完整三角函数表
(完整版)三角函数特殊角值表
角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan√3/31√3-√3-1-√3/31、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y2、列表法:说明:正弦值随角度变化,即0˚ 30˚ 45˚ 60˚ 90˚变化;值从02122 23 1变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。
②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为2m 形式,正切、余切值可表示为3m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.30˚ 123145˚ 1212 60˚ 3函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.7320二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 22sin cos cos 2cos 2sin 22cos 2112sin 2αααααααα==-=-=-2tan tan 21tan 2ααα=--sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααααα=-=--=--三角函数的和差化积公式 三角函数的积化和差公式sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+--化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a x b x a b x φ±=+±其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan ba φ=确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
三角函数表
三角函数表你没有看错,这是一个关于紧固件的企业网站,却在讲述三角函数这风牛马不相及的故事.因为......三角函数表用于计算角度和边长的关系,在产品零件的绘图和设计中经常用到,所以我们整理了下表。
此表不仅可供我们机械工人参考,也可供其他工人或学生参考。
先来个定义正弦函数 sin(A)=a/h余弦函数 cos(A)=b/h正切函数 tan(A)=a/b余切函数 cot(A)=b/a正割函数 sec (A) =h/b余割函数 csc (A) =h/a注:a—所研究角的对边b—所研究的邻边h—所研究角的斜边以下是具体的对应参数表:1,正弦函数表 sinsin1=0. sin2=0. sin3=0.sin4=0. sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0. sin12=0. sin13=0. sin14=0. sin15=0. sin16=0. sin17=0. sin18=0. sin19=0. sin20=0. sin21=0. sin22=0. sin23=0. sin24=0. sin25=0. sin26=0. sin27=0. sin28=0. sin29=0. sin30=0. sin31=0. sin32=0. sin33=0. sin34=0. sin35=0. sin36=0. sin37=0. sin38=0. sin39=0. sin40=0. sin41=0. sin42=0. sin43=0. sin44=0. sin45=0. sin46=0. sin47=0. sin48=0. sin49=0. sin50=0. sin51=0. sin52=0. sin53=0. sin54=0. sin55=0. sin56=0. sin57=0. sin58=0. sin59=0. sin60=0. sin61=0. sin62=0. sin63=0. sin64=0. sin65=0. sin66=0. sin67=0. sin68=0. sin69=0. sin70=0. sin71=0. sin72=0. sin73=0. sin74=0. sin75=0. sin76=0. sin77=0. sin78=0. sin79=0. sin80=0. sin81=0. sin82=0. sin83=0. sin84=0. sin85=0. sin86=0. sin87=0. sin88=0. sin89=0.sin90=12,余弦函数表 coscos1=0. cos2=0. cos3=0.cos4=0. cos5=0. cos6=0.cos7=0. cos8=0. cos9=0.cos10=0. cos11=0. cos12=0. cos13=0. cos14=0. cos15=0. cos16=0. cos17=0. cos18=0. cos19=0. cos20=0. cos21=0. cos22=0. cos23=0. cos24=0. cos25=0. cos26=0. cos27=0. cos28=0. cos29=0. cos30=0. cos31=0. cos32=0. cos33=0. cos34=0. cos35=0. cos36=0. cos37=0. cos38=0. cos39=0. cos40=0. cos41=0. cos42=0. cos43=0. cos44=0. cos45=0. cos46=0. cos47=0. cos48=0. cos49=0. cos50=0. cos51=0. cos52=0. cos53=0. cos54=0. cos55=0.2 cos56=0. cos57=0.2 cos58=0. cos59=0. cos60=0. cos61=0. cos62=0.6 cos63=0. cos64=0.6 cos65=0. cos66=0. cos67=0. cos68=0.2 cos69=0. cos70=0. cos71=0.5 cos72=0.5cos73=0.7 cos74=0. cos75=0. cos76=0. cos77=0. cos78=0. cos79=0. cos80=0. cos81=0. cos82=0. cos83=0. cos84=0. cos85=0. cos86=0. cos87=0. cos88=0. cos89=0.cos90=03,正切函数表 tantan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0. tan8=0. tan9=0.tan10=0. tan11=0. tan12=0. tan13=0. tan14=0. tan15=0. tan16=0. tan17=0. tan18=0. tan19=0. tan20=0. tan21=0. tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28=0. tan29=0. tan30=0. tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37=0. tan38=0. tan39=0. tan40=0. tan41=0. tan42=0. tan43=0. tan44=0. tan45=0. tan46=1. tan47=1. tan48=1. tan49=1. tan50=1. tan51=1. tan52=1. tan53=1. tan54=1.tan58=1. tan59=1. tan60=1. tan61=1. tan62=1. tan63=1. tan64=2. tan65=2. tan66=2. tan67=2. tan68=2. tan69=2. tan70=2. tan71=2. tan72=3. tan73=3. tan74=3. tan75=3. tan76=4. tan77=4. tan78=4. tan79=5. tan80=5. tan81=6. tan82=7. tan83=8. tan84=9. tan85=11. tan86=14. tan87=19. tan88=28. tan89=57.tan90=(无限)4,余切函数 cotcot89=0. cot88=0. cot87=0. cot86=0. cot85=0. cot84=0. cot83=0. cot83=0. cot81=0. cot80=0. cot79=0. cot78=0. cot77=0. cot76=0. cot75=0. cot74=0. cot73=0. cot72=0. cot71=0. cot70=0. cot69=0. cot68=0. cot67=0. cot66=0. cot65=0. cot64=0. cot63=0. cot62=0. cot61=0. cot60=0. cot59=0. cot58=0. cot57=0. cot56=0. cot55=0. cot54=0.cot50=0. cot49=0. cot48=0. cot47=0. cot46=0. cot45=0. cot44=1. cot43=1. cot42=1. cot41=1. cot40=1. cot39=1. cot38=1. cot37=1. cot36=1. cot35=1. cot34=1. cot33=1. cot32=1. cot31=1. cot30=1. cot29=1. cot28=1. cot27=1. cot26=2. cot25=2. cot24=2. cot23=2. cot22=2. cot21=2. cot20=2. cot19=2. cot18=3. cot17=3. cot16=3. cot15=3. cot14=4. cot13=4. cot12=4. cot11=5. cot10=5. cot9=6. cot8=7. cot7=8. cot6=9. cot5=11. cot4=14. cot3=19. cot228. cot1=57.cot0=(无限)咨询与留言。
(完整word版)三角函数三角函数公式表
常见三角函数在平面直角坐标系x O y中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:基本函数英文表达式语言描述正弦函数Sine sin θ=y/r角α的对边比斜边余弦函数Cosine cos θ=x/r角α的邻边比斜边正切函数Tangent tan θ=y/x角α的对边比邻边余切函数Cotangentcot θ=x/y角α的邻边比对边正割函数Secant sec θ=r/x角α的斜边比邻边余割函数Cosecant csc θ=r/y角α的斜边比对边注:tan、cot曾被写作tg、ctg,现已不用这种写法。
非常见三角函数除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰:函数名与常见函数转化关系正矢函数versin θ=1—cos θ余矢函数covers θ=1-sin θ半正矢函数havers θ=(1-cos θ)/2半余矢函数hacovers θ=(1-sin θ)/2外正割函数exsec θ=sec θ—1外余割函数excsc θ=csc θ-1单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形.但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和π/2 弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,三角函数单位圆的方程是:x^2+y^2=1图像中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。
这个交点的x和y坐标分别等于 cos θ和 sin θ.图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1.单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数常用公式表格
三角函数常用公式表格三角函数是数学中一个重要的分支,在几何、物理、工程等众多领域都有着广泛的应用。
为了方便学习和使用,我们将常见的三角函数公式整理成一个表格,并对每个公式进行详细的解释。
一、基本三角函数定义1、正弦函数(Sine Function):sin(θ) =对边/斜边2、余弦函数(Cosine Function):cos(θ) =邻边/斜边3、正切函数(Tangent Function):tan(θ) =对边/邻边二、同角三角函数基本关系1、平方关系:sin²(θ) +cos²(θ) = 1这意味着对于任何角度θ,正弦的平方加上余弦的平方总是等于1。
2、商数关系:tan(θ) =sin(θ) /cos(θ)只要余弦不为零,正切就等于正弦除以余弦。
三、诱导公式1、sin(θ) =sin(θ)2、cos(θ) =cos(θ)3、sin(π θ) =sin(θ)4、cos(π θ) =cos(θ)5、sin(π +θ) =sin(θ)6、cos(π +θ) =cos(θ)诱导公式可以帮助我们将不同象限的角度的三角函数值进行转化。
四、和差角公式1、sin(α +β) =sin(α)cos(β) +cos(α)sin(β)2、sin(α β) =sin(α)cos(β) cos(α)sin(β)3、cos(α +β) =cos(α)cos(β) sin(α)sin(β)4、cos(α β) =cos(α)cos(β) +sin(α)sin(β)这些公式在求解三角函数的和差运算时非常有用。
五、二倍角公式1、sin(2θ) =2sin(θ)cos(θ)2、cos(2θ) =cos²(θ) sin²(θ) =2cos²(θ) 1 =1 2sin²(θ)3、tan(2θ) =2tan(θ) /(1 tan²(θ))二倍角公式常用于将角度加倍时的三角函数计算。
三角函数特殊角值表(完整版)资料
0
说明:正弦值随角度变化,即0˚30˚ 45˚ 60˚ 90˚变化;值从0
1变化,其余类似记忆.
3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:
1有界性:(锐角三角函数值都是正值)即当0°< <90°时,
则0<sin <1; 0<cos <1 ; tan >0 ; cot >0。
②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sinA<sinB;tanA<tanB; cosA>cosB;cotA>cotB;特别地:若0°< <45°,则sinA<cosA;tanA<cotA
《三角函数的应用》
研究性学习开题报告
数学研究性学习小组
2021年11月
一、课题名称:三角函数的应用
二、课题提出的背景:
高一的数学重点是三角函数。他在生活中应用非常广泛,与物理,地理等学科也有密切的关系。为使学生更好的了解数学与生活的联系,以此为研究的课题:
三、课题研究的目的与意义:
1、研究性学习的原因:
若45°<A<90°,则sinA>cosA;tanA>cotA.
4、口决记忆法:观察表中的数值特征
正弦、余弦值可表示为 形式,正切、余切值可表示为 形式,有关m的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.
巧记特殊角的三角函数值
初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。
(2)教学课件,网站、文字网站
ENDFOR(3)学生研究活动记录,研究论文及研究报告等。
最终成果形式:(小论文、调查报告、课件、图片等)
(1)sin260°+cos260 (2) -tan450
完整版三角函数常用公式表
1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角;( 2)、与 终边相同的角,连同角 在内,都可以表示为会集{ |k 360 , k Z }( 3)、象限的角:在直角坐标系内,极点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。
2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。
( 2)、度数与弧度数的换算:180弧度, 1 弧度( 180 )57 18'yP ( x ,y ) ( 3)、弧长公式: l || r ( 是角的弧度数)rx 2 y 2扇形面积: S1lr 1 | | r 2 r22x 3、三角函数 ( 1)、定义:(如图)( 2)、各象限的符号:siny y r tan x secr x cosx x r cotycscryyyy++_+_+OxOxOx___++_( 3)、 特别角的三角函数值sincostan的角度 0 30456090120 135 150180270 360的弧度2 353 26432 3462sin1 2 3 1 32 1 012 2 2222cos13 2 1 01 2 3 112 22222tan3 13—3 13 0—334、同角三角函数基本关系式sincos(1)平方关系:(2)商数关系:(3)倒数关系:sin 2cos21tansin tan cot1costancot11 tan 2sec 2cotcos sin csc1sin1 2csc 2cossec1seccsccot( 4)同角三角函数的常有变形: (活用“ 1”)①、 sin 21 cos2 , sin1 cos2 ; cos 21 sin2 , cos1 sin2 ;②tancotcos 2sin 22 , cottancos 2sin 2 2 cos2 2 cot 2sin cossin 2sin cos sin 2③ (sincos )2 1 2sin cos1sin 2 ,1 sin 2| sincos |5、引诱公式:(奇变偶不变,符号看象限) 公式一: sin( k 360 ) sincos(k360 ) costan(k 360 ) tan公式二:公式三:公式四:公式五:sin(180 ) sinsin(180 ) sin sin( ) sinsin(360 ) sin cos(180 ) cos cos(180 )coscos( ) cos cos(360 ) costan(180)tantan(180) tantan()tantan(360)tansin( )cossin()cos3)cossin(3) cossin(2222补充:cos()sincos()sincos(3)sincos(3)sin2222tan()cottan()cottan(3) cottan(3)cot22226、两角和与差的正弦、余弦、正切两角和与差的三角函数公式全能公式sin( ) sin cos cos sinsin2 tan( / 2) sin( ) sin coscos sin1 tan 2( / 2)cos( ) cos cos sin sin1 tan 2( / 2)cos() coscossin sincos1 tan 2(/ 2)tan tantan()1 tantan2 tan( / 2)tan1 tan 2( / 2)tan tantan()1 tantan7 . 辅角公式a sin x bcosxa 22asin xb2 cosxb22 a 2ba ba 2b 2 (sin x coscos x sin ) a 2 b 2 sin(x)(其中称为辅助角,的终边过点 (a,b) , tanb) (多用于研究性质)a8、二倍角公式 :( 1)、 S 2 :sin 22 sin cos( 2)、降次公式: (多用于研究性质)C 2 : cos 2cos2sin2sin cos1sin 221 2 sin22cos21sin21 cos21cos212 22 T 2 :tan 22 tancos 21 cos21 cos2 11 tan 222 2 ( 3)、二倍角公式的常用变形:①、1cos22 | sin | , 1 cos22 | cos|;②、 11cos2| sin |,11cos2| cos |2 222③ sin 4cos 41 2sin 2cos 21 sin2 2;cos 4sin 4cos2 ;2④半角: sin1 cos, cos1 cos , tan 1 cos1 cos sin22 1 cossin1 cos222三角函数的和差化积公式三角函数的积化和差公式sinsin 2sincossincos 1 sin() sin()222sinsin2cossincos sin1 sin( ) sin()222coscos 2coscoscoscos 1 cos( ) cos()2 22coscos2sinsinsinsin1cos( ) cos()2229、三角函数的图象性质( 1)、函数的周期性:①、定义:关于函数f ( x ),若存在一个非零常数 T ,当 x 取定义域内的每一个值时,都有: f ( x+T ) = f (x ),那么函数 f ( x )叫周期函数,非零常数 T 叫这个函数的周期;②、若是函数 f ( x )的所有周期中存在一个最小的正数,这个最小的正数叫f ( x )的最小正周期。
高中完整的三角函数值表弧度制
高中完整的三角函数值表弧度制在高中数学学习中,三角函数是一个非常重要的概念,它在数学和物理等领域都有着广泛的应用。
而在学习三角函数时,理解三角函数值表是至关重要的一步。
本文将详细介绍高中完整的三角函数值表,以弧度制为单位。
正弦函数的值表正弦函数是三角函数中最基本的一个函数,其定义域为实数集,值域为[-1, 1]。
下表展示了常见角度对应的正弦函数值(保留四位小数):弧度(rad)0π/6π/4π/3π/22π/33π/45π/6π正弦值0.00000.50000.70710.86601.00000.86600.70710.50000.0000余弦函数的值表余弦函数也是三角函数中常见的一个函数,其定义域为实数集,值域为[-1, 1]。
下表展示了常见角度对应的余弦函数值(保留四位小数):弧度(rad)0π/6π/4π/3π/22π/33π/45π/6π余弦值1.00000.86600.70710.50000.0000-0.5000-0.7071-0.8660-1.0000正切函数的值表正切函数在三角函数中也有着重要的作用,其定义域为实数集,值域为实数集。
下表展示了常见角度对应的正切函数值(保留四位小数):弧度(rad)0π/6π/4π/3π/22π/33π/45π/6π正切值0.00000.57741.00001.7321不定义-1.7321-1.0000-0.5774-0.0000通过上述三角函数值表,我们可以更加直观地理解不同角度对应的三角函数值,为我们在数学和物理问题中的运用提供了重要参考。
希望本文内容对您有所帮助。
三角函数表
DOCS SMART CREATE
三角函数表:概念与应用
DOCS
01
三角函数的基本概念
直角三角形与三角函数的定义
01
直角三角形的概念
• 两条直角边的边长互为邻边
• 两条直角边之间的夹角为直角
02
三角函数的定义
• 正弦函数:sinθ = 对边/斜边
• 余弦函数:cosθ = 邻边/斜边
三角函数的关系
• 和差角公式:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
• 积商角公式:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
• 倍角公式:sin(2a) = 2sin(a)cos(a),cos(2a) = cos^2(a) - sin^2(a)
三角函数的乘法公式与除法公式
三角函数的乘法公式
三角函数的除法公式
• sin(a)sin(b) = 1/2[cos(a - b) - cos(a + b)]
• sin(a)/cos(a) = tan(a)
• cos(a)cos(b) = 1/2[cos(a + b) + cos(a - b)]
• cos(a)/sin(a) = cot(a)
DOCS
• sin(90°) = 1
• cos(90°) = 0
• tan(90°) = 无定义
任意角度三角函数表
• 任意角度三角函数值
• 利用计算器或软件计算
• 使用反正弦、反余弦、反正切函数转换
• 利用三角函数性质和关系计算
03
三角函数的转换与应用
三角函数表
三角函数表
在数学领域中,三角函数是一类描述角和三角形边之间关系的函数。
主要有正
弦函数、余弦函数和正切函数等。
这些函数在数学和物理学中扮演着重要的角色,广泛应用于各种领域中。
下面是三角函数表,列出了各角度下正弦、余弦和正切的数值:
角度(°)正弦值余弦值正切值
0 0 1 0
30 0.5 0.866 0.577
45 0.707 0.707 1
60 0.866 0.5 1.732
90 1 0 无穷大
除了上表中列举的角度外,三角函数在整个数轴上都有定义。
在单位圆中,三
角函数的定义与三角形的三个边的比例有关。
正弦函数代表了对边与斜边的比值,余弦函数代表了邻边与斜边的比值,而正切函数代表了对边与邻边的比值。
三角函数在解决三角形相关问题、波动问题等方面有着广泛应用。
在物理学中,三角函数也经常出现,比如在描述波动、振动等现象时,三角函数是不可或缺的工具。
总的来说,三角函数是数学中的一大重要概念,深入理解三角函数将有助于我
们更好地理解和应用数学知识,进而解决实际问题。
希望通过这份三角函数表,读者能对三角函数有更清晰的认识。
三角函数对照表
三角函数对照表
三角函数的和差化积公式 三角函数的积化和差公式
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ=确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”。
(完整版)三角函数常用公式表
1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。
2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
(2)、度数与弧度数的换算:π=180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数)扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin 4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”) ①、αα22cos 1sin-=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=±xy+ +_ _O xy++__ Oαtanxy+ +__O=r αsec αsinαtan αcotcsc5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切 7 .辅角公式 ⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-=9、三角函数的图象性质 (1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。
完整三角函数公式表
完整三角函数公式表三角函数公式表同角三角函数的基本关系式三角函数之间有着特定的关系,这些关系被称为同角三角函数的基本关系式。
其中,倒数关系包括tanα ·cotα=1、sinα ·cscα=1和cosα ·secα=1;商的关系包括sinα/cosα=tanα=secα/cscα和cosα/sinα=cotα=cscα/secα;平方关系包括sinα+cosα=1、221+tanα=secα和221+cotα=cscα。
这些关系可以用六边形记忆法来记忆,也可以用其他方法来记忆。
诱导公式诱导公式是指通过某些变换,将一个三角函数转化为另一个三角函数的公式。
其中,口诀“奇变偶不变,符号看象限”可以帮助我们记忆。
例如,sin(-α)=-sinα、cos(-α)=cosα、tan(-α)=-tanα和cot(-α)=-cotα。
此外,还有其他的诱导公式,如sin(3π/2-α)=-cosα、cos(3π/2-α)=-sinα、sin(2π-α)=-sinα、cos(2π-α)=cosα等。
两角和与差的三角函数公式两角和与差的三角函数公式可以将两个角的三角函数转化为一个角的三角函数。
其中,sin(α+β)=sinαcosβ+cosαsinβ、sin(α-β)=sinαcosβ-cosαsinβ和cos(α+β)=cosαcosβ-sinαsinβ是两角和的公式,而sin(α+β)=sinαcosβ-cosαsinβ、cos(α-β)=cosαcosβ+sinαsinβ和cos (α+β)=cosαcosβ+sinαsinβ是两角差的公式。
这些公式可以帮助我们简化计算。
cos(α-β)可以用cosαcosβ+sinαsinβ表示。
tan(α+β)可以用tanα+tanβ和1-tanα·tanβ的倒数表示。
万能公式是2tan(α/2) = sinα/(1+cosα)和cosα/(1+sinα)。
(完整版)初中三角函数公式表
(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数与直角三角形的三边长度有着密切的关系。
1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。
公式为:sin(θ) = 对边 / 斜边。
2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。
公式为:cos(θ) = 邻边 / 斜边。
3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。
公式为:tan(θ) = 对边 / 邻边。
二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。
2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。
2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。
3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。
4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。
5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。
四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。
完整的三角函数值表
完整的三角函数值表三角函数值表是数学中一个重要的表格,它记录了各种角度的正弦、余弦和正切的数值。
对于学习三角函数和解决数学问题来说,掌握三角函数值表是非常有帮助的。
下面是一个完整的三角函数值表,包括角度从0度到90度的正弦、余弦和正切的数值。
在三角函数值表中,我们通常使用度来表示角度。
角度是一个物体相对于某个参考点或参考方向旋转的量度。
下面是角度从0度到90度的三角函数值表:角度(度)正弦余弦正切0 0 1 01 0.017452406 0.999847695 0.0174550642 0.034899497 0.999390827 0.0349207693 0.052335956 0.998629535 0.0524077794 0.069756474 0.99756405 0.069926815 0.087155743 0.996194698 0.0874886646 0.104528463 0.994521895 0.1051042357 0.121869343 0.992546152 0.122784568 0.139173101 0.990268069 0.1405408349 0.156434465 0.987688341 0.1583844410 0.173648178 0.984807753 0.1763269811 0.190808995 0.981627183 0.19438030912 0.207911691 0.978147601 0.21255656113 0.224951054 0.974370065 0.23086819114 0.241921896 0.970295726 0.24932800215 0.258819045 0.965925826 0.26794919216 0.275637356 0.961261696 0.28674538517 0.292371705 0.956304756 0.30573068118 0.309016994 0.951056516 0.32491969619 0.325568154 0.945518576 0.34432761320 0.342020143 0.939692621 0.36397023430 0.5 0.866025404 0.57735026945 0.707106781 0.707106781 160 0.866025404 0.5 1.73205080890 1 0 undefined在三角函数值表中,正弦的值可以直接读取,表示角度对应的比值。
完整版)完整三角函数公式表
完整版)完整三角函数公式表三角函数公式表同角三角函数的基本关系式三角函数是数学中的重要概念,它们在数学和物理学中都有广泛的应用。
同角三角函数的基本关系式包括倒数关系、商的关系和平方关系。
其中,倒数关系式如下:tan\alpha\cdot\cot\alpha=1$$sin\alpha\cdot\csc\alpha=1$$cos\alpha\cdot\sec\alpha=1$$商的关系式如下:frac{\sin\alpha}{\cos\alpha}=\tan\alpha=\frac{\sec\alpha}{\csc\alpha}$$frac{\cos\alpha}{\sin\alpha}=\cot\alpha=\frac{\csc\alpha}{\sec\alpha}$$平方关系式如下:sin^2\alpha+\cos^2\alpha=1$$2^2+ \tan^2\alpha=\sec^2\alpha$$1+\cot^2\alpha=\csc^2\alpha$$这些关系式可以用六边形记忆法和记忆方法来记忆。
其中,六边形记忆法是指图形结构“上弦中切下割,左正右余中间1”,而记忆方法是指对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
诱导公式诱导公式是指通过已知的三角函数值来推导其他角度的三角函数值的公式。
它们可以用口诀“奇变偶不变,符号看象限”来记忆。
具体来说,诱导公式包括三角函数的奇偶性和象限问题。
奇偶性公式如下:sin(-\alpha)=-\sin\alpha$$cos(-\alpha)=\cos\alpha$$tan(-\alpha)=-\tan\alpha$$cot(-\alpha)=-\cot\alpha$$象限问题公式如下:sin\left(\frac{3\pi}{2}-\alpha\right)=-\cos\alpha$$ cos\left(\frac{3\pi}{2}-\alpha\right)=-\sin\alpha$$ sin(2\pi-\alpha)=-\sin\alpha$$cos(2\pi-\alpha)=\cos\alpha$$tan\left(\frac{3\pi}{2}-\alpha\right)=\cot\alpha$$ tan(2\pi-\alpha)=-\tan\alpha$$cot\left(\frac{3\pi}{2}-\alpha\right)=\tan\alpha$$ cot(2\pi-\alpha)=-\cot\alpha$$另外,还有两个特殊的角度:sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$ tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$ cot\left(\frac{\pi}{2}-\alpha\right)=\tan\alpha$$ sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha$$ cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$$ tan\left(\frac{\pi}{2}+\alpha\right)=-\cot\alpha$$ cot\left(\frac{\pi}{2}+\alpha\right)=-\tan\alpha$$ sin(\pi-\alpha)=\sin\alpha$$cos(\pi-\alpha)=-\cos\alpha$$tan(\pi-\alpha)=-\tan\alpha$$cot(\pi-\alpha)=-\cot\alpha$$sin(\pi+\alpha)=-\sin\alpha$$cos(\pi+\alpha)=-\cos\alpha$$tan(\pi+\alpha)=\tan\alpha$$cot(\pi+\alpha)=\cot\alpha$$两角和与差的三角函数公式最后,还有两角和与差的三角函数公式。
完整三角函数公式表72870(教育相关)
三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=co tαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+22tan2sin 1tan 2ααα=+ 221tan 2cos 1tan 2ααα-=+ 22tan2tan 1tan 2ααα=-半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α22tan tan 21tan ααα=- sin3α=3sinα-4sin 3α cos3α=4cos 3α-3cosα三角函数的和差化积公式三角函数的积化和差公式sinsin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--化a sinα ±b cosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)三角函数主要结论1.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?。