烧结过程及机理课件
烧结工艺 ppt课件
8.如何解决还原性与强度矛盾的问题
PPT课件
31
烧结矿的种类
根据烧结矿碱度(CaO/SiO2)不同,分为 普通烧结矿(非自熔性烧结矿):碱度低于1.0 自熔性烧结矿:碱度在1.0~1.5 高碱度烧结矿:碱度在1.5~3.5 超高碱度烧结:碱度大于3.5
PPT课件
32
第三讲 烧结原理
PPT课件
33
有害元素的控制
S
P
Cu Pb
Zn
As
F K2O+Na2O
<0.12% 0.03~0.08% <0.3% <0.1% <0.1~0.2% <0.07% <1% <0.1~0.6%
PPT课件
20
为了保证供给高炉的铁矿石中铁含量均 匀,并且保证高炉的透气性,需要把选 矿工艺产出的铁精矿制成10-25mm的块 状原料。
粒度过小,燃烧速度快,高温时间短,烧结矿强度差;透气性变差,风 量少,产量低;部分燃料被废气带走。
燃料用量影响:
用量多:燃烧层温度高且厚,液相多,透气性差。料层下部烧不透,产 量降低。
用量少:无法烧结,
PPT课件
38
烧结料层中的温度变化
1、烧结料层中的温度变 化:
1)烧结温度:指烧结料层 中某一点所达到的最高 温度。
低
——换热效果好 矿石粒度不能过大 (8~40mm)
PPT课件
11
高炉冶炼过程
铁氧化物的还原 Fe2O3→Fe3O4→FeO→Fe
——提高产量 提高矿石的还原性 提高矿石含铁量(品位)
PPT课件
12
铁矿石的评价
品位高:将含Fe量达到理论值的70%以上的矿石
烧结过程及机理ppt课件
一、烧结过程
(一)烧结温度对烧结体性质的影响
图5是新鲜的电解铜粉(用氢还原的),经高 压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
精品
1
比电导(Ω-1 c·m-3)
密 度
拉力(kg/cm3) (g/cm2)
c'c0
c 3
exp
1
c0 c0
精品
22
一般烧结温度下,
于是
c 3 1
c0 kT
c
3 kT
c0
从式可见,在一定温度下空位浓度差是与表面 张力成比例的,因此由扩散机理进行的烧结过 程,其推动力也是表面张力。
精品
23
由于空位扩散既可以沿颗粒表面或界面进行, 也可能通过颗粒内部进行,并在颗粒表面或颗 粒间界上消失。为了区别,通常分别称为表面 扩散,界面扩散和体积扩散。有时在晶体内部 缺陷处也可能出现空位,这时则可以通过质点 向缺陷处扩散,而该空位迁移到界面上消失, 此称为从缺陷开始的扩散。
可见,作为烧结动力的表面张力可以通 过流动、扩散和液相或气相传递等方式 推动物质的迁移。
精品
11
图9 凹凸不平的固体表面的附加压强差及物质迁移
精品
12
三、烧结机理
(一) 颗粒的粘附作用 (二) 物质的传递
精品
13
(一) 颗粒的粘附作用
例子:
把两根新拉制的玻璃纤维相互叠放在一起, 然后沿纤维长度方向轻轻地相互拉过,即可发 现其运动是粘滞的,两根玻璃纤维会互相粘附 一段时间,直到玻璃纤维弯曲时才被拉开,这 说明两根玻璃纤维在接触处产生了粘附作用。
陶瓷烧结PPT课件
未来研究方向与展望
新材料与新工艺的开发
跨学科合作与技术融合
智能化与数字化技术的 应用
未来,研究者们将继续探索新型陶瓷 材料,研究新的烧结工艺和技术,以 满足各种应用需求。同时,如何实现 陶瓷材料的绿色生产和降低成本也是 未来的重要研究方向。
陶瓷烧结技术涉及到材料科学、物理 学、化学等多个学科领域,未来的研 究将更加注重跨学科的合作和技术融 合,以推动陶瓷材料的发展和应用。
还原气氛
可以还原杂质,提高陶瓷的纯度。
压力的影响
常压烧结
是最常见的烧结方式,适用于大多数 陶瓷材料。
加压烧结
在加压条件下,可以促进陶瓷的致密 化,提高其性能。
05
陶瓷烧结的质量控制与检测
质量控制方法
原料质量控制
对原料的化学成分、粒度、含水 率等指标进行严格检测和控制,
确保原料质量稳定。
工艺参数控制
在烧结过程中,对温度、压力、气 氛等工艺参数进行精确控制,以获 得最佳的烧结效果。
设备维护与校准
定期对烧结设备进行维护和校准, 确保设备运行稳定,提高产品的重 复性和可靠性。
性能检测与评价
物理性能检测
检测产品的密度、气孔率、热膨 胀系数等物理性能指标,确保产
品性能符合要求。
力学性能检测
通过抗弯强度、抗压强度等力学 性能试验,评估产品的机械性能
和可靠性。
耐腐蚀性能检测
对产品的耐酸、耐碱、耐热等性 能进行检测,以适应不同环境下
的使用要求。
缺陷分析与改进
缺陷识别
通过外观检查、无损检测等方法,识别产品中的 缺陷和问题。
原因分析
对缺陷产生的原因进行深入分析,找出根本原因 并制定相应的改进措施。
《陶瓷材料的烧结》课件
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装
烧结过程及机理ppt课件
整理版课件
27
图12 不同烧整结理版机课件理的传质途径
28
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
整理版课件
7
坯体中颗粒重排,接触处
烧结初期
产生键合,空隙变形、缩
烧
小(即大气孔消失),固-
结
气总表面积没有变化。
过
程 的
烧结中期
传质开始,粒界增大,空 隙进一步变形、缩小,但
三
仍然连通,形如隧道。
个
阶
段
烧结后期
传质继续进行,粒子长大, 气孔变成孤立闭气孔,密
度达到95%以上,制品强
整理版课件
度提高。
整理版课件
24
3.气相传质 由于颗粒表面各处的曲率不同,按开尔文公式
可知,各处相应的蒸气压大小也不同。故质点容 易从高能阶的凸处(如表面)蒸发,然后通过气 相传递到低能阶的凹处(如颈部)凝结,使颗粒 的接触面增大,颗粒和空隙形状改变而使成型体 变成具有一定几何形状和性能的烧结体。这一过 程也称蒸发-冷凝。
可见,作为烧结动力的表面张力可以通 过流动、扩散和液相或气相传递等方式 推动物质的迁移。
整理版课件
11
图9 凹凸不平的固体表面的附加压强差及物质迁移
整理版课件
12
三、烧结机理
(一) 颗粒的粘附作用 (二) 物质的传递
整理版课件
13
(一) 颗粒的粘附作用
例子:
把两根新拉制的玻璃纤维相互叠放在一 起,然后沿纤维长度方向轻轻地相互拉过, 即可发现其运动是粘滞的,两根玻璃纤维会 互相粘附一段时间,直到玻璃纤维弯曲时才 被拉开,这说明两根玻璃纤维在接触处产生 了粘附作用。
无机非金属材料基础第十章烧结PPT课件
热压烧结法
总结词
提高制品致密度和性能的烧结方法
详细描述
热压烧结法是一种在加热的同时施加压力的烧结方法。通过在高温下施加压力, 可以促进材料内部的传质过程,减小孔隙率,提高制品的致密度和性能。该方法 特别适用于制备高性能陶瓷材料。
玻璃烧结是一种将玻璃原料在高温下熔化成玻 璃制品的过程。它在玻璃工业中广泛应用,如 玻璃瓶、玻璃管、玻璃板等。
玻璃烧结的工艺参数包括温度、气氛、冷却速度 和配料成分等,这些参数对玻璃的性能和结构有 重要影响。
复合材料的烧结应用
复合材料烧结是一种将复合材料在高温下烧结成制品 的过程,广泛应用于航空航天、汽车、能源等领域。
其他材料的烧结应用还包括在化学工 业中制造催化剂和吸附剂等,以及在 农业中制造肥料和农药等。
05
CATALOGUE
烧结的挑战与未来发展
技术挑战
烧结工艺优化
烧结过程控制技术
提高烧结产品的致密度、强度和性能 稳定性,降低能耗和生产成本。
研究烧结过程中的传热、传质机制, 实现烧结过程的精确控制和优化。
未来发展方向
智能化制造
利用先进的信息技术实现烧结过 程的智能化控制和优化,提高生
产效率和产品质量。
新材料研发
研究新型无机非金属材料,拓展 其在新能源、环保等领域的应用
。
绿色制造
坚持绿色发展理念,实现无机非 金属材料的可持续发展,推动产
业升级和转型。
THANKS
感谢观看
新型烧结技术的研发
探索新型烧结方法,如微波烧结、放 电等离子烧结等,提高烧结效率和质 量。
四、烧结.ppt
1第四章烧结4.1 4.1 概述概述烧结是粉末冶金生产过程中最基本的工序之一烧结是粉末冶金生产过程中最基本的工序之一。
烧结是粉末和粉末压坯烧结是粉末和粉末压坯,,在适当温度和气氛下加热所发生的现象或过程所发生的现象或过程。
2按烧结过程有无明显的液相出现和烧结系统的组成分为和烧结系统的组成分为::1)单元系烧结2)多元系固相烧结3) 3) 多元系液相烧结多元系液相烧结3粘结阶段颗粒的原始接触点或面转变成晶体结合颗粒的原始接触点或面转变成晶体结合,,即通过成核即通过成核、、结晶长大等原子过程形成烧结颈等原子过程形成烧结颈。
烧结体密度烧结体密度、、烧结体强度烧结体强度、、导电性等的变化烧结颈长大阶段原子向颗粒结合面迁移原子向颗粒结合面迁移,,烧结颈扩大烧结颈扩大,,颗粒间距缩小颗粒间距缩小,,晶粒长大,晶界越过孔隙移动晶界越过孔隙移动。
烧结体密度烧结体密度、、烧结体强度等的变化闭孔隙球化和缩小阶段烧结体致密度达到烧结体致密度达到90%90%90%以上以上以上,,孔隙闭合后孔隙闭合后,,孔隙形状趋于球形并缩小缩小。
4.2 4.2 烧结的基本过程烧结的基本过程41)烧结为什么会发生烧结为什么会发生??2)烧结是怎样进行的烧结是怎样进行的??4.34.3 烧结理论的两个最基本的问题51)烧结为什么会发生烧结为什么会发生??烧结是系统自由能减低的过程。
•由于颗粒结合面的增大和颗粒表面的平直化,粉末体的总表面积和总表面自由能减小•粉末体内孔隙的总体积和总表面积减小•粉末内晶格畸变的消除62)烧结是怎样进行的烧结是怎样进行的??烧结的机构和动力学问题,研究烧结过程中各种物质迁移方式以及速率。
7单元系烧结是指:纯金属或有固定成分的化合物的粉末在固态下的烧结,不会出现新组成物或者新相,也不会出现凝聚状态的改变。
4.4 4.4 单元系烧结单元系烧结8一、烧结温度和时间•单元系的烧结主要机构是扩散和流动构是扩散和流动。
粉末冶金原理烧结ppt课件
二、烧结的热力学问题
粉末有自动粘结或成团的倾向 粉末烧结使系统自由能减少的过程 烧结系统自由能降低是烧结过程的原动力。烧结
后系统自由能降低包括下述几个方面: (1)由于颗粒结合面(烧结颈)的增大和颗粒表
面平直化,粉末体的总比表面积和总表面自由能 减小; (2)烧结体内孔隙的总体积和总表面积减小; (3)粉末颗粒内晶格畸变部分消除。
借助于建立物理、几何或化学模型, 进行烧结过程的计算机模拟(蒙特-卡 洛模拟)
粉末烧结过程模拟
多相粉末烧结
液相烧结
三、烧结技术的发展
● 外力的引入(加压同时烧结): ➢ HP、HIP、超高压烧结(纳米晶材料)等 ➢ 气压烧结
●快速烧结技术
1 电固结工艺 2 快速热等静压(quick-HIP) 3 微波烧结技术 4 激光烧结 5 等离子体烧结 6 电火花烧结
按烧结过程有无液相出现
固相烧结:
单元系固相烧结:单相(纯金属、化合物、固溶体)粉末 的烧结:烧结过程无化学反应、无新相形成、无物质聚集 状态的改变。 多元系固相烧结:
两种或两种以上组元粉末的烧结过程,包括反应烧结等。
无限固溶系:Cu-Ni、Cu-Au、Ag-Au等 有限固溶系:Fe-C、Fe-Ni、Fe-Cu、W-Ni等 互不固溶系:Ag-W、Cu-W、Cu-C等
烧结颈长大
3.封闭孔隙球化和缩小阶段 当烧结体密度达到90%以后, 多数孔隙被完全分隔,闭
孔数量大的增加,孔隙形状趋近球形并不断缩小。在这个 阶段,整个烧结体仍可缓慢收缩,但主要是靠小孔的消失 和孔隙数量的减少来实现。这一阶段可以延续很长时间, 但是仍残留少量的隔离小孔隙不能消除。也就是一般不能 达到完全致密。
对烧结定义的理解-1:
● 粉末也可以烧结(不一定要成形) 松装烧结,制造过滤材料(不锈钢,青铜,黄铜,钛等)
第四章-固相反应与烧结PPT课件
1
dG K dt K
(1G)3
1
1(1G)3
----金斯特林格微分方程
讨论:
(1) 适用更大的反应程度; 由金斯特林格方程拟合实验结果,G=0.246-0.616时, FK(G)~t,有很好的线性关系,KK=1.83; 由杨德尔方程知FJ(G)~t线性关系很差,KJ由1.81增加到2.25
(2) 从方程本身看:
反应物间的机械接触,即在界面进行反应, 与接触面F有关。
转化率(G):
参与反应的反应物,在反应过程中被反应了的体积分数。
(1) 设反应物颗粒呈球状,半径R0, 则时间t 后,颗粒外层有x厚
度已被反应,此时
x
G = R 03 - R (03 R 0 - x3 ) R 0xR 0(1 - G )1 3
则固相反应动力学一般方程为
.
2
不同物质泰曼温度与其熔点的关系:
泰曼温度
金属 0.3~0.4Tm 盐类 0.57Tm 硅酸盐类 0.8~0.9Tm
▪ 当反应物之一有晶型转变时,则转变温度通常是反
应开始明显的温度 --海德华定律 Hedvall’s Law
控制反应速度的因素:
化学反应本身
反应新相晶格缺陷调整速率
晶粒生长速率
反应体系中物质. 和能量的输送速率
讨论:
1
F J(G )[1(1G )3]2K Jt
(1) FJ(G)~t 呈直线关系,通过斜率可求KJ, 又由 KJ=Cex pR G(R T -) 可求反应活化能。
(2) KJ与D、R02有关
KJ
2DC0 R02
(3) 杨德尔方程的局限性
假定的扩散截面不变 x/R0 很小,因而仅适用于反 应初期,如果继续反应会出现大偏差。G < 0.3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT学习交流
4
图6 粉状成型体的烧结过程示意图
PPT学习交流
5
6/1
12/2
a)烧结前
b)烧结后
图7 铁粉烧结的SEM照片
PPT学习交流
6ห้องสมุดไป่ตู้
a)烧结前
b)烧结后
图7 BICUVOX.10烧结的SEM照片
PPT学习交流
7
坯体中颗粒重排,接触处
烧结初期
产生键合,空隙变形、缩
烧
小(即大气孔消失),固-
F v
S x
(3)
PPT学习交流
19
塑性流动传质:如果表面张力足以使晶体产生位错,
这时质点通过整排原子的运动或晶面的滑移来实现物
质传递,这种过程称塑性流动。可见塑性流动是位错
运动的结果。与粘性流动不同,塑性流动只有当作用
力超过固体屈服点时才能产生,其流动服从宾汉
(Bingham)型物体的流动规律即,
结
气总表面积没有变化。
过
程 的
烧结中期
传质开始,粒界增大,空 隙进一步变形、缩小,但
三
仍然连通,形如隧道。
个
阶
段
烧结后期
传质继续进行,粒子长大, 气孔变成孤立闭气孔,密
度达到95%以上,制品强 度提高。
PPT学习交流
8
二、烧结推动力
粉体颗料尺寸很小,比表面积大,具有较高的表面能, 即使在加压成型体中,颗料间接面积也很小,总表面积 很大而处于较高能量状态。根据最低能量原理,它将自 发地向最低能量状态变化,使系统的表面能减少。
第二节 烧结过程及机理
一、烧结过程
(一)烧结温度对烧结体性质的影响 图5是新鲜的电解铜粉(用氢还原的),经高
压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
PPT学习交流
1
比电导(Ω-1 c·m-3)
密 度
拉力(kg/cm3) (g/cm2)
PPT学习交流
15
(a)
(b)
图10 被水膜包裹的两固体球的粘附
PPT学习交流
16
图11 在扩展的粘附接触面上的变形作用 (A处的细线表示粘附力)
PPT学习交流
17
(二) 物质的传递
在烧结过程中物质传递的途径是多样的,相应 的机理也各不相同。但如上所述,它们都是以表 面张力作为动力的。 有流动传质 、扩散传质 、 气相传质 、溶解—沉淀传质。
c'c0 cexp3 1
c0 c0
PPT学习交流
22
一般烧结温度下,
于是
c 3 1
c0 kT
c
3 kT
c0
从式可见,在一定温度下空位浓度差是与表面 张力成比例的,因此由扩散机理进行的烧结过 程,其推动力也是表面张力。
表面凹凸不平的固体颗粒,其凸处呈正压,凹处呈负 压,故存在着使物质自凸处向凹处迁移。
PPT学习交流
10
如果固体在高温下有较高蒸气压,则可以通 过气相导致物质从凸表面向凹表面处传递。此 外若以固体表面的空位浓度C或固体溶解度L分 别代替式2中的蒸气压P,则对于空位浓度和溶 解度也都有类似于式 2的关系,并能推动物质 的扩散传递。
PPT学习交流
14
由此可见,粘附是固体表面的普遍性质,它起因于固 体表面力。当两个表面靠近到表面力场作用范围时.即发 生键合而粘附。粘附力的大小直接取决于物质的表面能和 接触面积,故粉状物料间的粘附作用特别显著。
水膜的例子,见图10
因此,粘附作用是烧结初始阶段,导致粉体颗粒间产 生键合、靠拢和重排,并开始形成接触区的一个原因。
可见,作为烧结动力的表面张力可以通 过流动、扩散和液相或气相传递等方式 推动物质的迁移。
PPT学习交流
11
图9 凹凸不平的固体表面的附加压强差及物质迁移
PPT学习交流
12
三、烧结机理
(一) 颗粒的粘附作用 (二) 物质的传递
PPT学习交流
13
(一) 颗粒的粘附作用
例子:
把两根新拉制的玻璃纤维相互叠放在一 起,然后沿纤维长度方向轻轻地相互拉过,即 可发现其运动是粘滞的,两根玻璃纤维会互相 粘附一段时间,直到玻璃纤维弯曲时才被拉开, 这说明两根玻璃纤维在接触处产生了粘附作用。
温度(°C)
图5 烧结温度对烧结体性质的影响 l一比电导 2一拉力 3一密度
PPT学习交流
2
结果与讨论:
1.随烧结温度的升高,比电导和抗拉强度增加。
2.曲线表明,在颗粒空隙被填充之前(即气孔率显著 下降以前),颗粒接触处就已产生某种键合,使得电 子可以沿着键合的地方传递,故比电导和抗拉强度 增大。
C0nN0 exp(kGTf )
PPT学习交流
21
倘若质点(原子或离子)的直径为δ,并近似地令空位体积
为δ3,则在颈部区域每形成一个空位时,毛细孔引力所做
的功△W=γδ3/ρ。故在颈部表面形成一个空位所需的能
量应为△Gf=-γδ3/ρ,相应的空位浓度为
cexp[Gf
3
]
kT kT
在颈部表面的过剩空位浓度为
3.温度继续升高,物质开始向空隙传递,密度增大。 当密度达到理论密度的90~95%后,其增加速度显著 减小,且常规条件下很难达到完全致密。说明坯体 中的空隙(气孔)完全排除是很难的。
PPT学习交流
3
(二)烧结过程的模型示意图
根据烧结性质随温度的变化,我们可以把烧 结过程用图6的模型来表示,以增强我们对烧结 过程的感性认识。
烧结是一个自发的不可逆过程,系统表面 能降低是推动烧结进行的基本动力。
PPT学习交流
9
表面张力能使凹、凸表面处的蒸气压P分别低于和高 于平面表面处的蒸气压Po,并可以用开尔文本公式表 达:
对于球形表面 ln P 2M (1)
P0 dRTr
对于非球形表面
lnP M (11)(2)
P0 dRTr1 r2
1.流动传质
这是指在表面张力作用下通过变形、流动引起 的物质迁移。属于这类机理的有粘性流动和塑性 流动。
PPT学习交流
18
粘性流动传质 :
若存在着某种外力场,如表面张力作用时, 则质点(或空位)就会优先沿此表面张力作用的方 向移动,并呈现相应的定向物质流,其迁移量是 与表面张力大小成比例的,并服从如下粘性流动 的关系:
F v
S
x
(3)
式中,τ是极限剪切力。
PPT学习交流
20
2. 扩散传质 扩散传质是指质点(或空位)借助于浓度梯度
推动而迁移的传质过程。如图7和图8所示,烧 结初期由于粘附作用使粒子间的接触界面逐渐 扩大并形成具有负曲率的接触区。在颈部由于 曲面特性所引起的毛细孔引力△ρ≈γ/ρ。
对于一个不受应力的晶体,其空位浓度Co 是取决于温度T和形成空位所需的能量△Gf