初三数学一模试题 (含答案) (2)

合集下载

2024北京平谷区初三一模数学试题及答案

2024北京平谷区初三一模数学试题及答案

2024北京平谷初三一模数 学一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70 000 000 000用科学记数法表示为( ) A .8710⨯B .9710⨯C .10710⨯D .11710⨯2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 如图,点C 为直线AB 上一点,CD ⊥CE ,若∠1=65°,则∠2的度数是 A.15° B.25° C.35° D.4. 已知1x −<<0,下列四个结论中,错误的是 A. x <1 B. 0x −> C. 1x −> D.x+1>05. 如果正多边形的每个内角都是120°,则它的边数为( ) A. 5B. 6C. 7D.86. 先后两次抛掷同一枚质地均匀的硬币,则两次都是正面向上的概率是( )A. 14B. 13C. 12D. 237.已知两组数据(1)3005,3005,3003,3000,2994;(2)5,5,3,0,-6,设第一组数据的平均值为_1x ,方差为21s ,设第二组数据的平均值为_2x ,方差为22s ,下列结论正确的是:A.__221212,s x x s == B.__221212,s x x s >> C.__221212,s x x s => D.__221212,s x x s >=8. 如图,正方形ABCD 中,点E 、H 、G 、F 分别为AB 、BC 、CD 、AD 边上的点,点K 、M 、N 为对角线BD 上的点,四边形EKNF 和四边形MHCG 均为正方形,它们的面积分别表示为S 1,和S 2,给出下面三个结论:①12S S =;②2DF AF =;③12ABCD 9=S +2S 4S 正方形; A. ② B ①.③C. ②③D. ①②③上述结论中,所有正确结论的序号是( ) 二、填空题(共16分,每题2分)659.x 的取值范围是______. 10. 分解因式:22x a a ax ++=__________________. 11.化简:3113x x x+−−的结果为 . 12.写出一个大于1小于4的无理数: . 13. 如图,反比例函数(0)ky k x=≠经过点A 、点B ,则m=______. 14.若关于x 的一元二次方程220x x k +=+有两个不相等的实数根,则k 的取值范围为_____.15. 如图,△ABC 内接于⊙O ,BC 为⊙O 的直径,D 为⊙O 上一点,连接AD 、DC 若∠D=20°,则ACB ∠的度数为______.16.某工艺坊加工一件艺术品,完成该任务共需A ,B ,C ,D ,E ,F 六道工序,其中A ,B 是前期准备阶段,C ,D ,E 是中期制作阶段,F 为最后的扫尾阶段,三个阶段不能改变顺序,也不能同时进行,但各阶段内的几个工序可以同时进行,完成各道工序所需时间如下表所示:在不考虑其它因素的前提下,加工该件艺术品最少需要_____________分钟;现因情况有变,需将加工时间缩短到30分钟.每道工序加工时间每缩短一分钟需要增加投入费用如上表,则所增加的投入最少是_____________元.三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:112cos3012−⎛⎫︒+− ⎪⎝⎭18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><.19. 已知250,x x +−=求代数式(1)(x 1)x(2)x x +−++的值.20. 我国古代数学著作《九章算术》里记载了这样一个有趣的问题:“今有善行者行100步,不善行者60步.今不善行者先行100步,善行者追之,问几何步追之?”其意思是:走路快的人走100步时,走路慢的人只走了60步,现在走路慢的人先走100步,走路快的人去追他,问走路快的人走多少步能够追上他?请你解决该问题.21.在平面直角坐标系xOy 中,一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到,且经过点(0,3).(1)求这个一次函数的解析式;(2)当x >0时,对于x 的每一个值,一次函数12y x n =+的值小于函数y =k x +b (k≠0)的值且大于0,直接写出n 的取值范围.22.如图,Rt △ABC 中,∠ACB=90°,点D 、E 分别是BC 、AB 边的中点,连接DE 并延长,使EF=2DE ,连接AF 、CE.(1)求证:四边形ACEF 是平行四边形; (2)若∠B=30°,求证:四边形ACEF 是菱形.23.如图,△ABC 内接于O ,∠ACB=45°,连接OA ,过B 作O 的切线交AC 的延长线于点D ,. (1)求证:D OAD ∠=∠;(2)若BC =tanD 34=,求O 半径的长.24.光合作用是指在光的照射下,植物将二氧化碳和水转化为有机物,并产生氧气的过程,呼吸作用指的是植物将有机物和氧气分解成二氧化碳和水以维持植物生命所必要的过程,光合作用产氧速率与呼吸作用耗氧速率差距越大越利于有机物的积累,植物生长越快,水果的品质越好.下表是某农科院为了更好的指导果农种植草莓,在0℃至50℃气温,水资源及光照充分的条件下,对温度对光合作用和呼吸作用的影响进行研究的相关数据:(1)通过观察表格数据可以看出,若设温度为x ,光合作用产氧速率、呼吸作用耗氧速率是这个自变量的函数.建立平面直角坐标系,描出表中各组数值所对应的点,下图中已经描出部分点,请补全其余点,并画出函数图象:(2)结合函数图象,解决问题:(结果取整)①最适合草莓生长的温度约为______℃;②当温度约在什么范围内时,呼吸作用耗氧速率大于光合作用产氧速率,呼吸作用成为植物的主要活动,植物生长缓慢.25.4月24日是中国的航天日.为了激发全民尤其是青少年崇尚科学、勇于创新的热情,某学校在七、八年级进行了一次航天知识竞赛,现从七、八年级参加该活动的学生的成绩中各随机抽取20个数据,分别对这20个数据进行整理、描述和分析,下面给出了部分信息.a .七年级参加活动的20名学生成绩的数据的频数分布直方图如下(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);26.在平面直角坐标系xoy 中,抛物线2y x bx =−. (1)当抛物线过点(2,0)时,求抛物线的解析式;(2)若抛物线上存在两点11(x ,y )A 和22(x ,y )B ,若对于11x 2,≤≤2x 2b =+都有120y y <,求b 的取值范围.27.如图,在△ABC 中,∠BAC=90°,AB =A C ,点D 为BC 边中点,DE ⊥AB 于E ,作∠EDC 的平分线交AC 于点F ,过点E 作DF 的垂线交DF 于点G ,交BC 于点H.(1)依题意补全图形; (2)求证:DH=BE ;(3)判断线段FD 、HC 与BE 之间的数量关系,并证明.28. 平面直角坐标系xOy 中,已知⊙M 和平面上一点P ,若PA 切⊙M 于点A ,PB 切⊙M 于点B ,且90°≤∠APB <180°则称点P 为⊙M 的伴随双切点. (1)如果⊙O 的半径为2① 下列各点1(1)P −,02,(2)P −,23,(3,3)P 4,(1,2)P −− 是⊙O 的伴随双切点的是 ;② 直线y x b =+上存在点P 为⊙O 的伴随双切点,则b 的取值范 围 ;(2)已知:点E (1,2)、F (0,-2),过点F 作y 轴的垂线l ,点C (m ,0)是x 轴上一点,若直线l 上存在以CE 为直径的圆伴随双切点,直接写出m 的取值范围.参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:112cos3012−⎛⎫︒++− ⎪⎝⎭=2212⨯++−−........................................................4 =1.. (5)18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><解①得1x >−........................................................2 解②得4x <.. (4)14x ∴−<< (5)19.先化简,再求值:(1)(x 1)x(2)x x +−++2212x x x =−++........................................................2 2221x x =+−.. (3)22x 50,+x=5x x +−=∴........................................................4 10-19∴==原式.. (5)20. 解:设走路快的人走了x 步追上走路慢的人 (2)31005x x =+························································4 解得:x=250························································5 答:走路快的人250步追上走路慢的人 (6)(方法不唯一,其他方法依步骤给分)21.(1)∵一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到∴k=1························································1 ∵经过点(0,3)∴b=3 (2)3y x ∴=+(2) 03n ∴≤≤时结论成立.························································5 22.解:(1)∵点D 、E 分别是BC 、AB 边的中点∴DE ∥AC ,且12DE AC =························································1 ∵EF=2DE∴EF=AC (2)∴四边形ACEF 是平行四边形 (3)(2)Rt △ABC 中,∵∠ACB=90°,E 为AB 中点, ∴12CE AB AE ==························································4 ∵∠B=30° ∴∠BAC=60°∴△AEC 是等边三角形························································5 ∴AC=EC∴四边形ACEF 是菱形 (6)23.(1)证明:连接OB ∵BD 是O 的切线∴∠OBD=90° (1)∵∠ACB=45°∴∠AOB=90°························································2 ∴OA ∥BD∴ADB OAD ∠=∠· (3)(2)过点B 作BH ⊥AD 于点H ∴∠AHB=∠DHB=90°∵∠ACB=45°,BC =∴BH=HC=4 (4)∵∠HBM+∠BMH=90° ∠OAM+∠AMO=90° ∠BMH=∠AMO ∴∠MBH=∠OAM=∠D4tanD 3=∴tan ∠MBH 34=∴MH=3,BM=5························································5 设O 的半径为x ∴OM=x-5∵△AOM ∽△BHM 354x x −∴=解得x=20 (6)24.解(1)补全函数图象 (2)(2)①最适合草莓生长的温度约为___36___℃;(33-37均可)························································3 ②064250x x ≤≤≤≤℃℃或℃℃(答案不唯一)························································5 25.(1)补全a 中频数分布直方图; (1)(2)88.5; 94.························································3 (3)435. (5)26.(1)抛物线的对称轴为x=b (1)∵抛物线过点(0,0)和(2,0)∴b=1 (2)∴抛物线的解析式为22y x x =− (2)∵抛物线的对称轴为x=b ,∴(b+2,0)点一定位于对称轴的右侧························································3 情况1:当原点位于对称轴的左侧时此时,有2222b b b +>⎧⎨<⎩解得12b <<························································4 情况2:当原点位于对称轴的右侧时此时,有220b b <+<解得22b b <⎧⎨<−⎩ 解得2b <− (5)综上, 1∴<b<2或b<-2 (6)27.(1)补全图形 (1)(2) 证明: ∵DF 平分∠EDC∴∠1=∠2∵DF ⊥EH∴∠EGD=∠HGD=90°∵∠1=∠2,DG=DG∴△EDG ≌△HDG (2)∴DE=DH∵∠BAC=90°,AB=AC∴∠B=45°∵ DE ⊥AB∴∠BED=90°∴ ∠B=∠EDB=45°∴DE=BE∴DH=BE (3)(3)222BE HC DF += (4)方法1:作DM ⊥AC 于M (5)∵CD=BD ,∠DMC=∠BED=90°,∠B=∠C=45°∴△BED ≌△CMD ∴DE=DM ,∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵CM=DM=BE=DH∴CF-CM=CD-DH∴FM=HC在Rt △FDM 中∵222FM DM DF +=∴.222BE HC DF += (7)方法2:在CF 上截取CK=CH ,连接DK 并延长使DM=DK ,连接BM ,EM..........................................5 ∵CD=BD ,DK=DM ,∠KDC=∠BDM∴△KDC ≌△BMD ∴KC=BM ,∠C=∠4∴KC ∥BM∴∠ABM=∠BAC=90°∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵ CK=CH∴FK=DH∴DE=FK∵ED ∥AC∴∠EDM=∠5∴△EMD ≌△FDK.∴DF=ME∴222BE HC DF +=.........................................7 方法3:连接AD ,在AB 上截取BM=AF ,连接DM. Rt △ABC 中,∠BAC=90°,D 为BC 中点 ∴AD=BD ,∠4=∠B=45°∵AF=BM∴△ADF ≌△BMD.........................................5 ∴DF=DM∵AB=AC ,BM=AF∴AB-BM=AC-AF∴AM=CF∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∴AM=CD∵DE ⊥AB ,∠BAD=45°∴AE=DE∴AE=DH∴ME=HC在Rt △EDM 中∵222EM DE DM +=∴222BE HC DF += (7)28.解:(1)①P 2,P 4; (2)②44b −≤≤ (4)(2)11m ≥+≤或m (7)。

2024北京人大附中初三一模数学试题及答案

2024北京人大附中初三一模数学试题及答案

2024北京人大附中学初三模拟数学一、选择题(共16分,每题2分)第1—8题均有四个选项,其中只有一个是符合题意的.1.(2分)2022年5月18日是第46个国际博物馆日,今年国际博物馆日的宣传主题是“博物馆的力量”,在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A.B.C.D.2.(2分)在第46个国际博物馆日来临之际.中国国家博物馆推出了丰富多彩的“云上观展”活动.观众有机会在屏幕上欣赏国博140万余件藏品的真容,将140万用科学记数法表示为()A.1.4×105B.1.4×106C.14×105D.140×1043.(2分)下列各组角中,互为余角的是()A.30°与150°B.35°与65°C.45°与45°D.25°与75°4.(2分)下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等CD.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧5.(2分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的点数记为x,则x>3的概率是()A.B.C.D.6.(2分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<07.(2分)李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如图统计表,在每天所走的步数这组数据中,众数和中位数分别是()A.1.6,1.5B.1.7,1.6C.1.7,1.7D.1.7,1.558.(2分)某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的y与x的数据如表:A.B.C.D.二、填空题9.(2分)若有意义,则x的取值范围是.10.(2分)把多项式a3﹣2a2b+ab2分解因式的结果是.11.(2分)若n为整数,且n<<n+1,则n的值为.12.(2分)分式方程的解x=.13.(2分)如图,点A,B,C,D在⊙O上,∠CAD=30°,∠ABD=50°,则∠ADC=.14.(2分)如图,在△ABC中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC 于点D.若AB:AC=2:3,△ABD的面积为4,则△ACD的面积为.15.(2分)如图,已知等腰三角形ABC,AB=AC,∠A=40°,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则∠ABE=°.16.(2分)以下是小亮的妈妈做晚饭的食材准备及加工时间列表,有一个炒菜锅,一个电饭煲,一个煲汤锅,两个燃气灶可用,做好这顿晚餐一般情况下至少需要分钟.17.(5分)计算:()0﹣2sin30°++()﹣1.18.(5分)解不等式组:,并写出它的所有整数解.19.(5分)下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作OM,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计的作图过程,完成下面的证明.证明:连接OA,OB.∵OP为OM的直径,∴∠OAP=∠=°()(填推理的依据).∴OA⊥AP,⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线()(填推理的依据).20.(5分)已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)如果此方程有一个实数根为0,求m的值.21.(6分)已知双曲线y=和直线y=kx+2相交于点A(x1,y1)和点B(x2,y2),且+=10,求k 的值.22.(6分)在△ABF中,C为AF AB=AC.(1)尺规作图:作出以AB为直径的⊙O,⊙O分别交AC、BC于点D、E,在图上标出D、E,在图上标出D、E(保留作图痕迹,不写作法).(2)若∠BAF=2∠CBF,求证:直线BF是⊙O的切线;(3)在(2)中,若AB=5,sin∠CBF=,求BC和BF的长.23.(6分)如图,在平面直角坐标系xOy中,直线y=2x与函数y=(x>0)的图象交于点A(1,2).(1)求m的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=(x>0)的图象交于点C,与x轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC>BD时,直接写出b的取值范围.24.(6分)某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离湖面高度为h米.(1)在下边网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接.(2)请结合表中所给数据或所画图象,估出喷泉的落水点距水枪的水平距离约为米(精确到0.1);(3)公园增设了新的游玩项目,购置了宽度3米,顶棚到水面高度为4.5米的平顶游船,游船从喷泉正下方通过,别有一番趣味,请通过计算说明游船是否有被喷泉淋到的危险.25.(6分)如图1,长度为6千米的国道AB两侧有M,N两个城镇,从城镇到公路分别有乡镇公路连接,连接点为C和D,其中A、C之间的距离为2千米,C、D之间的距离为1千米,N、C之间的乡镇公路长度为2.3千米,M、D之间的乡镇公路长度为3.2千米.为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道AB上修建一个物流基地T.设A、T之间的距离为x千米,物流基地T沿公路到M、N两个城镇的距离之和为y千米.以下是对函数y随自变量x的变化规律进行的探究,请补充完整.(1)通过取点、画图、测量,得到x与y的几组值,如表:(3)结合画出的函数图象,解决问题:①若要使物流基地T沿公路到M、N两个城镇的距离之和最小,则物流基地T应该修建在何处?②如图3,有四个城镇M、N、P、Q分别位于国道A﹣C﹣D﹣E﹣B两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地S,使得S沿公路到M、N、P、Q的距离之和最小,则物流基地T应该修建在何处?26.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2+1与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示).(2)将抛物线在y轴左侧的部分沿直线l翻折,其余部分保持不变,组成图形G.点M(x1,y1),N (x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣2,x2=m+2,都有y1>y2,求m的取值范围.27.(6分)如图,△ABC是等边三角形,D,E两点分别在边AB,AC上,满足BD=AE,BE与CD交于点F.(1)求∠BFD的度数;(2)以C为中心,将线段CA顺时针旋转60°得到线段CM,连接MF,点N为MF的中点,连接CN.①依题意补全图形;②若BF+CF=k•CN,求k的值.28.(6分)在平面直角坐标系xOy中,对已知的点A,B,给出如下定义:若点A恰好在以BP为直径的圆上,则称点P为点A关于点B的“联络点”.(1)点A的坐标为(2,﹣1),则在点P1(1,2),,P3(﹣2,1)中,O关于点A的“联络点”是(填字母);(2)直线与x轴,y轴分别交于点C,D,若点C关于点D的“联络点”P满足,求点P的坐标;(3)⊙T的圆心在y轴上,半径为,点M为y轴上的动点,点N的坐标为(4,0),在⊙T上存在点M关于点N的“联络点”P,且△PMN为等腰三角形,直接写出点T的纵坐标t的取值范围.参考答案一、选择题(共16分,每题2分)第1—8题均有四个选项,其中只有一个是符合题意的.1.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形,选项D能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成n时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:140万=1400000=1.4×106.故选:B.【点评】本题考查科学记数法表示绝对值较大的数的方法,准确确定a与n值是关键.3.【分析】根据余角的定义判断即可.【解答】解:45°+45°=90°,故选:C.【点评】本题主要考查了余角和补角的定义.余角:如果两个角的和是一个直角,那么称这两个角互为余角.补角:如果两个角的和是一个平角,那么这两个角叫互为补角.4.【分析】根据轴对称图形的定义和性质及直角三角形的性质逐一判断即可得.【解答】解:A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,此选项正确;B.关于某条直线对称的两个图形全等,此选项正确;C.两个全等三角形的对应高相等,此选项正确;D.两个图形关于某直线对称,则这两个图形不一定分别位于这条直线的两侧,此选项错误;故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的定义及其性质.5.【分析】由朝上的面的点数有6种等可能结果,其中x>3的情况有4,5,6共3种情况,根据概率公式计算可得.【解答】解:任意抛掷一次骰子,朝上的面的点数有6种等可能结果,其中x>3的情况有4,5,6共3种情况,所以x>3的概率是.故选:A.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.【点评】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.7.【分析】在这组数据中出现次数最多的是1.7万步,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【解答】解:在这组数据中出现次数最多的是1.7,即众数是1.7;把这组数据按照从小到大的顺序排列,第15、16个两个数的平均数是(1.6+1.6)÷2=1.6,所以中位数是1.6.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.8.【分析】直接利用表格中数据分别得出函数解析式,进而得出答案.【解答】解:由表格中数据可得:0≤x<8,数据成比例增长,是正比例函数关系,设解析式为:y=kx,则将(2,1.5)代入得:1.5=2k,解得:k=,故函数解析式为:y=x(0≤x<8),由表格中数据可得:8≤x,数据成反比例递减,是反比例函数关系,设解析式为:y=,则将(12,4)代入得:a=48,故函数解析式为:y=(x≥8).故函数图象D正确.故选:D.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.二、填空题9.【分析】根据分式的分母不为0时,分式有意义,进行判断即可.【解答】解:由题意得:x+1≠0,∴x≠﹣1;故答案为:x≠﹣1.【点评】本题考查分式有意义的条件.熟练掌握分式的分母不为0时,分式有意义,是解题的关键.10.【分析】直接提取公因式a,进而利用完全平方公式分解因式得出即可.【解答】解:a3﹣2a2b+ab2=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为:a(a﹣b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练利用乘法公式是解题关键.11.【分析】根据算术平方根的定义估算无理数的大小即可.【解答】解:∵<<,即4<<5,且n为整数,n<<n+1,∴n=4,故答案为:4.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是解决问题的前提.12.【分析】利用解分式方程的一般步骤解答即可.【解答】解:去分母得:2x=3﹣2×2(x﹣1),去括号得:2x=3﹣4x+4,移项,合并同类项得:6x=7,∴x=,经检验,x=是原方程的解,∴x=.故答案为:.【点评】本题主要考查了分式方程的解法,熟练掌握分式方程的解法的一般步骤是解题的关键.13.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ADC=180°﹣∠DAC﹣∠ACD,进而得出答案.【解答】解:∵∠ABD=50°,∴∠ACD=50°,∵∠CAD=30°,∴∠ADC=180°﹣∠DAC﹣∠ACD=180°﹣30°﹣50°=100°.故答案为:100°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.14.【分析】利用基本作图得到AD平分∠BAC,再根据角平分线的性质得到点D到AB、AC的距离相等,然后根据三角形面积公式得到S△ABD:S△ACD=AB:AC,从而可求出S△ACD.【解答】解:由作法得AD平分∠BAC,∴点D到AB、AC的距离相等,∴S△ABD:S△ACD=AB:AC=2:3,∴S△ACD=S△ABD=×4=6.故答案为:6.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质.15.【分析】利用等腰三角形的性质先求出∠C、∠BEC,再利用三角形的外角与内角的关系得结论.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=(180°﹣∠A)=70°.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BC=BE,∴∠C=∠BEC=70°.∵∠BEC=∠A+∠ABE,∴∠ABE=∠BEC﹣∠A=30°.故答案为:30.【点评】本题考查了等腰三角形的性质,掌握“等边对等角”及“三角形的外角等于与它不相邻的两个内角的和”等知识点是解决本题的关键.16.【分析】由题意可知,煮饭准备时间需3分钟,煮饭需要30钟,妈妈可在等待饭熟的这30分钟内先完成煲汤和炒菜,所以妈妈做这顿饭至少需要3+30=33分钟.【解答】解:3+30=33(分钟),答:妈妈做晚饭最少要用33分钟,故答案为:33.【点评】本题考查了学生在生活中利用统筹方法解决实际问题的能力.三、解答题:本大题有12个小题,共66分.解答应写出文字说明、证明过程或演算步骤。

2024广东省广州市天河区中考一模数学试题含答案解析

2024广东省广州市天河区中考一模数学试题含答案解析

2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。

2024北京海淀区初三一模数学试题及答案

2024北京海淀区初三一模数学试题及答案

2024北京海淀初三一模数 学2024.04学校________姓名__________准考证号________第一部分 选择题一、迭择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体放置在水平面上,其中俯视图是圆的几何体为2.据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17 500 000用科学记数法表示应为 (A)175×105(B)1.75×106(C)1.75×107(D)0.175×1083.如图,AB ⊥BC ,AD ∥BE ,若∠BAD=28°,则∠CBE 的大小为 (A)66° (B)64° (C)62°(D)60°4.实数a 在数轴上的对应点的位置如图所示,下列结论中正确的是(A)a ≥-2(B)a<-3(C)-a>2(D)-a ≥35.每一个外角都是40°的正多边形是 (A )正四边形(B )正六边形(C )正七边形(D)正九边形6.若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则实数m 的值为 (A)1(B)-1(C)4(D)-47.现有三张背面完全一样的扑克牌,它们的正而花色分别为◆, , ,若将这三张扑克牌背面朝上,洗匀后从中碗机抽取两张,则抽取的两张牌花色相同的概率为(A)16(B)13(C)12(D)238.如图.AB 经过圆心O ,CD 是⊙O 的一条弦,CD ⊥AB ,BC 是⊙O 的切线.再从条件①,条件②,条件③中选择一个作为已知,便得AD=BC. 条件①:CD 平分AB条你②OA 条件③:AD 2=AO ·AB 则所有可以添加的条件序号是 (A) ①(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.x 的取值范围是_______. 10.分解因式:a 3-4a=_______. 11.方程1231x x =− 的解为_______.12.在平面直角坐标系xOy 中,若函数(0)ky k x=≠的图象经过点A (a ,2)和B (b ,-2).则a +b 的值为_______.13.如图,在△ABC 中,∠ACB=90°,AB=5,AC=3.点D 在射线BC上运动(不与点B 重合).当BD 的长为______时, AB=AD. 14.某实验基地为全面掌握“无絮杨”树苗的生长规律,定期对2000棵该品种树苗进行抽测.近期从中随机抽测了100棵树苗,获得了它们的高度x (单位:cm).数据经过整理后绘制的频数分布直方图如右图所示.若高度不低于300cm 的树苗为长势良好,则估计此时该基地培育的2000棵“无絮杨”树苗中长势良好的有_________棵.15.如图,在正方形ABCD 中.点E ,F ,G 分别在边CD ,AD ,BC 上,FD<CG.若FG=AE ,∠1=a ,则∠2的度数为_____(用含a 的式子表示).16.2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.某校今年“π节”策划了五个活动,规则见下图:小云参与了所有活动.(1)若小云只挑战成功一个,则挑战成功的活动名称为__________;(2)若小云共挑战成功两个,且她参与的第四个活动成功,则小云最终剩下的“π币”数量的所有可能取值为______.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:112sin 601()2−︒+−+18.解不等式组:435,212.3x x x −<⎧⎪+⎨>−⎪⎩19.已知240b a −=,求代数式241(1)2a b b+−+的值.20.如图,在ABCD 中,O 为AC 的中点,点E ,F 分別在BC ,AD 上,EF 经过点O ,AE=AF.(1)求证:四边形AECF 为菱形;(2)若E 为BC 的中点,AE=3,AC=4.求AB 的长.21.下图是某房屋的平面示意图.房主准备将客厅和卧室地面铺设木地板,厨房和卫生间地面铺设瓷砖.将房间地面全部铺设完预计需要花费10 000元,其中包含安装费1270元.若每平方米木地板的瓷砖的价格之比是5:3,求每平方米木地板和瓷砖的价格.22.在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点A(1,2)和B(0,1). (1)求该函数的解析式;(2)当x <l 时.对于x 的每一个值,函数y =mx -1(m ≠0)的值小于函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.23.商品成本影响售价,为避免因成本波动导致售价剧烈波动,需要控制售价的涨跌幅.下面给出了商品售价和成本(单位:元)的相关公式和部分信息: a.计算商品售价和成本涨跌幅的公式分别为:100%100%−−=⨯⨯当周售价前周售价当周成本前周成本售价涨跌幅,成本涨跌幅=;前周售价前周成本b.规定当周售价涨跌幅为当周成本涨跌幅的一半;c.甲、乙两种商品成本与售价信息如下:根据以上信息,回答下列问题:(1)甲商品这五周成本的平均数为___________,中位数为___________;(2)表中m 的值为____________,从第三周到第五周,甲商品第_______周的售价最高;(3)记乙商品这40周售价的方差为 21S ,若将规定“当周售价涨跌福为当周成本涨跌福的一半”更改为“当周售价涨跌幅为当周成本涨跌辐的四分之一”,重新计算每周售价,记这40周新售价的方差为22S ,则21S ____22S ;(填“>”“=”或“<”).24.如图.AB 、CD 均为⊙O 的直径.点E 在BD ̂上,连接AE ,交CD 于点F,连DE ,∠EDB+∠EAD=45°,点G 在BD 的延长线上,AB=AG. (I)求证:AG 与⊙O 相切;(2)若BG=1tan 3EDB ∠=,求EF 的长.25.某校为培养学生的阅读习惯,发起“阅读悦听”活动,现有两种打卡奖励方式: 方式一:每天打卡可领取60min 听书时长;方式二:第一天打卡可领取5min 听书时长,之后每天打卡领取的听书时长是前一天的2倍. (1)根据上述两种打卡奖励方式补全表二:表一 每天领取听书时长达了变化趋势.其中表示方式二变化趋势的虚线是________(填a 或b ),从第_______天完成打卡时开始,选择方式二累计领取的听书时长超过方式一;(3)现有一本时长不超过60min 的有声读物,小云希望通过打卡领取该有声读物.若选择方式二比选择方式一所需的打卡天数多两天,则这本有声读物的时长t (单位:min )的取值范围是______.26.在平面坐标系xOy 中,点(m ,n )在抛物线2(0)y ax bx a =+>上,其中m ≠0. (1)当m =4,n =0时.求抛物线的对称轴; (2)已知当0<m <4时,总有n <0. ①求证:4a +b ≤0;②点12(,),(3,)P k y Q k y 在该抛物线上,是否存在a ,b ,使得当1<k <2时,都有12y y <?若存在,求出a 与b 之间的数量关系;若不存任,说明理由.27.在△ABC 中.∠ACB=90°,∠ABC=30°,将线段AC 绕点A 顺时针旋转α((0°<α≤60°)得到线段AD.点D 关于直线BC 的对称点为E.连接AE ,DE.(1)如图1,当α=60°时,用等式表示线段AE 与BD 的数量关系,并证明; (2)连接BD ,依题意补全图2.若AE=BD ,求α的大小.28.在平面直角坐标系xOy中,对于图形M与图形N给出如下定义:P为图形N上任意一点,将图形M绕点P顺时针旋转90°得到M’,将所有M’组成的图形记作M’,称M’是图形M关于图形N的“关联图形”.(1)已知A(-2,0),B(2,0),C(2,t),其中t≠0.①若t=1,请在图中画出点A关于线段BC的“关联图形”;②若点A关于线段BC的“关联图形”与坐标轴有公共点.立接写出t的取值范围;(2)对于平面上一条长度为a的线段和一个半径为r的圆,点S在线段关于圆的“关联图形”上,记点S的纵坐标的最大值和最小值的差为d,当这条线段和圆的位置变化时,直接写出d的取值范围(用含a和r的式子表示).海淀区九年级第二学期期中练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.1x ≥ 10.(2)(2)a a a −+11.1x = 12.0 13.8 14.94015.180α︒−16.(1)鲁班锁;(2)1,2,3三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式212=++− 12=+−3=18. 解:原不等式组为435212.3x x x −<⎧⎪⎨+>−⎪⎩,①②解不等式①,得2x <.解不等式②,得1x >. ∴原不等式组的解集为12x <<. 19. 解: 原式241212a b b b +=−++2411a b +=+.∵240b a−=,∴24b a=.∴原式41 41aa+ =+1 =.20.(1)证明:∵四边形ABCD为平行四边形,∴AD // BC.∴AFO CEO∠=∠,FAO ECO∠=∠.∵O为AC的中点,∴AO CO=.∴△AOF≌△COE.∴AF EC=.∵AF//EC,∴四边形AECF为平行四边形.∵AE AF=,∴四边形AECF为菱形.(2)解:∵O为AC的中点,4AC=,∴122OA AC==.∵四边形AECF为菱形,∴AC EF⊥.∴90AOE∠=︒.∴在Rt△AOE中,由勾股定理得OE=.∵E为BC的中点,∴2AB OE==.21. 解:设每平方米木地板的价格为5x元,则每平方米瓷砖的价格为3x元.由题意可得,123(3615)5100001270x x⨯++⨯=−.解得30x=.∴5150x=,390x=.答:每平方米木地板的价格为150元,每平方米瓷砖的价格为90元.22.解:(1)∵函数(0)y kx b k =+≠的图象经过点(1,2)A 和(0,1)B ,∴21.k b b +=⎧⎨=⎩,解得11.k b =⎧⎨=⎩,∴该函数的解析式为1y x =+. (2)13m ≤≤.23.解:(1)32,25;(2) 60,四; (3) >.24.(1)证明:∵BE BE =,∴BAE BDE ∠=∠. ∵45EDB EAD ∠+∠=︒,∴45BAE EAD ∠+∠=︒,即45BAD ∠=︒. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴AD BG ⊥. ∵AB AG =,∴45BAD GAD ∠=∠=︒. ∴90BAG ∠=︒. ∴AB AG ⊥.∵AB 为O 的直径, ∴AG 与O 相切.(2)解:连接BE ,如图.∵AB AG =,AD BG ⊥,BG =∴12BD BG == 在Rt △ADB 中,90ADB ∠=︒,45BAD ∠=︒,可得AB =∴12OA AB ==. ∵BAE BDE ∠=∠, ∴1tan tan 3BAE BDE ∠=∠=.∵AB 为O 的直径,∴90AEB ∠=︒.在Rt △AEB 中,1tan 3BAE ∠=,可得13BE AE =.由勾股定理得 222BE AE AB +=.∴2221()3AE AE +=.∴6AE =. ∵290BOD BAD ∠=∠=︒. ∴90AOF ∠=︒.在Rt △AOF 中,1tan 3BAE ∠=,OA =OF =.由勾股定理得 103AF =. ∴108633EF AE AF =−=−=. 25.解:(1)60n ,525n ⨯−;(2) a ,7; (3)1535t <≤.26.解:(1)由题意可知,点(40),在抛物线2(0)y ax bx a =+>上,∴1640a b +=. ∴4b a =−. ∴4222b aa a−==−−. ∴抛物线的对称轴为直线2x =.(2)① 法一:令0y =,则20(0)ax bx a +=>. 解得0x =或b x a=−. ∴抛物线2(0)y ax bx a =+>与x 轴交于点(00),,(0)b a−,. ∵0a >,∴抛物线开口向上. (ⅰ)当0b <时,0ba−>.∴当0bx a <<−时,0y <;当0x <或b x a>−时,0y >. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. (ⅱ)当0b >时,0ba−<. ∴当0bx a −<<时,0y <;当b x a<−或0x >时,0y >. ∴当04m <<时,0n >,不符合题意. 综上,40a b +≤. 法二:∴由题意可知,2am bm n +=.若0n <,则2()0am bm m am b +=+<. ∵0m >, ∴0am b +<. ∵0a >, ∴b m a<−. ∴当0bm a<<−时,0n <. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. ② 存在.设抛物线的对称轴为x t =,则2b t a=−. ∵,∴当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ∵12k <<,∴336k <<,3k k <. (ⅰ)当1t ≤时,∵3t k k ≤<. ∴12y y <,符合题意. (ⅱ)当12t <≤时,当2t k ≤<时, ∵3t k k <<. ∴12y y <. 当1k t <<时,设点1()P k y ,关于抛物线对称轴x t =的对称点为点01'(,)P x y , 则0x t >,0t k x t −=−. ∴02x t k =−. ∵1k t <<,12t <≤, ∴23t k −<. ∴03t x <<. ∵336k <<. ∴03t x k <<. ∴12y y <.∴当12t <≤时,符合题意. (ⅲ)当23t <≤时,令12k t =,332k t =,则12y y =,不符合题意.(ⅳ)当36t <<时,令3k t =,则3k k t <≤. ∴12y y >,不符合题意. (ⅴ)当6t ≥时,∵3k k t <<,∴12y y >,不符合题意. ∴ 当2t ≤,即22ba−≤时,符合题意. ∵0a >, ∴40a b +≥. 由①可得40a b +≤. ∴40a b +=.27.(1)线段AE 与BD的数量关系:AE .证明:连接BE ,如图1.∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =.∴30DBC EBC ∠=∠=. ∴60DBE ∠=.∴△DBE 是等边三角形.∴BD BE DE ==,60BDE BED ∠=∠=. ∵△ABC 中,90ACB ∠=,30ABC ∠=, ∴2AB AC =.依题意,得AD AC =,点D 在AB 上. ∴2AB AD =. ∴.BD AD = ∴.DE AD =∴30.DAE DEA ∠=∠= ∴90.BEA ∠= ∴在Rt △ABE 中,tan tan 60 3.AEABE BE=∠== ∴AE. ∴.AE =(2)依题意补全图2,如图.B图1方法一:解:延长AC 至F ,使CF AC =,连接BF ,BE ,EF ,CD ,CE ,如图2. ∵90ACB ∠=, ∴.AB BF = ∵60BAC ∠=,∴△ABF 是等边三角形. ∴AB AF BF ==,60BFC ∠=. ∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DCB ECB ∠=∠. ∵90ACB DCF ∠=∠=, ∴DCA ECF ∠=∠. ∵AC FC =, ∴△DAC ≌△EFC . ∴CAD CFE ∠=∠. ∵AE BD =, ∴BE AE =.∵EF EF =,BF AF =, ∴△BEF ≌△AEF .∴30BFE AFE ∠=∠=. ∴30CAD AFE ∠=∠=. ∴30.α= 方法二:解:如图3,取AB 中点F ,连接DF ,BE ,CD ,CE ,设DBC β∠=.F∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DBC EBC β∠=∠=.∴30EBA β∠=︒+,30DBA β∠=︒−. ∵AE BD =, ∴AE BE =.∴30EAB EBA β∠=∠=︒+. ∵90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒. ∴30EAC β∠=︒−. ∴EAC DBA ∠=∠. 由(1)可得2.AB AC = ∵F 为AB 中点, ∴22.AB AF BF == ∴.AC AF BF ==∵AC BF =,EAC DBA ∠=∠,AE BD =, ∴△ACE ≌△BFD . ∴CE FD =. ∴CD FD =.∵AD AD =,AF AC =, ∴△ADF ≌△ADC . ∴30FAD CAD ∠=∠=︒. ∴30α=︒.28.(1)①如图,线段B'C'即为所求.②4t ≤−或2t ≥.图3FD≤≤+. (2)d a。

山东省济南市历城区2024届九年级下学期中考一模数学试卷(含答案)

山东省济南市历城区2024届九年级下学期中考一模数学试卷(含答案)

2024年九年级学业水平模拟测试(一)数学试题(2023.4)一、选择题(本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.)1.下列几何体的主视图和俯视图完全相同的是( )2.根据中国航天局提供的资料,天和核心舱组合体运行轨道参数是:远地点高度约394900米;近地点高度约384000米;将数据394900用科学记数法可以表示为( )A. 39.49×10⁴B. 0.3949×10⁶D. 3.949×10⁶3. 如图, 已知直线AB∥CD, EG平分∠BEF, ∠1=36°,则∠2的度数是( )A. 70°B. 72°C. 36°D. 54°4.实数a,b,c在数轴上的对应点的位置如图所示,则下列式子正确的是( )A. a+c<0B. a+b<a+cC. ac>bcD. ab>ac5.下列运算中,正确的是( )A.x⁹÷x³=x³D.x³+x=x6.每年的4月22日是世界地球日,2023年世界地球日的主题是“众生的地球” 某校在此期间组织学生开展“爱护地球”图标设计征集活动,如图所示图标是中心对称图形的是( )7.如图,正比例函数. 的图象与反比例函数y2=k2(k2鈮?)的图x象相交于A ,B 两点,已知点B 的横坐标为3,当y ₂<y ₁时,x 的取值范围是 ( )A. x<-3或0<x<3B. x<-3C. x>3D. -3<x<0或x>38.在项目化学习中,“水是生命之”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是 ( )A. ￿B. ￿C.12 D. Error! Cannot insertreturn character.9. 如图, 在△ABC 中, 分别以A, B 为圆心, 以大于 Error! Digitexpected.的长为半径作弧,两弧相交于F ,G 两点,作直线 FG 分别交AB, BC 于点M, D; 再分别以A, C 为圆心,以大于 Error! Digit expected.的长为半径作弧,两弧相交于H ,I 两点,作直线HI分别交AC, BC于点N, E; 若 BD =32,DE =2,EC =52,则AC 的长为 ( ) A.3102B.332C.352D.32210. 阅读材料: 已知点P(x ₀, y ₀) 和直线y=kx+b, 则点P 到直线y=kx+b 的距离d 可用公式 d =|kx 0―y 0+b|1+k 2计算.例如:求点P(-2,1)到直线y=x+1的距离.其中k=1,b=1.所以点P (-2, 1) 到直线y=x+1的距离为 d =|kx 0―y 0+b|1+k 2=|ln(―2)―1+1|1+12=22=2.根据以上材料,有下列结论:①点(2,0) 到直线y=-2x 的距离是 LJ②直线y=-2x 和直线y=-2x+6的距离是 ʏ③抛物线 y =x²―4x +3上存在两个点到直线y=-2x 的距离是. Error! Digit expected.④若点 P 是抛物线 y =x²―4x +3上的点,则点P 到直线y=-2x 距离的最小值是 ÿ其中,正确结论的个数是 ( ) A. 1B. 2C. 3D. 4二、填空题(本题共6小题,每小题4分,共24分.)11. 分解因式: m 2―4m +4=.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.13. 方程Error! Digit expected.的解为.14. 如图, 正八边形ABCDEFGH的边长为3, 以顶点A为圆心, AB的长为半径画圆, 则阴影部分的面积为(结果保留π)15.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y₁(km)与时间x(h)之间的函数关系,线段AN表示轿车离西昌距离y₂(km)与时间x(h)之间的函数关系,则货车出发小时后与轿车相遇.16. 如图, 正方形ABCD中, AB=4, 点E为AD上一动点, 将三角形ABE沿BE折叠, 点A落在点F处,连接DF并延长,与边AB交于点G,若点G为AB中点,则AE=.三、解答题(本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. (6分) 计算:18. (6分) 解不等式组并写出其所有整数解.19.(6分)如图, 在▱ABCD中, E, G, H, F分别是AB, BC, CD, DA上的点, 且BE=DH,AF=CG.求证:EF=GH.20.(8分)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知( CD=8m,CD的坡度为i=13,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为:(1) 求DE的长;(2) 求塔AB的高度. (结果精确到1m)(参考数据:21.(8分)某校开展“图书月”活动,为了解七年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关数据进行了收集、整理、描述和分析.下面是其中的部分信息:a.将学生每天阅读时长数据分组整理,绘制了如下两幅不完整的统计图表.七年级学生每天阅读时长情况统计表组别每天阅读时长(单位: 分钟)人数(单位: 人)A 0≤x<308B 30≤x<60nC 60≤x<9016D90≤x<1208b. 每天阅读时长在60≤x<90的具体数据如下: 60, 60, 66, 68,69, 69, 70, 70, 72,73, 73, 73, 80, 83, 84, 85根据以上信息,回答下列问题:(1) 表中n=, 图中m=;(2)C 组这部分扇形的圆心角是°;(3)每天阅读时长在60≤x<90这组具体数据的中位数是 ,众数是;(4)各组每天平均阅读时长如表:组别A 0≤x<30B 30≤x<60C 60≤x<90D 90≤x<120平均阅读时长(分钟)204575.599求被调查学生的平均阅读时长.22.(8分)如图, AB 是⊙O 的直径, C 是⊙O 上一点, 过点C 作⊙O 的切线CD, 交AB 的延长线于点D ,过点A 作.于点 E.(1) 若 ∠DAC =25°,求的度数;(2) 若( OB =4,BD =2,求CE 的长.23.(10分)2023年中国新能汽车市场火爆.某汽车销售公司为抢占先机,计划购进一批新能汽车进行销售.据了解,1辆A型新能汽车、3辆B型新能汽车的进价共计55万元;4辆A型新能汽车、2辆B 型新能汽车的进价共计120万元.(1)求A,B型新能汽车每辆进价分别是多少万元.(2)公司决定购买以上两种新能汽车共100辆,总费用不超过1180万元,该汽车销售公司销售1辆A型新能汽车可获利0.9万元,销售1辆B型新能汽车可获利0.4万元,若汽车全部销售完毕,那么销售A型新能汽车多少辆时获利最大?最大利润是多少?24.(10分) 如图, 在平面直角坐标系xOy中, 直线y=2x+4与函数的图象交于点A(1,m), 与x轴交于点B.(1) 求m, k的值;(2) 过动点P (0, n) (n>0) 作平行于x轴的直线, 交直线y=2x+4于点C,交函数的图象于点D,①当n=2时,求线段CD的长;②若CD鈮?OB,,结合函数的图象,直接写出n的取值范围.25.(12分) 如图所示, 中, 若D是内一点,将线段CD绕点C顺时针旋转Error! Digit expected.得到CE, 连结AD, BE.(1) ①如图1,判断AD与BE的位置关系并给出证明;②如图2, 连接AE, BD, 当. AE=AB时,请直接用等式表示线段BD和CD的数量关系;(2) 如图3,O是斜边AB的中点,M为BC上方一点,且CM与斜边AB的交点在线段OA上, 若求. BM的长.26.(12分)如图,在平面直角坐标系中,二次函数. y =x²+bx +c 的图象与x 轴交于点. A (―1,0)和点B (3, 0), 与y 轴交于点C.(1)求二次函数的表达式;(2)如图,二次函数图象的顶点为.对称轴与直线BC 交于点D ,在直线BC 下方抛物线上是否存在一点 M (不与点 N 重合),使得 S NDC =S MDC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)将线段AB 先向右平移一个单位,再向上平移6个单位,得到线段EF ,若抛物线与线段EF 只有一个公共点,请直接写出a 的取值范围.2024年九年级学业水平模拟测试(一)数学试题(答案)一、选择题12345678910D C B D C C A B A D二、填空题11.;12. 6;13.;14.;15. 1.8;16. .三、解答题17.原式=……………………………………………………………………………4分==………………………………………………………………………………………………………………6分18.解:解不等式①得:,………………………………………………………………………………2分解不等式②得:,..........................................................................................4分该不等式组的解集为:, (5)分该不等式组的整数解为:.………………………………………………………………………6分19.证明:∵四边形ABCD为平行四边形,∴∠A=∠C,AB=CD,…………………………………………………………………………………………2分又∵BE=DH,∴AB-BE=CD-DH,∴AE=CH, (3)分在△AEF和△CHG中,∴△AEF≌△CHG(SAS) (5)分∴EF=HG. (6)分20. (1)解:在Rt△DCE中,的坡度为,,∴, (1)分∴.即的长为. (2)分(2)解:设,在Rt△DCE中,,∴.…………………………………………………………………3分在Rt△BCA中,由,,,则.∴.…………………………………………………………………………………4分即的长为.如图,过点作,垂足为.根据题意,,∴四边形是矩形.∴,.可得.………………………………………………………………………………5分在中,,∴,………………………………………………………………………………………………6分解得:………………………………………………………………………………………………7分15m答:塔的高度约为. (8)分21. (1); (2)分(2)72; (3)分(3),; (5)分(4)20×10%+45×60%+75.5×20%+99×10%=54(分钟). (8)分22.(1)解:连接OC,∵O与CD相切于点C,∴OC⊥CD,∠OCD=90°,……………………………………1分∵于点,∴,∴∠AEC=∠OCD,∴AE∥OC,∴∠EAC=∠ACO,…………………………………………………………………………………………2分又∵OA=OC,∴∠DAC=∠ACO,……………………………………………………………………………………3分∴∠EAC=∠DAC=25°…………………………………………………………………………………4分(2)解:,,,.…………………………………………………………………………………5分,, (6)分,……………………………………………………………………………………………………7分. (8)分23. (1)设A型新能汽车每辆进价为a万元,B型新能汽车每辆进价为b万元.…………………1分由题意,得……………………………………………………………………………………3分解得 (4)分答:A型新能汽车每辆进价为25万元,B型新能汽车每辆进价为10万元.…………………………5分(2)设购买A型新能汽车x辆,则购买B型新能汽车辆.………………………………6分由题意,得.解得.……………………………………………………………………………………………………7分设销售A型新能汽车x辆所获利润为W万元.则.…………………………………………………………………………8分∵,∴W随x的增大而增大.∴当时,W有最大值46万元.…………………………………………………………………………9分答:当销售A型新能汽车12辆时获利最大,最大利润为46万元.……………………………………10分24. 解:(1)直线经过点,,………………………………………………………………………………………………1分反比例函数的图象经过点,;………………………………………………………………………………………………2分(2)①当时,点的坐标为,当时,,解得,点D的坐标为,……………………………………………………………………………………4分当时,,解得,点C的坐标为,……………………………………………………………………………………6分;……………………………………………………………………………………………7分②的取值范围为(1分)或(2分).………………………………………………10分25. 解:(1)AD⊥BE…………………………………………………………………………………………1分延长AD交CB于O点,交BE于H点.∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,由旋转的性质得:CD=CE,∠DCE=90°,∵∠ACD+∠DCB=90°,∠BCE+∠DCB=90°,∴∠ACD=∠BCE,又∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),…………………………………………………………………………3分∴∠CAD=∠CBE又∵∠AOC=∠BOH;∴△AOC∽△BOH,∴∠BHO=∠ACO=90°;∴AD⊥BE.…………………………………………………………………………………………5分(2)BD=CD;………………………………………………………………………………8分(3)解:如图,过点O作ON⊥OM,且ON=OM,连接NM、NC,N C交BM于点H,ON交MB于F点,连接OC,则∠NOM=90°,∵△ABC是等腰直角三角形,O是斜边AB的中点,∴CO⊥AB,CO=AB=OB,∴∠COB=∠NOM=90°,∴∠NOC=∠MOB,∴△NOC≌△MOB(SAS),………………………………………………………………………………9分∴CN=BM,∠ONC=∠OMB,又∵∠OFM=∠HFN,∴∠MHN=∠MOF=90°,∵∠BMC=45°,∴△CMH是等腰直角三角形,∴CH=MH=CM=12,……………………………………………………………………………10分在Rt△NOM中,NM=OM==13,…………………………………………………11分在Rt△NHM中,NM=13,MH=12,∴NH=5∴CN=CH+HN=17,∴BM=CN=17………………………………………………………………………………………………12分(此题方法不唯一,阅卷组可根据不同方法设置不同标准.)26.解:(1)把A(-1,0),B(3,0)代入二次函数y=x2+bx+c可得,,…………………………………………………………………………………………2分解得:,…………………………………………………………………………………………3分∴二次函数的表达式为y=x2-2x-3.………………………………………………………………………4分(2)由题意可得:N(1,-4),…………………………………………………………………………5分∵S△NDC=S△MDC,∴过点N作CD的平行线,与抛物线交于点M,由B(3,0),C(0,-3)可得直线DC的表达式为,……………………………………6分∵MN∥DC,N(1,-4),∴直线MN的表达式为,…………………………………………………………………7分∴,解得:,………………………………………………………………………8分∴M(2,-3).…………………………………………………………………………………………9分(3)………………………………………………………………………12分(答出一种情况得1分)。

2024北京大兴区初三一模数学试卷和答案

2024北京大兴区初三一模数学试卷和答案

2024北京大兴初三一模数 学考生须知:1.本试卷共6页,共28道题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下面几何体中,是圆锥的为( )A. B. C. D.2. 2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为( )A. 643.710⨯B. 74.3710⨯C. 84.3710⨯D. 90.43710⨯3. 五边形的内角和为( )A. 180︒B. 360︒C. 540︒D. 720︒4. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,若30AOC ∠=︒,则EOD ∠的大小为( )A. 30︒B. 60︒C. 120︒D. 150︒5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 0b c ->B. 0ac >C. 0b c +<D. 1ab <6. 不透明的盒子中装有3个小球,每个小球上面写着一个汉字分别是“向”、“前”、“冲”,这3个小球除汉字外无其他差别,从中随机摸出一个小球,记录其汉字,放回并摇匀,再从中随机摸出一个小球,记录其汉字,则两次都摸到“冲”字的概率是( )A. 23 B. 13 C. 16 D. 197. 若关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则实数m 的取值范围是( )A. 1m >-B. 1m ≥-C. 1m >D. m 1≥8. 如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,设BD a =,DC b =,AD c =,给出下面三个结论:①2c ab =;②2a b c +≥;③若a b >,则a c >.上述结论中,所有正确结论的序号是( )A.①②B. ①③C. ②③D. ①②③二、填空题(共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10.分解因式:24ab a -=_______.11. 方程1341x x =-的解为______.12. 在平面直角坐标系xOy 中,若点(5,2)A 和(,2)B m -在反比例函数(0)k y k x=≠的图象上,则m 的值为______.13. 如图,AB 是O 的直径,点C ,D 在O 上,若AC BC =,则D ∠的度数为______︒.14. 如图,在矩形ABCD 中,AC 与BD 相交于点O ,OE BC ⊥于点E .若4AC =,30DBC ∠=︒,则OE 的长为______.15. 某年级为了解学生对“足球”“篮球”“排球”“乒乓球”“羽毛球”五类体育项目的喜爱情况,现从中随机抽取了100名学生进行问卷调查,根据数据绘制了如图所示的统计图.若该年级有800名学生,估计该年级喜爱“篮球”项目的学生有______人.16. 某公园门票价格如下表:某学校组织摄影、美术两个社团的学生游览该公园,两社团的人数分别为a 和()b a b >.若两社团分别以各自社团为单位购票,共需1560元;若两社团作为一个团体合在一起购票,共需1170元,那么这两个社团的人数为=a ______,b =______.购票人数1~4041~8080以上门票价格20元/人16元/人13元/人三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:0|3|(2024)2cos 45π-+++-︒18. 解不等式组:4125213x x x x -≥+⎧⎪-⎨<⎪⎩19. 已知2310a a +-=,求代数式2(1)(4)2a a a +++-的值.20. 某学校开展“浸书香校园,品诗词之美”读书活动.现有A ,B 两种诗词书籍整齐地叠放在桌子上,每本A 书籍和每本B 书籍厚度的比为5:6,根据图中所给出的数据信息,求每本A 书籍的厚度.21. 如图,在正方形ABCD 中,点E ,F 分别在BC ,AD 上,BEDF =,连接CF ,射线AE 和线段DC 的延长线交于点G .(1)求证:四边形AECF 是平行四边形;(2)若2tan 3BAE ∠=,9DG =,求线段CE 的长.22. 种子被称作农业的“芯片”,粮安天下,种子为基.农科院计划为某地区选择合适的甜玉米种子,随机抽取20块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t ),并对数据(每公顷产量)进行了整理、描述和分析,下面给出了部分信息:a .20块试验田每公顷产量的频数分布表如下:每公顷产量(t)频数7.407.45x ≤<37.457.50x ≤<27.507.55x ≤<m 7.557.60x ≤<67.607.65x ≤≤5b .试验田每公顷产量在7.557.60x ≤<这一组的是:7.55 7.55 7.57 7.58 7.59 7.59c . 20 块试验田每公顷产量的统计图如下:(1)写出表中m 的值;(2)随机抽取的这20块试验田每公顷产量的中位数为______.(3)下列推断合理的是______(填序号);①20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量占试验田总数的25%;②3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第5名.(4)1~10号试验田使用的是甲种种子,11~20号试验田使用的是乙种种子,已知甲、乙两种种子的每公顷产量的平均数分别为7.537t 及7.545t ,若某种种子在各试验田每公顷产量的10个数据的方差越小,则认为这种种子的产量越稳定.据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是______(填“甲”或“乙”).23. 在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,与过点(2,0)-且平行于y 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,直接写出n 的取值范围.24. 某洒水车为绿化带浇水,图1是洒水车喷水区域的截面图,其上、下边缘都可以看作是抛物线的一部分,下边缘抛物线是由上边缘抛物线向左平移得到的.喷水口H 距地面的竖直高度OH 为1.5m ,喷水区域的上、下边缘与地面交于A ,B 两点,上边缘抛物线的最高点C 恰好在点B 的正上方,已知6m OA =,2m OB =,2m CB =.建立如图2所示的平面直角坐标系.(1)在①21(2)28y x =-++,②21(2)28y x =--+两个表达式中,洒水车喷出水的上边缘抛物线的表达式为______,下边缘抛物线的表达式为______(把表达式的序号填在对应横线上);(2)如图3,洒水车沿着平行于绿化带的公路行驶,绿化带的横截面可以看作矩形DEFG ,水平宽度3m DE =,竖直高度0.5m DG =.如图4,OD 为喷水口距绿化带底部的最近水平距离(单位:m ).若矩形DEFG 在喷水区域内,则称洒水车能浇灌到整个绿化带.①当 2.6m OD =时,判断洒水车能否浇灌到整个绿化带,并说明理由;②若洒水车能浇灌到整个绿化带,则OD 的取值范围是______.25. 如图,过O 外一点A 作O 的切线,切点为点B ,BC 为O 的直径,点D 为O 上一点,且BD BA =,连接CD ,AD ,线段AD 交直径BC 于点E ,交O 于点F ,连接BF .(1)求证:EF BF =;(2)若1sin 3A =,25OE =,求O 半径的长.26. 在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线2(0)y ax bx c a =++<上任意两点.设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于112t x t +<<+,245x <<,都有12y y >,求t 的取值范围.27. 在ABC 中,AC BC =,90ACB ∠=︒,点D 是线段AB 上一个动点(不与点A ,B 重合),()045ACD αα∠=<<︒,以D 为中心,将线段DC 顺时针旋转90︒得到线段DE ,连接EB .(1)依题意补全图形;(2)求EDB ∠的大小(用含α的代数式表示);(3)用等式表示线段BE ,BC ,AD 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,0)T t ,T e 的半径为1,过T e 外一点P 作两条射线,一条是T e 的切线,另一条经过点T ,若这两条射线的夹角大于或等于45︒,则称点P 为T e 的“伴随点”.(1)当0=t 时,①在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是______.②若直线12y x b =+上有且只有一个T e 的“伴随点”,求b 的值;(2)已知正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,若正方形上存在T e 的“伴随点”,直接写出t 的取值范围.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】本题考查了常见几何体的识别,观察所给几何体,可以直接得出答案.【详解】解:A 选项为正方体,不合题意;B 选项为球,不符合题意;C 选项为五棱锥,不合题意;D 选项为圆锥,符合题意.故选:D .2. 【答案】B【分析】本题考查科学记数法,科学记数法的表示形式为 10n a ⨯ 的形式,其中 110a ≤<,n 为整数(确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位).【详解】解:43700000=74.3710⨯,故选:B .3. 【答案】C【分析】本题考查了n 边形内角和公式,熟练记忆公式是解题的关键.代入公式即可求解.【详解】解:五边形的内角和为()52180540-⨯︒=︒,故选:C .4. 【答案】B【分析】本题主要考查的是对顶角的性质和垂线,依据垂线的定义可求得90EOB ∠=︒,然后依据对顶角的性质可求得BOD ∠的度数,最后依据EOD EOB DOB ∠=∠-∠求解即可.【详解】解:∵OE AB ⊥,∴90EOB ∠=︒.∵30DOB AOC ∠=∠=︒,∴903060EOD EOB DOB ∠=∠-∠=︒-︒=︒.故选:B .5. 【答案】C【分析】本题考查了根据点在数轴的位置判断式子的正负.熟练掌握根据点在数轴的位置判断式子的正负是解题的关键.由数轴可知,32101a b c -<<-<<-<<<,则0b c -<,0ac <,0b c +<,1ab >,然后判断作答即可.【详解】解:由数轴可知,32101a b c -<<-<<-<<<,∴0b c -<,0ac <,0b c +<,1ab >,∴A 、B 、D 错误,故不符合要求;C 正确,故符合要求;故选:C .6. 【答案】D【分析】本题考查的是列表法或画树状图求解概率,根据题意列出表格即可求解.【详解】解:根据题意列表如下:向前冲向向,向前,向冲,向前向,前前,前前,冲冲向,冲前,冲冲,冲共有9种等可能得情况,其中两次都摸到“冲”字的情况有1种,则两次都摸到“冲”字的概率是:19,故选:D .7. 【答案】A【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()22410m ∆=-⨯⨯->,然后求出不等式的解集即可.【详解】解:根据题意得()22410m ∆=-⨯⨯->,解得1m >-.故选:A .8. 【答案】D【分析】由90BAC ∠=︒,AD BC ⊥,得到ABD CAD ∽△△,BD AD AD DC =,将BD a =,DC b =,AD c =代入,即可判断①正确,由()2222a b a b ab -=+-,()2222a b a b ab +=++,将2c ab =代入,整理后即可判断②正确,将2c b a=,代入a b >,即可判断③正确,本题考查了,相似三角形的性质与判定,完全平方公式的应用,解不等式,解题的关键是:熟练掌握完全平方公式的变形及应用.【详解】解:∵90BAC ∠=︒,AD BC ⊥,∴90BAD CAD ∠+∠=︒,90BAD ABD ∠+∠=︒,90BAD ADC ∠=∠=︒,∴CAD ABD ∠=∠,∴ABD CAD ∽△△,∴BD AD AD DC=即:a c c b =,整理得:2c ab =,故①正确,∵()2222a b a b ab -=+-,即:()2222a b a b ab +=-+, ∴()()()222222244a b a b ab a b ab a b c +=++=-+=-+,∵()20a b -≥,∴()224a b c +≥,∵0a >、0b >、0c >,∴2a b c +≥,故②正确,∵a b >,2c b a=,∴2c a a>,∵0a >,∴22a c >,∴a c >,故③正确,综上所述,①②③正确,故选:D .二、填空题(共16分,每题2分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】()()22a b b +-.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可【详解】解:()()()224422a a a a b b b b -=-=+-,故答案为:()()22a b b +-.11. 【答案】1x =【分析】本题考查了解分式方程,先将分式方程化为一元一次方程,再解一元一次方程,最后检验即可求解,注意分式的方程需要检验是解题的关键.【详解】解:1341x x =-∴413x x -=,解得:1x =,经检验,1x =是原分式方程的解,∴1x =,故答案为:1x =.12. 【答案】5-【分析】本题考查了反比例函数图象上点的坐标特征,先把(5,2)A 代入(0)k y k x=≠求出10,k =再把(,2)B m -代入10y x=,求出5m =-.【详解】解:把(5,2)A 代入(0)k y k x =≠得:25k =,解得,10,k =∴反比例函数解析式为10y x =,把(,2)B m -代入10y x =,得:102m-=,解得,5m =-,故答案为:5-13. 【答案】45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为90︒,可得90ACB ∠=︒,然后由AC BC =得:45CAB CBA ∠=∠=︒,然后根据同弧所对的圆周角相等,即可求出D ∠的度数.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC BC =,∴45CAB CBA ∠=∠=︒,∴45D CAB ∠=∠=︒.故答案为:4514. 【答案】1【分析】本题考查矩形的性质,等腰三角形的判定和性质,解直角三角形,根据矩形的性质,得到OB OC =,根据三线合一结合30度角的直角三角形的性质,求解即可.【详解】解:∵矩形ABCD ,∴OB OC =,90BCD ∠=︒,4BD AC ==,∵30DBC ∠=︒,∴122CD BD ==,∴BC =,∵OB OC =,OE BC ⊥,∴12BE BC ==,∴tan 301OE BE =⋅︒==;故答案为:1.15. 【答案】240【分析】本题主要考查了样本估计总体.用800乘以喜爱“篮球”项目所占的百分比,即可.【详解】解:30800240100⨯=人,即该年级喜爱“篮球”项目的学生有240人.故答案为:24016. 【答案】 ①. 60 ②. 30【分析】本题考查了二元一次方程组的应用,由两次门票费用,列出方程组,可求解.【详解】解:∵1170不能整除16,∴两个部门的人数81a b +≥,又1560不能整除16,∴每个部门的人数不可能同时在41~80之间,由于a b >,所以,当140,4180b a ≤≤≤≤,则有:()20161560131170b a a b +=⎧⎨+=⎩解得,6030a b =⎧⎨=⎩故答案为:60,30.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】4+【分析】本题考查了实数的混合运算,掌握相关运算法则是解题关键.先计算绝对值、零指数幂、二次根式、特殊角的三角函数值,再计算加减法即可.【详解】解:0|3|(2024)2cos 45π-+++-︒312=++-⨯31=++-4=.18. 【答案】3x ≥【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:4125213x x x x -≥+⎧⎪⎨-<⎪⎩①②解不等式①,得3x ≥.解不等式②,得1x >-.∴不等式组的解集为3x ≥.19. 【答案】1【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则是解答的关键.先根据整式的混合运算法则结合完全平方公式化简原式,再将已知化为2262a a +=代入求解即可.【详解】解:2(1)(4)2a a a +++-222142a a a a =++++-2261a a =+-.2310a a +-= ,231a a ∴+=.2262a a ∴+=.∴原式2261a a =+-21=-1=.20. 【答案】每本A 书籍厚度为1cm【分析】本题主要考查了二元一次方程的应用,设每本A 书籍厚度为cm x ,桌子高度为cm y ,根据等量关系,列出方程组,解方程组即可.【详解】解:设每本A 书籍厚度为cm x ,桌子高度为cm y ,由题意可得:37965825x y x y +=⎧⎪⎨⨯+=⎪⎩,解得176x y =⎧⎨=⎩,答:每本A 书籍厚度为1cm .21. 【答案】(1)见解析 (2)2CE =【分析】本题考查了平行四边形的判定,正方形的性质,正切的定义;(1)根据正方形的性质得出AD BC ∥,AD BC =.根据题意得出AF CE =,即可得证;(2)根据正方形的性质得出2tan tan 3BAE G ∠==,在Rt ADG 中,得出6CD =则3CG =,根据2tan 3CEG CG ==,即可求解.【小问1详解】证明: 四边形ABCD 是正方形,∴AD BC ∥,AD BC =.BE FD =,∴AD FD BC BE -=-.即AF CE =.又 AF CE ∥,∴四边形AECF 是平行四边形.【小问2详解】解: 四边形ABCD 是正方形,∴AD BC ∥,90BCD D ∠=∠=︒,AD CD =.∴BAE G ∠=∠,90ECG ∠=︒,∴2tan tan 3BAE G ∠==.在Rt ADG 中, 2tan 3ADG DG ==,9DG =,∴6AD =.∴6CD =.∴3CG =.在Rt ECG 中, 2tan 3CEG CG ==,∴2CE =.22. 【答案】(1)4 (2)7.55(3)① (4)乙【分析】本题考查了频数分布表,求中位数,根据方差判断稳定性:(1)运用频数总数减去已知频数即可得出m ;(2)根据中位数的定义可求解;(3)从统计图中可得每公顷产量低于7.50t 的试验田数量有5块,可判断①;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名可判断②.(4)根据图象判断稳定性即可得出结果.【小问1详解】解:2032654m =----=【小问2详解】解:随机抽取的这20块试验田每公顷产量的中位数是7.557.60x ≤<这一组的第1个和第2个数据,即:7.55和7.55,故中位数为:7.557.557.552+=,故答案为:7.55;【小问3详解】解:20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量有5块,所以,占试验田总数的百分数为510025%20⨯=,故①正确;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名,故②错误,故答案为:①【小问4详解】解:从20 块试验田每公顷产量的统计图中可看出甲种种子每公顷产量波动大,乙种种子每公顷产量波动小,据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是乙;故答案为:乙23. 【答案】(1)21y x =+;(2,3)--(2)312n ≤≤【分析】本题考查待定系数法求一次函数解析式,一次函数图象及性质,用数形结合思想考虑本题是解答本题的关键.(1)将两点代入函数解析式中即可求得函数解析式,再将2x =-代入解析式即可求出点C 坐标;(2)根据题意将(2,2)--代入(0)y nx n =≠求出n 的最小值,再根据题意将C 代入求出n 的最大值,即为本题答案.【小问1详解】解:∵函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,∴将点(1,3)A 和(1,1)B --代入(0)y kx b k =+≠中,31k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=⎩,∴该函数的表达式为:21y x =+,∵与过点(2,0)-且平行于y 轴的直线交于点C ,∴将2x =-代入21y x =+中,得=3y -,∴(2,3)C --;【小问2详解】解:∵当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,,通过图象可知,当(0)y nx n =≠的函数值小于2-时,即将(2,2)--H 代入(0)y nx n =≠中,1n =,当(0)y nx n =≠的函数值大于函数(0)y kx b k =+≠的值将(2,3)C --代入(0)y nx n =≠中,32n =,∴n 的取值范围为:312n ≤≤.24. 【答案】(1)②,① (2)①不能;理由见解析;②21OD ≤≤-【分析】本题考查了二次函数的实际应用,(1)由题意可知:顶点坐标()2,2C ,()0,1.5H ,利用待定系数法即可求出函数解析式为:()21228y x =--+,利用()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,可知下边缘抛物线是由上边缘抛物线向左平移4个单位得到,求出下边缘抛物线为:()21228=-++y x ;(2)①根据 2.6m OD =,将 5.6x =代入上边缘抛物线的函数解析式得出0.380.5y =<,即可求解;②当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,231=+-=-d ;所以21d ≤≤-.【小问1详解】解:由题意可知:()2,2C ,故设上边缘抛物线的函数解析式为:()222y a x =-+,∵()0,1.5H ,将其代入()222y a x =-+可得:()21.5022=-+a ,解得:18a =-,∴上边缘抛物线的函数解析式为:()21228y x =--+,解:∵()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4个单位得到,∴下边缘抛物线为:()21228=-++y x ,故答案为:②,①.【小问2详解】①不能,理由如下,依题意, 2.63 5.6OE =+=将 5.6x =代入上边缘抛物线的函数解析式()21228y x =--+得()215.6220.380.58y =--+=<∴绿化带不全在喷头口的喷水区域内,∴洒水车不能浇灌到整个绿化带;②解:设灌溉车到绿化带的距离OD 为d ,要使灌溉车行驶时喷出的水能浇灌到整个绿化带,则当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,3m DE =,0.5m EF =.∴令()21220.58=--+=y x ,解得:2x =+2x =-,结合图像可知:()2+Fd ∴的最大值为:231=+-=-d ;∴21d ≤≤-.故答案为:21OD ≤≤-.25. 【答案】(1)证明见解析(2)92【分析】(1)由切线的定义可得出90A AEB ∠+∠=︒,由直径所对的圆周角等于90︒得出90CDE BDE ∠+∠=︒,由等边对等角得出BDA A ∠=∠,等量代换得出CDE AEB ∠=∠,由同弧所对的圆周角相等得出C D E C B F ∠=∠, 进而可得出AEB CBF ∠=∠ ,由等角对等边得出EF BF =.(2)连接CF ,先证明==AF BF EF ,设BF EF AF x ===,则2AE x =,解直角三角形Rt ABE 得出23BE x =,再证明BCF A ∠=∠,得出1sin sin 3A BCF =∠=,进一步得出22()BC OB OE BE ==+,即523223x x ⎛⎫=+ ⎪⎝⎭,解出x 即可求解.【小问1详解】证明: AB 为O 的切线,∴90OBA ∠=︒.∴90A AEB ∠+∠=︒.BC 为O 的直径,∴90CDB ∠=︒.∴90CDE BDE ∠+∠=︒.BD BA =,∴BDA A ∠=∠.∴CDE AEB ∠=∠.又CDE CBF ∠=∠ ,AEB CBF ∴∠=∠.EF BF ∴=.【小问2详解】连接CF .AB 为O 的切线,∴90OBA ∠=︒.∴90AEB A ∠+∠=︒,90EBF FBA ∠+∠=︒.AEB CBF ∠=∠,∴FBA A ∠=∠.∴AF BF =.∴==AF BF EF .设BF EF AF x ===,则2AE x =.在Rt ABE 中, 1sin 3A =,2AE x =,∴23BE x =.BC 为直径,∴90CFB ∠=︒.BCF BDA ∠=∠,BDA A ∠=∠,∴BCF A ∠=∠.∴1sin sin 3A BCF =∠=.在Rt BFC △中,BF x =,∴3BC x =.22()BC OB OE BE ==+,∴523223x x ⎛⎫=+⎪⎝⎭.解得3x =.∴92OB =.∴O 半径的长为92.【点睛】本题主要考查了切线的定义,直径所对的圆周角等于90︒,同弧所对的圆周角相等,解直角三角形的相关计算,等角对等边等知识,掌握这些性质是解题的关键.26. 【答案】(1)1t =(2)2t ≤或7t ≥【分析】本题主要考查了二次函数的图象和性质等知识,(1)将22x =,2y c =代入解析式,得出2b a =-即可得解;(2)分①当点N 在对称轴上或对称轴右侧时,②当点N 在对称轴上或对称轴左侧时两种情况讨论组成不等式组即可得解;解题的关键是理解题意,灵活运用所学知识解决问题.【小问1详解】22x =,2y c =,42a b c c ∴++=,2b a ∴=-,12bt a ∴=-=,【小问2详解】2(0)y ax bx c a =++<,∴抛物线开口向下,抛物线的对称轴为x t =,112t x t +<<+,∴点M 在对称轴的右侧,①当点N 在对称轴上或对称轴右侧时,抛物线开口向下,∴在对称轴右侧,y 随x 的增大而减小.由12y y >,∴12x x <,∴4,24t t ≤⎧⎨+≤⎩,解得42t t ≤⎧⎨≤⎩,∴2t ≤,②当点N 在对称轴上或对称轴左侧时,设抛物线上的点()22,N x y 关于x t =的对称点为()2,N d y ',2t x d t ∴-=-,解得22d t x =-,∴()222,N t x y '-,245x <<,∴225224t t x t -<-<-,在对称轴右侧,y 随x 的增大而减小,由12y y >,∴122x t x <-,∴5225t t t ≥⎧⎨+≤-⎩,解得57t t ≥⎧⎨≥⎩,∴7t ≥,综上所述,t 的取值范围是2t ≤或7t ≥.27. 【答案】(1)补全图形见解析(2)45α︒-(3)BC BE =+;证明见解析【分析】本题主要考查旋转的性质,全等三角形的性质与判定,三角形外角的性质,勾股定理等:(1)根据题目叙述作图即可;(2)由三角形外角性质得45CDB A ACD α∠=∠+∠=︒+,根据90CDE ∠=︒可得结论; (3)过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .证明DCM DEB △≌△,得出CM BE =,再证明CF CM =,CF BE =,在Rt FAD △中,由勾股定理得出AF =,得出AC FC =+,由CF BE =,BC AC =可得出结论【小问1详解】补全图形如下:【小问2详解】解: AC BC =,90ACB ∠=︒,∴45A ABC ∠=∠=︒.∴45CDB A ACD α∠=∠+∠=︒+.90CDE ∠=︒,∴45EDB CDE CDB α∠=∠-∠=︒-.【小问3详解】解:用等式表示线段BE ,BC ,AD 之间的数量关系是BC BE =+.证明:过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .90MDB CDE ∠=∠=︒,∴CDM EDB ∠=∠.45MBD ∠=︒,∴45M MBD ∠=∠=︒.∴DM DB =.又 DC DE =,∴DCM DEB △≌△.∴CM BE =.45M ∠=︒,90ACB ∠=︒,∴45CFM M ∠=∠=︒.∴CF CM =.∴CF BE =.在Rt FAD △中,45A ∠=︒,∴45AFD A ∠=∠=︒,∴,AD FD =AF ∴==.AC AF FC =+ ,AC FC ∴=+.CF BE = ,BC AC =,BC BE ∴=+.28. 【答案】(1)①2P ,3P ;②b =(232t <≤或32t -≤<【分析】(1)①设射线PM 与T e 相切于点M ,连接TM ,根据题目中的定义得出1PT <≤,分别求出四个点与()0,0T 间的距离,然后进行判断即可;②根据直线12y x b =+上有且只有一个T e 的“伴随点”,得出直线12y x b =+与以()0,0T为半径的圆相切,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,求出BT ===,得出b =,即可求出结果;(2)分两种情况进行讨论:当0t >时,当0t <时,分别画出图形,列出不等式组,解不等式组即可.【小问1详解】解:①如图1,设射线PM 与T e 相切于点M ,连接TM ,∴TM PM ⊥,当45P ∠=︒时,PTM △为等腰直角三角形,∴1PM TM ==,PT ===,∴当点P 在T e 外,45P ≥︒∠时,1PT <≤,当0=t 时,点()0,0T ,∵11PT =,2PT =,3PT ==4PT ==>∴在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是2P ,3P ;故答案为:2P ,3P②∵当点P 在T e 外,45P ≥︒∠时,1PT <≤∴点P 在以T 为半径的圆上或圆内且在以1为半径的圆外,如图2:∵直线12y x b =+上有且只有一个T e 的“伴随点”,∴直线12y x b =+与以()0,0T 为圆心,为半径的圆相切,∴0b ≠,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,∴TC AB ⊥,令0x =,y b =,令0y =,2x b =-,∴()2,0A b -,()0,B b ,∴2AT b =-,BT b =,在Rt ATB △中,1tan 122bBTAT b ∠===-,1290∠+∠=︒,∵TC AB ⊥,∴2390∠+∠=︒,∴13∠=∠,∴1312tan tan ==∠∠,在Rt TCB 中132tan BC CT ===∠,∴BC =∴BT ===,∴b =∴b =;【小问2详解】解:∵正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,∴点11,22G t ⎛⎫- ⎪⎝⎭,11,22F t ⎛⎫+ ⎪⎝⎭,11,22H t ⎛⎫-- ⎪⎝⎭,当0t >时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为ET ,最小距离为GT ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴1ET >,GT ≤,∵12ET t ⎫==+⎪⎭,12GT ==-,∴11212t ⎫+>⎪⎭-≤,32t <≤;当0t <时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为GT ,最小距离为ET ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴ET ≤,1GT >,∵12ET ==+,12GT t ⎫==-⎪⎭,∴12112t +≤⎫->⎪⎭,解得:32t -≤<;综上分析可知:t 32t <≤或32t -≤<.【点睛】本题主要考查了切线的性质,解直角三角形,勾股定理,两点间距离公式,等腰直角三角形的性质,解不等式组,解题的关键是数形结合,注意进行分类讨论.。

2024届上海市金山区初三一模数学试卷(含答案)

2024届上海市金山区初三一模数学试卷(含答案)

2024届上海市金山区初三一模数学试卷(满分 150 分,考试时间 100 分钟)(2024.1)考生注意:1.本试卷含三个大题,共25题;2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.把抛物线22y x =向左平移1个单位后得到的新抛物线的表达式是(▲)(A )221y x =-;(B )221y x =+;(C )()221y x =-;(D )()221y x =+.2.已知点E 是平行四边形ABCD 的边AD 上一点,联结CE 和BD 相交于点F ,如果AE ∶ED =1∶2,那么DF ∶FB 为(▲)(A )1∶2;(B )1∶3;(C )2∶3;(D )2∶5.3.在直角坐标平面的第一象限内有一点A (a ,b ),如果射线OA 与x 轴正半轴的夹角为α,那么下列各式正确的是(▲)(A )b=a ·tan α;(B )b=a ·cot α;(C )b=a ·sin α;(D )b=a ·cos α.4.抛物线2y ax bx c =++的图像如图所示,下列判断中不正确的是(▲)(A )a <0;(B )b <0;(C )c >0;(D )a +b +c <0.5.将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形较长边和较短边的比是(▲)(A )2∶1;(B1;(C )3∶1;(D∶1.6.如图在4×1的方格中,每一个小正方形的顶点叫做格点,以其中三个格点为顶点的三角形称为格点三角形,△ABC 就是一个格点三角形,现从△ABC 的三个顶点中选取两个格点,再从余下的格点中选取一个格点联结成格点三角形,其中与△ABC 相似的有(▲)(A )1个;(B )2个;(C )3个;(D )4个.二、填空题:(本大题共12题,每题4分,满分48分)7.如果053a b b =≠(),那么a b b-=▲.8.化简:2(3)6a b b -+-=▲.9.已知两个相似三角形的相似比为2︰3,那么这两个三角形的周长比为▲.10.点P 是线段AB 的黄金分割点(AP >BP ),AB =2,那么线段AP 的长是▲.yxO 1(第4题图)ABC(第6题图)11.抛物线2233y x =-的顶点坐标是▲.12.如果点A (2,a )、B (3,b )在二次函数23y x x =-的图像上,那么a ▲b (填“>”“<”或“=”).13.如果α是直角三角形的一个锐角,sin α=45,那么tan α=▲.14.如图,已知D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,△ADE 、△EFC 的面积分别为1、4,四边形BFED 的面积为▲.15.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度i =1∶2,那么相邻两树间的坡面距离为▲米.16.如图,为了绕开岛礁区,一艘船从A 处向北偏东60°的方向行驶8海里到B 处,再从B 处向南偏东45°方向行驶到发点A 正东方向上的C 处,此时这艘船距离出发点A 处▲海里.17.把矩形ABCD 绕点C 按顺时针旋转90°得到矩形A ´B ´CD ´,其中点A 的对应点A ´在BD 的延长线上,如果AB=1,那么BC=▲.18.在△ABC 中,AC=6,P 是AB 边上的一点,Q 为AC 边上一点,直线PQ 把△ABC 分成面积相等的两部分,且△APQ 和△ABC 相似,如果这样的直线PQ 有两条,那么边AB 长度的取值范围是▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 451cot 60cos30tan 45︒-+︒⋅︒︒.20.(本题满分10分)某学校有一喷水池,如果以喷水口(点A )所在的铅垂线为y 轴,相应的地面水平线为x 轴,1米为单位长度建立直角坐标系xOy,喷出的抛物线形水柱在最高处(点P )距离y 轴1米,水柱落地处(点B )距离y 轴4米,喷水口距离地面为2米,求抛物线形水柱的最高处距离地面的高度.1y xO2B4P1A A BC DEF(第14题图)(第15题图)(第16题图)21.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)已知:如图,AM 是△ABC 的中线,点G 是重心,点D 、E 分别在边AB 和BC 上,四边形BEGD 是平行四边形.(1)求证DE ∥AC ;(2)设BA a = ,BC b = ,用向量a 、b表示DE =22.(本题满分10分)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷AB 长为4米,与墙面AD 的夹角∠BAD=75.5°,靠墙端A 离地高AD 为3米,当太阳光线BC 与地面DE 的夹角为45°时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin75.5°≈0.97,cos75.5°≈0.25,tan75.5°≈3.87)23.(本题共2小题,每小题6分,满分12分)已知:如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,∠BAC =∠BDC .(1)求证:△AOD ∽△BOC ;(2)过点A 作AE ∥CD ,AE 交BD 与点E ,求证:AB AD AE BC ⋅=⋅.ABCDOABC DE24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y ax bx c =++经过点A (-1,0)、B (3,0)、C (0,-3).(1)求抛物线的表达式和顶点P 的坐标;(2)点D 在抛物线对称轴上,∠PAD=90°,求点D 的坐标;(3)抛物线的对称轴和x 轴相交于点M ,把抛物线平移,得到新抛物线的顶点为点Q ,QB=QM ,QO 的延长线交原抛物线为E ,QO=OE ,求新抛物线的表达式.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:如图,在△ABC 中,AB=AC ,∠CAD=∠ABC ,DC ⊥AC ,AD 与边BC 相交于点P .(1)求证:212AB AD BC =⋅;(2)如果sin ∠ABC=45,求BP ∶PC 的值;(3)如果△BCD 是直角三角形,求∠ABC 的正切值.O11yxABCDP参考答案一、选择题(本大题6 小题,每小题4 分,满分24 分)1.D ;2.C ;3.A ;4.D ;5.B ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.23;8.2a - ;9.2∶3;101-;11.(0,-3);12.<;13.43;14.4;15.16.4;17.152;18.62623≠≤≤AB AB 且.三、解答题:(本大题共7题,满分78分)19.解:原式=22121⎛⎫- ⎪⎝⎭,-----------------------------------------------------------(8分)=0.----------------------------------------------------------------------------------------(2分)20.解:设抛物线的解析式为()20y ax bx c a =++≠-------------------------------------(1分)由题意得,抛物线经过A (0,2)、B (4,0),顶点P 的横坐标为1,∴2164012c a b c ba ⎛=++= -=⎝-----------------------------------------------------------------------------(3分)解得:11,,242a b c =-==,.-------------------------------------------------------------(2分)∴抛物线的解析式是211242y x x =-++,顶点P 坐标为(1,2.25).---------(2分)∴抛物线形水柱的最高处距离地面的高度是2.25米.-----------------------------------(2分)21.(1)证明:∵AM 是△ABC 的中线,点G 是重心,∴AG=2GM ,---------------------(1分)∵四边形BEGD 是平行四边形,∴DG ∥BE ,EG ∥BD ,∴13BD MG BA MA ==,23BE AG BM MA ==-------------------------------------------------------(2分)∵BM=MC ,∴13BE BC =--------------------------------------------------------------------------(1分)∴BE BDBC BA=--------------------------------------------------------------------------------------(1分)∴DE ∥AC ------------------------------------------------------------------------------------------(1分)(2)1133DE b a =------------------------------------------------------------------------------------(4分)22.解:作BM ⊥ED ,BN ⊥AD ,垂足分别为M 、N ,-----------------------------------------(1分)在△ABN 中,∠ANB =90°,∴AN=AB ·cos ∠BAD =4×0.25=1,-----------------------------------------------------------(2分)BN=AB ·sin ∠BAD =4×0.97=3.88,--------------------------------------------------------(2分)∴ND=2,-------------------------------------------------------------------------------------------(1分)在四边形BMDN 中,∠BMD=∠MDA=∠DNB=90°,∴在四边形BMDN 是矩形,∴BM=ND =2,BN=MD=3.88,---------------------------(1分)在△ABN 中,∠ANB =90°,∠BCM =45°,∴BM=MC=2,------------------------------------------------------------------------------------(1分)∴CD=MD -MC=1.88≈1.9(米).-------------------------------------------------------------(1分)答:阴影CD 的长是1.9米.-------------------------------------------------------------------(1分)23.证明:(1)∵∠BAC =∠BDC ,∠AOB =∠DOC ,∴△AOB ∽△DOC ,-----------(2分)∴AO DO BO CO=,-----------------------------------------------------------------------------------(1分)∵∠AOD =∠BOC ,------------------------------------------------------------------------------(1分)∴△AOD ∽△BOC .------------------------------------------------------------------------------(2分)(2)∵△AOB ∽△DOC ,∠BAO =∠CDO ,∵AE ∥CD ,∴∠AED =∠CDO ,-------------------------------------------------------------(1分)∴∠AED =∠BAC ,--------------------------------------------------------------------------------(1分)∵△AOD ∽△BOC ,∴∠ADE =∠BCA ,-----------------------------------------------------(1分)∴△AED ∽△BAC ,------------------------------------------------------------------------------(1分)∴AE AD BA BC=,∴AB AD AE BC ⋅=⋅.--------------------------------------------------------(2分)24.解:(1)由题意得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:a =1,b =1,c =4,∴抛物线的表达式为223y x x =--.-------------------------(2分)∵()222314y x x x =--=--,∴顶点P 的坐标是(1,-4).----------------------(2分)(2)抛物线的对称轴为直线1=x ,--------------------------------------------------------------(1分)设点D 的坐标为(1,m ),∵∠PAD=90°,∴222PA AD PD +=,∴222+=,-----------(1分)解得,1m =,点D 的坐标为(1,1)-----------------------------------------------------(2分)(3)由题意,点M 坐标是(1,0),作MH ⊥x 轴,垂足为点H ,∵QB=QM ,∴MH=HB ,∴点H 的坐标为(2,0),点Q 的横坐标为2,---------(1分)设点Q 的坐标是(2,t ),∵QO=OE ,∴点Q 和点E 关于原点O 对称,∴点E 的坐标为(-2,-t ),--------(1分)∴()()22223t --⨯--=-,解得5t =-,点Q 的坐标是(2,-5),-------------------(1分)∴新抛物线的表达式是()225y x =--,即241y x x =--.-------------------------------(1分)25.(1)证明:∵∠CAD=∠ACB ,∠ACP=∠BCA ,∴△ACP ∽△BCA ,∴AC CP BC AC =,∴2AC CP BC =⋅.----------------------------------------------------------------(1分)∵AB=AC ,∴∠ABC=∠ACB ,∵∠CAD=∠ABC ,∴∠CAD=∠ACB ,∴P A=PC ,--------------------------------------(1分)∵DC ⊥AC ,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∠ACB+∠PCD=90°,∴∠ADC=∠PCD ,∴PD=PC ,∴12AP PD PC AD ===,-------------------------------(1分)∴212AB AD BC =⋅-------------------------------------------------------------------------------(1分)(2)作AH ⊥BC ,垂足为点H ,在Rt △ABH 中,∠AHB=90°,sin ∠ABC 45AH AB ==,设AH=4k ,AB=5k ,则BH=3k .---------------------------------------------------------------(1分)∵AB=AC ,∴BH=HC=3k ,∴BC=6k ,∵2AB CP BC =⋅,∴256CP k =,-------------------------------------------------------------(1分)∴116BP k =,∴BP ∶PC=1125.-----------------------------------------------------------------(2分)(3)显然∠BCD ≠90°,如果∠CBD =90°,∵∠AHB =90°,∴AH ∥BD ,∴PH AP BP PD=,∵AP=PD ,∴PH=BP ,设PH=BP=m ,∴BH=CH=2m ,CP=3m ,BC=4m ,----------------------------------------------------------(1分)∵2AB CP BC =⋅,∴AB =,-----------------------------------------------------------(1分)在Rt △ABH 中,∠AHB=90°,∴AH =,∴tan ∠ABC AHBH==,即∠ABC .-------------------------------------(1分)如果∠CDB =90°,∵∠ACD =90°,∴AC ∥BD ,∴BP PD CP AP=,∵AP=PD ,∴BP=PC ,-------------------------------------------------------(1分)∵AB=AC ,∴四边形ABDC 是正方形,----------------------------------------------------(1分)∴∠ABC=45°,∠ABC 的正切值为1.---------------------------------------------------------(1分)综上所述,如果△BCD 是直角三角形,∠ABC 或1.。

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。

2024吉林省长春市二道区中考初三一模数学试题及答案

2024吉林省长春市二道区中考初三一模数学试题及答案

(第8题)九年级质量调研数学试题本试卷包括三道大题,共24题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,只交答题卡.一、选择题(本大题共8道小题,每小题3分,共24分)1.下列计算结果是负数的是A .2-B .()3--C .()21-D .12-⨯2.长白山脉,粉雪静风,滑雪爱好者驰骋雪浪;查干湖畔,冰湖腾鱼,八方来客熙熙攘攘.这个雪季,吉林省冰雪旅游异常火热,数据显示,2024年春运期间,吉林省接待国内游客约为20500000人次.其中20500000这个数用科学记数法表示为A .62.0510⨯B .620510⨯C .72.0510⨯D .520.510⨯3.下列几何体均由五个大小相同的小正方体搭成,其中主视图与其它三个都不同的是A .B .C .D .4.不等式21x +>的解集在数轴上表示为A .B .C .D .5.如图,O 是量角器的中心,点M 是量角器上一点,直尺ABCD 的一边AB 与量角器的零刻度线重合,OM 与CD 相交于点N .若量角器上显示∠MOB 的读数为70,则∠DNM 的度数为A .70°B .110°C .130°D .140°6.近年,长春市城区内的背街小巷都安装上了路灯,为市民提供更多的出行方便.如图所示,其中一款路灯的灯杆AC 高9米,灯臂AB 长1米,灯臂与水平面的夹角为α,则灯臂的最高点B 到地面的距离为A .(9+sin α)米B .(9+cos α)米C .(9+tan α)米D .9cos α米7.如图,已知∠AOB 小于60°,在射线OA 上取一点C ,以点О为圆心,OC 长为半径作 MN交OB 于点D ,连结CD .以点D 为圆心,CD 长为半径作弧,交 MN 于点P ,再以点P 为圆心,CD 长为半径继续作弧,交 MN于点Q ,连结OQ ,CQ .根据以上作图过程及所作图形,下列结论错误的是A .∠BOQ =2∠AOB B .∠AOB =∠QCDC .CQ =3CDD .∠DOQ =2∠QCD8.如图,在平面直角坐标系中,点A 是反比例函数110k y k x =(>)第一象限内图象上一点,过点A 分别作AB ⊥x 轴,AC ⊥y 轴,交反比例函数220ky k x=(>)的图象于点B 和点C ,过点B 作BP ⊥y 轴于点P ,连结PA ,PC .若2024.04(第5题)(第6题)(第7题)PC 平分∠APB ,tan ∠ACP =12,则12k k 的值为A .13B.12C .25D .38二、填空题(本大题共6道小题,每小题3分,共18分)9.计算:91-=.10.因式分解:221m m ++=.11.若关于x 的一元二次方程220x x m -+=没有实数根,则m 的取值范围是.12.如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,4),(4,0),将△AOB 沿x 轴正方向平移至△CBD ,此时点C 的坐标为.13.如图,四边形ABCD 是O 的内接四边形,AB =AD ,直线MN 与O 相切于点A .若∠MAD =40°,则∠C 的大小为度.14.如图,排球运动员站在点О处练习发球,将球从О点正上方发出,把球看成点,其运行的高度y (米)与运行的水平距离x (米)满足表达式y =-0.02x 2+0.24x +a .已知球网与О点的水平距离为9米,高度为2.43米,球场的边界距О点的水平距离为18米.若排球不碰球网且不出界,则a 的取值范围是.(排球落在边界线上时为界内)三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:21211x x x x++--,其中23x =-.16.(6分)在一个不透明的盒子中装有三张卡片,分别标有数字0、1、2,这些卡片除数字不同外其余均相同.洗匀后,小亮同学从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片并记下数字.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.(6分)用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致.两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两个操作员每分钟各能输入多少个数据?(第12题)(第13题)(第14题)18.(7分)如图,已知平行四边形ABCD 的对角线AC 的垂直平分线EF 与边AB 、CD 分别交于点E 、F .(1)求证:四边形AECF 是菱形;(2)若4EF =,1tan 3BAC ∠=,则菱形AECF 的面积为.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 均为格点.只用无刻度的直尺,分别在给定的网格中按下列要求作图:(1)在图①中,确定一个格点M (不与B 重合),连结AM 、CM ,使得△ACM 的面积和△ABC 的面积相等;(2)在图②中,确定一个格点M ,连结AM 、CM ,使得△ACM 的面积是△ABC 的面积的2倍;(3)在图③中,确定两个格点M 和N ,连结BM 、MN 和CN ,使得四边形BMNC 的面积是△ABC 的面积的3倍.20.(7分)近期,许多市民对我市“道路交通拥堵指数”很感兴趣,它相当于把拥堵情况数字化,其计算公式是:=拥堵时期所花费时间道路交通拥堵指数畅通时期所花费时间.例如:从A 点→B 点畅通期只需要10分钟,拥堵期需要20分钟,那么就意味着拥堵期从A 点→B 点需要花费的时间是畅通期的2倍,这个时候的道路交通拥堵指数将会显示为2.目前,我市界定交通状况的道路拥堵指数范围如下:1≤拥堵指数<1.5为畅通;1.5≤拥堵指数<1.8为缓行;1.8≤拥堵指数<2.2为拥堵;拥堵指数≥2.2为严重拥堵.小张同学为了解本市早高峰时段部分路段的交通情况,随机查阅了本市某天的早高峰道路交通拥堵指数,整理这些数据并绘制了如下两幅不完整的统计图.(第18题)图①图②图③(第19题)(第20题)抽取道路早高峰拥堵指数条形统计图抽取道路早高峰拥堵指数扇形统计图根据以上信息回答下列问题:(1)补全条形统计图;(2)估计我市360条重点管理道路中早高峰时段处于拥堵和严重拥堵的总条数;(3)基于以上统计结果,我市交通管理部门建议交通参与者要绿色出行,文明行车,使我市360条重点管理道路中早高峰时段交通状况为畅通或缓行的道路条数占比达到85%,则我市交通管理部门应在保证现有的通畅和缓行道路条数的基础上至少要改变_________条拥堵或严重拥堵的道路.21.(8分)小明和小红两同学分别从甲地出发,沿同一条道路骑自行车到乙地参加社会实践活动,小明同学先从甲地出发,0.5小时后小红出发.小明和小红距甲地的距离y (千米)与小明出发的时间x (小时)之间的函数图象如图所示.(1)小红同学骑自行车的速度为千米/小时;(2)当0.5 2.5x ≤≤时,求小明距甲地的距离y 与x 之间的函数关系式;(3)当小红到达乙地时,求小明距乙地的距离.22.(9分)【发现问题】数学兴趣小组在活动时,老师提出了这样的一个问题:如图①,在△ABC 中,AB =6,AC =8,第三边上的中线AD =x ,则x 的取值范围是______.图①图②图③图④图⑤(第22题)【探究方法】小明同学通过组内合作交流,得到了如下解决方法:(1)如图②,延长AD 至点'A ,使得'DA AD =,连结'A C ,根据“SAS ”可以判定ABD △≌__________,得出'A C AB =6=.在'AA C △中,'6A C =,8AC =,'2AA x =,故中线AD 的长x 的取值范围是_______.【活动经验】当条件中出现“中点”,“中线”等条件时,可以考虑将中线延长一倍,构造全等三角形,把分散的已知条件和所求的问题集中到同一个三角形中,进而解决问题,这种作辅助线的方法叫做“倍长中线”法.【问题解决】(2)如图③,已知AB AC =,AD AE =,180BAE CAD ∠+∠=︒,连结BE 和CD ,点F 是CD 的中点,连结AF .求证:2BE AF =.小明发现,如图④,延长AF 至点'A ,使'FA AF =,连结'A D ,通过证明'ABE DA A △△≌,可推得'2BE AA AF ==.下面是小明的部分证明过程:证明:延长AF 至点'A ,使'FA AF =,连结'A D ,∵点F 是CD 的中点,∴CF DF =.(第21题)∵'AF A F =,'AFC A FD ∠=∠,∴'(SAS)ACF A DF △≌△,∴'A D AC =,'A DF ACF ∠=∠,∴'A D AC ∥,'180A DA CAD ∠+∠=︒.请你补全余下的证明过程.【问题拓展】(3)如图⑤,在ABC △和AEF △中,AB AE =,AC AF =,180BAC EAF ∠+∠=︒,点M ,N 分别是BC 和EF 的中点.若4BC =,6EF =,则MN 的取值范围是.23.(10分)如图,在Rt △ABC 中,∠ACB =90°,BC =8,AB =10,点M 是AC 的中点,动点P 从点C 出发,沿折线CB —BA 向终点A 运动,点P 在CB 上的运动速度为每秒4个单位长度,在BA 上的运动速度为每秒5个单位长度,作点P 关于点C 的中心对称点Q ,连结BM 、QM .设点P 的运动时间为t (t >0)秒.(1)线段MC 的长为;(2)设点P 到AC 的距离为h ,用含t 的代数式表示h ;(3)当∠BMQ 是直角时,求t 的值;(4)当点P 在CB 上运动时,在边AB 上存在一点N ,使四边形AMPN 是轴对称图形,直接写出此时t 的值及AN 的长度.24.(12分)在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx =-++(b 为常数)的顶点坐标为(1,2),抛物线与y 轴的相交于点A ,点P 在此抛物线上,其横坐标为m ,该抛物线在A 、P 两点之间的部分(包括A 、P 两点)记为图象G .(1)求该抛物线对应的函数表达式;(2)当图象G 与x 轴有交点时,求m 的取值范围;(3)设图象G 的最高点与最低点的纵坐标差为h ,横坐标差的绝对值为l ,当h =3l时,求m 的值;(4)过P 点作PQ ⊥y 轴,点Q 的横坐标为2-m ,连结AQ ,以AQ 和PQ 为邻边构造▱AQPM ,若图象G 与▱AQPM 的边有交点(不包括▱AQPM 的顶点),交点记为点N ,当▱AQPM 的面积被直线QN 分成1:3的两部分时,直接写出m 的值.(第23题)九年级数学学科参考答案2024.04阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、选择题(每小题3分,共24分)1.D2.C3.B4.B5.B6.A 7.C 8.D二、填空题(每小题3分,共18分)9.210.()21m +11.1m >12.()5,413.8014.1.89 2.16a <≤三、解答题(本大题10小题,共78分)15.解:21211x xx x++--2121x x x -=+-(1)(1)21x x xx +-=+-(2分)12x x =++31x =+.(4分)当23x =-时,原式=23()12113⨯-+=-+=-.(6分)16.解:根据题意,树状图如下:(4分)P(两次抽取的卡片上数字之和为偶数)59=.(第24题)(6分)17.解:设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据,根据题意,得(1分)264026402602x x=-⨯.(4分)解得11x =.(5分)经检验,x =11是原方程的解.并且,当x =11时,2x =2×11=22,所以乙用了240分钟,甲用了120分钟,甲比乙少用了120分钟,符合题意.(6分)答:甲每分钟能输入22个数据,乙每分钟能输入11个数据.评分说明:设未知数得1分;等量关系正确得3分;求解正确得1分;检验得1分;不答不扣分.18.解:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,∴EAO FCO ∠=∠.(1分)∵EF 平分AC ,∴OA OC =.(2分)又∵90AOE COF ∠=∠=︒,∴AOE △≌COF △,∴OE OF =,∴四边形AECF 是平行四边形.(4分)∵EF AC ⊥,∴四边形AECF 是菱形.(5分)(2)24(7分)19.解:(1)如图.(3分)(第18题)(2)如图.(5分)(3)如图.(7分)评分说明:字母标错或不标扣1分.不用直尺画每题扣1分,画成虚线不扣分.20.解:(1)(2分)(2)413609020+⨯=(条)(5分)答:我市360条重点管理道路中早高峰时段处于拥堵和严重拥堵的总条数约为90条.(3)36(7分)21.解:(1)10(2分)(2)设当0.5 2.5x ≤≤时,小明距甲地的距离y 与x 之间的函数关系式为(0)y kx b k =+≠.把(0.5,5)、(2.5,15)分别代入y kx b =+得:0.552.515k b k b +=⎧⎨+=⎩解得:52.5k b =⎧⎨=⎩.∴当0.5 2.5x ≤≤时,小明距甲地的距离y 与x 之间的函数关系式为5 2.5y x =+.(5分)(3)150.5210+=(小时)当2x =时,52 2.512.5y =⨯+=(千米).1512.5 2.5-=(千米).答:当小红到达乙地时,小明距乙地2.5千米.(8分)22.解:(1)'A CD △,17x <<.(2分)(2)∵∠BAE +∠CAD =180°,∴∠'A DA =∠BAE .(3分)又∵AB =AC ,∴'A D=AB .(4分)∵AD =AE ,∴'A AD BAE≌△△,(6分)∴'2BE AA AF ==.(7分)(3)15MN ≤≤.(9分)23.解:(1)3.(1分)(2)4021642 4.tt h tt ⎧=⎨-⎩<≤,<≤(4分)(3)如图1,当02t <≤时,若∠QMB =90°,即∠CMQ =∠CBM ,∴43tan 38t CMQ ∠==,解得932t =.(6分)如图2,当24t <≤时,若∠QMB =90°,即∠CMQ =∠CBM ,(图1)(图2)∴1643tan 6(123)38t CMQ t -∠==--+,解得13741t =.(8分)(4)①34t =时,AN=3;②1t =时,435AN =.(10分)24.解:(1)把(1,2)代入21y x bx =-++得:211b =-++解得:2b =.∴抛物线所对应的函数解析式为221y x x =-++.(3分)(2)抛物线所对应的函数解析式为221y x x =-++,∴点A 坐标为(0,1).当y =0时,即22x x +解得:11x =-21x =+.综上,当1m ≤1m +≥时,图象G 与x 轴有交点.(6分)(3)点A 坐标为(0,1),顶点坐标为(1,2),P 点坐标为(m ,221m m -++).当0m <时,()221212h m m m m =--++=-,l m =-,若3h l =可得:223m m m -=-,解得:11m =-,20m =(舍).当01m ≤<时,()222112h m m m m =-++-=-+,l m =,若3h l =可得:223m m m -+=,解得:11m =-(舍),20m =(舍).当12m ≤<时,211h =-=,1l =,h l =,不符合题意.当2m ≥时,()2222121h m m m m =--++=-+,1l m =-,若3h l =可得:2213(1)m m m -+=-,解得:11m =(舍),24m =.综上,当h =3l 时,m 的值为1-或4.(10分)(4)67,3.(12分)评分说明:第(4)题每写对一个值得1分,两个正确的答案都出现的情况下,多解扣1分.。

石景山区2024届初三一模数学试题及答案

石景山区2024届初三一模数学试题及答案

石景山区2024年初三统一练习数 学 试 卷第一部分 选择题一、选择题(共16分,每题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,主视图是三角形的是2.2023年10月26日,搭载神州十七号载人飞船的长征二号F 摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F (代号:CZ 2F −,简称:长二F ,绰号:神箭)主要用于发射神州飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为 (A )28510⨯(B )28.510⨯(C )38.510⨯(D )40.8510⨯3.下列图书馆标志图形中,是轴对称图形的是(A )(B )(C )(D )4.如图,直线a b ∥,直线l 与a b ,分别交于点A B ,,过 点A作AC b ⊥于点C .若155∠=°,则2∠的大小为 (A )35° (B )45° (C )55° (D )125°(A )(B )(C )(D )21lba A BC5.已知30m +<,则下列结论正确的是 (A )33m m −<<−< (B )33m m <−<−< (C )33m m −<<<−(D )33m m <−<<−6.若一个多边形的内角和是720°,则该多边形的边数是 (A )4(B )5(C )6(D )77.不透明的袋子中装有两个黄球和一个红球,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次都摸到黄球的概率是 (A )29(B )13(C )49(D )238.如图,90ABC BA BC ∠==°,,BM 是ABC ∠内部的射线且45CBM ∠<°,过点A 作AD BM ⊥于点D ,过点C 作CE BM ⊥于点E , 在DA 上取点F ,使得DF DE =,连接EF . 设CE a BE b EF c ===,,,给出下面三个结论:①c b a =−);②a c +<;>.上述结论中,所有正确结论的序号是 (A )①②(B )①③(C )②③(D )①②③第二部分 非选择题二、填空题(共16分,每题2分)9x 的取值范围是 .10.分解因式:24xy x −= .11.如图,在□ABCD 中,点E 在BC 上且2EB EC =,AE 与BD 交于点F .若5BD =,则BF 的长为 . 12.方程21375x x=+的解为 . FA BECDMFCA D EB13.在平面直角坐标系xOy 中,若点11A y (,),23B y (,)在反比例函数0ky k x=>()的 图象上,则1y 2y (填“>”“<”或“=”).14.若关于x 的一元二次方程220x x m −−=有两个相等的实数根,则实数m 的值为 .15.如图,AB 是O ⊙的直径,P 是AB 延长线上一点,PC与O ⊙相切于点C .若40P ∠=°,则A ∠= °.16.某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤.某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;在不考虑其他因素的前提下,若由甲单独完成一间客房的清洁工作,需要分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要 分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 171122sin 605−++°().18.解不等式组:4178523x x x x −<+−>⎧⎪⎨⎪⎩,.19.已知2360x x −−=,求代数式2926x x x x +−÷()的值.20.如图,在四边形ABCD 中,AD BC AB AD =∥,,AE 平分BAD ∠交BC 于点E ,连接DE .(1)求证:四边形ABED 是菱形;(2)连接BD 交AE 于点F .若90BCD ∠=°,6cos 3DBC ∠=,26BD =,求EC 的长.21.为了保护水资源,提倡节约用水,北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表(单位:元/立方米)供水 类型阶梯 户年用水量 (立方米) 水价 其中水费 水资源费污水处理费自来水第一阶梯0—180(含) 5 2.07 1.571.36第二阶梯 181—260(含) 7 4.07 第三阶梯260以上96.07某户居民2023年用水共缴纳1040元,求这户居民2023年的用水量.22.在平面直角坐标系xOy 中,函数0y k x b k =+≠()的图象过点03A (,)和21B −(,),与过点05(,)且平行于x 轴的直线交于点C . (1)求该函数的解析式及点C 的坐标;(2)当2x <时,对于x 的每一个值,函数0y mx m =≠()的值小于0y k x b k =+≠()的值,直接写出m 的取值范围.xyO–1–2–3–4–5–6123456–1–2–3–4–5–6123456备用图CDEBA23.为了培养学生的爱国情感,某校在每周一或特定活动日举行庄严的升国旗仪式.该校的国旗护卫队共有18名学生,测量并获取了所有学生的身高(单位:cm ),数据整理如下:a .18名学生的身高:170,174,174,175,176,177,177,177,178, 178,179,179,179,179,181,182,183,186 b .18(1)写出表中m ,n 的值;(2)该校的国旗护卫队由升旗手、护旗手、执旗手组成,其中12名执旗手分为两组:对于不同组的学生,如果一组学生的身高的方差越小,则认为该组的执旗效果越好. 据此推断:在以上两组学生中,执旗效果更好的是 (填“甲组”或“乙组”); (3)该校运动会开幕式的升国旗环节需要6名执旗手,因甲组部分学生另有任务,已确定四名执旗手的身高分别为175,177,178,178.在乙组选另外两名执旗手时,要求所选的两名学生与已确定的四名学生所组成的六名执旗手的身高的方差最小,则选出的另外两名学生的身高分别为 和 .24.如图,AB 是O ⊙的直径,CD 是O ⊙的弦,CD AB ⊥于点E ,点F 在O ⊙上且CF CA =,连接AF .(1)求证:AF CD =;(2)连接BF BD ,.若26AE BF ==,,求BD 的长.25.某农科所的科研小组在同一果园研究了甲、乙两种果树的生长规律.记果树的生长时间为 x (单位:年),甲种果树的平均高度为1y (单位:米),乙种果树的平均高度为2y (单位:米).记录的部分数据如下:对以上数据进行分析,补充完成以下内容.(1)可以用函数刻画1y 与x ,2y 与x 之间的关系,在同一平面直角坐标系xOy 中,已经画出1y 与x 的函数图象,请画出2y 与x 的函数图象;(2)当甲种果树的平均高度达到8.00米时,生长时间约为 年(结果保留小数点后一位);当乙种果树的平均高度为5.00米时,两年后平均高度约为 米(结果保留小数点后两位);(3)当甲、乙两种果树的平均高度相等时,生长时间约为 年(结果保留小数点后一位).26.在平面直角坐标系xOy 中,抛物线222y x m x m =−++()的对称轴为直线x t =. (1)求t 的值(用含m 的代数式表示);(2)点1A t y −(,),2B t y (,),31C t y +(,)在该抛物线上.若抛物线与x 轴的一个交点为00x (,),其中002x <<,比较1y ,2y ,3y 的大小,并说明理由.27.在ABC △中,AB AC =,060BAC <∠<°°,将线段BC 绕点B 逆时针旋转60°得到线段BD ,连接AD .将线段AD 绕点A 顺时针旋转90°得到线段AE ,连接DE . (1)如图1,求证:EA ∥BC ;(2)延长BC 到点F ,使得CF CB =,连接DF 交AC 于点M ,依题意补全图2 .若点M 是AC 的中点,用等式表示线段MF ,MD ,DE 之间的数量关系, 并证明.EADCB EDC B A 图1 图228.对于线段MN 和点P 给出如下定义:点P 在线段MN 的垂直平分线上,若以点P 为圆心,PM 为半径的优弧M mN 上存在三个点A B C ,,,使得ABC △是等边三角形,则称点P 是线段MN 的“关联点”.例如,图1中的点P 是线段MN 的一个“关联点”. 特别地,若这样的等边三角形有且只有一个,则称点P 是线段MN 的“强关联点”.在平面直角坐标系xOy 中,点A 的坐标为20(,).(1)如图2,在点1234313101213C C C C −(,),(,),(,),(,)中,是线段OA 的“关 联点”的是 ;(2)点B 在直线33y x =上.存在点P ,是线段OA 的“关联点”,也是线段OB 的“强关联点”.①直接写出点B 的坐标;②动点D 在第四象限且2AD =,记OAD α∠=.若存在点Q ,使得点Q 是线 段AD 的“关联点”,也是OB 的“关联点”,直接写出α及线段AQ 的取值范围.AmPCB MN图1 图2xy-3 -2 -1-1-32311 2 3-2OC 1C 3C 4C 2A石景山区2024年初三统一练习数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2024北京二中初三一模数学试题及答案

2024北京二中初三一模数学试题及答案

2024北京二中初三一模数 学考查目标1.知识:人教版初中数学教材第1-29章全部内容2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力. 考生须知1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡8页.全卷共三大题,28道小题.2.本试卷满分100分,考试时间120分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号. 4.考试结束,将答题卡交回.第Ⅰ卷(选择题共16分)一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1. 2023年上半年我国新能源汽车取得显著成绩,新能源汽车使用环境持续优化,截至6月底,全国累计建成各类充电桩超过660万台.将数据“660万”用科学记数法表示为( ) A. 66.610⨯B. 60.6610⨯C. 56610⨯D. 70.6610⨯2. 下列图形中,不属于中心对称图形的是( ) A. 圆B. 等边三角形C. 平行四边形D. 线段3. 如图,利用工具测量角,有如下4个结论: ①=90AOC ︒∠; ②AOB BOC ∠=∠;③AOB ∠与BOC ∠互为余角; ④AOB ∠与AOD ∠互为补角.上述结论中,所有正确结论的序号是( ) A. ②③B. ①②④C. ①③D. ①③④4. 关于x 的一元二次方程22210x mx m ++−=的根的情况是( ) A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数由m 的值确定5. 正八边形每个内角的度数为( ) A. 150︒B. 135︒C. 120︒D. 90︒6. 2024年央视春晚的主题为“龙行龘龘,欣欣家国”.“龙行龘龘”寓意中华儿女奋发有为、昂扬向上的精神风貌.将分别印有“龙”“行”“龘”“龘”四张质地均匀、大小相同的卡片放入盒中,从中随机抽取一张不放回,再从中随机抽取一张,则抽取的两张卡片上恰有一张印有汉字“龘”的概率为( ) A. 23B.12C.13D.167. 数轴上点A ,M ,B 分别表示数,,a a b b +,那么下列运算结果一定是正数的有( )A. a b +B. a b −C. abD. ||a b −8. 如图,作线段AC a =,在线段AC 的延长线上作点B ,使得()CB b a b =<,取线段AB 的中点O ,以O 为圆心,线段OA 的长为半径作O ,分别过点C O 、作直径AB 的垂线,交O 于点D F 、,连接OD AF CF 、、,过点C 作CE OD ⊥于点E .设CF c =,给出下面4个结论:①2a b c +<c <()2a b <+;④2ab ac bc <+; 上述结论中,正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个第Ⅱ卷(非选择题 共84分)二、填空题(每小题2分,共16分)9. 当x =__________时,分式12x x +−的值为零. 10. 分解因式:4x 3﹣16x 2+16x=________________________. 11. 方程1242xx x=++的解是______. 12. 点()11,A x y ,()22,B x y 是反比例函数2y x=的图象上的两点,如果120x x <<,那么1y __________2y (填“>”,“=”,“<”)13. 为了了解我市初中学生的视力情况,随机抽取了该区200名初中学生进行调查整理样本数据,得到下表:14. 据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O ,物体AB 在幕布上形成倒立的实像CD (点,A B 的对应点分别是,C D ).若物体AB 的高为12cm ,实像CD 的高度为8cm ,则小孔O 的高度OE 为______cm .15. 如图,AB 是O 的弦,且6AB =,点C 是弧AB 中点,点D 是优弧AB 上的一点,30ADC ∠=︒,则圆心O 到弦AB 的距离等于______.16. 某班教室桌椅摆放成三个组,每天放学后安排三位同学做清洁,清洁内容包括以下3项:①调整桌椅;②扫地;③拖地,其中项目①②顺序可以交换,但项目③必须放在最后完成.某清洁小组的三位固定搭档每次流水操作完成:A 同学只负责项目①,B 同学只负责项目②,C 同学只负责项目③,每组每项完成时间详见表:___分钟.三、解答题(共68分,其中第17-19、22-23、25题每题5分,第20-21、24题、26题每题6分,第27-28题7分)17.计算:1012cos30(2024)2π−⎛⎫−+︒−+− ⎪⎝⎭. 18. 解不等式组()22315133x x x x ⎧+>−⎪⎨+≥+⎪⎩,并写出满足条件的非正整数解.19. 先化简,再求值:21242x x x xx x x −+−⎛⎫−÷⎪−⎝⎭,其中2x =. 20. 如图,在等腰ABC 中,,AB BC BO =平分ABC ∠,过点A 作AD BC ∥交BO 的延长线于D ,连接CD ,过点D 作DE BD ⊥交BC 的延长线于E .(1)判断四边形ABCD 的形状,并说明理由; (2)若4,120AB ABE =∠=︒,求DE 的长.21. 在纸盒制作的劳动实践课上,对规格是150cm 90cm ⨯的原材料板材进行裁剪得到A 型长方形纸板和B 型正方形纸板.为了避免材料浪费,每张原材料板材先裁得3张150cm 30cm ⨯的纸板条,每张纸板条又恰好可以裁得3张A 型长方形纸板或5张B 型正方形纸板,如图1所示.(单位:cm )(1)每张原材料板材可以裁得A 型纸板______张或裁得B 型纸板______张;(2)现有260张原材料板材全部裁剪(每张原材料板材只能一种裁法)得到A 型与B 型纸板当侧面和底面,做成如图2所示的竖式有盖长方体纸盒(1个长方体纸盒需要4个侧面和2个底面,接缝忽略不计),问:怎样裁剪才能使剪出的A ,B 型纸板恰好用完?能做多少个纸盒?22. 如图,在平面直角坐标系xOy 中,过点(,0)A a 作x 轴的垂线,分别交直线21y x =−与反比例函数ky x=图像于M ,N 两点,点M ,N 的纵坐标分别为m ,n .(1)若点M 与点N 重合,且m a =,求k 的值; (2)当2a >时,总有m n >,直接写出k 的取值范围.23. 某校舞蹈队共16名学生,将其身高(单位:cm )数据统计如下:A .16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B .16名学生身高的平均数、中位数、众数:(1)m = ,n = ;(2列两组学生中,舞台呈现效果更好的是 ;(填“甲组”后“乙组”)(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为329.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差小于329,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另外两名学生身高分别为 和 . 24. 如图,AB 是O 的直径,C 为圆上一点,D 是劣弧BC 的中点,DE AB ⊥于E ,过点D 作BC 的平行线DM ,连接AC 并延长与DM 相交于点G ,连接AD 与BC 交于点H .(1)求证:GD 是O 的切线;(2)若6,8CD AD ==,求AH 的值.25. 中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵全红婵·位列第三,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的207C (向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy .如果她从点()3,10A 起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中她的竖直高度y (单位:米)与水平距离x (单位:米)近似满足函数关系式()()20y a x h k a =−+<.图1图2(1)在平时训练完成一次跳水动作时,全红婵的水平距离x 与竖直高度y 的几组数据如下:___________; (2)比赛当天的某一次跳水中,全红婵的竖直高度y 与水平距离x 近似满足函数关系,254068y x x =−+−记她训练的入水点的水平距离为1d ;比赛当天入水点的水平距离为2d ,则1d ____2d (填,,>=<);(3)在(2)的情况下,全红婵起跳后到达最高点B 开始计时,若点B 到水平面的距离为c ,则她到水面的距离y 与时间t 之间近似满足25y t c =−+,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的207C 动作,请通过计算说明,她当天的比赛能否成功完成此动作? 26. 在平面直角坐标系中,已知抛物线23y ax bx =++经过点()2,3a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点()()()2,,2,,,M t m N t n P t p −+−为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.27. 如图,在正方形ABCD 中,将边AD 所在直线绕点D 逆时针旋转α度得到直线DM ,作点A 关于直线DM 的对称点P ,连接CP DP 、.(1)依题意补全图形; (2)求DPC ∠的度数;(3)延长DP CP 、分别交直线AB AD 、于点E F 、,试探究:线段DE BE 、和AF 之间的数量关系,并证明.28. 对于平面内的点K 和点L ,给出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90︒,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点()4,0A ,在点()(((12340,4,2,,2,,Q Q Q Q −−中,是点A 关于点O 的锐角旋转点的是______.(2)已知点()5,0B ,点C 在直线2y x b =+上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围;(3)点D 是x 轴上的动点,()(),0,3,0D t E t −,点(),F m n 是以D 为圆心,3为半径的圆上一个动点,且满足0n ≥.若直线26y x =+上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.参考答案第Ⅰ卷(选择题共16分)一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1. 【答案】A【分析】本题考查科学记数法,关键是熟记科学记数法的一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.先把660万化为6600000,再据此求解即可.【详解】解:660万66600000 6.610==⨯, 故选:A . 2. 【答案】B【分析】根据中心对称图形的概念求解.【详解】解:A .是中心对称图形,故本选项错误; B .不是中心对称图形,故本选项正确; C .是中心对称图形,故本选项错误; D .是中心对称图形,故本选项错误. 故选B .【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3. 【答案】D【分析】本题考查了余角和补角,熟练掌握余角和补角的定义是解题的关键. 根据余角和补角的定义,进行计算逐一判断即可解答. 【详解】解:易知=90AOC ︒∠,故①正确,50,9040AOB BOC AOB ∠=︒∠=︒−∠=︒ AOB BOC ∴∠≠∠,故②错误, 90AOB BOC ∠+∠=︒∴AOB ∠与BOC ∠互为余角,故③正确;50130AOB AOD ∠=︒∠=︒, 180AOB AOD ∴∠+∠=︒,∴AOB ∠与AOD ∠互为补角.故④正确;故选:D 4. 【答案】A【分析】本题考查了一元二次方程的判别式,根据000∆>∆=∆<,,,分别对应的是有两个不相等的实数根、有两个相等的实数根、没有实数根,据此列式计算,即可作答. 【详解】解:∵22210x mx m ++−=∴()()222224241144440b ac m m m m ∆=−=−⨯⨯−=−+=>故选:A 5. 【答案】B【分析】本题考查了正多边形的内角与外角的关系.根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360︒,进而求得一个外角的度数,即可求得正八边形每个内角度数. 【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等, 一个外角等于:360845÷=︒, ∴内角为18045135︒−︒=︒, 故选:B . 6. 【答案】A【分析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12个等可能的结果,抽取完两张卡片后,恰有一张印有汉字“龘”的结果有8个,再由概率公式求解即可.【详解】解:把“龘”“龙”“行”分别记为A 、B 、C ,画树状图如图:共有12个等可能的结果,欢欢抽取完两张卡片后,恰有一张印有汉字“龘”的结果有8个, ∴抽取完两张卡片后,恰有一张印有汉字“龘”的概率为82123=. 故答案为:A . 7. 【答案】A【分析】数轴上点A ,M ,B 分别表示数a ,a b +,b ,AM a b a b =+−=,可得原点在A ,M 之间,由它们的位置可得a<0,0a b +>,0b >且||||a b <,再根据整式的加减乘法运算的计算法则即可求解. 【详解】解:数轴上点A ,M ,B 分别表示数a ,a b +,b ,AM a b a b =+−=,原点在A ,M 之间,由它们的位置可得a<0,0a b +>,0b >且||||a b <, 则0a b −<,0ab <,||0a b −<, 故运算结果一定是正数的是a b +. 故选:A .【点睛】本题考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,0a b +>,0b >且||||a b <.8. 【答案】B【分析】本题考查了圆的基本性质以及勾股定理内容以及完全平方公式的应用,先找出半径,结合斜边大于直角边,得知①2a bc +<是正确的,结合勾股定理以及完全平方公式的变形运算,得证③是错误的;同理得证②是正确的.对④运用反证法,得出2a bc +>,与①2a b c +<的结论相矛盾,即可作答. 【详解】解:∵()A b C a CB b a ==>, ∴()1122OF AB a b ==+ ∵OF AB ⊥∴CF (斜边)大于OF 即2a b c +>故①是正确的; ∴()111222OC AO AC a b a b a =−=+−=− 在Rt COF △中,222OC OF FC +=即22211222a b b a c +⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭∴2222a b c +==∵2a b c +<()2a b =>+ 故③是错误的; ∵b a > ∴()20b a −> ∴222b a ab +>>=>oc=x 半径=r a=r-x,b=r+xac+bc=(a+b)c=2r.c>2r 22ab=2(r-x)(r+x)=2(r 2-x 2)<2r 2所以2ab<ac+bc故④是正确的综上:正确结论的个数是3个故选:B第Ⅱ卷(非选择题 共84分)二、填空题(每小题2分,共16分)9. 【答案】1−【分析】根据分式的值为零时,分母不为0,且分子为0,求解即可. 【详解】分式12x x +−0=, 1=0x +且20x −≠ 解得x =1−;故答案为1−.【点睛】本题考查了分式的值为零的条件,分式的值为零时,分母不为0,且分子为0,掌握分式的值为零的条件是解题的关键.10. 【答案】4x(x ﹣2)2.【详解】3241616x x x −+=24(44)x x x −+=24(2)x x −.11. 【答案】2x =##2x =【分析】本题考查了分式方程的解法.先把两边同时乘以()22x +,去分母后整理为2x =,经检验即可得方程的解. 【详解】解:1242x x x=++, 两边同时乘以()22x +,得2x =,即2x =,经检验,2x =是原方程的解,故答案为:2x =.12. 【答案】12y y >.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x 1<x 2<0即可得出结论. 【详解】∵反比例函数2y x=中,20k =>,∴函数图象的两个分支位于一、三象限,且在每一象限内y 随x 的增大而减小,∵120x x <<∴12y y >.故答案为:12y y >.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13. 【答案】9600【分析】用总人数乘以样本中视力不低于4.8的人数所占比例即可.【详解】解:估计该市16000名初中学生视力不低于4.8的人数为:16000×334047200++=9600(名), 故答案为:9600.【点睛】本题主要考查了用样本估计总体;一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解题的关键是熟练掌握用样本估计总体.14. 【答案】4.8【分析】本题考查了相似三角形的应用:利用平行线构建相似三角形,然后用相似三角形对应边的比相等的性质求相应线段的长或表示线段之间的关系.利用相似三角形的性质得出对应线段成比例,再对两组对应线段进行变形即可求解;【详解】解:OE AB ∥COE CAB ∴∽CE OE CB AB∴=① OE CD ∥BOE BDC ∴∽BE OE BC CD∴=②, +①②得CE BE OE OE BC BC AB CD +=+, 1OE OE AB CD ∴+= 111OE AB CD ∴=+ 即128111OE =+ 4.8cm OE ∴=,故答案为:4.815. 【分析】连接OA 、OC ,根据垂径定理,C 是弧AB 的中点可知,OC AB ⊥,30D ∠=︒,可知60AOC ∠=︒,再用三角函数关系就可以求出OE 的长;【详解】如图,连接OA 、OC ,OC 交AB 于点E ,∵点C 是弧AB 中点,6AB =,∴OC AB ⊥,且3AE BE ==,∵30ADC ∠=︒,∴260AOC ADC ∠=∠=︒,∴30OAE ∠=︒,∴tan 3033OE AE =⋅︒=⨯=故圆心O 到弦AB【点睛】本题考查垂径定理、圆周角圆心角的关系和三角函数关系求边长;熟练掌握圆周角与圆心角的关系和垂径定理是解决本题的关键.16. 【答案】17【分析】先找出项目①和项目②完成最少时间,在加上项目③最少的时间即可得.【详解】解:项目①和项目②完成最少时间需要:5+6+4=15(分钟),在这15分钟内,项目③最多完成两组的拖地,剩下最少时间第三组,则15+2=17(分钟),故答案为:17.【点睛】本题考查了有理数的加法的应用,解题的关键是掌握有理数加法的应用.三、解答题(共68分,其中第17-19、22-23、25题每题5分,第20-21、24题、26题每题6分,第27-28题7分)17. 【答案】1−【分析】本题主要考查实数的混合运算,分别代简()1012,120242π−⎛⎫−==⎪⎭− ⎝−=,再代入特殊角三角函数值后,再进行计算即可.【详解】解:1012cos30(2024)2π−⎛⎫−+︒−+− ⎪⎝⎭2212=−+⨯−21=−+1=−18. 【答案】不等式组的解集为12x −<≤,不等式组的非正整数解为0x =.【分析】本题主要考查解一元一次不等式组,分别求出每个不等式的解集,再取它们的公共部分确定不等式组的解集,最后写出满足条件的非正整数解即可.【详解】解:()22315133x x x x ⎧+>−⎪⎨+≥+⎪⎩①② 解不等式①得,1x >−;解不等式②得,2x ≤,所以,不等式组的解集为12x −<≤,所以,不等式组的非正整数解为0x =.19. 【答案】2x x −,1 简,得2x x −,再把2x =代入,即可作答. 【详解】解:21242x x x xx x x −+−⎛⎫−÷ ⎪−⎝⎭ ()()()()12242x x x x x x x−−−+−=÷− ()232242x x x x x x x−+−−−=÷− ()2442x x x x x x−−=÷− ()()424x x x x x x −=⨯−− 2x x =−把2x =代入2x x −得12x x ===− 20. 【答案】(1)四边形ABCD 是菱形,理由见详解(2)【分析】本题考查了菱形的判定与性质,等腰三角形的性质,平行线的性质,熟练掌握菱形的判定与性质是解题的关键.(1)先利用等腰三角形的三线合一性质可得AO CO =,再利用平行线的性质可得DAO ACB ∠=∠,ADO CBO ∠=∠,从而利用AAS 证明ADO CBO ≌,进而可得DO BO =,再利用对角线互相平分线的四边形是平行四边形可得四边形ABCD 是平行四边形,然后利用菱形的定义可得四边形ABCD 是菱形,即可解答;(2)先利用角平分线的定义可得60DBC ∠=︒,再利用菱形的性质可得3BC CD AB ===,从而可得BCD 是等边三角形,进而可得4BD BC ==,然后利用垂直定义可得90BDE ∠=︒,从而可得30E ∠=︒,进而可得28BE BD ==,再利用勾股定理进行计算,即可解答.【小问1详解】解:四边形ABCD 是菱形,理由:AB BC =,BO 平分ABC ∠,AO CO ∴=,AD BE ,DAO ACB ∴∠=∠,ADO CBO ∠=∠,()ADO CBO AAS ∴≌,DO BO ∴=,∴四边形ABCD 是平行四边形,AB BC =,∴四边形ABCD 是菱形;【小问2详解】 BO 平分ABC ∠,120ABE ∠=︒,1602DBC ABE ∴∠=∠=︒, 四边形ABCD 是菱形,4BC CD AB ∴===,BCD ∴是等边三角形,4BD BC ∴==,BD DE ⊥∵,90BDE ∴∠=︒,9030E DBC ∴∠=︒−∠=︒,28BE BD ∴==,DE ∴===DE ∴的长为21. 【答案】(1)9;15(2)用200张原材料板材裁A 型纸板,60张原材料板材裁B 型纸板,恰好能使做出的竖式有盖长方体纸盒配套,能做出450个纸盒【分析】(1)根据题意进行解答即可;(2)设用x 张原材料板材裁A 型纸板,y 张原材料板材裁B 型纸板,根据原材料板材共260张,每个长方体纸盒有4个侧面,2个底面列出方程组,解方程组即可.【小问1详解】解:每张原材料板材可以裁得A 型纸板903930⨯=(张)或裁得B 型纸板9051530⨯=(张). 故答案为:9;15.【小问2详解】解:设用x 张原材料板材裁A 型纸板,y 张原材料板材裁B 型纸板, 根据题意得:26091542x y x y +=⎧⎪⎨=⎪⎩, 解得:20060x y =⎧⎨=⎩, 经检验:20060x y =⎧⎨=⎩是方程组的解且符合题意 ∴能做纸盒数为:9920045044x ⨯==(个) 答:用200张原材料板材裁A 型纸板,60张原材料板材裁B 型纸板,恰好能使做出的竖式有盖长方体纸盒配套,能做出450个纸盒.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是根据等量关系列出方程组,准确解方程组.22. 【答案】(1)1k =;(2)6k ≤且0k ≠.【分析】(1)将x a =代入直线与反比例函数结合m a =,即可得到答案;(2)求出2a =,两个函数相等时,6k =,根据函数的图象即可得到答案;【小问1详解】解:∵过点(,0)A a 作x 轴的垂线,分别交直线21y x =−与反比例函数k y x=图像于M ,N 两点,点M ,N 的纵坐标分别为m ,n ,∴点M ,N 的横坐标为a ,将x a =代入直线与反比例函数得, 21m a =−,k n a=, ∵点M 与点N 重合,m a =,∴1a =,1m n ==,∴1k =;【小问2详解】解:将2a =代入直线与反比例函数得,3m =,2k n =, 当m n =时,32k =,6k = 此时,2a >时,m n >,∴6k ≤且0k ≠.【点睛】本题考查一次函数反比例函数图像共存问题及利用函数图像解不等式,解题的关键是根据题意找到横坐标代入解析式.23. 【答案】(1)167,166(2)甲组 (3)171,173【分析】本题考查了平均数、众数、 中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键. (1)根据众数和中位数的定义进行计算;(2)根据方差的计算公式计算方差,然后根据方差的意义进行比较;(3)根据方差进行比较.【小问1详解】解: 数据按由小到大的顺序排序:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176,则舞蹈队16名学生身高的中位数为()167167167cm 2m +==, 众数为()166cm ,n =故答案为: 167,166;【小问2详解】甲组学生身高的平均值是:()163166166167167165.8cm 5++++=, 甲组学生身高的方差是:()()221[165.8163165.81665⨯−+−()()()165.8166?165.8167?165.8167?] 2.16+−+−+−= 乙组学生身高的平均值是:()162163165166176166.4cm 5++++= 乙组学生身高的方差是:()()()()()221166.4162166.4163166.4165?166.4166?166.4176?25.045⎡⎤⨯−+−+−+−+−=⎣⎦, 25.04 2.16>,∴甲组舞台呈现效果更好;故答案为:甲组;【小问3详解】∵169,169,173的平均数为()()11169169173170cm 33++=, 且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,∵数据的差别较小,可供选择的有171cm,173cm ,平均为: ()()1169169171173173171cm 5++++= 方差为:()()()()()22211632169171169171170171?171171?173171559⎡⎤−+−+−+−+−=<⎣⎦,∴选出的另外两名学生的身高分别为171cm 和173cm .故答案为: 171,173.24. 【答案】(1)见解析 (2)3.5【分析】本题主要考查切线的判定,勾股定理,垂径定理,相似三角形的判定与性质等知识:(1)连接OD ,得90ONC ∠=︒,再由DM BC ∥可得90ODM ONC ∠=∠=︒,故可证明GD 是O的切线;(2)运用勾股定理求出10AB =,再CDH ABH ∽△△,可求出DH ,从而求出AH【小问1详解】证明:连接OD ,如图所示:∵D 是劣弧BC 的中点,∴OD BC ⊥,OD 平分BC ,∴90,ONC ∠=︒∵DM BC ∥,∴90ODM ONC ∠=∠=︒∴DM OD ⊥,∵OD 是O 的半径,∴GD 是O 的切线;【小问2详解】∵D 是劣弧BC 的中点,∴6BD CD ==, ∴12BN BC =,∵AB 是O 的直径,∴90,ADB ∠=︒∴10AB ===,∵DCH BAH ∠=∠,CHD AHB ∠=∠,∴CDH ABH ∽△△, ∴63105CHDHCD AH BH AB ====,∵AB 是O 的直径,∴90ACB ADB ︒∠=∠=, ∵35DHBH =, ∴45BDBH =, ∴55156442BH BD ==⨯=∴3952DH BH ==, ∴98 3.52AH AD DH =−=−= 25. 【答案】(1)11.25,25( 3.5)11.25y x =−−+(2)<(3)不能,见详解【分析】本题考查二次函数的实际应用,解题的关键是正确的求出函数解析式. (1)通过表格数据结合待定系数法求出解析式,即可求解;(2)分别求出两个解析式当0y =时,x 的值,进行比较即可;(3)先求出c 的值,再求出 1.6t =时的y 值,进行判断即可.【小问1详解】解:由表格可知,图象过点(3,10),(4,10)(4.5,6.25), ∴34 3.52h +==, ∴2( 3.5)y a x k =−+,∴22(3 3.5)10(4.5 3.5) 6.25a k a k ⎧−+=⎨−+=⎩, 解得∶511.25a k =−⎧⎨=⎩, 25( 3.5)11.25; y x ∴=−−+故答案为∶11.25,25( 3.5)11.25y x =−−+;【小问2详解】 25( 3.5)11.25y x =−−+,当0y =时∶205( 3.5)11.25x =−−+,解得∶5x =或2x =(不合题意,舍去); 15d ∴=(米),254068,y x x =−+−当0y =时∶2540680x x −+−=,解得∶45x =+或45x =−+(不合题意,舍去);245,d ∴=>12,d d ∴<故答案为∶<;【小问3详解】22540685(4)y x x x =−+−=−−12+(4,12),B ∴12,c ∴=2512,y t ∴=−+当6 1.t =时25 1.6120.8y =−⨯+=− 0.80,−<即她在水面上无法完成此动作,她当天的比赛不能成功完成此动作.26. 【答案】(1)对称轴x a =−(2)()202t a t −<<>【分析】本题考查了二次函数的图象性质以及增减性,运用数形结合思想,正确掌握相关性质内容是解题的关键.(1)根据二次函数的对称轴公式代入数值进行化简,即可作答.(2)要分类讨论,分为0a >以及a<0,分别作出相对应的图象,灵活运用数形结合思想,分析作答即可.【小问1详解】解:把()2,3a −代入23y ax bx =++得()23423a a ab =⨯−+ ∴22b a = 则对称轴222a x a a=−=−; 【小问2详解】解:当0a >时,开口方向向上,对称轴2202a x a a=−=−<,在负半轴上, 且经过点()2,3a −,越靠近对称轴的x 所对应的函数值越小,则大致图象如下:当0t <时∵()()()2,,2,,,M t m N t n P t p −+−∴22t t −<+∴此时p m n >>与题干m n p >>相矛盾,故舍去;当0t >时∵()()()2,,2,,,M t m N t n P t p −+−∴22t t −<+∴此时m n <与题干m n p >>相矛盾,故舍去;当a<0时,开口方向向下,对称轴2202a x a a=−=−<,在正半轴上, 且经过点()2,3a −,越靠近对称轴的x 所对应的函数值越大,则大致图象如下:当0t >时,点M N 、分别在对称轴同侧时,如上图∵()()()2,,2,,,M t m N t n P t p −+−∴22t t −<+∴m n p >>;此时02a t <−<−即20t a −<<,2t >当0t >时,点M N 、分别在对称轴两侧时,如上图∵∵()()()2,,2,,,M t m N t n P t p −+−∴22t t t −<<+∴p m n >>与题干m n p >>相矛盾,故舍去;当0t <时,且点M N 、分别在对称轴两侧时,如图∵()()()2,,2,,,M t m N t n P t p −+−∴22t t −<+∴n m >与题干m n p >>相矛盾,故舍去;当0t <时,且点M N 、在对称轴同侧时,如图∵()()()2,,2,,,M t m N t n P t p −+−∴22t t −<+∴n m >与题干m n p >>相矛盾,故舍去;综上:20t a −<<,2t >27. 【答案】(1)见解析 (2)45DPC α∠=︒+(3)点E 在线段AB 上时,DE BE AF =+;点E 在线段AB 延长线上时,AF DE BE =+;点E 在线段BA 延长线上时,BE DE AF =+,见解析【分析】本题考查四边形综合题,熟知轴对称作图及性质,根据题意分类讨论是解题的关键.(1)作点A 关于直线DM 的对称点P ,连接CP DP 、即可;(2)连接AP ,根据轴对称性质可得AD PD =,ADM PDM α∠=∠=,可求出902CDP α∠=︒−,根据等腰三角形的性质,利用三角形内角和可求出()1180902452DPC αα∠=︒−︒+=︒+; (3)分三种情况,当DP 交线段AB 、线段AB 延长线上、线段BA 延长线上于点E 时,分别可证CDF DAK △≌△,进而可得EK =,即可求证.【小问1详解】解:如图,作点A 关于直线DM 的对称点P ,连接CP DP 、;【小问2详解】连接AP ,点,A P 关于直线DM 对称,DM ∴垂直平分AP ,∴AD PD =,∴PDM ADM α∠=∠=,902PDC α∴∠=︒−,四边形ABCD 为正方形,AD DC ∴=,∴DP DC =,()11802DPC PDC ∴∠=︒−∠45DPC α∴∠=︒+;【小问3详解】①当DP 交线段AB 于点E 时,延长AB 至K ,使BK AF =,连接DK ,,AD AB BK AF ==,DF AK ∴=,又,90CD AD CDA DAK =∠=∠=︒,在CDF 和DAK 中DC AD CDF DAK DF AK =⎧⎪∠=∠⎨⎪=⎩CDF DAK ∴△≌△,F K ∴∠=∠,∴由(2)可知,45DCP DPC α∠=∠=︒+,9045K F DCP α∴∠=∠=︒−∠=︒−,DC AB ∥,45CDK K α∴∠=∠=︒−,9045EDK ADE CDK α∴∠=︒−∠−∠=︒−,EDK K ∴∠=∠,DE EK ∴=,DE BE BK BE AF ∴=+=+,即DE BE AF =+;②当DP 交线段AB 延长线于点E 时,在AB 延长线上截取BK AF =,连接DK ,由①同理可证CDF DAK △≌△,45K F α∴∠=∠=︒−,9045EDK ADE CDK α∴∠=︒−∠−∠=︒−,K KDE ∴∠=∠,ED EK ∴=,ED BK BE AF BE ∴=−=−,即AF DE BE =+;③当DP 交线段BA 延长线于点E 时,在BA 上截取BK AF =,连接DK ,由题意可知,DP DC =,()11802DCP PDC ∴∠=︒−∠, ()2360908102PDC ADM MDP ADC αα∠=∠+∠+∠=︒−+︒=︒−,()118081023152DCP αα∴∠=︒−︒+=−︒, 又=AD AB ,DF AK ∴=,在CDF 和DAK 中DC AD CDF DAK DF AK =⎧⎪∠=∠⎨⎪=⎩CDF DAK ∴△≌△,315ADK DCP α∴∠=∠=−︒()90315405AKD DFC αα∴∠=∠=︒−−︒=︒−,又()2360315405EDK EDA ADK ααα∠=∠+∠=︒−+−︒=︒−,EDK AKD ∴∠=∠,ED EK ∴=,DE BE BK BE AF ∴=−=−,即BE DE AF =+.28. 【答案】(1)2Q ,4Q .(2)5b −≤<(3)322t −≤<+ 【分析】(1)如图中,满足条件的点在半圆上(不包括点A 以及y 轴上的点),点2Q ,4Q 满足条件.(2)如图中,以O 为圆心,3为半径作半圆,交y 轴于(0,3)P ,()03P '−,当直线2y x b =+与半圆有交点(不包括P ,)B 时,满足条件.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,求出图3(2),图3(3)中,t 的值,可得结论.【小问1详解】解:如图,(4,0)A ,1(0,4)Q ,14OA OQ ∴==,190AOQ ∠=︒,∴点1Q 不是点A 关于点O 的锐角旋转点;2(2,2Q ,作2Q F x ⊥轴于点F ,24OQ OA ∴====,2tan 2Q OF ∠== 260Q OF ∴∠=︒,∴点2Q 是点A 关于点O的锐角旋转点;3(2,Q −,作3Q G x ⊥轴于点G ,则33tan 2Q G Q OG OG ∠=== 360Q OG ∴∠=︒,3324cos cos 60OG OQ OA Q OG ∴====∠︒, 318060120AOQ ∠=︒−︒=︒,3Q ∴不是点A 关于点O 的锐角旋转点;(422Q −,,作4Q Hx ⊥轴于点H ,则44tan 1Q H Q OH OH ∠===, 445Q OH ∴∠=︒,444cos OH OQ OA Q OH ====∠, 4Q ∴是点A 关于点O 的锐角旋转点;综上所述,在点1Q ,2Q ,3Q ,4Q 中,是点A 关于点O 的锐角旋转点的是2Q ,4Q ,故答案为:2Q ,4Q .【小问2详解】解:在y 轴上取点()0,5P ,当直线2y x b =+经过点P 时,可得5b =,当直线2y x b =+经过点B 时,则250b ⨯+=,解得:10b =−,∴当105b −<<时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线2y x b =+上,过点O 作OG ⊥直线2y x b =+,垂足G 在第四象限时,如图,则OT b =−,12OS b=−,ST ∴===, 当5OG =时,b 取得最小值, 51522bb ⎛⎫⎛⎫⨯−=−⨯−⎪ ⎪ ⎪⎝⎭⎝⎭, b ∴=−5b ∴−≤<.【小问3详解】解:根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分, 如图3(2)中,阴影部分与直线26y x =+相切于点G ,tan 2EMG ∠=,3SG =,过点G 作GI x ⊥轴于点I ,过点S 作SJ GI ⊥于点J ,SGJ EMG ∴∠=∠,tan tan 2SGJ EMG ∴∠=∠=,5GJ ∴=,5SJ =,3GI GJ JI ∴=+=+132210MI GI ∴==+,322OE IE MI OM ∴=+−=−,即3322E x t =−=−,解得32t =+, 如图3(3)中,阴影部分与HK 相切于点G ,tan tan 2OMK EMH ∠=∠=,6EH =,则3MH =,EM =33E x t ∴=−=−−,解得t =−观察图象可知,22t −≤<+.【点睛】本题属于圆综合题,考查了直线与圆的位置关系,坐标与图形,解直角三角形,勾股定理,点P 是点M 关于点N 的锐角旋转点的定义等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题,属于压轴题.。

2024届上海市松江区初三一模数学试卷(含答案)

2024届上海市松江区初三一模数学试卷(含答案)

2024届上海市松江区初三一模数学试卷(满分 150 分,完卷时间 100 分钟)2024.01考生注意:1.本试卷含三个大题,共25题;没有特殊说明,几何题均视为在同一个平面内研究问题.2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列函数中,属于二次函数的是(▲)(A )2y x =−;(B )2y x =; (C )221)y x x =−+(; (D )22y x =. 2.在Rt △ABC 中,已知∠C =90°,∠A =α, BC =a ,那么AB 的长为(▲)(A )a sin α; (B )cos aα; (C )a sin α; (D )a cos α.3.关于二次函数22(1)y x 的图像,下列说法正确的是(▲)(A )开口向上;(B )经过原点;(C )对称轴右侧的部分是下降的; (D )顶点坐标是(1,0).4.下列条件中,不能判定a ∥b 的是(▲)(A )a ∥c ,b ∥c ,其中0c ≠;(B )a c =−,2b c =;(C )2a b =− ;(D )||3||a b =. 5.如图,在Rt △ABC 中,∠BAC =90°,斜边BC 上的高AH =3,矩形DEFG 的边DE 在边BC 上,顶点G 、F 分别在边AB 、AC 上,如果GF 正好经过△ABC 的重心,那么BD ·EC 的积等于( ▲ ) (A )4;(B )1;(C )1625; (D )925. 6.某同学对“两个相似的四边形”进行探究.四边形ABCD 和四边形A 1B 1C 1D 1是相似的图形,点A 与点A 1、点B 与点B 1、点C 与点C 1、点D 与点D 1分别是对应顶点,已知k B A AB=11.(第5题图)H G F AE CB D该同学得到以下两个结论:①四边形ABCD 和四边形A 1B 1C 1D 1的面积比等于2k ;②四边形ABCD 和四边形A 1B 1C 1D 1的两条对角线的和之比等于k . 对于结论①和②,下列说法正确的是( ▲ ) (A )①正确,②错误; (B )①错误,②正确; (C )①和②都错误;(D )①和②都正确.二、填空题(本大题共12题,每题4分,满分48分)7.若12y x = ,则y x y =+ ▲ .8.A 、B 两地的实际距离AB =250米,画在地图上的距离A ′B ′=5厘米,那么地图上的距离与实际距离的比是 ▲ .9.某印刷厂一月份印书50万册,如果第一季度从2月份起,每月印书量的增长率都为x ,三月份的印书量为y 万册,写出y 关于x 的函数解析式是 ▲.10.已知点P 是线段AB 的黄金分割点,且AP >BP ,如果AB =5,那么AP = ▲ . 11.在直角坐标平面中,将抛物线2(1)2y x =−++,先向左平移1个单位,再向下平移2个单位,那么平移后的抛物线表达式是 ▲ .12.如果一个二次函数图像的顶点在x 轴上,且在y 轴的右侧部分是上升的.请写出一个符合条件的函数解析式: ▲ .13.如图,一辆小车沿着坡度为1: 2.4的斜坡从A 点向上行驶了50米,到达B 点,那么此时该小车上升的高度为 ▲米.14.如图,梯形ABCD 中,AB ∥CD ,且43AB CD =,若AB m =, AD n =.请用m ,n 来表示AC = ▲ .15.如图,已知直线l 1、l 2、l 3分别交直线m 于点A 、B 、C ,交直线n 于点D 、E 、F ,且l 1∥l 2∥l 3,AB =2BC ,DF =6,那么EF = ▲ .16.如图,在梯形ABCD 中,AD ∥BC ,点E 是AD 的中点,BE 、CD 的延长线交于点F ,如果AD :BC =2:3,那么:EDF AEB S S △△=▲ .n mA DE B CF(第15题图)l 3l 2 l 1DBA(第18题图)(第14题图)CBAD (第16题图)(第13题图)水平面ABACB15° (第22题图)30°M17.在△ABC 中,AB = AC ,点D 、E 分别是边AB 、AC 的中点,BE 与CD 相交于点O ,如果△OBC 是等边三角形,那么tan ∠ABC = ▲ .18.如图,在矩形ABCD 中,AB =2,BC =3,将边AB 绕点A 逆时针旋转,点B 落在B '处,联结BB '、CB ',若90BB C ∠'=︒,则BB '= ▲ . 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)二次函数y =ax 2+bx +c (a ≠0)的图像上部分点的横坐标x 、纵坐标y 的对应值如下表.x … 0 1 2 3 4 … y…3-1?3…(1)由表格信息,求出该二次函数解析式,并写出该二次函数图像的顶点D 的坐标;(2)如果该二次函数图像与y 轴交于点A ,点P (5,t )是图像上一点,求△P AD 的面积.20.(本题满分10分)如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,联结DE 、EF .已知ED BC ∥,EF AB ∥,AD =3,9DB =.(1)求BFFC的值; (2)若△ABC 的面积为16,求四边形BFED 的面积. 21.(本题满分10分)已知:如图,△ABC 中,AB =15,BC =14, 4sin 5B =,AD ⊥BC 于D . (1)求AC 的长;(2)如果点E 是边AC 的中点,求cot ∠EBC 大小.22.(本题满分10分)如图,A 处有一垂直于地面的标杆AM ,热气球沿着 与AM 的夹角为15°的方向升空,到达B 处,这时 在A 处的正东方向200米的C 处测得B 的仰角为30° (AM 、B 、C 在同一平面内).求A 、B 之间的距离.(结果精确到1米,2 1.414)≈(第20题图)(第19题图)y xO (第21题图)CA23.(本题满分12分,其中每小题各6分)已知:如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,∠BDC =∠DEC . 求证:(1)△ADE ∽△ACD ;(2)AC AEBCCD =22. 24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx+c a =+>的图像经过原点O (0, 0)、点A (1,3a ),此抛物线的对称轴与x 轴交于点C ,顶点为B . (1)求抛物线的对称轴;(2)如果该抛物线与x 轴负半轴的交点为D ,且∠ADC 的正切值为2,求a 的值; (3)将这条抛物线平移,平移后,原抛物线上的点A 、B 分别对应新抛物线上的点E 、P .联结P A ,如果点P 在y 轴上,P A ∥x 轴,且∠EP A =∠CBO ,求新抛物线的表达式.25.(本题满分14分,其中第(1)小题4分,第(2)小题第5分、第(3)题5分)在△ABC 中,AC =BC .点D 是射线AC 上一点(不与A 、C 重合),点F 在线段BC 上,直线DF 交直线AB 于点E ,2CD CF CB =⋅. (1)如图,如果点D 在AC 的延长线上. ①求证:DE BD =;②联结CE ,如果CE ∥BD ,CE =2,求EF 的长. (2)如果DF :DE =1:2,求:AE :EB 的值.(第23题图)AD BCE (第24题图)yxO DAB C EF(第25题图)(第25题备用图)BCA参考答案一、选择题(本大题共 6 题,每题4 分,满分24 分) 1.B 2. A 3. C 4. D 5. B 6. D二、填空题(本大题共 12 题,每题4 分,满分48 分)7.13; 8.1:5000; 9. 250(1)y x =+; 10.5552−; 11. 2(2)y x =−+; 12. 2=y x (答案不唯一); 13. 2501314. 34+m n ; 15. 2; 16. 12;17.33 ; 18.125.三、解答题(本大题共7题,满分78分)19.解:(1)∵图像过(0,3)、(4,3)∴该二次函数图像的对称轴为直线x =2, ∴顶点坐标为D (2,-1),设该二次函数的解析式为2(2)1y a x =−−, ∵当x =1时,y =0,∴0=a -1,得a =1.∴二次函数的解析式为2(2)1y x =−−,顶点D 的坐标为(2,-1). (2)当x =5时,y =8, ∴点P (5,8), 当当x =0时,y =3,∴A (0,3)分别过点P ,D 作y 轴的垂线,垂足分别为点B 、点C ,则16325922PBCD S =+⨯=梯形()12442ACD S =⨯⨯=△;1255522ABP S =⨯⨯=△∴6325415.22APD S =−−=△ 20.解:(1)∵DE ∥BC ,∴=AD AEBD EC∵AD =3,BD =9,∴31.93==AE EC ∵EF ∥AB , ∴1.3AE BF EC FC ==(2)∵DE ∥BC ,∴ADE ABC△∽△∴2()ADE ABC S AD S AB=△△, ∵△ABC S =16,∴21().164ADE S =△ 1.ADE S =△ (第19题图)yxO DPAB C(第20题图)同理可得23().164EFC S =△∴9.EFC S =△∴1619 6.BFED S =−−=21.解:(1)∵AD ⊥BC, AB =15,4sin 5B =,∴AD =15sin B=12. ∴BD =9, ∵BC =14,∴CD =5 ∴AC =13(2)联结BE ,过点E 作EH ⊥BC ,垂足为H ∵ E 为AC 的中点 EH ∥AD ,∴.EH EC CH ADACCD==∴ EH =6, CH =DH =2.5,∴BH =11.5∴ cot ∠EBC =11.523.612==BH EH 22(本题满分10分)解:过点A 作AH ⊥BC ,垂足为H .∵ ∠C =30°,AC =200,∴ AH =12AC =100∵AM ⊥AC ,∠BAM =15°∴ ∠BAC =105°, ∠ABC =45° ∴AB =°1002141sin 45AH =≈米答:A 、B 之间的距离约为141米.23.证明:(1)∵∠BDC =∠DEC ∴∠ADC =∠AED ∵∠A =∠A ∴△ADE ∽△ACD (2)∵DE ∥BC ∴∠EDC =∠DCB ∵∠BDC =∠DEC ∴△BDC ∽△CED∴22=△△CDE BDC S CD S BC ∵DE ∥BC ∴=△△CDE BDC S DE S BC , =DE AE BC AC ∴ 22=CD AEBC AC24.解(1)∵抛物线2(0)y ax bx+c a =+>的图像经过原点O (0, 0)、点A (1,3a ),CB AD EH ACB15° (第22题图)30°MH(第23题图)AD BCE∴3⎧⎨++=⎩c =0a b c a∴2=⎧⎨⎩b a c =0∴抛物线的表达式22=+y ax ax ∵2122−=−=−b a a a∴抛物线的对称轴是:直线x =-1 (2)∵O (0, 0)对称轴是直线x =-1 ∴D (-2,0)过点A 作AH ⊥x 轴,垂足为H ,则AH =3a ,DH =3∴t a n ∠ADC =323==AH a DH∴ a =2(3)过点E 作EF ⊥P A ,垂足为F 当x =-1时,y =-a ,∴B (-1,-a ) ∵P A ∥x 轴 ∴P (0,3a )点B 到P 向右平移1个单位向上平移4a 个单位, ∴ PF =2,EF =4a ∵tan ∠CBO =1=OC BC a tan ∠EP A =422==EF aaPF ∵∠EPA =∠CBO ∴12,=a a2=a∴新抛物线的表达式是222=+y x 25.(1)①∵2CD CF CB =⋅ ∴=CF CDCD CB又∵∠DCB =∠FCD ∴△DCB ∽△FCD题图))DABCEF(第25题图)∴∠DBC =∠FDC ∵AC =BC ,∴∠A =∠CBA∠DEB =∠A +∠EDA ∠DBA =∠CBA +∠DBC ∴∠DEB = ∠DBA ∴DE =BD(1)②∵CE ∥DB ∴∠BDF =∠DEC 又∵DB =DE ,∠DBF =∠EDC ∴△DBF ≌△EDC∴CE =DF =2 DE =DB =2+EF∵=CE EF BD DF ∴222=+EFEF EF1 (EF=1舍去) (2)1º当点D 在AC 延长线上时过点D 作DH ∥AB 交BC 的延长线于点H∵DH ∥AB DF :DE =1:2 ∴DH =EB ∠H =∠HBA =∠A 又∵∠DBH =∠EDA BD =DE ∴△BHD ≌△DAE ∴DH =AE =EB AE :EB =1 2º当点D 在边AC 上时过点D 作DG ∥AB 交BC 于点G同理△DCB ∽△FCD ∴∠DBC =∠FDC =∠EDA ∵∠CBA =∠CAB =∠E +∠EDA ∴∠E =∠DBA =∠GDB ∴DE =DB △BGD ≌△DAE ∴DG =AE又∵DF :DE =1:2,13==DG DF BE EF ∴AE :EB=13DABCE F(第25(2)题图)H(第25题备用图)BCADFEG。

山东省济宁市部分中学2024届九年级下学期中考数学一模试卷(含答案)

山东省济宁市部分中学2024届九年级下学期中考数学一模试卷(含答案)

数学试题(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,选出符合题目要求的一项。

1.的绝对值是( )A. B. C. D.2.下列运算正确的是( )A. B.C. D.3.下列图形选自历届在中国举办的世界园艺博览会会徽,其中是轴对称图形的是( )A. B. C. D.4.据统计,年我国出生人口为万人,死亡人口为万人出生人口少于死亡人口,影响我国人口总量比年减少万人数据“万”用科学记数法表示为( )A. B. C. D.5.如图,是的直径,弦交于点,,,则的度数为( )A. B. C. D.6.如图是正方体的展开图,把展开图折叠成正方体后,与“学”字一面相对面上的字是( )A. 核B. 心C. 素D. 养7.关于的一元二次方程有两个不相等的实数根,则实数的最小整数值为( )A. B. C. D.8.如图,在中,,,分别以点,为圆心,长为半径在右侧画弧,两弧交于点,与,的延长线分别交于点,,则阴影部分的面积和为( )A. B. C. D.9.如图是深圳地铁站入口的双翼闸机如图,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角当双翼收起时,可以通过闸机的物体的最大宽度为( )A. B. C. D.10.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型来表示即:,,,,,,请你推算的个位数字是( )A. B. C. D.第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

2024年北京市东城区九年级中考复习一模数学试卷(含答案)

2024年北京市东城区九年级中考复习一模数学试卷(含答案)

东城区2023—2024学年度第二学期初三年级统一测试(一)数学试卷2024.4一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个1.在下列几何体中,俯视图是矩形的几何体是2. 2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将1 330 000用科学记数法表示应为A. B. C. D.3.在平面直角坐标系xOy中,点A(0,2), B(-1,0),C(2,0),为□ABCD的顶点,则顶点D的坐标为A.(-3,2)B. (2,2)C. (3,2)D. (2,3)4.若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是A. B. C. D.5. 在平面直角坐标系xOy中,点P(1,2)在反比例函数 (k是常数,k≠0)的图象上.下列各点中,在该反比例函数的图象上的是A. (-2,0)B. (-1,2)C. (-1,-2)D. (1,-2)6. 如图,AB是O的弦,CD是O的直径,CD⊥AB于点E. 在下列结论中,不一定成立的是A. AE=BEB. ∠CBD=90°C. ∠COB=2∠DD. ∠COB=∠C7. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为A. B. C. D.8. 2024年1月23日,国内在建规模最大塔式光热项目-----甘肃省阿克塞汇东新能“光热+光伏”试点项目,一万多面定日镜(如图1)全部安装完成.该项目建成后,年发电量将达17亿千瓦时.该项目采用塔式聚光热技术,使用国内首创的五边形巨蜥式定日镜,单块定日镜(如图2)的形状可近似看作正五边形,面积约为48.则该正五边形的边长大约是(结果保留一位小数,参考数据:tan36°≈0.7,tan54°≈1.4,,)A. 5.2 mB. 4.8 mC. 3.7 mD. 2.6 m二、填空题(本题共16分,每小题2分)9. 若二次根式有意义,则实数的取值范围是 .10. 因式分解:= .11.方程的解为 .12. 若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是 .13. 为了解某校初三年级500名学生每周在校的体育锻炼时间(单位:小时),随机抽取了50名学生进行调查,结果如下表所示:时间学生人数1016195以此估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有________人.14. 在Rt△ABC中,∠A=90°,点D在AC上,DE⊥BC于点E,且DE=DA,连接DB.若∠C=20°,则∠DBE的度数为°.15. 阅读材料:如图,已知直线l及直线l外一点P.按如下步骤作图:①在直线l上任取两点A,B,作射线AP,以点P为圆心,PA的长为半径画弧,交射线AP于点C;②连接BC,分别以点B,C为圆心,大于的长为半径画弧,两弧分别交于点M,N,作直线MN,交BC于点Q;②作直线PQ.回答问题:(1)由步骤②得到的直线MN是线段BC的;(2)若△CPQ与△CAB的面积分别为,则= .16. 简单多面体的顶点数(V)、面数(F)、棱数(E)之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如下表.在简单多面体中V,F,E之间的数量关系是_________;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共个.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17. 计算:18.解不等式组:19. 已知,求代数式的值.20.如图,四边形ABCD是菱形. 延长BA到点E,使得AE=A B,延长DA到点F,使得AF=AD,连接BD,DE,EF,FB.(1)求证:四边形BDEF是矩形;(2)若∠ADC=120°,EF=2,求BF的长.21. 每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量钟楼AB的高度.同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼的底部点B的位置,被遮挡部分的水平距离为BC的长度.通过对示意图的分析讨论,制定了多种测量方案 ,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼AB顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长. 设AB 的长为x米,BC的长为y米.测量数据(精确到0.1米)如表所示:(1)由第一次测量数据列出关于x,y的方程是,由第二次测量数据列出关于x,y的方程是,(2)该小组通过上述方程组成的方程组,已经求得y=10,则钟楼的高度约为米 .22. 在平面直角坐标系中,一次函数(k为常数,k≠0)的图象由函数的图象平移得到,且经过点A,与x轴交于点.(1)求这个一次函数的解析式及点的坐标;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.23. 某校初三年级两个班要举行韵律操比赛. 两个班各选择8名选手,统计了他们的身高(单位:cm),数据整理如下:a. 1班 1681711721741741761771792班 168170171174176176178183b. 每班8名选手的身高的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)如果某班选手的身高的方差越小,则认为该班选手的身高比较整齐.据此推断:在1班和2班的选手中,身高比较整齐的是班(填“1”或“2”);(3) 1班的6位首发选手的身高分别为171,172,174,174,176,177.如果2班已经选出5位首发选手,身高分别为171,174,176,176,178,要使得2班6位首发选手的平均身高不低于1班6位首发选手的平均身高,且方差尽可能小,则第六位选手的身高是 cm .24. 如图,AB 为⊙O 的直径,点C 在⊙O 上,∠EAC =∠CAB ,直线CD ⊥AE 于点D ,交AB 的延长线于点F .(1)求证:直线CD 为⊙O 的切线;(2)当,CD =4时,求BF 的长.25. 小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,击球点P 到球网AB 的水平距离OB =1.5m .小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度(单位:m )与水平距离x (单位:m )近似满足函数关系.第二次练习时,小明击出的羽毛球的飞行高度(单位:m )与水平距离x (单位:m )的几组数据如下:根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度与水平距离x 满足的函数关系式;水平距离x / m01234竖直高度/ m 1.1 1.6 1.92 1.9(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为d1,d2,则d1d2(填“>”,“<”或“=”)26. 在平面直角坐标系xOy中,,是抛物线上任意两点,设抛物线的对称轴为直线.(1)若点(2,1)在该抛物线上,求的值;(2)当时,对于,都有,求的取值范围.27. 在Rt△ABC中,∠BAC=90°,AB=AC,点D,E是BC边上的点,,连接AD. 过点D作AD的垂线,过点E作BC的垂线,两垂线交于点F.连接AF交BC于点G.(1)如图1,当点D与点B重合时,直接写出∠DAF与之间的数量关系;(2)如图2,当点D与点B不重合(点D在点E的左侧)时,①补全图形;②∠DAF与在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD,DG,CG的数量关系.28. 在平面直角坐标系xOy中,已知线段PQ和直线,,线段PQ关于直线,的“垂点距离”定义如下:过点P作PM⊥于点M,过点Q作QN⊥于点N,连接MN,称MN的长为线段PQ关于直线和的“垂点距离”,记作d.(1)已知点P(2,1),Q(1,2),则线段PQ关于x轴和y轴的“垂点距离”d为________;(2)如图1,线段PQ在直线上运动(点P的横坐标大于点Q的横坐标)),若PQ=,则线段PQ关于x轴和y轴的“垂点距离”d的最小值为________;(3) 如图2,已知点A(0,2),⊙A的半径为1,直线与⊙A交于P,Q两点(点P的横坐标大于点Q的横坐标),直接写出线段PQ关于x轴和直线的“垂点距离”d的取值范围.东城区2023—2024学年度第二学期初三年级统一测试(一)数学答案2024.4一、选择题(每题2分,共16分)题号12345678答案 B C C B C D B A二、填空题(每题2分,共16分)9.10.11.12. 13. 240 14.35 15.(1)垂直平分线(2)1:416.(1)(2)32三、解答题(共68分,17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17. 解:——————————————————————————4分———————————————————— 5分18. 解:解不等式①,得—————————————————————————2分解不等式②,得—————————————————————————4分∴原不等式组的解集为——————————————————— 5分19. 解:——————————————————————————2分——————————————————————————3分∵,∴——————————————————————————4分∴原式—————————————————————5分20. (1) 证明:∵AE=AB,AF=AD,∴四边形BDEF是平行四边形. ——————1分∵四边形ABCD是菱形,∴AD=AB.∴DF=BE.∴四边形BDEF是矩形. ——————————————————————2分(2) 解:∵四边形BDEF是矩形,EF=2,∴∠DBF=90°,BD = EF=2.—————————————————————3分∵四边形ABCD是菱形,∠ADC=120°,∴∠ADB=∠ADC=60°.——————————————————————4分∴∠DFB=30°.在Rt△DBF中,∠DBF=90°,BD =2,∴DF=2 BD=4.根据勾股定理,得—————————5分21.解:(1),;——————————————3分(2)43.0 —————————————————5分22.解:(1)∵一次函数y = kx + b( k ≠0)的图象由函数的图象平移得到,∴. ——————————————————————1分∵一次函数的图象过点(3, 2),∴l+b=2.∴b = 1.∴这个一次函数的解析式为——————————2分当时,∴点坐标为. ——————————3分(2) m≥3. ——————————5分23.解:(1)175,176.-------------2分(2)1. ------------------------------------4分(3)170. ------------------------------------6分24. (1)证明:如图,连接OC.∵OA=OC,∴∠ACO=∠CAO.∵∠EAC=∠CAB,∴∠EAC=∠ACO.∴AD∥OC. -----------------------------1分∵CD⊥AE于点D,∴∠ADC=90°,∴∠OCF=∠ADC=90°. --------------------------------2分∴OC⊥DC.∵OC为⊙O的半径,∴直线CD为⊙O的切线. ------------------------------------3分(2)设.∵∴-----------------------------------4分∴∵||∴-----------------------------------5分∵∴∴∵∴.-----------------------------------6分25.解:(1)小明在两次练习中击球点的高度均为1.1m;-----------------------1分(2)设羽毛球的飞行路线满足的函数关系式为.将(0,1.1)代入,解得.∴羽毛球的飞行路线满足的函数关系式为:.---4分(3)-----------------------6分26.解:(1)∵点(2,1)在抛物线上,∴.∴..........................................................2分(2)∵,∴当时,y随x的增大而增大;当时,y随x的增大而减小......3分①当时,∵,,∴.∴成立......................................................4分②当时,(i)若,则点关于直线的对称点为.∴,∴成立.(ii)若,则.∴成立......................................................5分③当时,∵,总可取,∵,∴.此时,,不合题意.④当时,若,取此时,不合题意.综上所述,的取值范围为..................................................................6分27.解:(1)---------------1分(2)①补全图形如图.-------------------------2分②关系仍成立.-------------------------3分证明:过点A作AH⊥BC于H,(3)---------------7分28. 解:(1)2.------------2分(2)2. -------------2分(3).--------7分。

2024北京顺义区初三一模数学试卷和答案

2024北京顺义区初三一模数学试卷和答案

2024北京顺义初三一模数 学学校名称 姓名 准考证号考生须知1.本试卷共8页,共两部分,三道大题,28道小题,满分100分。

考试时间120分钟。

2.在答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将答题卡交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3 998 000公顷.将3 998 000用科学记数法表示应为(A )3.998×107 (B )3.998×106 (C )3998×103(D )3.998×1032.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是(A )1a >- (B ) 1b > (C ) a b -< (D )b a->3.若一个多边形的内角和是540°,则该多边形的边数为(A )5 (B )6(C )7(D )84.如图,直线AB ,CD 相交于点O ,OE 平分∠AOD ,∠AOC =30°,则∠BOE 的度数为(A )30° (B )75° (C )105° (D )115°5.同时抛掷两枚质地均匀的硬币,则两枚硬币均正面向上的概率是(A )14 (B ) 13 (C ) 12 (D ) 346.下列正多边形中,是轴对称图形但不是中心对称图形的是(A ) (B )(C ) (D )EACODB7.若关于x 的方程220x x m +-=有两个不相等的实数根,则实数m 的取值范围是(A )14m >-(B )1m <- (C )1m >- (D )1m ≥-8.已知y 是x 的函数,下表是x 与y 的几组对应值:x…124…y…421…y 与x 的函数关系有以下3个描述:①可能是一次函数关系;②可能是反比例函数关系;③可能是二次函数关系.所有正确描述的序号是(A )①② (B )①③ (C )②③ (D )①②③二、填空题(本题共16分,每小题2分)9.若代数式23xx -有意义,则实数x 的取值范围是 .10.分解因式:244m -= .11.方程121x x =-,的解为 .12.已知点A (3,y 1),B (m ,y 2)在反比例函数6y x=的图象上.若y 1>y 2,写出一个满足条件的m 的值 .13.如图,在矩形ABCD 中,直线EF 分别交AD ,BC ,BD 于点E ,F ,O ,只需添加一个条件即可证明△BOF ≌△DOE ,这个条件可以是 (写出一个即可).第13题图 第14题图14.如图,⊙O 是△ABC 的外接圆,AB =AC ,∠BAC =36°,BD 平分∠ABC ,交⊙O 于点D ,则∠DAB 的度数为 .15. 某商场为了解顾客对某一款式围巾的不同花色的需求情况,调查了某段时间内销售该款式的30条围巾的花色,数据如下:FABCDOEAB花色A B C D E F G H 销售量/条22453914若商场准备再购进200条同款式围巾,估计购进花色最多的围巾数量为______条.16.小明观看了纸牌魔术表演,非常感兴趣,并做了如下实验和探究:将几张纸牌摞起来(从上面分别记为第1张,第2张,第3张……),先将第1张牌放到整摞牌的下面,再去掉第2张牌;继续将第3张牌放在整摞的下面,再去掉第4张牌……如此循环往复,最终到只留下一张纸牌为止.例如,若将4张纸牌摞起来,按上述规则操作,陆续去掉第2张,第4张,第3张,最终留下第1张纸牌.若将8张纸牌摞起来,按上述规则操作,最终留下的是第 张纸牌;将m 张纸牌摞起来,按上述规则操作,若最终留下的是第1张纸牌,则m = (用含n 的代数式表示,其中n 为自然数).三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-22题,每题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题每题7分)解答应写出文字说明,演算步骤或证明过程.17.计算:()124sin 451π--++- .18.解不等式组: 371,11122x x ->-⎧⎪⎨+>⎪⎩.19.已知221x x +=,求代数式()()2411x x ++-的值.20.如图,在菱形ABCD 中,AC ,BD 交于点O ,延长CB 到点E ,使BE =BC ,连接AE .(1)求证:四边形AEBD 是平行四边形;(2)连接OE ,若tan ∠AEB =12,AC =2,求OE 的长.21.某校举办“跨学科综合实践活动”,五名评委对每组同学的参赛作品打分.对参加比赛的甲、乙、丙三个组参赛作品得分(单位:分)的数据进行整理、描述和分析,下面给出了部分信息. a .甲、丙两组参赛作品得分的折线图:BACDEOb.在给乙组参赛作品的打分中,其中三位评委打分分别为87,93,95,其余两位评委的打分均高于85分;c.甲、乙、丙三个组参赛作品得分的平均数:甲组乙组丙组8890n根据以上信息,回答下列问题:(1)写出表中n的值;(2)某组参赛作品评委打分的5个数据的方差越小,则认为评委对该组参赛作品的评价越“一致”.据此推断:对于甲、丙两组的参赛作品,五位评委评价更“一致”的是_____组(填“甲”或“丙”);(3)该校准备推荐一个小组的作品到区里参加比赛,你认为应该推荐哪个小组,请说明理由.22.在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(4,5)和B(0,-1),与过点(2,0)且平行于y轴的直线交于点C.(1)求该函数的表达式及点C的坐标;(2)当 x<2 时,对于x的每一个值,函数1+2y x n的值大于函数y=kx+b(k≠0)的值且小于3,直接写出n的取值范围.23.杆秤是我国度量衡“三大件(尺斗秤)”重要组成部分,是中华民族衡重的基本量具.杆秤依据杠杆原理制作而成,一般由秤钩(秤盘)、秤杆和秤砣三部分组成,秤杆上的刻度叫做“秤星”,古时候秤杆叫做“权”,秤砣叫做“衡”,“权衡”一词就来源于此.下图是小阳同学利用自制杆秤称重的示意图,使用时将货物放在秤盘上,用手提起B(相当于支点)处的秤纽,在秤杆上移动秤砣的位置,当秤杆水平平衡时,可根据秤砣在秤杆上的位置读出货物的质量.如图1所示,称量货物甲时,秤杆在C处秤杆平衡,此时可读出货物甲的质量是40g;如图2所示,称量货物乙时,秤杆在D处秤杆平衡,此时可读出货物甲的质量是60g.根据图中所给数据,求这把杆秤的秤星E对应的最大刻度是多少克.图1 图224. 如图,AB 是⊙O 的直径,AC =AD ,CD 与AB 交于点E ,⊙O 的切线BF 交AD 的延长线于点F . (1)求证:CD ∥BF ;(2)连接FO 并延长,交DC 的延长线于点G .若E 为AO 的中点,⊙O 的半径为4,求CG 的长.25.为了去除衣物上的某种有害物质(记作“P ”),某小组研究了衣物上P 的含量(单位:mg/kg )与浸泡时长(单位:h )的关系.该小组选取甲、乙两类服装样品,将样品分成多份,进行浸泡处理,检测处理后样品中P 的含量.所得数据如下:含量(mg/kg )甲类乙类0807923732431256292182818102717122716(1)设浸泡时间为x ,甲,乙两类衣物中P 的含量分别为y 1, y 2,在平面直角坐标系xOy 中,描出表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出y 1, y 2的图象;(2)结合实验数据,利用所画的函数图象可以推断,当浸泡时长为5h 时,甲,乙两类衣物中P 的含量的差约为_______ mg/kg (精确到0.1);(3)根据衣物中P 的含量(单位:mg/kg )将衣物分为A 级(含量<20)、B 级(20≤含量<75)和C 级(75≤含量<300).若浸泡时长不超过12h ,则经过浸泡处理后可能达到A 级标准的衣物为_______(填“甲类”或“乙类”),该类衣物达到A 级标准至少需要浸泡_______h (精确到0.1).26.在平面直角坐标系xOy 中,M 11()x y ,,N 22()x y ,是抛物线2(0)y ax bx c a =++>上任意两点,设抛物线的对称轴为x t =.(1)当12x =时,1y c =,求抛物线的对称轴;(2)若对于11t x t --<<2,2t x t <<+2,都有12y y >,求t 的取值范围.27.如图,在正方形ABCD 中,点E ,F 分别在DC ,CB 的延长线上,且BF=CE ,EB 的延长线交AF 于点G .(1)求∠AGE 的度数;(2)在线段EG 上取点H ,使得 GH =AG ,连接AH ,CH①依题意补全图形;②用等式表示线段CH 与GB 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于图形M 和图形N 给出如下定义:如果图形M 上存在点P ,y 轴上存在点T ,使得点P 以点T 为旋转中心,逆时针旋转90°得到的点Q 在图形N 上,那么称图形N 是图形M 的关联图形.(1)如图,点A (-3,2),B (0,-1),C (3,2),D (-1,6) .①在点B,C,D中,点A的关联图形是_______;②若⊙O不是点A的关联图形,求⊙O的半径r的取值范围;(3)已知点'O(m,0),E(m-3,0),G(m-2,1),⊙'O的半径为1,以线段EG为对角线的正方形为EFGH,若⊙'O是正方形EFGH的关联图形,直接写出m的最小值和最大值.参考答案一、选择题(共16分,每题2分)题号12345678答案BDACABCC二、填空题(本题共16分,每小题2分)9.3x ≠ ; 10.4(1)(1)m m +- ; 11.2x =; 12.6(答案不唯一); 13.OB =OD (答案不唯一);14.72︒; 15. 60 ; 16.1,2n.三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-22题,每题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题每题7分)17.解:1024sin 45(1)π--++-1412=-++………………………………………………………4分 32=………………………………………………………………………………5分18.解:解不等式①得2x >…………………………………………………………………2分解不等式②得1x >………………………………………………………………… 4分不等式组的解集是 2.x > ………………………………………………………… 5分19.解:()()2411x x ++-=24421x x x =-+-+ ……………………………………………………2分=225x x ++ ……………………………………………………………3分 ∵221,x x +=∴ 原式=225x x ++=1+5=6. …………………………………………………5分20.(1)证明:∵四边形ABCD 是菱形,∴AD =BC ,AD ∥EC.∵BE =BC ,∴BE =AD . 又BE ∥AD ,∴四边形AEBD 是平行四边形. ……………………………………………………3分(2)解:∵四边形ABCD 为菱形,∴∠BOC =90︒,12OA AC =. ∵四边形AEBD 为平行四边形,∴AE ∥BD .∴∠EAC =∠BOC =90︒.在Rt △AEC 中,∵AC =2,tan ∠AEB =12.∴AO =1,AE =4.在Rt △AEO 中,由勾股定理,∵22217OE AO AE =+=,∴OE………………………………………………………………………6分21.解:(1)n =90; ……………………………………………………………………2分(2)丙;………………………………………………… …………………………3分(3)推荐乙组;推荐理由:乙组平均分和丙组一样高,大于甲组平均分;由于乙、丙两组平均分都是90,而且有三个数据一样,所以乙组的两个85以上的数据是87,88或86,89,可以判断乙组的方差小于丙组的方差. …………………………………5分22.(1)解:由题意可得,45,1.k b b +=⎧⎨=-⎩,解得3,21.k b ⎧=⎪⎨⎪=-⎩∴该函数的解析式为312y x =-. …………………………………………………….2分∵点C 的横坐标为2,点C 在函数312y x =-的图象上,当x =2时,解得y =2.∴点C 的坐标为(2,2). ……………………………………………………………3分(2)n 的取值范围是12n ≤≤. ……………………………………………………5分23.设秤砣 x g ,秤盘重y g .由题意可得, 2.5(40)11,2.5(60)16.y x y x +=⎧⎨+=⎩,…………………………………………………3分解得10,4.x y =⎧⎨=⎩…………………………………………………………………………….4分ABCDOE所以这把杆秤的秤星E对应的最大刻度是26104100 2.5⨯-=.所以这把杆秤的秤星E对应的最大刻度是100克.……………………………………6分24.(1)证明:连接OC,OD.∵弧AC =弧AD,∴∠AOC=∠AOD.又∵OC=OD,∴AB⊥CD.∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF. ……………………………………..3分(2)∵E为AO中点,OA=4,∴OE=AE=2.在Rt△EOD中,OD=4,∴DE=.∵CD∥BF,∴△AED∽△ABF,∴AE EDAB BF=,BF=在△GEO和△FBO中,∠GOE=∠FOB,∠GEO=∠FBO,∴△GEO∽△FBO∴OE EGOB BF=,EG=∴CG=EG-CE=EG-DE=.…………………………………………………..……6分25.(1)FBDEOGCA……………………………………………………2分(2)6.8 (6.4~7.2); …………………………………………………………………………3分(3)乙类,6.6 (6.2~7.0) . ………………………………………………………………. 5分26.解:(1)∵抛物线2(0)y ax bx c a =++>经过(0,c )和(2,c ),∴抛物线对称轴为x =1.…………………………………………………..…………….2分(2)2x t t x t =∵抛物线的对称轴为,<<+2,2'x N N ∴点在对称轴右侧,设点关于对称轴对称点的横坐标为2'2,t x t -∴<<12y y ∵>,11t x t --<<2∴①当点M 在对称轴左侧时,2t t t --≤2≥2②当点M 对称轴右侧时,11t t t -+≥2≤-21.t t ≥2或≤综述,-所2上…………………………………………………..…………….6分27.(1)解:∵正方形ABCD ,∴AB =BC ,∠DCB=∠ABC=90°. …………………………………………………1分∴∠ABF=∠BCE=90°.∵CE =BF ,∴△ABF ≌△BCE . ……………………………………………………………..…2分∴∠F=∠E .∵∠GBF=∠CBE,x=h tx=h∴∠FGB=∠ECB=90°.∴∠AGE=90°.……………………………………………………………………..3分(2) ①……………………………………………….…4分②BG CH 2=.证明:过点B 作GE BK ⊥交AH 于点K ,过点K 作AF KL ⊥与点L∴∠KBH=∠KLA=90°.∵∠ABC=90°,∴∠ABK+∠KBC=∠KBC +∠CBH .∴∠ABK=∠CBH .∵GH =AG ,∠AGE=90°,∴∠KAL=∠BHK=45°.∴∠AKL=∠BKH=45°.∴BH=BK ,KL=AL .∵AB=BC ,∴△BCH ≌△ABK .∴CH=AK . ……………………………………………………………6分∵∠GLK=∠GBK=∠AGE=90°,∴ 四边形GBKL 为矩形.∴GB=KL .∵△ALK 是等腰直角三角形,∴KL AK 2=.∴BG CH 2=.…………………………………………………………………………7分28.(1)①B ,C. ………………………………………………………………………………2分②设直线BC 的表达式是y =kx +b (k ≠0),则b =−1−3k +b =2,解得k =1b =−1∴直线BC 的表达式是y =x -1. …………………………………………………………..3分∴直线BC与x轴的交点坐标为B’(1,0)∴BB’=2.作OP’⊥BB’于点P’,∴OP.………………………………………………………………………………4分由①问的探索可知,点A以y轴上点T为旋转中心,逆时针旋转90°,得到的点Q落在直线BC上,证明略.若⨀O不是点A的“关联图形”,∴0<r<…………………………………………………………………………….…5分(2)m的最小值为…………………………………………7分。

2024北京通州区初三一模数学试卷和答案

2024北京通州区初三一模数学试卷和答案

2024北京通州初三一模数 学考生须知1.本试卷共8页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 长方体D. 圆柱2. 2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为( )A. 110.22310⨯ B. 102.2310⨯ C. 922.310⨯ D. 822310⨯3. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°4. 已知关于x 的方程240x x n -+=有两个不相等的实数根,则n 的取值范围是( )A. 4n < B. 4n ≤ C. 4n > D. 4n =5. 如图,由5个“○”和3个“□”组成的图形关于某条直线对称,该直线是( )A. 1lB. 2lC. 3lD. 4l 6. 一个不透明的口袋中有2个红球和1个白球,这三个球除颜色外完全相同.摇匀后,随机从中摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的颜色相同的概率是( )A.34B.13C.14D. 127. 已知数轴上有A 、B 两点,点B 在点A 的右侧,若点A 、B 分别表示数a 、b ,且满足2a b +=,则下列各式的值一定为负数的是( )A. aB. a- C. 1a - D. 1b -8. 如图,在菱形ABCD 中,60ABC ∠=︒,点P 和点Q 分别在边CD 和AD 上运动(不与A 、C 、D 重合),满足DP AQ =,连接AP 、CQ 交于点E ,在运动过程中,则下列四个结论正确的是( )①AP CQ =;②AEC ∠的度数不变;③180APD CQD ∠+∠=︒;④2=⋅CP AP EP .A. ①②B. ③④C. ①②④D. ①②③④二、填空题(本题共8个小题,每小题2分,共16分)9. 在实数范围内有意义,则实数x 的取值范围是______.10. 分解因式:x 2y -4y =____.11. 分式方程2132x x=+的解是x =______.12. 在平面直角坐标系xOy 中,直线y x =与双曲线ky x=交于点(,3)P m ,则k 的值是________.13. 如图,点E 是ABCD Y 的边AD 上一点,且:1:2AE DE =,连接CE 并延长,交BA 的延长线于点F .若6AF =,则CD 的长为________.14. 为合理安排进、离校时间,学校调查小组对某一天九年级学生上学、放学途中的用时情况进行了调查.本次调查在九年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:已知该校九年级共有400名学生,请估计九年级学生上学途中用时不超过15min 的有________人.15. 我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率π的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,O 的半径为1,运用“割圆术”,以圆内接正六边形面积估计O 的面积,1612S =⨯⨯=正六边形,所以O得π,若用圆内接正十二边形估计O 的面积,可得π的估计值为________.16. 某公司筹备一场展览会,现列出筹备展览会的各项工作.具体筹备工作包含以下内容(见下表).其中,“前期工作”是指相对于某项工作,排在该工作之前需完成的工作称为该工作的前期工作.工作代码工作名称持续时间(天)前期工作A 张贴海报、收集作品7无B 购买展览用品3无C 打扫展厅1无D 展厅装饰3CE 展位设计与布置3ABDF 展品布置2EG 宣传语与环境布置2ABD H展前检查1FG(1)在前期工作结束后,完成“展厅装饰 ”最短需要________天;(2)完成本次展览会所有筹备工作的最短总工期需要________天.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:2014sin 45(3)2π-⎛⎫︒-+- ⎪⎝⎭.18. 解不等式组:2(1)21.2x x x x -<+⎧⎪⎨+<⎪⎩,19. 已知2210x x --=,求代数式4(1)(21)(21)-++-x xx x 的值.20. 2023年12月27日北京城市副中心“三大文化建筑”之一的北京城市图书馆对外开放,其总建筑面积约7.5万平方米,藏书量达800万册,建有世界最大的单体图书馆阅览室.图书馆内的功能区设置阅览坐席,方便读者使用.其中,山体阅览区、非遗文献馆、少年儿童馆的坐席总数为1900个,非遗文献馆的坐席数与少年儿童馆坐席数之比为23:,山体阅览区的坐席数是少年儿童馆坐席数的4倍多200个,求山体阅览区、非遗文献馆、少年儿童馆的坐席数量.21. 如图,ABC 中,90ACB ∠=︒,点D 为AB 边中点,过D 点作AB 的垂线交BC 于点E ,在直线DE 上截取DF ,使DF ED =,连结AE 、AF 、BF .(1)求证:四边形AEBF 是菱形;(2)若4sin 5EAF ∠=,5BE =,求AD 的长.22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()0,1A -和()4,3B ,与过点()0,3-且平行于x 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于函数()0y kx b k =+≠的值,直接写出m 的取值范围.23. 为了选出适应市场需求的小番茄秧苗,在条件基本相同的情况下,工作人员把两个品种的小番茄秧苗分别种植在甲、乙两个大棚.对两个品种的小番茄的产量进行了抽样调查,数据整理如下:a .从甲、乙两个大棚各收集了20株秧苗,将每株秧苗上的小番茄的个数做如下记录:甲:26 32 40 74 44 63 81 54 62 41 54 43 34 51 63 64 73 64 54 33乙:27 34 46 52 48 67 82 48 56 63 73 35 56 56 58 60 36 46 40 71b .对以上样本数据按如下分组整理:个数大棚2535x ≤<3545x ≤<4555x ≤<5565x ≤<6575x ≤<7585x ≤<甲44m n 21乙235631c .两组样本数据的平均数、众数、中位数和方差如下表所示:统计量大棚平均数众数中位数方差甲52.554p 228.75乙52.75654196.41(1)m =________,n =________.(2)p =________.(3)可以推断出________大棚的小番茄秧苗品种更适应市场需求,理由为_____________.(从两个不同的角度说明推断的合理性)24. 如图,AB 为O 的直径,过点A 作O 的切线AM ,C 是半圆AB 上一点(不与点A 、B 重合),连结AC ,过点C 作CD AB ⊥于点E ,连接BD 并延长交AM 于点F .(1)求证:∠=∠CAB AFB ;(2)若O 的半径为5,8AC =,求DF 的长.25. 某部门研究本公司生产某种产品的利润变化y (万元)与生产总量x (吨)之间的关系情况,产品的生产总量为x (吨)时,所获得的利润记为p (万元),公司生产x 吨产品所获得的利润与生产(1)x -吨产品获得的利润之差记为y (万元).例如:当0x =时, 1.00=-p ,当1x =时, 2.50=p .所以,当1x =时, 2.50( 1.00) 3.50=--=y ;当 1.5x =时, 6.31=p ,当 2.5x =时,16.19=p .所以,当 2.5x =时,16.19 6.319.88=-=y .记录的部分数据如下:x 00.50.751 1.5 1.752 2.533.544.555.56p 1.00-0.06- 1.04 2.50 6.318.5711.0016.1921.5026.5631.0034.4436.5036.8135.00y 3.50 6.377.53m 9.8810.5010.379.50n 5.50 2.37 1.50-根据以上数据,解决下列问题:(1)m =________,n =_______.(2)结合表中的数据,当16x ≤≤时可以用函数刻画利润的变化量y (万元)和生产总量x (吨)之间的关系,在平面直角坐标系xOy 中画出此函数的图象.(3)结合数据,利用所画的函数图象可以推断:①当生产总量约为________吨(精确到0.1),利润变化值y 最大.②当生产总量约为________吨(精确到0.1),利润开始降低.26. 在平面直角坐标系xOy 中,1(,)M m y ,2(2,)N m y +是抛物线2(0)y ax bx c a =++>上两点,且满足0m >.设抛物线的对称轴为直线x t =.(1)当12y y =时,写出m ,t 的之间的等量关系.(2)当34t <<时,均满足21>>c y y ,求m 的取值范围.27. 如图,将线段AB 绕点A 逆时针旋转α度(0180α︒<<︒)得到线段AC ,连结BC ,点N 是BC 的中点,点D ,E 分别在线段AC ,BC 的延长线上,且CE DE =.(1)EDC ∠=________(用含α的代数式表示);(2)连结BD ,点F 为BD 的中点,连接AF ,EF ,NF .①依题意补全图形;②若AF EF ⊥,用等式表示线段NF 与CE 的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,)M m n ,A 为坐标系中任意一点.现定义如下两种运动:P 运动:将点A 向右平移m 个单位长度,再向上平移n 个单位长度,得到点A ',再将点A '绕点O 逆时针旋转90︒,得到点1A ;Q 运动:将点A 绕点O 逆时针旋转90︒,得到点A '',再将点A ''向右平移m 个单位长度,再向上平移n 个单位长度,得到点2A .(1)如图,已知点(1,1)A ,(,0)M m ,点A 分别经过P 运动与Q 运动后,得到点1A ,2A .①若1m =,请你在下图中画出点1A ,2A 的位置;②若122A A =,求m 的值.(2)已知AB t =,点A ,B 分别经过P 运动与Q 运动后,得到点1A ,2A 与点1B ,2B ,连接11A B ,22A B .若线段11A B 与22A B 存在公共点,请直接写出此时线段MO 长度的取值范围(用含有t 的式子表示).参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】本题考查了三视图的相关知识,其中主视图、左视图、俯视图是分别从物体正面、左面和上面观察物体所得到的图形,三视图的掌握程度和空间想象能力是解题关键.结合选项,根据主视图和俯视图确定是柱体,锥体还是球体,再根据左视图确定具体形状.【详解】解:由主视图和左视图为长方形可知,这个几何体是柱体,由俯视图为三角形可知,这个柱体是三棱柱,故选:A .2. 【答案】B【分析】本题考查了把绝对较大的数用科学记数法表示,关键是确定 n 与a 的值. 科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,它等于原数的整数数位与1的差.【详解】解:1022300000000 2.2310=⨯;故选:B .3. 【答案】C【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∵AB CD ∥,∴∠A =∠D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.4. 【答案】A【分析】本题考查了一元二次方程根的判别式;根据方程有两个不相等的实数根,则判别式为正,解不等式即可求得n 的取值范围.【详解】解:∵关于x 的方程240x x n -+=有两个不相等的实数根,∴2(4)410n ∆=--⨯⨯>,解得:4n <;故选:A .5. 【答案】C【分析】本题考查的是轴对称的性质,熟知如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称是解题的关键.根据轴对称的性质解答即可.【详解】解:由图可知,该图形关于直线3l 对称.故选:C 6. 【答案】B【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到两次摸出小球的颜色相同的结果数,最后依据概率计算公式求解即可.【详解】解:画树状图如下:由树状图可知,一共有6种,其中两次摸出小球的颜色相同的结果数有2种,∴两次摸出小球的颜色相同的概率为2163=,故选:B .7. 【答案】C【分析】本题考查了数轴,由点B 在点A 的右侧确定a b <是本题的关键.因为点B 在点A 的右侧,所以a b <,由2a b +=,可得2b a =-,所以2a a <-,化简得1a <,所以1a -一定为负数.【详解】解:由题意得,a b <,2a b += ,即2b a =-,2a a ∴<-,1a ∴<,10a ∴-<,故选:C .8. 【答案】D【分析】本题考查了菱形的性质,等边三角形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.证明ACP CDQ ≌可得APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,进而判断①;进而可得180APD CQD ∠+∠=︒,进而判断②,根据120QEP ∠=︒,进而判断③;证明APC CPE ∽△△,进而判断④;【详解】解:∵ABCD 是菱形,60ABC ∠=︒,DP AQ =,∴60,ACP D ACD ∠=∠=︒V 是等边三角形,∴AC CD =,∴ACP CDQ ≌,∴APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,故①正确;∵180APD APC ∠+∠=︒,∴180APD CQD ∠+∠=︒,故②正确;∵60,180D APD CQD ∠=︒∠+∠=︒,∴120QEP ∠=︒,∴120AEC QEP ∠=∠=︒,故③正确;∵PAC DCQ ∠=∠,APC EPC ∠=∠,∴APC CPE ∽△△,∴AP CP CP EP=,∴2=⋅CP AP EP ,故④正确;故选:D .二、填空题(本题共8个小题,每小题2分,共16分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】y (x +2)(x -2)【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.【详解】x 2y -4y =y (x 2-4)=y (x +2)(x -2),故答案为:y (x +2)(x -2).【点睛】提公因式法和应用公式法因式分解.11. 【答案】1【分析】根据解分式方程的步骤“先去分母化为整式方程,再解整式方程,最后进行检验”进行解答即可得.【详解】解:2132x x=+方程两边同乘2(3)x x +,得43x x =+,移项,得33x =,系数化为1,得1x =,检验:当1x =时,2(3)0x x +≠,∴原分式方程的解为1x =,故答案为:1.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法并检验.12. 【答案】9【分析】本题考查了正比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是解答本题的关键.根据反比例函数图象上点的坐标特征进行解答即可.【详解】解: 点(,3)P m 在直线y x =上,3m ∴=,()3,3P ∴,()3,3P 在反比例函数图象上,339k ∴=⨯=.故答案为:9.13. 【答案】12【分析】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由FAE CDE ∽,推出::1:2AF CD AE DE ==.由平行四边形的性质得到AB DC ,推出FAE CDE ∽,得到::1:2AF CD AE DE ==,即可求出12CD =.【详解】解: 四边形ABCD 是平行四边形,AB DC ∴ ,FAE CDE ∴∽,::1:2AF CD AE DE ∴==,6AF =Q ,12CD ∴=.故答案为:12.14. 【答案】280【分析】本题考查了从图象获取信息,用样本估计总体,熟练掌握用样本估计总体的思想是解题的关键.根据图中信息,可得上学途中用时不超过15min 的学生有14人,用总人数⨯抽取的学生中上学用时不超过15min 的学生所占比例,即可求解.【详解】解:根据图中信息可知,上学途中用时不超过15min 的学生有14人,故该校九年级学生上学途中用时不超过15min 的人数为1440028020⨯=(人).故答案为:280.15. 【答案】3【分析】过A 作AM OB ⊥于M ,求得AOB ∠的度数,根据直角三角形的性质得到AM ,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,AB 是正十二边形的一条边,点O 是正十二边形的中心,设O 的半径为1,过A 作AM OB ⊥于M ,在正十二边形中,3601230AOB ∠=︒÷=︒,1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= ∴正十二边形的面积为11234⨯=,231π∴=⨯,3π∴=,π∴的近似值为3,故答案为:3.16. 【答案】 ①. 4 ②. 13【分析】本题考查了优化问题,即如何在最短的时间内完成工作,实现最优效果.(1)根据表格知,完成“展厅装饰 ”要完成C 、D 两项工作,故可得到至少需要的天数;(2)由表格知,完成A 的时间里,可同时完成B 、C 、D 的工作,可进行E 的工作,则可进行G 、H 的工作,从而完成整个工作,从而可得最短总工作时间.【详解】解:(1)由表格知,在前期工作结束后,完成“展厅装饰 ”最短需要134+=(天);故答案为:4;(2)完成本次展览会所有筹备工作的路径为:A E G H →→→,最短总工期需要的天数为:732113+++=(天);故答案为为:13.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】5【分析】本题考查了特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值等知识.先运用特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值对原式进行化简,然后再计算即可.【详解】解:214sin45(3)2π-⎛⎫︒++-⎪⎝⎭441=-+41=-++5=.18. 【答案】14x<<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:原不等式组为2(1)212x xxx-<+⎧⎪⎨+<⎪⎩①②解不等式①得,4x<,解不等式②得,1x>,∴原不等式组的解集为14x<<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 【答案】3【分析】本题考查了整式的乘法混合运算,涉及单项式乘多项式及平方差公式;先利用单项式乘多项式、平方差公式展开,再合并同类项;再由2210x x--=,得221x x-=,最后整体代入即可求值.【详解】解:原式224441=-+-x x x2841=--x x;2210x x--=,221x x∴-=,∴原式24(2)1=--x x3=.20. 【答案】非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个【分析】本题考查的是一元一次方程的应用,找出等量关系列方程是解题关键,设非遗文献馆的坐席数为2x个,则少年儿童馆坐席数为3x个,山体阅览区的坐席数为()12200x+个,根据坐席总数为1900个列方程解决即可.【详解】解:设非遗文献馆的坐席数为2x 个,则少年儿童馆坐席数为3x 个,山体阅览区的坐席数为()12200x +个,根据题意得:23122001900+++=x x x ,解得,100x =,答:非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个.21. 【答案】(1)证明见解析(2)AD =【分析】本题考查了菱形的判定与性质、矩形的判定与性质、平行四边形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.(1)先证明四边形AEBF 是平行四边形,再由菱形的判定即可得出结论;(2)过点E 作EG AF ^于点G ,由菱形的性质得5,BE AE AF BC ==∥,再证明四边形ACEG 是矩形,得,AC EG CE AG ==,进而解直角三角形求出4,3EG AG ==,然后由勾股定理求出AB 的长,即可解决问题.【小问1详解】证明:∵点D 为AB 边中点,∴AD BD =,∵DF ED =,∴四边形AEBF 是平行四边形,∵EF AB ⊥,∴四边形AEBF 是菱形;【小问2详解】解:如图,过点E 作EG AF ^于点G ,∵四边形AEBF 是菱形,∴5,BE AE AF BC ==∥,∴EG BC ⊥,∴90GEC ∠=︒,∴90CEG GEC ACB ∠=∠=∠=︒,∴四边形ACEG 是矩形,∴,AC EG CE AG ==,∵4sin 5EG EAF AE ∠==,∴445455EG AE ==⨯=,在Rt AGE 中,由勾股定理得:AG =3==,4,3AC EG CE AG ∴====,538BC BE CE ∴=+=+=,在Rt ABC 中,由勾股定理得:AB ===∵点D 为AB 边中点,1122AD AB ∴==⨯=.22. 【答案】(1)1y x =-,()2,3C --(2)312m ≤≤【分析】(1)将A 、B 坐标分别代入函数表达式y kx b =+,即可得到一次函数解析式,然后计算函数值为3-对应的自变量的值即可得到C 点坐标;(2)分情况讨论:当直线y mx =过点C 时和当直线y mx =与直线1y x =-平行时,即可得到符合条件的m 的取值范围.【小问1详解】解:将()0,1A -、()4,3B 代入函数表达式y kx b =+可得:143b k b =-⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则函数的表达式为1y x =-,依题得,过点()0,3-且平行于x 轴的直线为3y =-,C 是该函数与过点()0,3-且平行于x 轴的直线的交点,13x ∴-=-,解得2x =-,1213y x =-=--=-,即()2,3C --.【小问2详解】解:当直线y mx =过点C 时,即把()2,3--代入y mx =,得23m -=-,32m =, 当2x >-时,对于x 的每一个值,()0y mx m =≠的值大于1y x =-的值,221m ∴-≥-- ,解得32m ≤,当y mx =与直线1y x =-平行时,1m =,此时,满足条件,且当1m <时,不满足条件,即312m ≤≤.【点睛】本题考查的知识点是待定系数法求解析式、一次函数的图象与性质,解题关键是熟练掌握数形结合的方法解题.23. 【答案】(1)4,5 (2)54(3)乙;乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好【分析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.(1)根据收集数据进行求解;(2)根据中位线的定义进行求解即可;(3)根据平均数和方差进行求解即可.【小问1详解】解:甲大棚中4555x ≤<的有4株,5565x ≤<的有5株,∴4m =,5n =;故答案为:4,5;【小问2详解】解:将甲大棚中20株秧苗上小番茄的个数从小到大进行排序,排在第10、11位的都是54个,所以中位数为5454542+=,故答案为:54.【小问3详解】解:乙大棚的小番茄秧苗品种更适应市场需求,因为乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好;故答案为:乙,乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好.24. 【答案】(1)证明见解析(2)323DF =【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【小问1详解】证明:AM 是O 的切线,90BAM ∴∠=o ,CD AB ⊥ 于点E ,90CEA ∴∠= ,CD AF ∴∥,∴∠=∠CDB AFB ,CDB CAB ∠=∠ ,∴∠=∠CAB AFB .【小问2详解】解:连结AD ,CD AB ⊥ 于点E ,AB 是O 的直径,CE DE ∴=,AB ∴是CD 的垂直平分线,8AC AD ∴==,O 的半径为5,10AB ∴=,6BD =∴,AB 是O 的直径,90BDA =∴∠ ,BAD AFB ∴∠=∠,tan tan ∴∠=∠BAD AFB ,∴=ADBDDF AD ,2AD DF BD ∴=⋅,323∴=DF .25. 【答案】(1)8.50,7.88(2)见详解 (3)①3.2(答案不唯一,介于3.1 3.3:);②5.8(答案不唯一,介于5.6 5.9:)【分析】本题考查二次函数的应用,理解题意并掌握描点作图的方法是解题的关键.(1)根据题意和举例的计算方法求出m 和n 的值即可;(2)将表格中数据对(),x y 描点并连线即可;(3)①根据图象作答即可;②0y =时对应x 的值即为答案.【小问1详解】解:当2x =时,11.00p =,当1x =时, 2.50=p ,∴当2x =时,11.00 2.508.50m =-=;当 4.5x =时,34.44p =,当 3.5x =时,26.56p =,∴当 4.5x =时,34.4426.567.88n =-=.故答案为:8.50,7.88.【小问2详解】描点并作图如图所示:【小问3详解】①由图象可知,当生产总量约为3.2吨时,利润变化值y 最大;②由图象可知,当生产总量约为5.8吨时,利润变化值0y =,之后利润开始降低.故答案为:3.2,5.8.26. 【答案】(1)1t m =+(2)34m ≤≤【分析】本题考查了二次函数的性质,二次函数图像上点的坐标特征,二次函数图像的对称性等知识.(1)根据抛物线关于对称轴对待的性质,点M 、N 到对称轴的距离相等,即可求得m ,t 的之间的等量关系;(2)将点M 到对称轴的距离记为M d ,点N 到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .根据21>>c y y ,分别考虑21y y >及2>c y 时m 的范围,最后取两个范围的公共部分即可.【小问1详解】解: 点()1,M m y ,()22,N m y +是抛物线2(0)y ax bx c a =++>上两点,当12y y =时,点M 和点N 关于抛物线的对称轴直线x t =对称,2m t t m ∴+-=-,212++∴==+m m t m .【小问2详解】解:将点()1,M m y 到对称轴的距离记为M d ,点()22,N m y +到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .0a > ,21y y >,∴点N 到对称轴的距离大于点M 到对称轴的距离,即>N M d d ,2m t m t ∴+->-,22(2)()0∴+--->m t m t ,()()220m t m t m t m t ∴+-+-+--+>,1∴>-m t ,当34t <<时,均满足21y y >,3m ∴≥,0a > ,2>c y ,∴点C 到对称轴的距离大于点N 到对称轴的距离,即>N C d d ,2t m t ∴>+-,22(2)0∴-+->t m t ,22∴<-m t ;当34t <<时,均满足2>c y ,4m ∴≤,综上,34m ≤≤.27. 【答案】(1)1902α︒-(2)①见解析;②CE =,证明见解析【分析】本题考查了根据条件画图,平行四边形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.(1)根据旋转和题意即可得出1902CDE DCE ACB α∠=∠=∠=︒-;(2)①根据题意画出图形即可;②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .证明四边形ABMD 为平行四边形,证明ACE MDE V V ≌,算出90α=︒,45ECD EDC ∠=∠=︒,结合三角形中位线定理即可求解;【小问1详解】∵A α∠=,由旋转得AB AC =,∴18019022ABC ACB αα︒-∠=∠==︒-,∵CE DE =,∴1902CDE DCE ACB α∠=∠=∠=︒-.【小问2详解】①补全图形如图:②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .∵点F 为线段BD 中点,∴四边形ABMD 为平行四边形,,AB DM AB DM ∴=∥,180BAC ADM ∴∠+∠=︒,180ADM α∴∠=︒-,AF EF ⊥ ,AE ME ∴=,又,AB AC EC ED ==Q ,AC DM ∴=,∴()ACE MDE SSS ≌,∴1180902MDE ACE ACB α∠=∠=︒-∠=︒+,11909022ADM MDE CDE ααα⎛⎫∴∠=∠-∠=︒+-︒-= ⎪⎝⎭,180αα∴︒-=,90α∴=︒,∴45ECD EDC ∠=∠=︒,∴CD =,∵N 为BC 中点,F 为BD 中点,∴NF 是BDC 中位线,2CD NF ∴=,∴CE =.28. 【答案】(1)①见详解;②m =(2)0MO ≤≤【分析】本题考查了旋转的性质,平移的性质,全等三角形的判定与性质,熟练掌握知识点是解题的关键.(1)①根据P 运动和Q 运动的运动方式求解即可;②首先表示出点1A 的坐标为()1,1m -+,2A 的坐标为()1,1m -+,然后根据122A A =得到2=,进而求解即可;(2)由题意得:1122A B A B ∥,1122A B A B t ==设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A t =≤即可求解.【小问1详解】①作图如图所示:由P 运动知()2,1A ',由旋转得1OA OA '=,190AOA '∠=︒,而90M N ∠=∠=︒,∴11809090A OM AON '∠+∠=︒-︒=︒,90A OM OA M ''∠+∠=︒,∴1AON OA M '∠=∠,∴1A NO A OM '△≌△,∴12,1A N OM ON A N '====,∴()11,2A -;由Q 运动同理可求()1,1A ''-,再向右平移1个单位,向上平移0个单位得到()20,1A .②∵(1,1)A ,∴点A 经过P 运动后得到的点1A 的坐标为()1,1m -+点A 经过Q 运动后得到的点2A 的坐标为()1,1m -+∵122A A =2=,∴m =.【小问2详解】由题意可得:由旋转的不变性和平移的性质得:1122A B A B ∥,1122A B A B t ==,设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A ===,∴当12A A t ≤时,线段11A B 与22A B 存在公共点,t ≤,∴0MO ≤≤.。

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

洛阳市2024 年中招模拟考试(一)数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5 毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的绝对值是()A. 3B.C.D.【答案】A解析:解:,的绝对值是3,故选:A.2. 天地正清明,最美四月天.2024年清明假期,河南省文化和旅游市场热度延续、高潮迭起.三天假期,河南省接待国内游客1906.9万人次,旅游总收入112.5亿元.与2023年同期相比,接待人次增长9.9%,旅游总收入增长20.6%.数据“112.5亿”用科学记数法表示为()A. B. C. D.【答案】D解析:解:数据亿用科学记数法可表示为:,故选:D.3. 我国古代数学家刘徽利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A. B. C. D.【答案】A解析:解:由几何体可得,从左边看到的平面图形为,故选:.4. 下列运算正确的是()A. B. C. D.【答案】C解析:解:A.,运算错误,不符合题意;B.,运算错误,不符合题意;C.运算正确,符合题意;D.运算错误,不符合题意.故选:C.5. 如图,已知,于点F,平分,若,则的度数是()A. B. C. D.【答案】D解析:设与相交于点G,∵,∴,∵,∴,∵,∴,∵平分,∴,∴.故选:D.6. 关于x的方程有两个不相等的实数根,m的值可以是()A. B. 1 C. D. 2【答案】A解析:解:∵关于的方程有两个不相等的实数根,,解得:.故的值可以为,故选:A.7. 如图,四边形内接于,连接.若,则的度数为()A. B. C. D.【答案】D解析:∵四边形内接于,∴,∵,∴,∵与所对的弧都是,∴.故选:D.8. 某校计划组织研学活动,现有四个地点可供选择:龙门石窟、洛邑古城、龙门海洋馆、洛阳博物馆.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择洛邑古城的有360人,那么选择龙门石窟的有()A. 120人B. 240人C. 360人D. 480人【答案】B解析:解:学生总数为:(人),选择龙门石窟的人数为:(人),故选:B.9. 如图,在平面直角坐标系中,的顶点O为坐标原点,,C是斜边的中点,且交x轴于点D.将沿x轴向右平移得到,当的中点E恰好落在y 轴上时,点的坐标为()A. B. C. D. (7,0)【答案】A详解】解:∵,∴,∴,∴;∵C是斜边的中点,∴,∵,∴在中,,由平移的性质可得,,∴,∵点E为的中点,∴,在中,,∴,∴,故选:A.10. 如图1,点E在正方形的边上,且点P沿从点B运动到点D,设B,P 两点间的距离为x,,图2是点P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为则最高点N的纵坐标a的值为()A. 6B.C.D.【答案】C解析:连接,∵四边形是正方形,是其对角线,∴,又,∴,∴,,连接交于点,(三角形两边之和大于第三边).当点P运动到时,,解得,.连接,则.在图1中,当P运动到D点时,对应图2中最高点N,此时y取最大值a,,故选:C.二、填空题(每小题3分,共15分)11. 若一次函数(b是常数)的图象经过第二、三、四象限,则b的值可以是_____ (写出一个即可).【答案】(答案不唯一)解析:解:∵一次函数(b是常数)的图象经过第二、三、四象限,∴.故答案为:(答案不唯一).12. 不等式组的解集为__________.【答案】解析:解:,由①得,,由②得,,故不等式组的解集为.故答案为:.13. 人类的性别由一对染色体决定,称为性染色体.女性的性染色体是一对同型的染色体、用表示,男性的性染色体是一对异型的染色体,用表示,每个人的成对染色体只有一个能遗传给后代,且可能性相等.则一对夫妇的第一个孩子是女孩的概率是_______.【答案】##解析:解:一对夫妇的第一个孩子有女孩和男孩两种情况,所以一对夫妇的第一个孩子是女孩的概率是,故答案为:.14. 如图,在中,,,以点A 为圆心,边的长为半径作交边于点 E ,以边 为直径作半圆交边于点 D ,则图中阴影部分的面积为_______.【答案】解析:∵,∴,∴,∴.故答案为:.15. 在中,将边绕点A旋转,点C的对应点是点D,连接.当是等腰直角三角形时,的长为_________.【答案】或解析:解:当,且点在上方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,.当,且点在下方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,综上所述:的长为或.故答案为:或.三、解答题(本大题共8个小题,共75分)16. (1)计算:;(2)化简:【答案】(1);(2)解析:解:(1);(2).17. 某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为310元,370元,580元.洛洛打算从该公司租一辆汽车外出旅游一天,往返行程为,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型平均里程()中位数()众数()号A199195C227225225(1)洛洛已经对A,C型号汽车数据统计如表,请继续求出B型号汽车行驶里程的平均数、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的租车建议.【答案】(1)平均数是;中位数为;众数为(2)选择型号汽车(1)解:型号汽车行驶里程的平均数是:,把这20个数据按从小到大的顺序排列,第10,11个数据均为,所以中位数为;出现了六次,次数最多,所以众数为;(2)选择型号汽车,理由如下:型号汽车的平均里程、中位数和众数均低于,且只有的车辆能达到行程要求,故不建议选择;型号汽车的平均里程、中位数和众数都超过,其中型号汽车有符合行程要求,很大程度上可以避免行程中充电耽误时间,且型号汽车比型号汽车更经济实惠,故建议选择型号汽车.18. 如图,四边形的顶点B,C在x轴上,顶点D在y轴上,,顶点A的坐标为,顶点B的横坐标.双曲线经过点A.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出的平分线(要求:不写作法,保留作图痕迹);(3)上问中所作的角平分线与x轴交于点E,若点C的坐标为,求证:四边形是菱形.【答案】(1)反比例函数的解析式为(2)见详解(3)见详解(1)解:将点代入双曲线,得,,解得:,∴反比例函数的解析式为;(2)(3),,,,,,,,,是的平分线,,,,,,,∴四边形是平行四边形,,∴平行四边形是菱形.19. 随着端午节的临近,A,B两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:A超市B超市优惠方案所有商品按七五折出售购物金额每满100元返40元(1)当购物金额为90元时,选择超市(填“A”或“B”)更省钱;当购物金额为120元时,选择超市(填“A”或“B”)更省钱;(2)当购物金额为元时,请分别写出它们的实付金额y(元)与购物金额x(元)之间的函数表达式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于A超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为(注:优惠率=购物金额-实付金额).若在B超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.【答案】(1)(2)当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱(3)在超市购物、购物金额越大,享受的优惠率不一定越大(1)解:当购物金额为90元时,在超市购物实付金额(元),在超市购物实付金额90元,∵,∴当购物金额为90元时,选择超市更省钱;当购物金额为120元时,在超市购物实付金额(元),在超市购物实付金额(元),,∴当购物金额为120元时,选择超市更省钱.故答案为:.(2)当时,在超市购物实付金额;当时,在超市购物实付金额;当时,在超市购物实付金额;∴在超市购物实付金额,当时,;当时:;当时:若,解得;若,解得;若,解得.综上,当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱.(3)在超市购物、购物金额越大,享受的优惠率不一定越大.举例说明如下:当在超市购物金额为100元时,返40元,实付金额为(元),优惠率为;当在超市购物金额为160元时,返40元,实付金额为(元),优惠率为,∴在超市购物、购物金额越大,享受的优惠率不一定越大.20. 风是一种可再生能.利用风能进行发电既可以提供持续的电力供应,又可以减少温室气体排放,抑制全球气候变暖,还可以增加能供应的多样性,降低对传统能的依赖.某市若干台风机矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶,,两两所成的角为,当其中一片风叶与塔干叠合时,在与塔底O水平距离为米的E处,测得塔顶部A的仰角.,风叶的视角,求风叶的长度(结果精确到.参考数据:)【答案】风叶的长度约为解析:如图,自点B作,垂足为点F,过点A作,垂足为点G.∵,∴四边形是矩形,∴.由已知,∴,在中,.∵,∴,又,则,∴,则.在中,,,∴,∴,在中,,∴,则,∴.答:风叶的长度约为.21. “急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离0234竖直高度0根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系记该运动员第一次训练落入沙坑点的水平距离为,第二次训练落入沙坑点的水平距离为,请比较,的大小.【答案】(1)(2)(1)解:由题意得,抛物线的顶点坐标为:.∴该运动员竖直高度的最大值为米.设函数关系式为:.∵经过点,∴,解得:.∴函数解析式为:.(2)取.第一次训练时,.解得:(不合题意,舍去),.∴.第二次训练时,.解得:(不合题意,舍去),.,,.22. 如图1,⊙O与直线l相离,过圆心O作直线l的垂线,垂足为P,且交于两点(M在之间).我们把点N称为关于直线l的“远望点”,把的值称为关于直线l的“远望数”.(1)如图2,在平面直角坐标系中,点E的坐标为,过点E画垂直于x轴的直线a,则半径为1的关于直线a的“远望点”的坐标是________,关于直线a的“远望数”为________;(2)如图3,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C坐标为,以点C为圆心、长为半径作.若与直线相离,点O是关于直线的“远望点”,且关于直线的“远望数”是求直线的函数表达式.【答案】(1)(2)直线的函数表达式为(1)根据“远望点”定义,可得半径为1的关于直线a的“远望点”的坐标是,∴关于直线a的“远望数”为,故答案为:(2)设直线的解析式为连接并延长,交于H,交直线于点G,过C作轴于点D,设∵点C坐标为,∵O是关于直线的“远望点”,且关于直线的“远望数”是,即∵点C坐标为,轴于点D,∴即同理得即,∴,解得,∴直线的函数表达式为23. 综合与实践课上,老师让同学们用“木工尺”探究三等分任意角的方法.如图1为“木工尺”示意图,它是由两条宽度相同且互相垂直的直尺组成的,其中.下面是同学们的探究过程,请仔细阅读,并完成相应的任务,【操作实践】如图2,小明画的平行线,使得与的距离等于尺宽,在上取点E,使等于尺宽,调整“木工尺”的位置,使得经过点O,点D落在上,点E落在上,则三等分小明过点D作,垂足为点F,由题意得:,∴().∵,∴垂直平分,∴,∴平分(),∴.∴.∴三等分.任务:(1)请在括号内填写推理的依据.【类比迁移】爱动脑筋的小华受到上述方法的启发,想到了通过折叠矩形纸片三等分一个已知角的方法,他的前两个操作步骤如下(如图3):步骤1:在矩形纸片上折出任意角,将矩形对折,折痕记为,再将矩形对折,折痕记为,展开矩形;步骤2:将矩形沿着折叠,使得点B的对应点落在上,点M的对应点落在上.任务:(2)连接,试证明是的一条三等分线.【拓展应用】(3)在上述小华折叠的条件下,若,且三点共线,请直接写出的长.【答案】【1】到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质【2】见解析【3】解析:(1)根据到角的两边距离相等的点在这个角的角平分线上;根据垂直平分线的性质.故答案为:到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质(2)连接,过点B作于点J,过点作于点K,根据折叠的性质,得,,,∴,,∴,∵,∴,,∴,∴,∵,∴,∴平分,∴,∴,故是的一条三等分线.(3)过点作于点T,根据(2)证明,得到,∵,且三点共线,∴,∴,,∵,∴,∴,∴,,∴.。

2024届上海市静安区初三一模数学试题及答案

2024届上海市静安区初三一模数学试题及答案

第6题图上海市静安区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是().A 010 ;.B 111 ;.C 111 ;.D 111 .2.下列选项中的两个图形一定相似的是().A 两个平行四边形;.B 两个圆;.C 两个菱形;.D 两个等腰三角形.3..A 2.4.在//AC ,//DF AB ,且.A 5.).A 3个单位;.C 个单位,再向下平移3个单位.6..A .C 二、填空题(本大题共12题,每题4分,满分48分)7.0.5的倒数是.8.如果35a b (0b ),那么a b.9.已知线段2AB cm ,点P 是AB 的黄金分割点,且AP PB ,那么PB 的长度是cm .(结果保留根号)10.如果二次函数2y ax bx c 图像对称轴的右侧部分是上升的,那么它的开口方向是.(填“向上”或“向下)11.已知抛物线29y x mx 的顶点在x 轴负半轴上,那么m 的值为.12.在三角形ABC 中,点D 、E 分别在边AB 、AC 上,已知4DE ,6BC ,:2:3AE AC ,那么能否得到//DE BC ?(填“能”或“否”)13.如果两个相似三角形对应边上的高之比是4:9,那么它们的周长之比等于.14.如图,小红沿坡度1:2.4i 的坡面由A 到B 行走了26米,那么小红行走的水平距离AC 米.15.16.在 处,那么DB 17.③31y x ;④y 18.点D 那么19.第20题图如图,在平面直角坐标系xOy 中,已知直线l 经过点 1,0A ,与双曲线my x(0x )交于点 2,0B .点 ,2P a 在直线AB 上,过点P 作x 轴的平行线分别交双曲线m y x (0x )和my x(0x )于点E 、F .(1)求m 的值和直线l 的表达式;(2)联结EB 、FA .求证://EB FA .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知AC 是矩形ABCD 的对角线,//DE AC ,DE 交BC 延长线于E ,AE 交DC 于F ,BF 交AC 于G .(1)求证:点G 是ABE 的重心;(2)如果2BG BC ,求AEB 的正弦值.第21题图第23题图如图,某建筑物AB 高为200米,某人乘热气球来到距地面400米的C 处(即CE 长为400米).此时测得建筑物顶部A 的俯角为 ,当乘坐的热气球垂直上升到达D 处后,再次测得建筑物顶部A 的俯角为 .(参考数据:tan 1.25 ,tan 1.75 )(1)请在图中标出俯角 、 ,并用计算器求 、 的大小;, ;(精确到1'')(2)求热气球上升的垂直高度(即CD 的长).23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,AB AC ,D 是BC 中点,点E 在BA 延长线上,点F 在AC 边上,EDF B .(1)求证:BDE CFD ∽;(2)求证:2DF EF CF .第22题图第24题图24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)在平面直角坐标系xOy 中(如图),已知点 2,0A 、 6,0B 、 0,8C 、322,3D在同一个二次函数的图像上.(1)请从中选择适当的点坐标,求二次函数解析式;(2)如果射线BE 平分ABC ,交y 轴于点E ,①现将抛物线沿对称轴向下平移,顶点落在线段BE 的点F 处,求此时抛物线顶点F 的坐标;②如果点P 在射线BE 上,当PBC 与BOE 相似时,请求点P 的坐标.第25题图1第25题图2备用图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知梯形ABCD 中,//AD BC ,2AB ,4AD ,3DC ,7BC .点P 在射线BA 上,点Q 在射线BC 上(点P 、点Q 均不与点B 重合),且PQ BQ ,联结DQ ,设BP x ,DQC 的面积为y .(1)如图1所示,求sin B 的值;(2)如图2所示,点Q 在线段BC 上,求y 关于x 的函数解析式,并写出定义域;(3)当DQC 是等腰三角形时,求BP 的长.第1页共4页2023学年第一学期九年级期终考试数学答案要点及评分标准一、选择题:1.D ;2.B ;3.C ;4.C ;5.A ;6.B .二、填空题:7.2;8.35;9.53 ;10.向上;11.6;12.否;13.4:9;14.24;15.b a 4121;16.5512;17.①②④;18.a 21.三、解答题:19.解:原式=23322122…………………………(4+1分)=2322221 …………………………(2分)=231=25……………………………………(1+2分)20.(1)∵点B (2,1)在双曲线x m y(x >0)上,代入得:21m,∴2 m ;…(2分)又直线l 经过点A (1,0)、B (2,1),设直线l :)0( k b kx y ,∴代入得:120b k b k ,解得 11b k ,直线l 的表达式是1 x y ;………………(2分)(2)点P (a ,2)在直线AB 上,∴12 a ,∴3 a ,点P (3,2),…………(1分)过点P 作x 轴的平行线分别交双曲线x y 2(x >0)和xy 2 (x <0)于点E 、F ,可知点E 、F 纵坐标为2,分别代入解析式得F (-1,2),E (1,2)∴EP =2,EF =2,∵BP =2)12()23(22 ,BA =2)01()12(22 ,…………(4分)∴BAPBEF PE,∴EB ∥FA .………………………………(1分)21.证明:(1)∵矩形ABCD ,∴AD ∥BE ,AD =BC ,……………………(1分)又∵DE ∥AC ,∴四边形ADEC 是平行四边形,……………………(1分)∴AD =CE ,∴BC =CE ,……………………(1分)∵四边形ADEC 是平行四边形,∴AF =FE ,……………………(1分)∴AC 、BF 是△ABE 的中线,∴点G 是△ABE 的重心.……………………(1分)(2)解:∵G 是△ABE 的重心,BG =BC =2,∴GF =1,BF =3,……………………(1分)第2页共4页∵矩形ABCD ,∴∠ABC=∠FCB =90°,……………………(1分)∴EF =BF =3,Rt △ECF 中,CE =BC =2,∴5232222CE EF CF ,∴35sin EF CF FEC ,即35sin AEB .………………………………(3分)22.(1)标图(略)…(1分),α≈///0252051,β≈///0181560(2)作AH ⊥DE ,垂足为点H ,由题意得AB 、DE 均垂直于地面,∴ABEH 为矩形则HE =AB =200米,∴CH =400-200=200(米),…………(1分)Rt △AHC 中,∠CAH=α,,cot CHAH1605420025.11200cotCH AH (米),………(3分)Rt △AHD 中,∠DAH=β,,tan AH DH 28047160tan AH DH (米),……………………(2分)∴CD =280-200=80(米).答:热气球垂直上升的高度CD 为80米.……………………(1分)23.(1)∵AB =AC ,∴∠B =∠C ,……………………(2分)∵∠EDC =∠B +∠BED =∠EDF +∠FDC ,……………………(2分)又∵∠EDF =∠B ,∴∠BED =∠FDC ,……………………(1分)∴△BDE ∽△CFD ……………………(1分)(2)∵△BDE ∽△CFD ,∴DC BE DF DE ,……………………(1分)又∵BD =DC ,∴BD BE DF DE ,即BDDF BE DE ,……………………(2分)又∠EDF =∠B ,∴△DFE ∽△BDE ,……………………(1分)∴△DFE ∽△CFD ,∴CFDFDF EF,∴CF EF DF 2.……………………(2分)24.(1)由二次函数的图像过A (-2,0)、B (6,0),可知其对称轴为直线2 x ,又∵D (2,332)在同一个二次函数的图像上,可知抛物线顶点为点D ,设解析式为332)2(2x a y ,将C (0,8)代入得:32a ,…………………(3分)∴解析式为3322-322)(x y .…………………(1分)(第22题图)AB BADCFE(第23题图)第3页共4页或者)6)(2(32 x x y ,或者838322 x x y .(2)由(1)得抛物线对称轴为直线2 x ,Rt △BOC 中,OB =6,OC =8,CB =1022 OB OC ,①作EH ⊥BC 于H ,∵BE 平分∠ABC ,EO ⊥OB ,得OE =EH ,设OE =m ,则CE =8-m ,由△BEC 面积一定可知,EH CB OB CE 2121,代入得:m m 106)8( ,∴m =3,即OE =3,∴E (0,3),…………………(2分)设二次函数对称轴交x 轴于点M ,则2163 OB OE MB FM ,2,4 FM MB ,即点F 的纵坐标y =2,又横坐标x =OM =2,∴F (2,2).…………………(2分)②由△PBC 与Rt △BOE 相似,可知△PBC 为直角三角形,∠EBO =∠CBP ,536322 EB ,过点P 作PN ⊥x 轴,垂足为点N ,∴PN ∥EO ,∴51533 EB EO PB PN ,PB PN 55 ,(i )当∠BP 1C =90°时,525361 BE OB BC BP ,∴541BP ,411 N P ,Rt △P 1N 1B 中,21tan 11BN P ,∴82111 N P BN ,21 ON ,∴P 1(-2,4).…………………(2分)(ii )当∠BCP 2=90°,256532 BO BE BC BP ,∴552 BP ,522 N P ,Rt △P 2N 2B 中,21tan 22BN P ,∴102222 N P BN ,42 ON ,∴P 2(-4,5).…………………(2分)综上所述,点P 的坐标为(-2,4)或(-4,5).25.(1)AD //BC ,AB =2,AD =4,DC =3,BC =7.作AE //DC 交BC 于点E ,∴四边形AECD 是平行四边形.则AE =DC =3,BE =BC -AD =3,∴AE =BE ,…………(2分)作EF ⊥AB 于F ,则BF =AF =1,EF =2222BFBE ,∴Rt △BFE 中,322sin BEEF B ;…………………(3分)B第25题图(1)第4页共4页(2)由(1)得,Rt △EFB 中,31cos BEBF B ,∵PQ =BQ ,BP =x ,作QK ⊥AB 于K ,∴BK =x 21,Rt △QKB 中,31cos BQ BK B ,∴x BK BQ 233 ,x QC 237 ,………(2分)作DH ⊥BC 于H ,AG ⊥BC 于G ,Rt △ABG 中,2342322sin B AB AG ,∵AD //BC ,∴234 AG DH ,又∵△DQC 的面积为y .x x S DQC 22314234)237(21,∴x y 22314,3140( x .…………………(3分)(3)Rt △DHC 中,373247 CH ,97cos DC HC C ,点Q 在线段BC 上,当△DQC 是等腰三角形时,①DC =QC ,3237 x ,38 x ;②DC =DQ ,CH QC 2 ,237237 x ,914x ③DQ =QC ,过Q 点作QI ⊥DC 于I ,DC =2IC ,IC =1.5,Rt △QIC 中,1427cos CIC QC ,1427237 x ,2171x 点Q 在线段BC 延长线上,当△DQC 是等腰三角形时,④∠DCQ 为钝角,仅存在CD =CQ ,320,3723x x ∴综上,当△DQ C 是等腰三角形时,BP 长为38或914或2171或320.……………(4分)B第25题图(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密云县初三毕业暨升学一模考试数学试卷考 生须知1.本试卷分为第I 卷、第II 卷,共10页,共九道大题,25个小题,满分120分,考试时间120分钟.2.在试卷密封线内认真填写学校、姓名、班级和学号. 3.考试结束,请将试卷和机读卡一并交回.第I 卷(机读卷 共32分)考生须 知1.第I 卷共2页,共一道大题,8个小题.2. 试卷答案一律填涂在机读答题卡上.一.选择题(本大题共8小题,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.53-的绝对值是 A .35- B .53- C .53 D .352.下列计算正确的是A .330--=B .02339+=C .331÷-=-D .()1331-⨯-=-3.如图,由几个小正方体组成的立体图形的左视图是4.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为A .15×107 元B .1.5×108元 C .0.15×109元 D .1.5×107元5.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是A.15B.25C.23D.126.正方形网格中,AOB∠如图放置,则tan∠AOB的值为A.55B.255C.12D.27. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S=甲,乙组数据的方差2110S=乙,则以下说法正确的是A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较8.下列说法正确的有(1)如图(a),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c),两次使用丁字尺(CD所在直线垂直平分线段AB)可以找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角,就是从P点看A点时仰角的度数.A.1个B.2个C.3个D.4个(a)(b)(c)(d)ABO考 生 须 知 1.第II 卷共8页,共八道大题,17个小题. 2.答题时字迹要工整,画图要清晰,卷面要整洁.3.除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.题 号 二 三 四 五 六 七 八 九 总 分 得 分 阅卷人 复查人二.填空题(共4个小题,每小题4分,满分16分)把答案直接填写在题中横线上. 9.函数y =61-x 中的自变量x 的取值范围是 . 10. 如图,AB ∥CD,∠A=48°, ∠C=∠E, 则∠C 的度数为 .11.已知,如图,正比例函数与反比例函数的图象相交 于A 、B 两点,A 点坐标为(2,1),分别以A 、B 为圆心的圆与x 轴相切,则图中两个阴影部分面积 的和为 .12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~~十六进制 0 1 2 3 4 5 6 7 8 9 ABCDEF十进制12345678910 11 12 13 14 15例如,用十六进制表示:E + F = 1D ,则 A ×B = . 三、解答题(共4个小题,满分20分) 13.(本小题满分5分) 14.(本小题满分5分)计算:101(12)42-⎛⎫++-- ⎪⎝⎭. 分解因式:y x y x -+-22 .解: 解:15.(本小题满分5分) 16.(本小题满分5分)解方程:341x x=-. 解不等式组: ⎩⎨⎧-≤-->+2334)1(223x x x x四、解答题(共4个小题,满分18分) 17.(本小题满分4分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个小正方形,使它们成为轴对称图形.18.(本小题满分4分) 如图,Rt△ABC 的斜边AB =5,cosA =53. (1) 用尺规作图作线段AC 的垂直平分线l (保留作图痕迹,不要求写作法.证明); (2) 若直线l 与AB 、AC 分别相交于D 、E 两点,求DE 的长.方法一 方法二ACB19.(本小题满分5分)已知,如图,12∠=∠, .求证:AB AC =. (1) 写出证明过程. 证明: (2)20.(本题满分5分)如图,已知正方形ABCD 的边长是2,E 是AB 的中点,延长BC 到点F 使CF =AE . (1)若把ADE △绕点D 旋转一定的角度时,能否与CDF △重合?(2)现把DCF △向左平移,使DC 与AB 重合,得ABH △,AH 交ED 于点G . 求证:AH ED ⊥,并求AG 的长. (1)答:(2)证明:五、解答题(本题满分6分)羽毛球 25% 体操40%21.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整. 解: (1)(2)六、解答题(本题满分6分)22. 已知:二次函数c bx ax y ++=2的图象的一部分如图所示.(1) 试确定c b a 、、的符号; (2) 试求c b a ++的取值范围.七、解答题(本题满分7分)23.如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是∽O 的切线. (1)证明:(2)解:(3)证明:八、解答题(本题满分7分)24. 如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴,B (3,3),现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在同一直线上.(1)求折痕AD 所在直线的解析式; (2)求经过三点O ,1C ,C 的抛物线的解析式;(3)若∽P 的半径为r ,圆心P 在直线AD 上,当⊙P 与两坐标轴都相切时,求半径r 的值. 解: (1)(2)(3)九.解答题(本题满分8分)25.已知:如图,ABC是边长为6的等边三角形,点D、E分别在AB、AC上,且==.若点F从点B开始以每秒1个单位长度的速度沿射线BC方向移动,当点F运AD AE2x x秒时,射线FD与过点A且平行于BC的直线交于点G,连结GE交AD于点O,并动(0)延长交BC延长线于点H.(1)求EGA的面积S与点F运动时间x的函数关系;⊥;(2)当时间x为多少秒时,GH AB(3)证明GFH的面积为定值.解:2008年初三年级毕业考试数学试题参考答案及评分标准说明:1. 如果考生的解法和本解法不同,可根据试题的主要内容,参照评分标准相应的评分. 2. 解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 题 号 1 2 3 4 5 6 7 8 答 案CDABBDBD二、 填空题(本题共4小题,每小题4分,共16分).9.x ≠6 10.240 11.π 12.6E 三、(本题共4小题,满分20分). 13.(本小题满分5分)解:原式124=+- ··················································· 3分(一处计算正确给1分) 1=-.------------------------------------------------------------------------------------------5分 14.(本小题满分5分)解: 原式)()(22y x y x -+-= -----------------------------------------------------------------1分 )())((y x y x y x ++-+=----------------------------------------------------------------3分 )1)((++-=y x y x . --------------------------------------------------------------------5分 15.(本小题满分5分)解:去分母,得344x x =-. ········································································ 2分解得,4x =. ······················································································ 3分 经检验,4x =是原方程的根.-----------------------------------------------------------------4分 ∴ 原方程的根是4x =. ··········································································· 5分 16.(本小题满分5分)解:解不等式① 得x >-4.-------------------------------------------------------------------------2分 解不等式② 得x ≤1.----------------------------------------------------------------------------4分 ∴ 不等式组的解集为:-4<x ≤1.---------------------------------------------------------------5分 四、解答题(共4个小题,满分18分) 17.(本小题满分4分)(此题答案不唯一,只要在方格内添的二个正方形使整个图形是对称图形就给分,每答对一个给2分)18.(本小题满分4分)解:(1)作图正确给 --------------------------------------1分(2)在Rt△ABC 中,cos ACA AB =. AB =5,cosA =53.∴ 355AC =, ∴ 3.AC =∴ 由勾股定理 得 4BC =.--------------------------------------------------------------2分 ∵ DE 垂直平分AC ,∴ DE ∥BC ,AE =CE .∴ AD =BD .----------------------------------------------------------------------------------3分∴114222DE BC ==⨯=.----------------------------------------------------------------4分 19.(本小题满分5分)(1)(BD=DC)B C BAD CAD ∠=∠∠=∠或或. ········································· 2分 仅就“B C ∠=∠”证明,其他条件的证明参照给分) (2)证明:∵12∠=∠,∴18011802-∠=-∠.即 ADB ADC ∠=∠.-----------------------------------------------------------3分 在ACD ABD 和中,,,.B C ADB ADC AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ACD ABD ≅.-------------------------------------------------------------------4分 ∴AB AC =.----------------------------------------------------------------------------5分 20.(本题满分5分)解:(1)答:把ADE △ADE ∆绕点D 旋转一定的角度时能与CDF △重合.--------------------------------1分 (2)由(1)可知12∠=∠ ,∵2390∠+∠=︒,∴1390∠+∠=︒,即90EDF ∠=︒. ········································· 2分由已知得AH DF ∥,∴90EGH EDF ∠=∠=︒, ∴AH ED ⊥. ··········································· 3分 由已知AE =1,AD =2, ∵2222125ED AE AD =+=+=, ··························································· 4分∴1122AE AD ED AG =,即1112522AG ⨯⨯=⨯⨯,∴255AG =. ················· 5分 (注:本题由三角形相似或解直角三角形同样可求AG .)五、解答题(本题满分6分) 21. 解:(1)设该校报名总人数为x 人,则由两个统计图可得 40%160x =.∴x =16016040040%0.4==(人). ························································ 1分 (2)设选羽毛球的人数为y ,则由两个统计图可得 y =40025%100⨯=(人). ······························ 2分因为选排球的人数是100人,所以10025%400=, ································· 3分 因为选篮球的人数是40人,所以4010%400=, ····································· 4分 即选排球.篮球的人数占报名的总人数分别是25%和10%. (3)如图 ··························································································· 6分六、解答题(本题满分6分) 22. 解:(1)∵ 抛物线的开口方向向上,∴ a >0;----------------------------------------------------1分∵ 抛物线与y 轴的交点在x 轴的下方,∴ c <0; ----------------------------------2分观察图象,可见对称轴在y 轴的右侧,∴ 2ba->0,∴b <0.---------------------3分 (2)∵ 抛物线过点(-1,0)和点(0,-1), ∴ 0,1.a b c c -+=⎧⎨=-⎩--------------------------------------------------------------------------4分∴ 1a b -=.∴ 1a b =+ ①,或 1b a =- ②. 又 由(1)知 a >0; b <0. ∴ 有 1b +>0 ,1a - <0.∴ -1<b <0, 0<a <1.---------------------------------------------------------------------5分∴ -1<a b +<1.又 1c =-, ∴ -2<a b c ++<0.-------------------------------------------------------6分七、解答题(本题满分7分)23.(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .由 已知3BC DC ==,∵AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ ()222223312AB AC CB =+=+=. ∴23AB =.∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 3分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 6032CF BC =︒=⨯=, ∴ 333322BCD S OB CF =⨯=⨯=菱形O . ··················································· 5分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ···································································· 7分八、解答题(本题满分7分)24. 解: (1)由已知得3,30OA OAD =∠=︒. ∴3tan 30313OD OA =︒=⨯=. ∴()()0310A D ,,,. 设直线AD 的解析式为y kx b =+.则有 3,0.b k b ⎧=⎪⎨+=⎪⎩ 解得:3,3.k b ⎧=-⎪⎨=⎪⎩∴ 折痕AD 所在的直线的解析式是 33y x =-+ . ····································· 2分 (2)过1C 作1C F OC ⊥于点F ,由已知得160ADO ADO ∠=∠=︒, ∴160C DC ∠=︒. 又DC =3-1=2, ∴12DC DC ==.∴在1Rt C DF △中, 111sin 2sin603C F DC C DF =∠=⨯︒=.1112DF DC ==, ∴()12,3C ,而已知()3,0C .设 经过三点O ,C 1,C 的抛物线的解析式是2,(0)y ax bx c a =++≠. 把O ,C 1,C 的坐标代入上式得: 0,423,930.c a b c a b c =⎧⎪++=⎨⎪++=⎩解得 3,33,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴经过三点O ,C 1,C 的抛物线的解析式是:2333y x x =-+. ························ 5分 (3)设圆心(),P x y ,则依题意知 点P 即为两坐标轴的角平分线与直线AD 的交点.∴有,y=-x,3 3.y=-3 3.y x y x x =⎧⎧⎪⎪⎨⎨=-++⎪⎪⎩⎩或 解得 33333((311x -+=+-3或)或x=或)3. ∴所求⊙P 的半径33333r ((311-+=+-3或)或r=或)3. ···················· 7分九.解答题(本题满分8分)。

相关文档
最新文档