 3/ log210。
三、对数函数的公式1. 常用对数函数常用对数函数是以10为底数的对数函数,记作log(x)。
它的定义域为正实数集合,值域为实数集合。
2. 自然对数函数自然对数函数是以e为底数的对数函数,记作ln(x)。
它的定义域为正实数集合,值域为实数集合。
3. 对数函数的反函数对数函数的反函数是指底数为a的指数函数,记作f(x) = a^x。
对数运算法则(rule of logarithmic operations)
对数运算法则(rule of logarithmic operations)运算法则公式如下:1.lnx+ lny=lnxy2.lnx-lny=ln(x/y)3.lnxⁿ=nlnx4.ln(ⁿ√x)=lnx/n5.lne=16.ln1=0拓展内容:对数运算法则(rule of logarithmic operations)一种特殊的运算方法.指积、商、幂、方根的对数的运算法则。
在数学中,对数是幂的逆运算,就像除法是乘法的倒数一样,反之亦然。
这意味着一个数的对数是一个必须产生另一个固定数(基数)的指数。
在一个简单的例子中,乘法器中的对数计数因子。
更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
由指数和对数的互相转化关系可得出:1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即指数函数的求导公式:(a^x)'=(lna)(a^x)求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y'/y=lna所以y'=ylna=a^xlna,得证当自变量的增量趋于零时:因变量的增量与自变量的增量之商的极限,当一个函数有导数时,称为可导或可导,可导函数必须连续,不连续函数必须不可导。
如果函数的导函数在某个区间内总是大于零(或总是小于零),那么函数在这个区间内单调递增(或单调递减),也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这个点上,函数可能得到最大值或最小值(即极值可疑点)。
对数函数运算公式
对数函数运算公式对数函数是指以一个常数为底数的指数函数。
对数组的运算公式包括对数函数的性质和对数函数的运算法则。
下面是关于对数函数运算公式的详细解释。
1.对数函数的性质:(1) 对于对数函数y=log_a(x),其中a>0,a≠1,x>0,y是实数。
底数a称为常数底,x称为对数函数的自变量,y称为对数函数的因变量。
(2) 对于对数函数y=log_a(x),x=a^y。
这个性质表示对数函数和指数函数互为逆运算。
(3) 对数函数y=log_a(x)的图像是一个增长趋缓的曲线,曲线上的点的坐标是(x,y)。
(4) 对数函数y=log_a(x)在a<1时是递增函数,在a>1时是递减函数。
(5) 对数函数y=log_a(x)的定义域是x>0,值域是实数集。
(6) 对数函数y=log_a(x)在底数a>1时,正值有限,负值无限;在0<a<1时,正值无限,负值有限。
(7) 对数函数y=log_a(x)与曲线y=x在点(1,0)处相交。
2.对数函数的运算法则:(1) 对数函数的乘法法则:log_a(x*y)=log_a(x)+log_a(y)。
即两个数的乘积的对数等于这两个数的对数之和。
(2) 对数函数的除法法则:log_a(x/y)=log_a(x)-log_a(y)。
即两个数的商的对数等于这两个数的对数之差。
(3) 对数函数的幂法则:log_a(x^n)=n*log_a(x)。
即一个数的幂的对数等于这个幂与这个数的对数之积。
(4) 对数函数的换底公式:log_a(x)=log_b(x)/log_b(a)。
即可以通过换底公式将以任意底数的对数转化为以其他底数的对数。
(5) 对数函数与指数函数的关系:log_a(x)的定义和底数为a的指数函数a^x的定义相对应,是互为逆运算的。
3.例题:(1) 计算log_2(8)/log_2(4)解:根据换底公式(2) 化简log_3(27^2)解:根据幂法则,log_3(27^2)=2*log_3(27)=2*3=6对数函数的运算公式是数学中重要的概念,它在解决各种实际问题和数学推导中都有广泛应用。
对数计算法则
对数计算法则对数计算法则是重要的数学概念,它给我们提供了一种简单有效的方法来处理复杂的数学问题。
对数法则被广泛用于日常生活和实际应用。
对数法则定义为:若x和y是正实数,且y是以x为底的x次幂,则称y为以x为底的对数,记为logx(y),若该对数满足如下性质:(1)logx(xy)=logx(x)+logx(y);(2)logx(x/y)=logx(x)-logx(y);(3)logx(x^n)=nlogx(x);(4)logx(x^nm)=n*logx(x^m);则称logx(y)满足对数计算法则。
首先,对数计算法则可以用来简化复杂的数学问题,例如如果要算出复杂表达式的值,我们可以分解复杂表达式为若干个简单表达式乘积,利用对数计算法则,将乘积变成简单相加,这样就大大简化了求值过程,提高了计算效率。
此外,对数计算法则可以用来解决复杂的物理问题,例如光的反射定律就可以用对数概念来解释,从而更加清晰的表达问题。
此外,由于复杂的物理问题一般都可以抽象为树形结构,因此可以用对数计算法则来计算一个复杂问题的解,从而更加清楚的了解问题本质。
对数计算法则也可以用于统计分析。
比如,如果要统计某种事件的发生概率,那么我们可以把这种事件的发生概率转换为以2为底的对数,然后再使用对数计算法则,从而得到最终的结果。
最后,对数计算法则也可以用于金融领域。
比如,如果要实现一定的投资目标,那么我们可以使用对数计算法则来计算将来投资额度所需要投资的比例,从而更加有效的实现投资目标。
总之,对数计算法则是一种重要的数学概念,它不仅可以用来简化各种复杂问题、理解复杂物理问题,也可以用于统计分析和金融领域,为我们提供了一种简单有效的方法来处理复杂的数学问题。
log的运算法则及公式
log的运算法则及公式对数(logarithm)是数学中一种重要的运算方法,它常用于解决指数运算中的一些问题。
对数可以将指数运算转化为乘法或除法运算,从而简化计算。
下面是关于log运算法则及公式的详细介绍:1.对数定义:对数是指数运算的逆运算,表示为:logₐ(b) = c,其中a是底数,b 是真数,c是对数。
意思是a的c次方等于b。
2.换底公式:换底公式是用于将一个对数的底换成另一个底的公式。
设logₐ(b) = c,则换底公式可以表示为:logₐ(b) = logₓ(b) / logₓ(a),其中x是新的底数。
3.对数运算法则:对数运算法则主要包括以下几条:a.相等关系法则:若logₐ(b) = c,则a的c次方等于b。
b.对数的乘法法则:logₐ(b * c) = logₐ(b) + logₐ(c),即两个数相乘的对数等于它们分别的对数的和。
c.对数的除法法则:logₐ(b / c) = logₐ(b) - logₐ(c),即一个数除以另一个数的对数等于它们分别的对数的差。
d.对数的幂运算法则:logₐ(b^k) = k * logₐ(b),即一个数的幂的对数等于指数与底数的对数的乘积。
e.对数的倒数法则:logₐ(1 / b) = -logₐ(b),即一个数的倒数的对数等于该数的对数的相反数。
f.对数的根运算法则:logₐ(√(b)) = 0.5 * logₐ(b),即一个数的平方根的对数等于该数的对数的一半。
4.常见对数和自然对数:a. 常见对数(log₋)以底数为10。
从以上的对数运算法则和公式可以看出,对数运算的主要作用是简化指数运算,将复杂的乘法、除法、幂运算转化为更简单的加法、减法、乘法。
这使得对数在数学、科学、工程等领域中都有广泛的应用。
对数的运算法则和公式提供了重要的工具,可以帮助我们解决各种问题。
例如,在解决指数方程、复利计算、对数函数图像等方面,对数运算法则和公式都起到了关键的作用。
对数函数运算法则公式
对数函数运算法则公式
对数函数运算法则公式是如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。
其中a叫做对数的底,N叫做真数。
通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。
其中对数的定义:
如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。
它实际上就是指数函数的反函数,可表示为x=ay。
因此指数函数里对于a的规定,同样适用于对数函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:
(a>0且a≠1, M>0,N>0)
loga(M·N)=logaM十logaN am·an=am+n
loga
M
N
=logaM-logaN
am/an=am-n
logaMn=nlogaM
(am)n=amn
公式特征:
积变和;商变差;乘方变为积
特别提醒
log a (M N ) log a M log a N
知识探究
(1)log232,log24,log28; (2)log327, log39, log33 这三个对数之间有怎样的内在联系?
探究1:(1)log232=5,log24=2,log28=3;
(2)log327=3, log33=1, log39=2
loga(M·N)=logaM十logaN (a>0且a≠1, M>0,N>0)
练习 1.求下列各式的值:
(1)log2 6 log2 3
6 log 2 3
log2 2 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log 5
3
log 5
1 3
(4) log3 5 log3 15源自log5(3
1) 3
log5 1
0
log
3
5 15
log3 31 1
解:
32 3log3 4
9 4
知识小结
积、商、幂的对数运算法则:
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N
logaM
logaN
(2)
logaMn nlogaM(n R) (3)
解(2) log a
x2
3
y z
1
loga (x2 y 2 ) loga
1
z3
1
1
log a x2 log a y 2 log a z 3
2 loga
x
1 2
log a
y
1 3
log
a
z
例2计算:(1) lg 243 lg 9
(2) lg14 2 lg 7 lg 7 lg18 3
(3) lg 27 lg 8 3lg 10 lg 1.2
知识回顾
指数运算法则
am an amn (m, n R)
am an
amn (m, n R)
(am )n amn (m, n R)
(ab)n an bn (n R)
问题:指数与对数都是一种运算,而且它们 互为逆运算,指数运算有一系列性质,那么 对数运算是否也有类似的性质呢?
问题1:研究以下两组对数:
log a (MN ) loga M loga N,
知识运用
例1 用 loga x, log a y, log a z 表示下列各式:
xy
(1)loga
; z
x2 y (2) log a 3 z
解(1)
log a
xy z
loga (xy) loga
z
loga x loga y loga z
(1)
知识回顾
等价关系: 结论:
指数式
对数式
ax N
log a N x
(a>0,a≠1) (N>0)
负数和零没有对数
loga
1 0 log a
(a>0,a≠1)
a
1
aloga N N
(1)常用对数:以log10N=lgN (2)自然对数:以logeN=lnN (e =2.71828 ······)
练习
2. 用lgx,lgy,lgz表示下列各式:
(1) lg( xyz) =lgx+lgy+lgz;
(2) lg xy2 z
xy3 (3) lg
z
=lgx+2lgy-lgz;
=lgx+3lgy-
1 2
lgz;
(4) lg x y2z
1 lg x 2 lg y lg z 2
例3 计算 (1)