支架受力计算书
支架计算书
附件四:0#段、1#段现浇支架计算书1 计算依据1、《悬灌梁0#段、1#段支架设计图》2、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)3、《钢结构-原理与设计》(清华版)4、《路桥施工计算手册》(人交版)5、《结构力学》、《材料力学》(高教版)6、《结构设计原理》(人交版)2 工程概况3支架设计3.1 设计方案0#段、1#块支撑模板体系利用Φ630*8mm钢管作为支撑结构,牛腿上设置2I40b的工字钢作为横梁,分配梁采用I25b,其间距30-60cm,在腹板位置进行加强。
为保证安全,外悬横梁增加斜撑进行加固,斜撑采用I36b#工字钢。
3.2 0#块、1#块情况图1 支架侧面图 图2 支架正面图3.2 主要设计参数1、0#段、1#块砼自重:混凝土容重按26.5KN/m 3计算;2、《荷载规范》,恒载系数为1.2;3、型钢自重:按标准容重78.5KN/m 3计;4、活动载荷:人员荷载、施工设备荷载,系数为1.4;5、混凝土冲击荷载:2KN/m 3,系数为1.4;6、外侧模自重:按照1.61KN/m 考虑,系数为1.2;7、底模自重:按照0.98KN/ m 2考虑,系数为1.2;4 材料主要参数及截面特性1、 A3钢弹性模量E=2.1×1011Pa ,剪切模量G=0.81×105 MPa ,密度ρ=7850 kg/m3;2、A3钢抗拉、抗压和抗弯应力[σ]=215MPa ,抗剪应力[]τσ=125MPa 。
3、 容许挠度[f]=L/400;4、I25b 工字钢截面面积A=53.5cm 2,250cm W X =423cm 3 ;2500cm I x =5280cm 4。
5、I36b 工字钢截面面积A=83.5cm 2,250cm W X =919cm 3 ;2500cm I x =16530cm 4。
6、I40b 工字钢截面面积A=94.1cm 2,250cm W X =1140cm 3 ;2500cm I x =22780cm 4。
管道支架受力计算书
管道支架受力计算书
管道支架受力计算书是用于确定管道支架在承载管道重量和其他载荷时所需的受力情况的技术文件。
以下是一份简单的管道支架受力计算书的示例,仅供参考:
1. 工程概述
对需要进行管道支架受力计算的工程进行简单描述,包括工程名称、地点、管道类型、尺寸、材料等。
2. 计算依据
列出进行管道支架受力计算所依据的相关标准、规范和设计要求。
3. 载荷计算
根据管道的自重、内部介质重量、外部载荷(如风雪载荷、地震载荷等)以及可能的温度变化引起的热胀冷缩等因素,计算管道支架所承受的各种载荷。
4. 支架类型和布置
描述管道支架的类型(如悬挂式、支撑式、门式等)、数量和布置方式。
5. 受力分析
使用合适的力学分析方法(如静力学分析、有限元分析等),计算每个支架在不同载荷下的受力情况,包括垂直载荷、水平载荷和力矩等。
6. 材料选择
根据受力计算结果,选择合适的材料和规格的支架,确保其具有足够的强度和刚度。
7. 结论
总结管道支架受力计算的结果,确认所选支架能够满足设计要求,并提出可能需要进一步考虑的问题或建议。
请注意,以上示例仅为一份简单的管道支架受力计算书的框架,具体内容和计算方法应根据实际工程情况和相关标准进行详细分析和确定。
在进行管道支架受力计算时,建议咨询专业工程师或相关技术人员以确保计算的准确性和安全性。
抗震支架受力计算书
抗震支吊架节点受力计算书项目名称:_____________________________节点编号:_____________________________编制:______________审核:_______________复核:____________编制日期:_____________目录········································一.设计依据3·····································二.节点图及结构图3三.荷载组合4·········································································1. 承载能力极限状态4·································2.正常使用极限状态4·····························3.自重及水平地震力荷载计算4····································四.结构内力分析计算5··························1 .横梁上水平地震力引起的荷载计算52.水平地震力综合系数计算5·····························································3.水平地震力标准值计算5···································4.横梁截面参数5······································5.弯矩图5······································6.剪力图6······································7.位移图68.横梁1强度及刚度验算7································································9.横梁2强度及刚度验算7五.槽钢斜撑7·············································································1.受力简图7·····································2.计算过程8····································六.槽钢立柱(刚性)8·······································七.抗震连接件8·····································1.受力简图82.螺栓计算过程9·································································3.斜撑槽钢连接件计算过程9······································八.管夹/限位器9···································九.立柱扩底锚栓(群锚)9·····································1.受力简图9······························2.钢材破坏受拉承载力计算103.混凝土锥体破坏受拉承载能力计算10······················································4.混凝土劈裂破坏承载能力验算11········································十.槽钢底座11一.设计依据《建筑机电工程抗震设计规范》....................................................................... GB 50981-2014《建筑抗震设计规范》......................................................................................... GB 50011-2010(2016版)《钢结构设计标准》............................................................................................. GB 50017-2017《冷弯薄壁型钢结构技术规程》....................................................................... GB 50018-2002《混凝土结构后锚固技术规程》........................................................................ JGJ 145-2013《建筑机电设备抗震支吊架通用技术条件》.................................................... CJ/T 476-2018《给水排水管道工程施工及验收规范》............................................................. GB 50268-2008《通风与空调工程施工质量验收规范》.............................................................. GB 50243-2016《装配式管道支吊架(含抗震支架)》............................................................. 18R417-2(替代 03SR417-2)《金属、非金属风管支吊架(含抗震支吊架)》............................................... 19K112(替代 08K132)《建筑电气设施抗震安装》.................................................................................. 16D707-1《建筑电气设施抗震安装》................................................................................... 16D707-1二.节点图及结构图1.以P型管夹DN150;风管500×200;P型管夹DN150;吊高H=1m,横担采用41x41x2.0D、41x41x2.0D进行计算如下:2.结构计算简图三.荷载组合1. 承载能力极限状态:S d≤R d/r RE不考虑抗震时,活荷载控制组合:S d=1.2D+1.4L;不考虑抗震时,恒荷载控制组合:S d=1.35D+ 0.98L;考虑抗震时,恒荷载对结构承载力有利的组合:S d=1.0S GE±1.3S Ehk,考虑抗震时,恒荷载对结构承载力不利的组合:S d=1.2S GE±1.3S Ehk2.正常使用极限状态:S d≤C,式中:S d=D+L3.自重及水平地震力荷载计算3.1水管控制组合:水管管道为DN150,按照满水钢管计算重量,查现行标准图集《18R417-2》总说明表3可得该管道保温满水重量g1=66.96kg/m,不保温满水重量g2=39.5kg/m,采用吊架安装,按承重支吊架间距L=3000mm,抗震支架间距L1=12000mm计算。
光伏支架受力计算书
光伏支架受力计算书受力计算书一、设计依据规范1. 建筑结构荷载规范GB50009-20XX2. 钢结构设计规范GB50017-20XX 3. 铝合金结构设计规范GB50429-20XX 4. 冷弯薄壁型钢结构技术规范 5. 建筑抗震设计规范材料力学性能钢材碳素结构钢 Q235-B 重力密度ρ= kN/m3 弹性模量E=×10^5N/mm2 线膨胀系数α=×10-5 泊松比ν= 抗拉/压/弯强度 fs=215 N/mm2 抗剪强度 fsv=125N/mm2 端面承压强度 fsce=325 N/mm2设计过程:1、荷载组合中风荷载确定过程。
(1) Wk=βz*Ms*Mz*W0Wk-风荷载标准值,βz-高度z处的风振系数,Ms-风荷载体型系数,Mz-风压高度变化系数,W0-基本风压(kN/m2)。
注:基本风压应按本规范附录中附表给出的50 年一遇的风压采用,但不得小于/m2。
风荷载的组合值、频遇值和准永久值系数可分别取、和0。
全国各站台重现期为10 年、50 年和100 年的雪压和风压值见附表风振系数取值为1。
风荷载体型系数如下表根据组件与地面所成角度,插入法计算风荷载体型系数a=15正风压荷载体型系数μs= (根据GB50009-20XX 表) 负风压荷载体型系数μs=- (根据GB50009-20XX表) 风压高度变化系数:地面粗糙度类别 : B Mz=1 地貌描述 :A类, 指近海海面和海岛,海岸,湖岸及沙漠地区。
B类,指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区 C类,指有密集建筑群的城市市区D 类,指有密集建筑群且房屋较高的城市市区基本风压:Wo=ρVo2/2Wo-基本风压,ρ-空气密度,Vo-平均50年一遇的基本风速m/s。
使用风杯式测风仪时,必须考虑空气密度受温度、气压影响的修正,可按下述公式确定空气密度:p31100000t-空气温度,P-气压,e-水气压(Pa)。
现浇箱梁支架受力计算书
现浇箱梁支架受力计算书现浇箱梁支架采用满堂式碗口支架施工,受力计算取5#~9#箱梁支架进行受力计算。
(计算包括荷载计算、底模强度计算、横梁强度计算、纵梁强度计算和支架受力计算)一、荷载计算1、箱梁荷载:箱梁钢筋混凝土自重:G=473.2m3×25KN/m3=11830KN(钢筋混凝土的容重为26KN/m3)(473.2 m3为第二联现浇箱梁混凝土方量)偏安全考虑,以全部重量作用于底板上计算单位面积压力:F1=G×S=11830KN÷(4m×100m)=29.575KN/m22、施工荷载:取F2=2.5KN/m23、振捣混凝土产生荷载:取F3=2.0K N/m24、箱梁芯模:取F4=1.5KN/m25、竹胶板:取F5=0.5KN/m26、方木:取F6=7.5KN/m3二、底模强度计算箱梁底模采用高强度竹胶板,板厚t=15mm,竹胶板方木背肋间距为300mm,所以验算模板强度采用宽b=300mm平面竹胶板。
1、模板力学性能(1)弹性模量E=0.1×105MPa。
(2)截面惯性矩:I=bh3/12=30×1.53/12=8.44cm4(3)截面抵抗矩:W= bh2/6=30×1.52/6=11.25cm3(4)截面积:A=bh=30×1.5=45cm22、模板受力计算(1)底模板均布荷载:F= F1+F2+F3+F4=29.575+2.5+2.0+1.5=35.575KN/m2q=F×b=35.575×0.3=10.6725KN/m(2)跨中最大弯矩:M=qL2/8=10.6725×0.32/8=0.12KN·m(3)弯拉应力:σ=M/W=0.12×103/11.25×10-6=10.7MPa<[σ]=11MPa,竹胶板板弯拉应力满足要求。
(4)挠度:从竹胶板下方木背肋布置可知,竹胶板可看作为多跨等跨连续梁,按三等跨均布荷载作用连续梁进行计算,计算公式为:f=0.677qL4/100EI=(0.677×11.0274×0.34)/(100×0.1×108×8.44×10-8)=0.693mm<L/400=0.75mm竹胶板挠度满足要求。
现浇箱梁底模及支架受力计算
阳阳高速公路A4 合同段平冈阳阳铁路桥现浇箱梁底模及支架受力计算书一、概述K14+283.5平冈阳阳铁路桥上部构造左幅为:3x25+4x25+(30+42+30)+20m;右幅为:3x25+4x25+20+(30+42+30)m其中左幅第三联、右幅第四联为预应力砼连续箱梁,即现浇箱梁纵桥向长102m其中42m跨跨越铁路,铁路交通要求安全净空为 5mX 5m(宽X高)。
现浇箱梁平面位于 R=2500m的左偏圆曲线上,桥面横坡为单向3%纵断面位于 R=23000m的竖曲线上。
箱梁采用 C50砼,分左右两幅,左幅宽12.9m,右幅宽12.9m〜16.9m,左幅砼体积为 979 m3 , 左幅砼体积为 1220 m3。
箱梁高200cm每幅的两侧翼板宽均为250cm翼缘厚15cm翼板根部厚45cm底板厚20〜 45cm顶板厚25〜50cm,腹板厚60〜75cm左幅为双箱式,右幅为三箱式。
箱梁仅设纵向预应力束,钢束型号为 9-7 © 5、10-7 © 5和11-7 © 5钢绞线,左幅有15束通长束和 14束非通长束,右幅有 20束通长束和 18束非通长束。
最大张拉吨位 213.3吨。
张拉钢束时,砼强度不得小于 85%。
箱梁分两次浇注,第一次浇筑至顶板倒角根部。
支架采用两种形式。
跨铁路处用型号大于① 500X 6mn钢管作为立柱,45号工字钢作主梁。
其余地方采用①48X 3mm钢管搭设满堂支架。
满堂支架上用10号槽钢作分布梁。
底模及内模板用木模,其余外模用钢模板。
二、说明左幅箱梁宽是定值12.9m,断面尺寸变化不大;右幅箱梁宽由靠 8#墩处的16.9m持续变至 11#墩处的12.9m,底板宽随之持续变化。
为使支架立杆受力均匀合理且便于搭设,左幅①48X3mn钢管立杆的布置均规则,右幅①48X 3mni冈管立杆的布置随底板及腹板位置的变化参照左幅。
底模及支架的受力计算以左幅为例详述。
支架受力荷载计算书
支架受力荷载计算书
本文档旨在计算支架的受力荷载,使用简化的策略,并避免引入法律复杂性。
请注意,本文档仅供参考,具体项目应根据实际情况进行计算。
支架基本信息
- 支架类型:
- 支架材料:
- 支架尺寸:
- 支架数量:
荷载计算
1. 静态荷载计算
- 自身重量:{自身重量计算公式}
- 外部荷载:{外部荷载计算公式}
- 总静态荷载:{总静态荷载计算公式}
2. 动态荷载计算
- 振动荷载:{振动荷载计算公式}
- 冲击荷载:{冲击荷载计算公式}
- 总动态荷载:{总动态荷载计算公式}
结果与结论
根据上述计算,得出以下结果和结论:
1. 总受力荷载:{总受力荷载},单位:N/kg (牛顿/千克)
2. 最大受力荷载点:{最大受力荷载点},位于支架的{位置}
3. 支架强度:{支架强度评估结果}
4. 其他结论:{其他结论}
请注意,以上结果仅为计算得出的估值,具体情况可能会因实际使用环境、材料等因素而有所变化。
在实际工程中,建议进一步进行精确计算和结构评估。
附注:请确认所引用内容的准确性,并遵循不引用无法证实的内容。
光伏支架设计方案受力计算书-参考
(1) 恒载 G:
恒载包含太阳能板的重量和支架的自重。其中太阳能板总重量:
G1=40P×20kg/P×9.8N/s2=7840N
支架自重根据计算不同的梁时分别施加。
(2) 风载 W:
根据《建筑结构荷载规范》(GB50009-2012)中对风荷载的规定如下(按承重结构
设计):
wk z s z w0
应对称分布。下图为光伏组件的受力简图,剪力图与弯距图。
由剪力图可以得出:当 a=b 时,剪力 Q 取最小极值,为 qa。即横梁间距等于光伏
组件长度的一半。 由弯距图可以看出:当 a=b 时,弯距 M 极值为[0,-0.0625ql2];
当 1 q(l 2 la) 1 qa 2 时,即 a 2 1l 时,弯距 M 极值为[0.0215ql2,-0.0215ql2],因此当
l23 b2
3l22 b
)
R0 R1
R2
1 2
P(1
P(3
l1
5l2 b
l1
5l2 b
3l22 b2
3l22 b2
l23 b3
)
l23 b3
)
由剪力图中可以看出斜梁中分布了 6 个峰值,分别为:
当 0<b< l2 时
QQ10
Q5 Q4
P 2P
剪力极值 Qmax>P
Q2 Q3 R0 2P
数值 Q235B 4.705 23.059 12.935 35.994 32.862 29.138 7.016919238 7.913720914
单位
cm2 cm4 cm4 cm4 mm mm cm3 cm3
项目 屈服极限 σs 弹性横量 E 对 y 轴惯性半径 iy 对 z 轴惯性半径 iz 极惯性半径 ip 左端离质心距离 右端离质心距离 抗弯截面系数 Wz(左) 抗弯截面系数 Wz(右)
盖梁模板及支架受力计算书
盖梁模板及支架受力计算书一、计算参数荷载: ① 模板自重 40 KN(侧)+8.22KN(底.)=48.22KN36a 工钢 0. 6*12*2=14.4KN② 砼自重 22.83m 3 *25=570.75 KN③ 施工人员及机具荷载 1.5KN/m 2*4.4m*1.9m=12.54KN④ 新浇砼对模板产生荷载 0.22*24*1.5*1.51/2=9.7KN/m 2⑤ 振捣砼产生荷载 2 KN/m 2*4.4m*1.4m=12.32 KN (水平面) 4*4.4*1.5=26.4KN (垂直面)⑥ 倾倒砼产生荷载 4 KN/m 2*4.4m*1.9m=28.56 KN二、对工钢进行验算36a 工钢 I x =15796cm 4 W x =877.6cm 3 S x =508.8cm 3E=2.1*105MPa [δs ] =145MPa τmax =85MPa∑=48.22+14.4+570.75+12.54+12.32+28.56=686.79 KN故qc=34.3410*279.686 KN/m (1) 弯曲强度M max =25*1.6*34.34*[(1-1.95/5)(1+2*1.95/6.1)-5/6.1]=94.435KN.m δmax =3610*6.87710*435.94=103.6MPa<145MPa[δs ]计算简图:q c =34.34KN/m(2) 抗剪强度验算Qmax=21.6*34.34=104.737KNτmax =10*10*1579610*8.508*10*737.104433=33.74MPa<[τ]=85MPa(3)挠度验算ƒmax =3845*El ql 4=45410*15796*10*1.2*3846100*34.34*5=18<2506100=24.4mm三、支架方木验算(1)强度计算∑P=672.39KN ∑q c =9.1*1039.672=35.39KN/m 2q c =35.39*0.5=17.7KN/mM max =87.1*7.172=6.4KN.mΣ=26200*200*6110*4.6=4.8MPa<15Mpa(可)(2)挠度计算ƒmax =)12200*200(*10*10*3841700*7.17*5334=1.4mm<4.3mm计算简图:四、竹胶底模计算1.8CM 厚竹胶底模参数: W x =54mm 3 I x =486mmE=9.0*10 3 M pa δ=14.5Mpa σ=85Mpa(1) 强度验算∑P=632.39KN ∑q c =9.1*1039.632=33.3 KN/m 2M max =103.0*033.02=0.0003KN.mδ=5410*0003.06=5.5Mpa<14.5Mpa(可)ƒmax =486*10*9*384300*033.0*534=0.8 mm =400300=0.8mm计算简图:五、侧钢模背楞及面板验算10a 槽钢: W x =39.4cm 3 I x =198.3cm 4 S x =23.5cm 3E=2.1*105 δ=145Mpa γ=85Mpa q c =9.8KN/m(1)外背楞(间距0.9m 一道)P=4.59KN R A =R B =9.18KN经计算:M max =4.13KN.mδmax =3610*4.3910*13.4=104MPa<140Mpa 故可 ƒmax =45410*3.198*10*1.2*3841700*5.13*5=3.5mm =4001700=4.25mm(2 钢侧模面板及其内背楞由于内背楞及钢侧模面板材料强度及刚度大于底背楞及底模强度及刚度,且底部荷载大于侧面荷载,故模板力学性能无需再进行验算。
满堂支架受力计算
一、横杆和钢管架受力计算1、标准截面处受力计算(90c m ×60cm 间距处)1)荷载箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡(钢筋砼密度按ρ=2.6*103kg/m 3,g=10N/KG,h 为砼厚度)施工荷载和风载:10KN/㎡总荷载:Q=13.0+10=23.0KN/㎡2)顺向条木受力计算(10cm ×10cm )大横杆间距为90cm ,顺向条木间距为30cm ,故单根单跨顺向条木受力23.0×0.3=6.9KN/m按最不利因素计算即顺向条木(10cm ×10cm )以简支计算最大弯矩为:m KN ql M ⋅==69.0812max 弯曲强度:Mpa Mpa bh M W M 1114.41.069.06max 632max <=⨯===σ(落叶松木容许弯应力) 最大挠度:mm EI ql f 8.01.0)12/1(1090003849.0109.65384546434max=⨯⨯⨯⨯⨯⨯⨯==<900/400=2.2mm3)横向10cm*10cm 条木计算横向条木以5跨连续计算,即每根条木至少长3.0米,小横杆间距0.6m 。
横向条木受到集中荷载为:P=0.6×23.0×0.3=4.14KN/m最大弯矩为:弯曲强度: Mpa Mpa W M 1126.41.071.063max <=⨯==σ 最大挠度:mm EI Pl f 1.01.0)12/1(1090001006.01014.4764.1100764.146433max =⨯⨯⨯⨯⨯⨯⨯=⨯=<600/400=1.54) 支架受力模板自重:0.43KN /㎡支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡N1=0.9×0.6×23.43=12.65KN支架高度以7米计算:则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN支架最大荷载为N=12.65+0.48=13.13立杆长细比7678.151200==λ,查表得φ=0.676 [N]=KN N A 1.7171071215489676.0][==⨯⨯=σφ>N 查表得外径48mm 壁厚3.5mm 钢管在步距120mm 时,容许荷载[N]=33.1KN>N 。
支架受力计算
支架受力计算一. 上部结构核载1. 新浇砼的重量: 1.274kN m22. 模板.支架重量: 0.06t/m23. 钢筋的重量: 0.381t/m24. 施工荷载: 0.35t/m25. 振捣时的荷载: 0.28t/m26. 输送砼时的荷载: 0.35t/m2则: 1+2+3+4}+5+6=1.274+0.06+0.381+0.35+0.28+0.35=2.695t/m2钢材轴向容许应力: 【σ】=140Mpa受压构件容许长细比:【λ】=200二.钢管的布置、受力计算拟采用Φ42mm,壁厚3mm的无缝钢管进行满堂支架立设,并用钢管卡进行联接。
通过上面计算,上部结构核载按2.695t/m2计,钢管间距0.9×0.6m间隔布置,则每区格面积:A1=0.6×0.9=0.54m2每根立杆承受核载Q:Q=0.54×2.695=1.455t竖向每隔h=1m,设纵横向钢管,则钢管回转半径为:i=hµ/【λ】=1000×0.65/140=4.64mm根据i≈0.35d,得出d=i/0.35,则d=4.64/0.35=13.2mm,则选Φ42mm钢管可。
Φ42mm,壁厚3mm的钢管受力面积为:A2=π(42/2)2-π((42-3×2)÷2)2=π(212-182)=367mm2则坚向钢管支柱受力为:σ=Q/A2=1.455t/367mm2=1.455×103×10N/367×10-6m2=3.96×107Pa=39.6MPa<140Mpa应变为:ε=σ/E=39.6×106/210×109=1.88×10-4长度改变 L=εh=1.88×10-4×3000=0.56mm做为预留量,提高模板标高。
通过上式计算,确定采用¢42mm,外径,壁厚3㎜的无缝钢管做为满堂支架,间隔0.6×0.9m ,坚向每间隔1m设纵横向钢管,支架底部及顶部设剪刀撑,并在底部增设纵横向扫地撑,以保证满堂支架的整体稳定性。
水管支架强度计算书
计算书DN600空调水管支架强度校核1、受力分析图由∑MA=0和∑MB=02、DN600空调冷冻水两根,查表可知,DN600为500Kg/m,2根为1000Kg/m支架按6米一个计算,每组支架承重6000Kg = 60000N 考虑管内水的波动性,粘滞阻力,压力传递不均匀性对支架的综合影响,取综合系数K1=1.2;考虑现场环境之震动及风动的影响,支架本身的不均匀性,取综合系数:K2=1.23、受力分析:按附图支架详图,及图1~3中的受力分析:p=K1*K2*W/2=1.2*1.2*60000/2=43200NFay=Fby=p=43200N4、吊杆强度计算使用公式 An≧1.5N/0.85fQ235钢材 f取钢材强度设计值200N/mm²(KPa)An≧1.5*43200N/0.85*200N/mm²An≧381mm²An≧3.81cm²10#槽钢截面积为12.74cm²,故10#槽钢吊杆足以满足5、14a#横担强度校核从图3中可以看出,最大弯距Mmax= pa =43200*400=17280000N·mm等截面的14#槽钢最大正应力发生在Mmax截面的上下边缘处横担抗弯强度计算公式:1.5My/ryWny≦0.85fWny 截面对Y轴的净截面抵抗距 14a#槽钢取80.5cm³碳素钢屈强比为 0.6-0.65 取小值0.6,σs/σb=0.6σb=235/0.6=390N/mm2 f=390N/mm21.5My/ryWny≦0.85f1.5*17280000N·mm/1.02*80.5*10m³mm²≦0.85*390N/mm²315N/mm²≦331.5N/mm²故可用。
光伏支架受力计算书
光伏支架受力计算书的力计算表为1。
该设计基于1.1规范1。
建筑结构荷载规范GB50009-XXXX采用风压,但不应小于0.3kN/m2风荷载的组合值、频率值和准永久值系数分别为0.6、0.4和0。
全国所有平台10年、50年和100年重现期的雪压和风压值,风振系数见表D.4,取1风荷载体型系数见下表-。
根据构件与地面形成的角度,采用插入法计算风荷载体型系数A = 15。
正风荷载体型系数μ s = 1.325(根据XXXX国家标准50009中的基本风速m/s,每年一次当使用杯形风速计时,必须考虑温度和气压对空气密度的影响。
空气密度可根据以下公式确定:??0.001276?p?0.378e?3??(t/m)1?0.00366吨?100000?t-空气温度(摄氏度),p-空气压力(帕),e-水压(帕)根据位置的海拔高度z(m ),根据以下公式近似估算空气密度:?= 0.00125 e-0.0001 z(t/m3)z-风速表的实际高度(m)。
2,负载组合3。
梁抗弯强度计算组合截面形心坐标计算公式:根据截面形心,计算惯性矩公式平行轴位移:根据公式гmax = mmax Ymax/iz检查法向应力强度mIz代表惯性矩挠度计算:均匀载荷下的最大挠度在梁跨度的中间。
计算公式为:Ymax = 5ql 4/(384ei)。
,其中ymax是梁跨度中的最大挠度(mm)。
q是平均布线负载的标准值(kn/m)。
E是钢的弹性模量。
对于工程结构钢,e = 2100000 n/mm 2。
I是钢截面的惯性矩。
在三个相等的集中载荷下的最大挠度可以在型钢表(mm 4)中找到。
跨度等间距排列。
计算公式为:Ymax = 6.33 pl 3/(384 ei)。
,其中ymax是梁跨度中的最大挠度(mm)。
p是各种集中荷载的标准值之和(kn)。
E是钢的弹性模量。
对于工程用结构钢,E = 2100000 n/mm 2.i为钢截面的惯性矩。
它可以在型钢表中找到(mm ).风荷载基本风压:WP = ro * v2/2 = 1.225×242/2 = 352.8n/m2其中WP为风压,ro为空气密度kg/m3,v为风速m/s风荷载值为0.353 KN/m2高度z处的风振系数:结构高宽比小于1.5,因此,在表7.2.1) μz =1 结构类型:斜面,θ =元件与地面成15度角。
完整版 模板支架计算书
模板支架计算书一、概况:现浇钢筋砼楼板,板厚(max=160mm),最大梁截面为300×600mm,沿梁方向梁下立杆间距为800mm,最大层高4.7m,施工采用Ф48×3.5mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100mm。
剪力撑脚手架除在两端设置,中间隔12m -15m设置。
应支3-4根立杆,斜杆与地面夹角450-600。
搭设示意图如下:二、荷载计算:1.静荷载楼板底模板支架自重标准值:0.5KN/m3楼板木模板自重标准值:0.3KN/m2楼板钢筋自重标准值:1.1KN/m3浇注砼自重标准值:24KN/m32.动荷载施工人员及设备荷载标准值:1.0KN/m2掁捣砼产生的荷载标准值:2.0KN/m2架承载力验算:大横向水平杆按三跨连续梁计算,计算简图如下:q作用大横向水平杆永久荷载标准值:qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32KN/m作用大横向水平杆永久荷载标准值:q1=1.2qK1=1.2×4.32=5.184KN/m作用大横向水平杆可变荷载标准值:qK2=1×1+2×1=3KN/m作用大横向水平杆可变荷载设计值:q2=1.4qK2=1.4×3=4.2KN/m大横向水平杆受最大弯矩M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01KN/m抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/m2<205N/m2=f滿足要求挠度:V=14×(0.667q1+0.99qK2)/100EI=14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104=2.6mm<5000/1000=5mm滿足要求3.扣件抗滑力计算大横向水平杆传给立杆最大竖向力R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。
(完整版)支架承载力计算.docx
支架竖向承载力计算:按每平方米计算承载力,中板恒载标准值 :f=2.5*0.4*1*1*10=10KN ;活荷载标准值 N Q = (2.5+2 )*1*1=4.5KN;则:均布荷载标准值为:P1=1.2*10+1.4*4.5= 18.3KN;根据脚手架设计方案,每平方米由 2 根立杆支撑,单根承载力标准值为100.3KN,故: P1=18.3/2=9.15KN<489.3*205=100.3KN。
满足要求。
或根据中板总重量(按长20m 计算)与该节立杆总数做除法,中板恒载标准值 :f=2.5*0.4*10*20*19.6=3920KN ;活荷载标准值 NQ = (2.5+2 )*20*19.6=1764KN;则:均布荷载标准值为:P1=1.2*3920+1.4*1764= 7173KN;得P1=7173KN<100.3*506=50750KN。
满足要求。
支架整体稳定性计算:根据公式:=Nf A式中:N-立杆的轴向力设计值,本工程取15.8kN;-轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367;λ-长细比,λ= l0 /i = 2.15/1.58*100 = 136;l0-计算长度, l0=kμh= 1.155*1.5*1.2 =2.15m;k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55; h-立杆步距0.75m。
i-截面回转半径,本工程取 1.58cm;A-立杆的截面面积, 4.89cm2;f-钢材的抗压强度设计值,205N/mm 2。
σ=15.8/ (0.367*4.89)= 88.04N/mm 2<[f]=205N/mm 。
满足要求 .支架水平力计算支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。
混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。
光伏支架受力计算实例01
支架结构受力计算书设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____常州市**实业有限公司1 工程概况项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团结构高度: 电池板边缘离地不小于500mm 2 参考规范《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金铝合金设计强度[单位:2/N mm ]钢材钢材设计强度[单位:2/N mm ]不锈钢螺栓不锈钢螺栓连接设计强度[单位:2/N mm ]普通螺栓普通螺栓连接设计强度[单位:2/N mm ]角焊缝容许拉/剪应力—————————————————2160/N mm 4 结构计算4.1 光伏组件参数 晶硅组件:自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ⨯⨯ 安装倾角:37°4.2 支架结构支架安装侧视图4.3 基本参数1)电站所在地区参数新疆阿勒泰项目地,所处经纬度:位于 北纬43°,东经89°。
基本风压20.56/kN m (风速30/s m ),基本雪压21.35/kN m 。
满堂支架受力计算
满堂支架受力计算满堂支架受力计算满堂支架受力计算柏公坑分离立交桥为左、右幅分离式连续箱梁构造,全桥箱梁长137m,由于地形复杂,每跨高度不同,本方案按最高一跨进行计算:H=13m。
一. 上部结构核载1. 新浇砼的重量:2.804t/m22. 模板.支架重量: 0.06t/m23. 钢筋的重量: 0.381t/m24. 施工荷载: 0.35t/m25. 振捣时的核载: 0.28t/m26. 倾倒砼时的荷载: 0.35t/m2则: 1+2+3+4}+5+6=2.804+0.06+0.381+0.35+0.28+0.35=4.162t/m2钢材轴向容许应力: 【σ】=140Mpa受压构件容许长细比:【λ】=200二.钢管的布置、受力计算柏公坑分离立交桥拟采用Φ42mm,壁厚3mm的无缝钢管进行满堂支架立设,并用钢管卡进行联接。
通过上面计算,上部结构核载按4.162t/m2计,钢管间距0.6×0.6m间隔布置,则每区格面积:A1=0.6×0.6=0.36m2每根立杆承受核载Q:Q=0.36×4.162=1.498t竖向每隔h=1m,设纵横向钢管,则钢管回转半径为:i=hµ/【λ】=1000×0.65/140=4.64mm根据i≈0.35d,得出d=i/0.35,则d=4.64/0.35=13.2mm,则选Φ42mm钢管可。
Φ42mm,壁厚3mm的钢管受力面积为:A2=π(42/2)2-π((42-3×2)÷2)2=π(212-182)=367mm则坚向钢管支柱受力为:σ=Q/A2=1.498T/367mm2=1.498×103×10N/367×10-6m2=4.08×107Pa=40.8MPa=140Mpa应变为:ε=σ/E=40.8×106/210×109=1.94×10-4长度改变 L=εh (注h=13m)=1.94×10-4×13000=2.52mm做为预留量,提高模板标高。
盘扣式支架结构受力计算书
盘扣式支架结构受力计算书1.工程概况刚构梁跨中厚度1.4m,横梁与墩柱连接部位渐变为2.1m;箱涵顶板厚度1m,两侧倒角50×155.3cm。
均采用盘扣式满堂支架。
2.设计参数2.1.材料设计指标2.1.1.Q235钢抗拉、抗压、抗弯强度设计值f=215Mpa,抗剪强度设计值fv=125Mpa,弹性模量E=2.06×105Mpa。
2.1.2.Q355钢抗拉、抗压、抗弯强度设计值f=300Mpa,抗剪强度设计值fv=180Mpa,弹性模量E=2.06×105Mpa。
2.2.荷载取值(1)新浇筑混凝土及钢筋自重:2.6t/m3。
(2)底模板密度:600Kg/m3,板厚1.5cm;(3)方木密度:500 Kg/m3,方木截面8*8cm;(4)盘扣式满堂支架自重:20Kg/m3;(5)施工荷载取2.5kN/m2。
(6)荷载分项系数:永久荷载分项系数取1.3,可变荷载分项系数取1.5。
2.3.支架结构支架体系统计表3.刚构梁支架计算3.1.竹胶板检算一、总体信息采用1.5cm厚竹胶板,抗弯强度设计值fm=35Mpa,抗剪强度设计值fv=5.0Mpa,弹性模量E=9898Mpa。
取板宽1cm进行计算。
惯性矩I=bh^3/12=10*15^3/12=2812mm4抵抗弯矩W=bh^2/6=10*15^2/6=375mm3截面积A=bh=10*15=150mm2其所受永久荷载为:1.4*26*0.01=0.37kN/m。
可变荷载为:2.5*0.01=0.025kN/m。
计算如下:二、荷载信息1、恒荷载(1)、均布荷载,0.37kN/m,荷载分布:满布2、活荷载(1)、均布荷载,0.03kN/m,荷载分布:满布三、组合信息1、内力组合、工况(1)、1.3恒+1.5活2、挠度组合、工况(1)、恒载工况(2)、活载工况(3)、1.0恒+1.0活四、内力、挠度计算1、弯矩图(kN.m)(1)、1.3恒+1.5活(2)、包络图2、剪力图(kN)(1)、1.3恒+1.5活(2)、包络图3、挠度(1)、恒载工况(2)、活载工况(3)、1.0恒+1.0活4、支座反力(kN)(1)、1.3恒+1.5活(2)、包络图五、单元验算图中数值自上而下分别表示:最大剪应力与设计强度比值最大正应力与设计强度比值最大稳定应力与设计比值若有局稳字样,表示局部稳定不满足(1)、内力范围、最大挠度(a)、内力范围:弯矩设计值-0.00~0.00 kN.m剪力设计值-0.04~0.04 kN(b)、最大挠度:最大挠度0.09mm,最大挠跨比1/10000(挠度允许值见《钢结构设计规范》(GB 50017-2003)附录A.1)(2)、强度应力最大剪应力τ = V max * S / I / t w= 0.04 * 281 / 2812 / 10.0 * 1000= 0.4 MPa ≤ f v = 5 MPa 满足!最大正应力σ = M max / γ / W= 0.00 / 1.20 / 375 * 1e6= 3.2 MPa ≤ f = 35 MPa 满足!(3)、稳定应力整体稳定系数φb = 0.80最大压应力σ = M max / φb / W= 0.00 / 0.80 / 375 * 1e6= 4.9 MPa ≤ f = 35 MPa 满足!(4)、验算结论:满足!3.2.次分配梁方木检算一、总体信息次分配梁采用8*8cm方木,15cm间距布置。
箱梁支架计算书
箱梁支架计算书红岭立交改造造箱梁以箱梁宽8m,箱梁高1.4m,两侧翼缘板宽2.0m为标准断面进行计算一、立柱φ600δ=10@2.65m,横梁40b工字钢@1.5m计算式(以8m桥长为计算实例)(一)、荷载计算1.结构自重G=[0.55*2*1.4+(0.2+0.45)*2*2/2+(0.2+0.25)*1.45*2]*25*8=829KN2.模板自重Q1=0.5*8*8=32KN3.输送泵输送砼冲击荷载Q2=20KN4.振捣砼产生的荷载Q3=20KN5.施工荷载Q4=1.0*8*8=64KN6.荷载总计Σ=829*1.2+32*1.2+20*1.4+20*1.4+64*1.4=1179KN7.每跨由4根立柱支撑,则每根立柱所承受压力为N=1179/4=295KN(二)、φ600δ=10钢管力学性能A=3.14*(D2-d2)/4=3.14*(6002-5802)/4=18526mm2I=3.14*(D4-d4)/64=3.14*(6004-5804)/64=806*103cm4W=0.098*(D4-d4)/D=0.098*(6004-5804)/600=2689.9cm3i=0.354D=0.354*600=212.4mm(三)、立柱受力计算1. 按计算长度为10m,u=2.0计算λ=10000*2/212.4=94.22. 按b类结构查表得ψ=0.591f=N/(ΨA)=295*103/(0.591*18526)=26.9N/mm2<f y=215 N/mm2故立柱符合设计要求(四)、横向工40b受力计算1.N1=1179/8*1.5=221KN2.Mmax=221*a(2c+b)/2.65 b=1.5,当c=a=0.575时,M最大,Mmax=221*0.575*(2*0.575+1.5)/2.65=127.1KN.m工40bW y=1139cm33.f=M/(r x W y)=127.1*106/(1.05*1139*103)=106.3N/mm2<f y=215 N/mm2故横向工40b符合要求(四)、纵向工40b梁受力计算1.弯矩计算纵向工40 b为均布受荷,工40b@150q=1179/8/8*1.5=27.6KN/mM=q*l2/8=27.6*82/8=220.8KN.m2.f=M/(r x W y)=220.8*106/(1.05*1139*103)=185N/mm2<f y=215 N/mm2 2.挠度计算计算挠度时按构件实际静载计算1.N=(829+32)/8/8*1.5=20.2KN/m2.Vmax=5*N*l4/(384*EI)=5*20.2*78004/(384*206*103*22781*104)=20.7mm≈L/400=19.5mm故纵向工40b梁符合要求二、φ48δ=3.5满堂脚手架计算(一)、荷载计算(以立杆立于腹板下,直接承受腹板荷载的最不利情况计算)1.构件自重G=0.5*0.6*1.4*25=10.5KN2.模板自重Q1=0.5*0.5*0.6=0.15KN3.输送泵输送砼冲击荷载Q2=4*0.5*0.6=1.2KN4.振捣砼产生的荷载Q3=4*0.5*0.6=1.2KN5.施工荷载Q4=1.0*0.5*0.6=0.3KN6.荷载总计Σ=10.5*1.2+0.15*1.2+1.2*1.4+1.2*1.4+0.3*1.4=16.6KN(二)、φ48δ=3.5钢管力学性能A=3.14*(D2-d2)/4=3.14*(482-412)/4=489mm2i=0.354D=0.354*48=16.99mm(三)、立杆受力计算立杆计算长度以顶层立杆,上部悬臂长0.5m计算1.λ=(1.5+0.5*2)*1000/16.99=147.1按b类结构查表得ψ=0.3392.f=N/(ΨA)=16.6*103/(0.339*489)=100.1N/mm2<f y=215 N/mm2故立柱符合设计要求(四)、横向8*8cm木枋受力计算1. 8*8cm木枋力学性能A=80*80=6400mm2I=8*83/12=341cm3W=bh2/6=8*82/6=85cm3i=0.289b=0.289*80=23.12mm2. 荷载计算(以横杆在腹板下承受腹板压力时计算)q=[1.4*25*1.2+1*1.4+0.5*1.2+0.4*1.4+0.4*1.4]*0.6=27.1KN/m M=ql2/8=27.1*0.52/8=0.85KN.mf=M/(r x W y)=0.85*106/(1.0*85*103)=10N/mm2<f y=13 N/mm2五、纵向8*8cm木枋受力计算q=[1.4*25*1.2+1*1.4+0.5*1.2+0.4*1.4+0.4*1.4]*0.4=18.1KN/m M=ql2/8=18.1*0.62/8=0.82KN.mf=M/(r x W y)=0.82*106/(1.0*85*103)=0.97N/mm2<f y=13 N/mm2故纵向木枋符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福成锅炉房改造支架受力计算书管道计算参数:D720×10:管道总重q=640kg/m(管道重175.1kg/m,管内水重385 kg/m,保温重80kg/m);D630×10:管道总重q=483.88kg/m(管道重152.89kg/m,管内水重292kg/m,保温重39kg/m);D529×9:管道总重q=353.91kg/m(管道重115.42kg/m,管内水重205.1kg/m,保温重33.50kg/m);D478×9:管道总重q=301.16kg/m(管道重104.1kg/m,管内水重166.5kg/m,保温重30.75kg/m);D426×9:管道总重q=246.63kg/m(管道重92.55kg/m,管内水重130.7kg/m,保温重23.38kg/m);D325×8:管道总重q=156.16kg/m(管道重62.54kg/m,管内水重74.99kg/m,保温重18.63kg/m);1kgf=9.8N;聚四氟乙烯板滑动摩擦系数μ=0.1。
一、滑动支架室内:1. HN-1主管一根:D720×10,7m;支管D325×8,4m(锅炉分支)+2.5m(旁通)=6.5m。
垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×7+156.16×6.5) ×1.5×9.8=80777N水平摩擦力:F=μP=0.1×80777=8078N2. HN-2主管一根:D720×10,12m;支管D325×8,4m。
垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×4) ×1.5×9.8=122078N水平摩擦力:F=μP=0.1×122078=12208N3. HN-3主管一根:D720×10,11m;支管325×8,5.35m(锅炉分支)+2.5m(旁通)=7.85m。
垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×11+156.16×7.85) ×1.5×9.8=121508N4. HN-4主管一根:D720×10,12m;支管325×8,5.35m。
垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×5.35) ×1.5×9.8=125177N水平摩擦力:F=μP=0.1×125177=12518N5. HN-5主管一根:D720×10,6m;支管325×8,5.35m。
垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×6+156.16×5.35) ×1.5×9.8=68729N水平摩擦力:F=μP=0.1×68729=6873N6. HN-6主管一根:D720×10,8.6m;支管426×9,3.2m;支管529×9,1.6m。
垂直荷重:P=(q1×l1+q2×l2+q3×l3)×K×9.8=(640×8.6+246.63×3.2+353.91×1.6) ×1.5×9.8=100835N水平摩擦力:F=μP=0.1×100835=10084N7. HN-7主管一根:D720×10,9m。
垂直荷重:P=q×l×K×9.8=640×9 ×1.5×9.8=84672N水平摩擦力:F=μP=0.1×84672=8467N8. HN-8主管一根:D720×10,12m。
垂直荷重:P=q×l×K×9.8=640×12 ×1.5×9.8=112896N水平摩擦力:F=μP=0.1×112896=11290N9. HN-9主管一根:D720×10,6.6m。
垂直荷重:P=q×l×K×9.8=640×6.6 ×1.5×9.8=62093N水平摩擦力:F=μP=0.1×62093=6209N10. HN-10主管一根:D720×10,4m。
垂直荷重:P=q×l×K×9.8=640×4 ×1.5×9.8=37632N11. HN-11主管一根:D720×10,5m。
垂直荷重:P=q×l×K×9.8=640×5 ×1.5×9.8=47040N水平摩擦力:F=μP=0.1×47040=4704N12. HN-12主管一根:D720×10,5m。
垂直荷重:P=q×l×K×9.8=640×5 ×1.5×9.8=47040N水平摩擦力:F=μP=0.1×47040=4704N室外:1. HW-1主管两根:D478×9,8.5m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×8.5 ×1.5×9.8=37630N 单管水平摩擦力:F=μP=0.1×37630=3763N2. HW-2主管两根:D478×9,12m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×12 ×1.5×9.8=53125N 单管水平摩擦力:F=μP=0.1×53125=5313N3. HW-3主管两根:D478×9,9.1m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×9.1 ×1.5×9.8=40286N 单管水平摩擦力:F=μP=0.1×40286=4029N4. HW-4主管两根:D478×9,7.5m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×7.5 ×1.5×9.8=33203N 单管水平摩擦力:F=μP=0.1×33203=3320N5. HW-5主管两根:D478×9,7.4m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×7.4 ×1.5×9.8=32760N单管水平摩擦力:F=μP=0.1×32760=3276N6. HW-6主管两根:D478×9,9.5m/根。
单管垂直荷重:P=q×l×K×9.8=301.16×9.5 ×1.5×9.8=42057N 单管水平摩擦力:F=μP=0.1×42057=4206N7. HW-7主管两根:D630×10,11.5m/根。
单管垂直荷重:P=q×l×K×9.8=483.88×11.5 ×1.5×9.8=81800N 单管水平摩擦力:F=μP=0.1×81800=8180N8. HW-8主管两根:D630×10,10.5m/根。
单管垂直荷重:P=q×l×K×9.8=483.88×10.5 ×1.5×9.8=74687N 单管水平摩擦力:F=μP=0.1×74687=7469N9. HW-9主管两根:D630×10,16.4m/根。
单管垂直荷重:P=q×l×K×9.8=483.88×16.4 ×1.5×9.8=116654N 单管水平摩擦力:F=μP=0.1×116654=11665N10. HW-10主管一根:D630×10,10.8m。
垂直荷重:P=q×l×K×9.8=483.88×10.8 ×1.5×9.8=76821N水平摩擦力:F=μP=0.1×76821=7682N11. HW-11主管一根:D630×10,5.8m。
垂直荷重:P=q×l×K×9.8=483.88×5.8 ×1.5×9.8=41256N水平摩擦力:F=μP=0.1×41256=4126N12. HW-12主管两根:D630×10,6.4m/根。
单管垂直荷重:P=q×l×K×9.8=483.88×6.4 ×1.5×9.8=45523N 单管水平摩擦力:F=μP=0.1×45523=4552N13. HW-13主管两根:D630×10,6.4m/根。
单管垂直荷重:P=q×l×K×9.8=483.88×6.4 ×1.5×9.8=45523N单管水平摩擦力:F=μP=0.1×45523=4552N二、固定支架室内:1. GN-1垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×4) ×1.5×9.8=122078N水平推力:F=F2-F1=[640×(22.7+5.7/2)+ 156.16×4×2] ×1.2×0.1×9.8-[640×13+ 156.16×5/2+156.16×4] ×1.2×0.1×9.8×0.7=13014N支架受力计算图如下:2. GN-2垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×5.35) ×1.5×9.8=125177N 水平推力:F=F2-F1=[640×24+ 156.16×5.35×2] ×1.2×0.1×9.8-[640×13+ 156.16×5/2+156.16×5.35] ×1.2×0.1×9.8×0.7=12171N支架计算图如下:3. GN-3垂直荷重:P=q×l×K×9.8=640×12×1.5×9.8=112896N水平推力:F=F2-F1=640×(17.4+ 2.2/2)×1.2×0.1×9.8-640×(17+2.5/2)×1.2×0.1×9.8×0.7=4309N支架计算图如下:室外:4. GW-1垂直荷重:P=q×l×K×9.8=483.88×12×1.5×9.8=85356NR1水平推力:F=F2-F1=483.88×(28.5+ 3.2/2)×1.2×0.1×9.8-483.88×(18.5+8.6/2)×1.2×0.1×9.8×0.7=8046NR2水平推力:F=F2-F1=483.88×(29.5+ 4.2/2)×1.2×0.1×9.8-483.88×(25.5+6.75/2)×1.2×0.1×9.8×0.7=6480N支架计算图如下:三、弹簧支架1. TN-1主管:D720×10,15.8m。