怎样解决初中数学中数轴上的行程问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样解决初中数学中数轴上的行程问题
将传统的行程问题和数轴有机地结合起来,既体现了传统行程问题的特点,又增加了数轴性质在解题中的综合运用,赋予题目更多的灵性和想象空间。我通过探索和研究得出了数轴上行程问题的一些新的解法和思维方式,现表述如下:数轴上的行程问题离不开数轴上两点之间的距离。对于我们初一年级学生来说,要先明确以下几个问题:
1.如何用数轴上两个点的坐标表示两点间的距离。数轴上的两个点总有一个在左,一个在右,用右边的点的坐标减去左边点的坐标就可以表示这两点间的距离了,也可以用左边的点的坐标减去右边的点的坐标的绝对值来表示。
2.如何表示数轴上的点运动一段距离后的坐标。由于数轴向右的方向为正方向,因此向右运动b个单位看作+b,而向左运动b个单位看着-b,这样在起点坐标的基础上加上点的运动路程就可以直接得到运动后点的坐标。如,一个起始点的坐标为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
数轴上的问题:
例:已知数轴上有C,D两点,它们的坐标分别是-12和8。它们同时出发,C点以每秒2个单位的速度向右运动,D点则以每秒4个单位的速度向右运动。问多少秒后在什么坐标位置D点追上C点?
按传统解法是:
解:设x秒后D点追上C点,根据D点运行的路程=C 点运行的路程+D与C相距的路程。可列方程如下: 4x=2x+(8+12),
解得:x=10(秒)。
再把x=10代入方程的左边,可知D点运动了40个单位,记-40,由D点的起始坐标是8,依据8+(-40)= -32,可以推出D点在-32的位置追上C点。
按新的解法,其解题思路是:D点追上C点时它们处在同一位置,而且坐标相同,可以依据这一特点列出方程求解。
其解题过程如下:
解:设x秒后D点追上C点,则D点走的路程为4x,由D点的起始坐标8可以推出D点到达的位置坐标是8-4x。
则C点走的路程为2x,由C点的起始坐标-12可以推出C点到达的位置坐标是-12-2x。
依据D点追上C点时处在同一位置,坐标相同的特点可列方程如下:
8-4x=-12-2x,
解得:x=10(秒)。
把x=10秒代入方程的左边或者右边,便可以推出D 的在坐标为-32的地方追上C点。
以上新的解题方法是传统的行程问题解题中所不具有的。它将行程问题和数轴有机地结合在一起,既体现了传统行程问题的特点,又增加了数轴的性质的综合运用,赋予了题目新的灵性,给予学生更多的思考空间。
(作者单位:重庆市南川区第一中学校)