39、5.5应用一元一次方程—希望工程义演

合集下载

《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3

《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3

应用一元一次方程——“希望工程〞义演教学设计〖教学目标〗1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,开展分析问题、解决问题的能力。

2.让学生在自己不断的努力和对实际问题的探索研究中,体验成功的快乐,激发学生的学习兴趣和热情,培养学生勇于探索的科学精神。

3.通过对“希望工程〞义演中的数学问题的探讨,进一步体会方程模型的作用。

〖教材分析〗通过前几节知识的学习,学生已学会通过分析简单问题中量与未知量的关系列出方程解应用题。

列一元一次方程解应用题的难点在于根据题意找出等量关系,它同时又是解决这个问题的关键所在。

所以,本节课仍然以生动的联系生活的情境,继续培养学生分析等量关系,列方程解决实际问题的能力。

本节课以求解一个实际问题为切入点,让学生经历抽象、符号变换、应用等活动,展现运用方程解决实际问题的一般过程。

帮助学生认识寻找等量关系是列方程解决实际问题的核心和关键。

我们有时可以借助图示或列表的方法去表达问题的信息,寻求其中的等量关系。

〖学校及学生状况分析〗在前面的学习中,学生经历了“建立方程模型〞这一数学化的过程,理解了学习方程的意义,初步掌握了运用方程解决实际问题的一般过程。

但学生在列方程解应用题时常常会遇到以下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到一些等量关系但不能列出方程。

因此,教学中要指导学生借助图表整体把握和分析问题,引导学生多角度思考问题,寻找等量关系。

〖教学设计〗(一)创设情境多媒体显示场景“希望工程〞义演现场,两人对话如下:A:观众真多呀!B:是呀,这次演出共售出了1000张票。

A:筹了多少钱?B:共筹得票款6950元,全部捐给了“希望工程〞。

问:你知道成人票与学生票各售出多少张吗?【教学说明:以动画的形式再现生活场景,让学生感受到数学就在我们身边,有利于调动学生的积极性和参与意识。

】(二)探索研讨1.议一议(1)从动画中,你可以得到哪些信息?(2)在这个问题中包含了哪些等量关系?学生汇报:量:成人票价8元/张、学生票价5元/张、成人和学生总票数1000张、成人和学生总票款6950元。

北师大版七年级数学上册第5章 5.5 应用一元一次方程—“希望工程”义演 培优训练(含答案)

北师大版七年级数学上册第5章  5.5 应用一元一次方程—“希望工程”义演    培优训练(含答案)

北师版七年级上册第五章一元一次方程5.5应用一元一次方程——“希望工程”义演培优训练卷一.选择题(共10小题,3*10=30)1.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108B.54+x=80%(108-x)C.54-x=80%(108+x)D.108-x=80%(54+x)2.某公路收费站的收费标准如下:中型汽车为20元/辆,小型汽车为10元/辆.一天上午的某个时段内,该收费站共通过了50辆车,这些车共缴费700元,那么该时段内共通过小型汽车( )A.20辆B.25辆C.30辆D.10辆3. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D .2×22x =16(27-x)4.某车间有20名工人生产螺栓和螺母,每人每天能生产螺栓12个或螺母18个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =18(20-x)B .18x =12(20-x)C .2×18x =12(20-x)D .2×12x =18(20-x)5.某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( ) A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 6.在甲处工作的有272人,在乙处工作的有196人,如果要使乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设从乙处调x 人到甲处,则下列方程正确的是( ) A .272+x =13(196-x) B.13(272-x)=196-x C.13×272+x =196-x D.13(272+x)=196-x7.在一农场,鸡的只数与猪的头数的和是70,而鸡的脚数和猪的脚数的和是196,则鸡比猪多( )A.14只B.16只C.22只D.42只8.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额5个,问规定时间是多少.设规定的时间为x小时,则有( ) A.38x-15=42x+5B.38x+15=42x-5C.42x+38x=15+5D.42x-38x=15-59.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A.6名B.7名C.8名D.9名10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场二.填空题(共8小题,3*8=24)11.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为______人,根据题意,可列方程为________________,解得___________.12.根据图中提供的信息,可知一个杯子的价格是________.13.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为______________,解得________.14.一件工程,甲队单独做要8天完成,乙队单独做要9天完成,甲队做3天后,乙队来支援,两队合做x 天完成任务的34,则由此条件可列出的方程是_______________________. 15.甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为_________.16. 已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为________岁.17.打印一份材料,甲要16小时,乙要20小时,甲打印6小时,乙接着打印,乙还要_________小时完成.18.我市围绕“科学节粮减损,保障粮食安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小粮仓农户实际出资是___________.三.解答题(共7小题,46分)19. (6分) 某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?20. (6分)) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?21. (6分) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.22. (6分)某县中学生足球联赛共赛10轮(即每队需比赛10场),其中胜一场得3分,平一场得1分,输一场得0分,向明中学足球队在这次联赛中所负场数比踢平场数少3场,结果共得19分,向明中学足球队在这次联赛中胜了几场?23. (6分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?24. (8分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25. (8分) ) 公园门票价格规定如下表:某校七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)若两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案1-5BCDDD 6-10DABAC11. (54-x),8x =10(54-x),x =3012.8元13. (16+14)x =1,x =12514. x +38+x 9=3415.10天16. 1217. 12.518.80元19. 解:设创建小图书角x 个,则创建大图书角(30-x)个,根据题意可得160x +(30-x)×(2×160-80)=5600,解得x =20,则30-20=10,答:创建小图书角20个,则创建大图书角10个20. 解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x =1, 解这个方程,得x =115,115小时=2小时12分, 答:甲、乙一起做还需2小时12分才能完成工作21. 解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150-x)元, 依题意得50%x +60%(150-x)=80,解得x =100,150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元22. 解:设该足球队平x场,依题意得3[10-x-(x-3)]+x=19,解得x=4,所以[10-x-(x-3)]=5,答:向明中学足球队在这次联赛中胜5场23. 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)=140.所以x=10,15-x=15-10=5答:该公司应安排10天精加工,5天粗加工24. 解:(1)能履行合同.设甲、乙合做x天完成,则有(130+120)x=1,解得x=12<15,因此两人能履行合同(2)由(1)知,二人合作完成这项工程的75%需要的时间为12×75%=9(天),剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=1 24,因为130<124<120,故调走甲更合适25. 解:(1)设七(1)班有x人,则13x+11(104-x)=1240或13x+9(104-x)=1240,初中数学解得x=48或x=76(不合题意,舍去).答:七(1)班48人,七(2)班56人(2)1240-104×9=304(元).答:可省304元钱(3)要想享受优惠,由(1)可知七(1)班48人,只需多买3张,51×11=561,48×13=624>561,所以48人买51人的票可以更省钱11/ 11。

5.5应用一元一次方程——希望工程义演例题与讲解

5.5应用一元一次方程——希望工程义演例题与讲解

5 应用一元一次方程——“希望工程”义演1.对于复杂的实际问题,可借助于表格分析数量关系,从而建立方程解决问题;2.体会由于设未知数的不同,所列方程的复杂程度就不同,因此设未知数要有所选择;3.体会方程模型作用,发展学生分析问题、解决问题的能力.三、学习重点和难点重点:进一步熟练列一元一次方程解应用题的一般步骤,学会用图表分析数量较为复杂的应用题. 难点:用图表分析数量关系较为复杂的应用题;从多角度思考问题,寻找等量关系.1.等量关系的确定列方程解应用题的关键是找出能够反映题意的一个等量关系.对于复杂问题的等量关系可采用列表法分析数量之间的关系.一般可从以下几个方面确定等量关系:(1)抓住问题中的关键词,确定等量关系.如问题中的“和”、“差”、“倍”、“多”、“少”、“快”、“慢”等都是确定等量关系的关键词.(2)利用公式或基本数量关系找等量关系.(3)从变化的关系中寻找不变的量,确定等量关系.【例1】刘成用150元买了甲、乙两种书,共20本,甲种书单价10元,乙种书单价5元,则刘成买了这两种书各多少本?分析:本题的两个等量关系是:甲种书款+乙种书款=150元,甲种书量+乙种书量=20本.本题有两个未知数:甲种书的数量和乙种书的数量.因此既可以设甲书的数量为未知数,又可以设乙书的数量为未知数.解:(方法1)设刘成买了甲种书x本,则买了乙种书(20-x)本,根据题意,得10x+5(20-x)=150,10x+100-5x=150,5x=50,x=10,20-10=10(本).答:刘成买了甲、乙两种书各10本.(方法2)设买了乙种书x本,则甲种书有(20-x)本.根据题意,得10(20-x)+5x=150,200-10x+5x=150,-5x=-50,x=10,20-10=10(本).答:刘成买了甲、乙两种书各10本.2.未知数的设法较复杂的问题,未知量可能有两个或两个以上,选择一个适当的未知量设为未知数非常重要.未知数设的适当,能给列方程带来简便.未知数的设法大致有两种:直接设未知数和间接设未知数.另外还可以根据解决问题的需要设出辅助未知数帮助解答.(1)直接设未知数直接设未知数,就是题目中问什么就设什么.对于只有一个相等关系的问题,直接设未知数就能解决问题.而对于较复杂的问题,直接设未知数时列方程可能会较困难.(2)间接设未知数,就是所设的未知数不是问题中最后所要求的未知数,而是设另外的量为未知数,这样做的好处是便于理顺数量关系、易于列方程.(3)设辅助未知数在列方程解应用题时,有时为了解题的需要,将某些量之间的关系说得更清晰,我们引入一些辅助未知数.这些未知数在解方程的过程中,往往是约掉了或者抵消了,最后求出的问题的解与这些未知数无关,因此,被称为辅助未知数.________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________________________________________________________【例2-1】 一位老人立下遗嘱:把17头牛按12,13,19分给他的大儿子、二儿子、三儿子,问三个儿子各分得多少头牛?分析:解答本题,若直接设三个儿子分别分得多少头牛来求解比较困难,因为遗嘱中规定的大儿子、二儿子、三儿子应分得牛的头数的比例为12∶13∶19=9∶6∶2,所以可设一份为x ,然后根据“大儿子所分得的牛的头数+二儿子所分得的牛的头数+小儿子所分得的牛的头数=17”列方程求解.解:因为12∶13∶19=9∶6∶2,所以设每一份为x 头牛,则三人所分得的牛的头数分别为9x,6x,2x .根据题意,得9x +6x +2x =17.解这个方程,得x =1.所以9x =9,6x =6,2x =2.答:三个儿子分别分得9头、6头、2头牛. 【例2-2】 高一某班在入学体检中,测得全班同学的平均体重是48千克,其中男同学平均体重比女同学平均体重多20%,而女同学人数比男同学人数多20%.求男、女同学的平均体重.分析:本题中的未知量有四个——男、女同学的平均体重和男、女同学的人数,可以设女同学的平均体重为x 千克,男同学有y 人两个未知数,根据本题中的相等关系“男女同学的总体重=全班同学的平均体重×总人数”列出一个方程,其中的未知数y 在解方程的过程中被约掉了,这里的y 就是辅助未知数.解:设女同学平均体重为x 千克,则男同学平均体重为1.2x 千克,设男同学为y 人,则女同学为1.2y 人.根据题意,得1.2xy +1.2xy =48(y +1.2y ).合并同类项,得2.4xy =48×2.2y .∵y ≠0,∴方程两边同除以2.4y ,得x =44.∴1.2x =1.2×44=52.8(千克).答:男同学的平均体重为52.8千克,女同学的平均体重为44千克.3.几种复杂的应用问题含有两个或两个以上的等量关系的应用题主要有以下三种:(1)按比例分配问题按比例分配问题是指已知两个或几个未知量的比,分别求几个未知量的问题. 比例分配问题中的相等关系是: 不同成分的数量之和=全部数量.(2)工程问题工程问题中的相等关系是: 工作量=工作效率×工作时间; 甲的工作效率+乙的工作效率=合作的工作效率; 甲完成的工作量+乙完成的工作量=完成的总工作量.解答工程类问题时,常常把总工作量看成整体1.找出工作效率(即单位时间内的工作量)是解答的关键.(3)资源调配问题 资源调配问题一般采取列表法分析数量关系,利用表格,可以很清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.【例3】 甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否完成该合同?为什么?(2)现两人合作了该工程的75%,因别处有急事,必须调走一人,问调走谁更合适一些?为什么?分析:(1)设甲、乙两人合作x 天完成合同,列出一元一次方程求出x 的值,即可知道甲、乙两人能否完成该合同;(2)因两人已完成了该工程的75%,分别计算出甲、乙两人单独做完未完成的25%各需要多少时间,调走合同期内不能完成任务的人更合适一些.解:(1)设甲、乙两人合作x 天完成合同,则甲、乙的工作效率分别为130,120.依题意,得⎝⎛⎭⎫130+120x =1.解这个方程,得x =12.因为12<15,所以两人能完成该合同. (2)调走甲更合适一些.理由:设甲单独完成剩下的工程需x 天,乙单独完成剩下的工程需y 天.依题意,得130x =1-75%,120y =1-75%.解得x =7.5,y =5. 因为两人合作12天完成任务,所以完成任务的75%需要12×75%=9(天),所以还剩6天可以让另一个人单独完成任务.而7.5>6,5<6,说明甲不能按期完成任务,而乙能完成.所以调走甲更合适一些.。

5.5 应用一元一次方程—“希望工程”义演

5.5 应用一元一次方程—“希望工程”义演

5.5 应用一元一次方程—“希望工程”义演一.解答题(共20小题)1.(2020秋•雁塔区校级期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班各以班为单位购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?2.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?3.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:购票张数1~30张31~60张60张以上每张票的价格15元12元10元原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?4.(2020秋•吉林期末)公园门票价格规定如下表:购票张数1~50张51~90张90张以上每张票的价格13元11元9元某校七年级一、二两个班共100人去游园,七年一班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1196元.问:(1)两个班各有多少学生;(2)如果两个班联合起来,作为一个团体购票,可省多少元;(3)如果七年一班单独组织去游园,作为组织者的你如何购票才最省钱.5.(2020秋•武都区期末)非遗园的门票价格规定:购票人数1~40人,票价120元;购票人数41~80人,票价100元;购票人数80人以上,票价80元.(1)蚌埠路小学六(1)班36人、六(2)班46人一起去游非遗园.①如果两班都以班为单位分别购票,那么一共需多少钱?②如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)现又来了两个旅游团,甲团人数少于乙团人数,如果两团都以团为单位分别购票,则一共需付8080元.如果两团作为一个团体购票则需付7600元.问:两个旅游团各有多少人?6.(2020秋•兖州区期末)公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?7.(2020秋•南岗区期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?8.(2020秋•兰州期末)某校科技小组的26名学生在1名生物老师的带领下准备前往国家森林公园考察标本,森林公园的票价是每人5元,一次性购满30张,每张票可少收1元.当老师准备到售票处买27张票时,平时爱动脑筋的聪聪喊住了老师,提议买30张票.(1)请你回答,买30张票合算还是买27张合算,为什么?(2)当少于30人进入森林公园,入园人数为多少时,按实际人数购票和买30张票,两种方法付款相同?9.(2020秋•丹江口市期中)近期电影《我和我的家乡》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n,购买张数1≤n≤5051≤n≤100n>100每张票的价格40元35元30元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有102人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3815元.(1)求两个班各有多少个同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?10.(2019秋•彭水县期末)为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?11.(2019秋•高明区期末)研学基地高明盈香生态园的团体票价格如表:数量(张)30~5051~100101及以上单价(元/张)806050某校七年级(1)、(2)班共102人去研学,其中(1)班人数较少,不足50人,两个班相差不超过20人.经估算,如果两个班都以班为单位购票,则一共应付7080元,问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?12.(2019秋•琼中县期末)列方程解应用题我县某校七年级师生共60人,前往海口电影公社参加“研学”活动,商务车和快车的价格如下表所示:(教师技成人票购买,学生按学生票购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站商务车快车商务车快车营根海口42353830若师生均乘坐商务车,则共需2296元.问参加“研学”活动的教师有多少人?学生有多少人?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:购票张数1~50张51~100张100张以上每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•贵阳期末)2019第九届贵阳汽车文化节.在贵阳国际会展竟中心设置了室外展馆和室内展馆.某单位组织150名员工参观,每名员工只参观一个展馆,共支付票款2000元,票价信息如下:地点票价室外展馆10元/人室内展馆20元/人(1)参观室外展馆和室内展馆的人数各是多少人?(2)若举办方针对100人以上的团体给予所有票价八折优惠,在总人数与总支付票款不变的情况下,参观室内展馆的人数是多少?15.(2019秋•江岸区期中)近期电影《少年的你》受到广大青少年的喜爱,某校七年级1班、2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n:购买张数1≤n≤5051≤n≤100n>100每张票的价格38元30元26元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有104人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3504元.(1)求两个班各有多少同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?16.(2020秋•肃州区期末)为准备联合韵律操表演,甲、乙两校共100名学生准备统一购买服装(一人买一套)参加表演,(其中甲校人数多于乙校人数,且甲校学生不够99人)下面是服装厂给出的演出服装的价格表:购买服装的套数1套至49套50套至99套100套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5420元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学被抽调去参加书法比赛不能参加韵律操演出,请你为两校设计一种最省钱的购买服装方案.17.(2019秋•岐山县期末)2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?18.(2019秋•武昌区校级期中)公园的门票价格规定如下表:购票张数1到50张51到100张101到150张150张以上每张票的价格12元10元8元超过150张的部分7元某校七年级(1)(2)两个班共104人,其中(1)班40多人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1136元,问:(1)若两班联合起来作为一个团体购票,可省多少钱?(2)两班学生各有多少人?(3)若七年级(3)班有n人(46<n<55)与(1),(2)班一起去游园,某商家赞助,支付三个班的所有门票费,则该商家最少花费元(用含n的式子表示).19.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.20.(2018秋•下陆区期末)某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数1~40张41~80张81张(含81张)以上平均票价(元/张)1009080(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?。

陈芹5.5希望工程义演教案

陈芹5.5希望工程义演教案

第五章一元一次方程§5.5应用一元一次方程---“希望工程”义演授课人:薛城区周营镇中心中学陈芹课型:新授课授课时间: 2012年12月5日,星期三,第三节课教学目标:1.借助表格学会分析复杂问题中的数量关系和等量关系,建立方程模型解决实际问题,发展分析问题,解决问题的能力.2.通过解决实际问题,体会直接间接设未知数的解题思路,建立方程解决实际问题,使学生明确必须检验方程的解是否符合题意.教学重点:1.用图表分析问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.2.设恰当的未知数,列方程求解.教学难点:选择比较恰当的设求知数的方法.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一.创设情境,引入新课.多媒体展示一组贫困地区儿童上学的图片,与我们学生对比,建立“希望工程”的情境,导入新课.师: 希望工程是由中国青少年发展基金会于1989年10月发起并组织实施的一项社会公益事业.它的宗旨:根据政府关于多渠道筹集教育经费的方针,从社会集资,建立希望工程基金,以民间救助方式,资助贫困地区失学儿童,继续学业,改善贫困地区的办学条件.师:有谁知道希望工程的目标是什么?生:希望工程的目标是:改善办学条件,消除失学现象,配合政府完成普及九年制义务教育任务.师:对﹗自1989年推出希望工程至今,10年来希望工程共救助失学儿童230万名,援建希望小学8000所,接受海内外捐款18亿元,影响遍及海内外,成为当今中国最著名.最具影响力的公益事业.生: 观看图片,发表对“希望工程”的认识和想法.设计意图:通过创设教学情境,激发学生的学习兴趣,让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维.通过这一情境的引入,让学生感受到自己的幸福,要更加珍惜自己的学习时光,并尽力去帮助那些贫困地区的失学儿童.极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 为了能让更多的失学儿童回到课堂,社会各界人士都在为“希望工程”而努力,现在有一文艺团体就为“希望工程”募捐组织了一场义演.这节课我们学习§5.5应用一元一次方程---“希望工程”义演.(板书课题)二.自主探索,合作交流.探究一:教师播放课件,给出例题:1.某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元.成人票和学生票各售出多少张?师:请两位同学就自己对教材中问题的理解,一人为售票员,一人为学生买票,把这个场景模拟表演一下.生:两人表演.设计意图:题目以短剧的形式出现,使学生更进一步理解了题意.让学生将应用题中的场景,模拟到现实生活中来,培养学生解决实际问题的能力.感悟数学与生活的紧密联系,了解用数学知识解决生活中的实际问题的必要性.师:让学生分析题目中的每一句话所包含的含义.数量关系.等量关系,以及在这个问题中,售出1000张票的意义是什么?怎样理解票款6950元?生:自主探究.合作交流,小组讨论.师:从上面的问题中,你能得出哪些等量关系?生:成人票数+学生票数=1000张(1)生:成人票款+学生票款=6950元(2)设计意图:通过自主学习,培养学生自立,自信的精神,与组内同学交流,培养合作.互助精神,提高学生分析问题.解决问题的能力.师:一般当问题中的未知量只有一个时,求什么就设什么为x,采用直接设未知数法.当问题中所求的未知数不止一个,而问题中的等量关系也不止一个,我们可以采取一种新的分析应用题的方法------列表分析法.(1)设售出的学生票为x张,则可得:生:自主探究学习,然后进行组内合作,交流各自设未知数解决问题的办法.教师要引导学生学会读图.审题,引导学生探讨例题的解决方法,融入到学生的讨论中去.通过讨论师生共同得出结论:设售出的学生票为x 张,则可得:根据等量关系(2),可列出方程: 解得:x =350因此,成人票650张,学生票350张.设计意图:让学生了解找等量关系的方法,设元的方法,以及加强学生在用一元一次方程解决实际问题的过程中,进一步明确必须检验方程的解是否符合实际.师:通过交流大家发现本题含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程.那么,看看刚才我们利用等量关系1设未知数,用等量关系2列方程,还有其他的解题方法吗?生:小组讨论,合作探究,得出结论:可以设售出的成人票款为y 元. (2)设售出的成人票款为y 元,则可得:生:自主探究学习,然后进行组内合作,交流各自设未知数解决问题的办法.教师要引导学生学会读图.审题,引导学生探讨例题的解决方法,融入到学生的讨论中去.通过讨论师生共同得出结论: 设售出的成人票款为y 元,则可得:5810006950x x +-=()根据等量关系(1),可列出方程: 解得:y =1750 1750÷5=350(张) 1000-350=650(张)因此,成人票650张,学生票350张.师:比较两种解题方法,你从中学到了什么? 生:第一种方法比较简单. 师:还可以怎么设?生:小组讨论,合作交流,回答问题. 生1:还可以设成人票数为x 张. 生2:还可以设学生票款为y 元.设计意图:当问题中所求的未知数不止一个,而问题中的等量关系也不止一个,让学生真正感到,列表分析法对于解题的重要性,从而接受这样一种新的分析应用题的方法,在这个过程中,主要让学生体会间接设未知数解方程的思路,体会方程模型的作用.师点拨:含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程是如何实施的;解法一的求解过程比较简单;不论选择哪种方法,在解题前,首先要明确数量关系,而在这里运用列表法是一种比较有效的工具. 探究二:如果票价不变,那么售出1000张票所得票款可能是6930元?学生票.成人票各是多少张呢?为什么?生: (先独立思考,再小组内交流后回答问题.) 生: (通过实物投影展示答案.)解:不能.设售出的学生票为x 张,则 8(1000-x )+5x = 6930解得:x =35623因为票数只能为整数,不能为小树或分数. 所以x 不能等于35623,要舍去.师点拨:在实际问题中,方程的解是有实际意义的,因此应将解带入原方程看是否符合题意.小组讨论:用一元一次方程解决实际问题的一般步骤是什么?想一想,说一说!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)6950100058y y-+=设计意图:教师引导学生根据以往的经验总结出用方程解决实际问题的一般步骤,加深学生对每一步的理解.让学生能从实际问题中抽象出数学问题,然后分析问题中的等量关系,并列出方程求出解,然后验证解的合理性,让学生学会建立方程模型解决实际问题,发展学生分析问题,解决问题的能力.三.巩固训练,夯实基础师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:小明用172元钱买了两种书,共10本,单价分别为18元.10元,每种书小明各买了多少本?生:(独立完成后回答,如有疑难可在小组内交流.讨论.)生:实物投影展示答案.解:设单价为18元的书x本,则买了单价为10元的书(10-x)本,根据题意得18x+10(10-x)=172解得x = 9 ,因此,单价为18元的书有9本,单价为10元的书有1本.师:通过前面的练习,同学们想一想,说一说:列一元一次方程解决问题应该分为哪几步?生: 以小组为单位,进行组内交流,讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:先找等量关系.生2:设未知数.生3:根据等量关系列方程.生4:还要检验解的合理性.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的方程.求出的解符合要求吗?生:自我检查,同位之间互查.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.设计意图:让学生从实际问题中抽象出数学问题,学会找出等量关系,根据等量关系列出方程并求出解,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性.积极性;规定解方程的书写要求并用多媒体展示,目的在于让学生体会数学的规范性,严密性,给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生体会到设未知数解方程的思路,体会方程模型的作用.掌握了设未知数解方程的思路――先设未知数,再列方程,使课堂气氛显得格外轻松.同时即增强了思维的灵活性,又降低了学习的难度,调动了学生学习的积极性.四.拓展延伸,能力提高(2002年江西省中考试题)有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达通道口时发现由于拥挤,每分钟只能3人通过,此时自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计)通过道口后,还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校以节省时间考虑,王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间,每分钟仍有人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口,问维持秩序的时间是多少?生:( 以小组为单位,进行组内交流.讨论后回答问题.)设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会找等量关系列方程,进一步学生体会到设未知数解方程的思路,体会方程模型的作用.五.课堂小结,收获共享师:请同学们谈一谈,通过本节课的学习,你有哪些收获?学生畅谈收获:生1.通过对“希望工程”的了解,让我首先珍惜自己的学习时光,并力所能及的去帮助那些贫困地区的学生们,让他们也能读上书,与我们共同为建设我们的国家努力.生2.同时我们也学习到遇到较为复杂的实际问题时,我们可以借助表格分析问题中的数量关系,并找出若干个较直接的等量关系,借此列出方程.并进行方程解的检验.生3.同样的一个问题,设的未知数不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择.(生1.生2.生3自发站起来谈学习收获,教师作出点评.补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六.当堂检测:1.今有雉兔同笼,上35头,下94足,问今有雉兔几何?2..一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?3.我区某学校原计划向内蒙古察右后旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%.问:初中学生和高中学生原计划捐赠图书多少册?设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于检测学生是否学会找等量关系列方程,是否能够会设未知数解方程.七.布置作业:P149 习题5.8板书设计:教学反思:列方程解应用题是一个难点,在本节课的设计中,通过丰富多彩的活动以求解一个实际问题为切入点,有梯度性地引导学生进行探索,去突破难点,使不同层面的同学有不同程度的收获.本节课让学生把抽象的问题转化为实际的数学问题并经历建立方程模型的活动,展现运用方程解决实际问题的一般过程.首先,教师让学生自己去理解问题情境,把实际问题抽象成数学问题.然后,教师指导学生借助表格去表达问题的信息,寻找其中的等量关系,列出方程解决实际问题.最后,教师引导学生一题多解,尽量用不同形式列出方程,并加以比较研究,对提高学生的分析问题和解决问题的能力有很大帮助,这也是本节课较成功的地方.我认为本节课的不足是:由于学生活动,小组讨论耽误了一些时间,所以当堂检测题只是出示完答案,没来得及讲解,时间安排还不太合理.。

数学七年级上册5.5《应用一元一次方程--希望工程义演》当堂检测及课后作业(后附答案)

数学七年级上册5.5《应用一元一次方程--希望工程义演》当堂检测及课后作业(后附答案)

七年级上册 5.5 应用一元一次方程——“希望工程”义演一、学习目标1.借助表格分析复杂问题中的数量关系2.会用一元一次方程解决实际问题3.会检验方程的解是否符合实际意义二、当堂检测A组1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是( )A.3x-20=4x-25 B.3x+20=4x+25 C.3x-20=4x+25 D.3x+20=4x-252、小月买了A、B两瓶果汁,一共花了8元,其中A果汁比B果汁贵2元,则A果汁单价为____ 元,B果汁单价为元3、本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?B组(2)所付票款可能是2645元吗?三、课后作业A组1、父亲与小强下棋(设没有平局,且输的一方分数记为0),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.7 B.6 C.5 D.42、某农场要对一块麦田施底肥,现有化肥若干千克.如果每公顷施肥400千克,那么余下化肥800千克;如果每公顷施肥500千克,那么缺少化肥300千克.若设现有化肥x千克,则可列方程为___________________________________.3、学校决定对数学竞赛优胜者进行奖励,获胜者共25人,其中获省级奖的每人奖励价值为200元的奖品,获得市级奖的每人奖励价值50元的奖品,共花去2000元,那么你知道获得省、市奖的学生各有多少人?4、某文具店购进两种型号的笔共80支进行销售,其进价和售价如表:型号进价(元/支)售价(元/支)A型8 12B型10 13(1)该店用700元可以购进A,B两种型号的笔各多少支?(2)在(1)的条件下,若把所购进A,B两种型号的笔全部销售完,能获利多少元?B组5、某车间28名工人生产螺栓和螺母,螺栓与螺母个数1∶2,每人每天平均生产螺栓12个或螺母18个,刚好配套.求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为()。

第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上

第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上

初中数学北师大版七年级上学期第五章 5.5应用一元一次方程——“希望工程”义演一、单选题1.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树。

设男生有x人,则( )A. 3x+2(30-x)=72B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 2x+3(72-x)=302.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设A 种饮料单价为x元/瓶,那么下面所列方程正确的是A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=133.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.4.2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A. 21时B. 22时C. 23时D. 24时5.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A. 10x+5y=75B. 5x+10y=75C. 10x﹣5y=75D. 10x=75+5y二、填空题6.有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.设大和尚有x人,则可列一元一次方程为________.7.鸡兔同笼是我国古代著名趣题之一,书中是这样叙述的:“今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?意思是有若干只鸡兔在同一个笼子里从上面数有35个头,从下面数有94只脚,则笼子中鸡________只,兔________只。

5.5 应用一元一次方程--“希望工程”义演

5.5 应用一元一次方程--“希望工程”义演

1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量; 3.学会用表格分析数量间的关系.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个 劳动力,由于各村人口数不等,只有按2:3:6的比 例摊派才较合理,则三个村庄各派多少个劳动力?
• 2:某校组织活动,共有100人参加,要把 参加活动的人
等量关系:邮票总张数相等
解:设这个班有学生x人, 据题意得 3x+24=4x-26. 解,得 x=50, 此时,3x+24=150+24=174(张). 答:共有学生50人,邮票174张.
练习2:某工厂三个车间共有180人,第二车间人数是第一车间 人数的3倍还多1人,第三车间人数是第一车间人数的 一半还少1人,三个车间各有多少人?
分析:本题中存在2个等量关系:
总票数=成人总票数+学生总票数;
总票款=成人总票款+学生总票款.
方法1分析:列表
学生
票数(张)
x
票款(元)
5x
成人 1000-x 8(1000-x)
(方法1)解:设学生票为x张, 据题意得 5x+8(1000-x) =6950. 解,得 x=350. 此时,1000-x = 1000-350 = 650(张). 答:售出成人票650张,学生票350张.
(2)成人票款共得6400元,学生票款共得2500元, 成人票和学生票共卖出多少张?
分析:票数=总票款÷票价.
解:64800

2500 5

800

500

1300
(元).
答:成人票和学生票共卖出1300元.
例1:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元.
(3)如果本次义演共售出1000张票,筹得票 款6950元,成人票与学生票各售出多少张?

5.5应用一元一次方程——“希望工程”义演教案1-2022-2023学年北师大版七年级数学上册

5.5应用一元一次方程——“希望工程”义演教案1-2022-2023学年北师大版七年级数学上册

5.5 应用一元一次方程——“希望工程”义演一、教学目标1、明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.2、能借助图表分析复杂问题的数量关系,建立方程解决实际问题.3、培养学生的抽象、概括、分析和解决问题的能力.二、课时安排1课时三、教学重点进一步熟练掌握列一元一次方程解应用题的一般方法步骤,学会用图表分析数量较为复杂的应用题.四、教学难点用图表分析数量关系较为复杂的应用题.五、教学过程(一)情境导入举手说一说自己有关“希望工程”的知识,讲解“希望工程”的作用和意义,引入课题.(二)讲授新课1.某文艺团体为“希望工程”募捐组织了一场义演,共售出了解1000张票,筹得票款6950元.成人票和学生票各售出了多少张?(成人:8元;学生:5元)【想一想】:上面问题中包含哪些等量关系?【分析】:售出的票包括成人票和学生票,所得票款包括成人票款和学生票款,因此这个问题中包含着下边两个等量关系:成人票数+学生票数=1000张(1)成人票款+学生票款=6950元(2)解法一、设售出的学生票为x张,填写下表:学生成人票数/张x 1000-x票款/元5x 8×(1000-x)根据等量关系(2)课列出方程:5x+8×(1000-x)=6950解得 x=350因此,售出成人票650张,学生票350张。

解法二、设所得的学生票款为y元,填写下表:学生成人票数/张y÷5 (6950-y)÷8票款/元y 6950-y根据等量关系(1),可列出方程:y÷5+(6950-y)÷8=1000解得y=1750元因此,售出成人票650张,学生票350张。

2议一议:用一元一次方程解决实际问题的一般步骤是什么?(三)重难点精讲等量关系(四)归纳小结利用等量关系列出一元一次方程(五)随堂检测1、有甲.乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍.”乙回答说:“最好是把你的羊给我一只,我们的羊数就一样了”.甲牧童有多少只羊?2、一家游泳馆6-8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,试讨论并回答:(1)什么情况下,购会员证与不购会员证付钱一样多?(2)什么情况下,购会员证比不购会员证更合算?(3)什么情况下,不购会员证比购会员证更合算?六、板书设计5.6 应用一元一次方程—追赶小明概念例题练习七、作业布置1.家庭作业:完成本节课的同步练习;2.预习作业:完成导学案5.5《应用一元一次方程—“希望工程”义演》探究案八、教学反思。

教学设计 “希望工程”

教学设计 “希望工程”

5.5应用一元一次方程——“希望工程”义演【教学设计】设计名称 5.5应用一元一次方程——“希望工程”义演科目数学教学对象黔西五中七(8)班课时1课时教学者张启波一、教材内容分析1.本节课选自北师大版数学教材七年级上册第五章第五节应用一元一次方程——“希望工程”义演。

2.进一步熟练用一元一次方程解应用题的方法步骤,学会将求解的结果代入实际问题中去检验。

3.用一元一次方程解应用题的巩固和提高及进一步完善。

二、教学目标(知识技能、过程与方法、情感态度与价值观)1.知识与技能:(1)明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性。

(2)会列一元一次方程解有关分配问题的应用题。

2.过程与方法:能借助图表分析复杂问题的数量关系,建立方程解决实际问题。

3.情感态度与价值观:(1)进一步体会数学与现实生活的紧密联系,培养学习数学的兴趣。

(2)养成科学严谨的学习态度。

三、教学重难点1.重点:进一步熟悉掌握列一元一次方程解实际问题的一般方法步骤,学会用图表分析较为复杂的应用题。

2.难点:用图表分析较为复杂的应用题。

四、学情分析通过前几节课的学习,学生对一元一次方程的应用有了一定的基础,但分析问题和解决问题的能力不是很强,特别是分析问题,找出等量关系的能力不是很高,所以老师要加强引导,力争顺利完成任务。

五、教学策略选择与设计教学策略选择:启发式、归纳法教学设计:(一)创设情景:(二)新知讲解:(三)新知巩固:(四)集体探究:(五)课堂小结;(六)作业布置;(七)板书设计。

六、教学准备教师准备:粉笔、多媒体等学生准备:课堂练习本,笔七、教学过程教学过程教师活动学生活动设计意图一、创设情景活动(1)展示图片,引入主题。

问题1:图片上最吸引你的是那里?大眼睛小女孩--苏明娟二、新知讲解活动(2)实际应用我县文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元.成人票与学生票各售出多少张?(成人票8元每张,学生票5元每张)规范板书:教师点评学生过程,并规范应用一元一次方程解决实际问题的规范过程.问题:请注意检验!变式我县文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6930元.成人票与学生票各售出多少张?活动(3)考考你我县文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元.成人票与学生票各售出多少张?学生:观看图片教师:引入主题学生:思考、口述、并独自完成,代表板书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:1-1-39
课题应用一元一次方程—希望工程义演
学习目标1、借助表格分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题, 并要求学生进一步明确必须检验方程的解是否符合题意.
2、通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.培养学生具有数学知识,增强学生探究、推理数学的能力;培养学生的数学兴趣,协助学生发展逻辑思维的能力,并能应用数学解决日常生活中的问题.
学习
重点借助表格分析复杂问题中的数量关系和等量关系
学习
难点
体会间接设未知数的解题思路,从而建立方程解决实际问题
教学
方法
探究法、归纳总结法
教具多媒体课件
教学过程
一、温故知新:
活动内容:
引导学生复习回顾列一元一次方程解应用题的一般步骤:
1.审——通过审题找出等量关系;
2.设——设出合理的未知数(直接或间接),注意单位名称;
3.列——依据找到的等量关系,列出方程;
4.解——求出方程的解(对间接设的未知数切记继续求解);
5.检——检验求出的值是否为方程的解,并检验是否符合实际问题;
6.答——注意单位名称.
目的:
复习列一元一次方程解应用题的一般步骤,强化解题步骤.
实际活动效果:
学生印象深刻.
二、确立目标:(多媒体展示)
三、预习检测:
活动内容:
展示一组有关希望工程的图片,让学生谈谈他的所见所感(PPT展示图片),引出课题“希望工程”义演.
板书:《“希望工程”义演》
目的:
让学生身临其境,深刻感受到“希望工程”的重要作用,也为学生学习新知创设了问题情境,让学生的学习由被动变为主动.陶冶学生的数学情感,对学生进行爱国主义教育.
实际活动效果:
图片引起了学生的兴趣,又带来了疑问“希望工程”与数学有什么关系?带着好奇有了想继续听下去的冲动.
四、合作探究
活动内容:
教材实例分析:
例1:某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.(1)成人票卖出600张,学生票卖出300张,共得票款多少元?
(2)成人票款共得6400元,学生票款共得2500元,成人票和学生票共卖出多少张?
(3)如果本次义演共售出1000张票,筹得票款6950元,成人票与学生票各售出多少张?
目的:
为突破本节课的重点,将实际问题抽象成数学问题,找出其中的已知量、未知量和
等量关系.引导学生把数学问题用图表语言来表达,借助表格整体把握和分析各个量之间的相互关系,并注意检验方程解的合理性. 实际活动效果:
(1)分析:总票款=成人票款×成人票价+学生票款×学生票价.
板书规范写出解题过程:
解:8×600+5×300=4800+1500=6300(元). 答:共得票款6300元. (2)分析:票数=总票款÷票价.
板书规范写出解题过程: 解:
130********
2500
86400=+=+(元). 答:成人票和学生票共卖出1300元. (3)分析:本题中存在2个等量关系:
总票数=成人总票数+学生总票数; 总票款=成人总票款+学生总票款. 方法1分析:列表
学生
成人 票数(张) x 1000-x 票款(元)
5x
8(1000-x )
板书规范写出解题过程: 解(方法1):设学生票为x 张,
据题意得 5x +8(1000-x ) =6950. 解,得 x =350,
此时,1000-x=1000-350=650(张). 答:售出成人票650张,学生票350张. 方法2分析:列表
学生
成人
票数(张) 5
y
8
6950y
- 票款(元)
y 6950-y
板书规范写出解题过程: 解(方法2):设学生票款为y 张,
据题意得
10008
69505=-+y
y . 解,得 y =1750. 此时,
3505
17505==y (张), 1000-350=650(张). 答:售出成人票650张,学生票350张. 活动内容:
引导学生对比哪种方法更简便一些?思考“在以前,列方程时,通常找一个等量关系,即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有什么用途?” 目的:
对于第(3)小问引导学生设不同的未知数,列出不同的方程,对比两种解法,虽然解法一要比解法二优化的多,但仍需让学生通过亲手计算,真正理解其中的含义:前面提到的含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程是如何实施的;解法一的求解过程比较简单;不论选择哪种方法,在解题前,首先要明确数量关系,而在这里运用列表法是一种比较有效的工具. 实际活动效果:
学生通过对比,体会到了在这个较为复杂的实际问题中,为了理清楚各个量之间的关系,我们可以借助“列表格”的方法来帮助我们解决一些较复杂的问题. 活动内容:
变式:如果票价不变,那么售出1000张票所得的票款可能是6930元吗? 目
的:
引导学生再次借助“列表格”来完成,
进一步感受列表格的好处. 实际活动效果: 分析:列表
学生
成人
票数(张)x 1000-x
票款(元)5x8(1000-x)
五、达标测试
活动内容:
练习1:初三·1班举办了一次集邮展览,展出的邮票数若以平均每人3张则多24张,以平均每人4张则少26张,这个班级有多少学生?一共展出了多少张邮票?
练习2:某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,三个车间各有多少人?
目的:
给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会.
实际活动效果:
(1)分析:列表
学生人数邮票张数
方案1 x 3x+24
方案2 x4x-26
找出等量关系:邮票总张数相等.
板书规范写出解题过程:
解:设这个班有学生x人,
据题意得 3x+24=4x-26.
解,得x=50.
此时,3x+24=150+24=174(张).
答:共有学生50人,邮票174张.
(2)分析:第二车间与第三车间都和第一车间比较,因此第一车间是中间量,可以借它
来建立它们之间的数量关系.
板书规范写出解题过程:
解:设第一车间有x人,则第二车间有3(x+1)人,第三车间有(0.5x-1)人,据题意得x+3(x+1)+(0.5x-1)=180.
解,得 x=40,
此时,3(x+1)= 3(40+1)=121(人),0.5x-1=0.5×40-1=19(人)
答:第一、二、三车间分别有40人,121人,19人.
活动内容:
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口数不等,只有按2:3:6的比例摊派才较合理,则三个村庄各派多少个劳动力?
2:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?
目的:
检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.
实际活动效果:
从学生做题的情况看,大部分学生都能正确地列出方程,但其中一部分人并不能有意识地用“列表格”法来分析问题,因此,教师仍需引导他们能学会用“列表格”这个工具,有利于以后遇上复杂问题能很灵活地得到解决.
六、归纳总结:
活动内容:
学生归纳总结本节课所学知识:
1.两个未知量,两个等量关系,如何列方程;
2.寻找中间量;
3.学会用表格分析数量间的关系.
目的:
为实现新课程改革的基本理念——让学生学会自我反思与评价,在此环节我给每一个学生提供平等的表述自己思想的机会,让学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
实际活动效果:
通过交流学生认识到利用“列表格”法来分析问题的好处,并感受到运用方程解决实际问题的优势.让学生自己总结,不但使学生懂得亲身实践、合作交流是一种重要的学习方法,而且提高了学生对所学知识的梳理能力.
七、拓展延伸
作业:1、习题5.8
课后反思。

相关文档
最新文档