2020届黑龙江省哈三中高三第五次模拟考试理科数学试题
2020年高考模拟试卷黑龙江省哈尔滨三中高考数学模拟试卷(理科)(解析版)
2020年高考模拟试卷高考数学模拟试卷(理科)(二)一、选择题1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.4.已知a=dx,则(x﹣)6展开式中的常数项为()A.20B.﹣20C.﹣15D.155.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数7.2019年10月1日在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,这三名同学中至少有一名同学被选上的概率为()A.B.C.D.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上. 13.若复数z=1+i,则=.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是.16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是.三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列{a n}满足4S n=(a n+1)2.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在180cm 以上(含180cm)的三人作为队长,记X为身高在[180,185)的人数,求X的分布列和数学期望.19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围.20.已知函数f(x)=ax2+x﹣xlnx(a>0).(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围.21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)【分析】通过绝对值不等式求解集合A,指数不等式的求解求出集合B,然后求解交集.解:因为集合A={x||x﹣1|<2}={x|﹣1<x<3},={x|﹣1<x<2},A∩B={x|﹣1<x<3}∩{x|﹣1<x<2}={x|﹣1<x<2}.故选:B.2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】利用等差数列的求和公式表示出S n,整理后,得到等差数列的S n为关于n的二次函数,利用配方法,即可确定数列的最大项.根据d小于0,可得此函数图象为开口向下的抛物线,函数有最大值,从而利用二次函数求最值的方法即可得出S n的最大值,即为{S n}中的最大项;反之也然.解:由等差数列的求和公式得:S n=na1+d,整理得:S n=0.5dn2+(a1﹣d)n,当d<0,∴等差数列的S n为二次函数,依题意是开口向下的抛物线,∴S n有最大值;反之,当数列{S n}有最大项时,则S n为二次函数,且图象是开口向下的抛物线,从而d <0.故选:A.3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.【分析】利用数量积和三角形的内角和定理、诱导公式即可化简,再利用三角形内特殊角的三角函数值即可得出.解:∵=(cos A,sin A),=(cos B,﹣sin B),∴=cos A cos B﹣sin A sin B=cos(A+B)=cos(π﹣C)=﹣cos C,∴,得cos C=﹣.∵0<C<π.∴.故选:B.4.已知a=dx,则(x﹣)6展开式中的常数项为()A.20B.﹣20C.﹣15D.15【分析】利用定积分的定义求得a的值,求得展开式中的通项公式,令x的幂指数等于0,求出r的值,即可求得常数项.解:∵已知=(lnx)=1,∴=,它的展开式的通项公式为T r+1=•x6﹣r•(﹣1)r•x﹣r=(﹣1)r••x6﹣2r.令6﹣2r=0,可得r=3,∴开式中的常数项为﹣=﹣20,故选:B.5.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】通过建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出异面直线所成的角.解:如图所示,分别取BC、B1C1的中点O、O1,由正三棱柱的性质可得AO、BO、OO1令两垂直,建立空间直角坐标系.∵所有棱长都为2,∴A,B(0,1,0),B1(0,1,2),C1(0,﹣1,2).∴,∴===.∴异面直线AB1与BC1所成角的余弦值为.故选:B.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数【分析】利用两角和差的正弦公式化简函数的解析式为f(x)=2sin(ωx﹣),由题意可得=,解得ω的值,即可确定函数的解析式为f(x)=2sin(2x﹣),由此求得周期,由2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间,从而得出结论.解:∵函数=2[sin(ωx﹣cosωx]=2sin(ωx ﹣),∴函数的周期为.再由函数图象相邻的两条对称轴方程为x=0与,可得=,解得ω=2,故f(x)=2sin(2x﹣).故f(x)=2sin(2x﹣)的周期为=π.由2kπ﹣≤2x﹣≤2kπ+,k∈z,可得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈z,故函数在上为单调递增函数,故选:C.7.2019年10月1日在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,这三名同学中至少有一名同学被选上的概率为()A.B.C.D.【分析】利用对立事件概率计算公式直接求解.解:军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,∴这三名同学中至少有一名同学被选上的概率为:P=1﹣(1﹣)(1﹣)(1﹣)=.故选:C.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.【分析】设抛物线的准线与x轴的交点为D,F为线段AB的中点,进而可知|AF|和|AB|,推断出AF|=|AB|,求得∠ABC,进而根据,求得p,则抛物线方程可得.解:设抛物线的准线与x轴的交点为D,依题意,F为线段AB的中点,故|AF|=|AC|=2|FD|=2p,|AB|=2|AF|=2|AC|=4p,∴∠ABC=30°,||=2p,=4p×2p cos30°=36,解得p=,∴抛物线的方程为y2=2x.故选:D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.【分析】由题意可得=2(λ﹣μ)+μ,由E、M、C三点共线,可得2λ﹣μ=1,①同理可得=,由D、M、F三点共线,可得λ+μ=1,②,综合①②可得数值,作乘积即可.解:由题意可知:E为AB的中点,F为BC的三等分点(靠近B)故===(λ﹣μ)+μ=2(λ﹣μ)+μ,因为E、M、C三点共线,故有2(λ﹣μ)+μ=1,即2λ﹣μ=1,①同理可得===,因为D、M、F三点共线,故有λ+(μ)=1,即λ+μ=1,②综合①②可解得λ=,,故实数λ与μ的乘积=故选:B.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元【分析】根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,由等比数列的通项公式可得,进而计算可得m与a4的值,即可得答案.解:根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,则有,则有a2+a4=32580,则有1﹣m=0.9,则m=0.1=10%,则有+a4=32580,解可得a4=14580,即“衰分比”为10%,丁所获得的奖金14580,故选:B.11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)【分析】依题意,可得m,n满足的约束条件,进而作出图形,利用图象即可得解.解:y′=x2+mx+m+n,依题意,y′=0的两个根为x1,x2且x1∈(0,1),x2∈(1,+∞),∴,平面区域D表示的图形如下图所示,注意到直线m+n=0与直线2m+n+1=0的交点P(﹣1,1),当函数y=log a(x+4)过点P时,即log a3=1,解得a=3,要使函数y=log a(x+4)(a>1)的图象上存在区域D内的点,由图可知,a<3,又a >1,故实数a的取值范围为(1,3).故选:B.12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.【分析】求两个曲线上不同两点的距离的最小值,显然没法利用两点间的距离公式计算,可结合函数y=e x上的点关于y=x的对称点在其反函数的图象上把问题转化为求曲线y =lnx上的点与上的点到直线y=x的距离之和最小问题,而与y=x平行的直线同时与曲线y=lnx和切于同一点(1,0),所以PQ的距离的最小值为(1,0)点到直线y=x距离的2倍.解:如图,因为y=e x的反函数是y=lnx,两个函数的图象关于直线y=x对称,所以曲线y=e x上的点P到直线y=x的距离等于在曲线y=lnx上的对称点P′到直线y =x的距离.设函数f(x)=lnx﹣1+,=,当0<x<1时,f′(x)<0,所以函数f(x)在(0,+∞)上有最小值f(1)=0,则当x>0时,除(1,0)点外函数y=lnx的图象恒在y=1﹣的上方,在(1,0)处两曲线相切.求曲线y=e x上的点P与曲线y=1﹣上的点Q的距离的最小值,可看作是求曲线y=lnx 上的点P′与Q点到直线y=x的距离的最小值的和,而函数y=lnx与y=1﹣在x=1时的导数都是1,说明与直线y=x平行的直线与两曲线切于同一点(1,0)则PQ的距离的最小值为(1,0)点到直线y=x距离的2倍,所以|PQ|的最小值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上. 13.若复数z=1+i,则=﹣1.【分析】利用共轭复数和复数的运算法则即可得出.解:∵复数z=1+i,∴,∴==﹣1.故答案为﹣1.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.【分析】根据题意可表示出渐近线方程,进而可知PF的斜率,设出P的坐标代入渐近线方程求得x的表达式,则P的坐标可知,进而求得中点的表达式,代入双曲线方程整理求得a和c的关系式,进而求得离心率.解:由题意设F(c,0)相应的渐近线:y=x,则根据直线PF的斜率为﹣,设P(x,x),代入双曲线渐近线方程求出x=,则P(,),则PF的中点(),把中点坐标代入双曲线方程=1中,整理求得=,即离心率为故答案为:.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是(2,3].【分析】由余弦定理求得cos C,代入已知等式可得(b+c)2﹣1=3bc,利用基本不等式求得b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.解:△ABC中,由余弦定理可得2cos C=,∵a=1,2cos C+c=2b,∴+c=2b,化简可得(b+c)2﹣1=3bc.∵bc≤,∴(b+c)2﹣1≤3×,解得b+c≤2(当且仅当b=c时,取等号).故a+b+c≤3.再由任意两边之和大于第三边可得b+c>a=1,故有a+b+c>2,故△ABC的周长的取值范围是(2,3],故答案为:(2,3].16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是[0,1].【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系,直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围.解:画出图形,不难发现直线恒过定点(﹣2,0),圆是上半圆,直线过(﹣2,0),(0,2)时,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),此时P(M)=,当直线与x轴重合时,P(M)=1;直线的斜率范围是[0,1].故答案为:[0,1].三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列{a n}满足4S n=(a n+1)2.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)利用数列的前n项和与第n项的关系,转化求解数列的通项公式即可.(2)化简数列的通项公式,利用裂项消项法求解数列的和即可.解:(1)正项数列{a n}满足4S n=(a n+1)2…①4S n﹣1=(a n﹣1+1)2…②两式相减①﹣②可得4a n=a n2+2a n﹣a n﹣12﹣2a n﹣1,整理得a n﹣a n﹣1=2…又a1=1,得a n=2n﹣1…(2)∵a n=2n﹣1,∴b n===(﹣).…∴数列{b n}的前n项和T n=(1﹣+…+﹣)=…18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在180cm 以上(含180cm)的三人作为队长,记X为身高在[180,185)的人数,求X的分布列和数学期望.【分析】(1)由频率分布直方图分析可得后三组的频率,再根据公式:频率=频数÷数据总和,计算可得答案.(2)列出X的分布列,根据分布列利用随机变量的期望公式求出X的数学期望.解:(1)由频率分布直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1﹣0.82=0.18,人数为0.18×50=9人,这所学校高三男生身高在180cm以上(含180cm)的人数为1000×0.18=180人由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为9﹣2﹣m=7﹣m,又m+2=2(7﹣m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.估算高三年级全体男生身高在180cm以上(含180cm)的人数为180.(2)X可能的取值为0,1,2,3,P(x=0)=,P(x=1)=,P(x=0)=,P(x=0)=,所以X的分布列X0123P…EX=…19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围.【分析】(1)由题目给出的条件,可得四边形ABFD为矩形,说明AB⊥BF,再证明AB⊥EF,由线面垂直的判定可得AB⊥面BEF,再根据面面垂直的判定得到平面ABE ⊥平面BEF;(2)以A点为坐标原点,AB、AD、AP所在直线分别为x、y、z轴建立空间坐标系,利用平面法向量所成交与二面角的关系求出二面角的余弦值,根据给出的二面角的范围得其余弦值的范围,最后求解不等式可得a的取值范围.【解答】证明:如图,(1)∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,∴ABFD为矩形,AB⊥BF.∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF∵BF∩EF=F,∴AB⊥面BEF,又AE⊂面ABE,∴平面ABE⊥平面BEF.(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD又AB⊥PD,所以AB⊥面PAD,AB⊥PA.以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,)平面BCD的法向量,设平面EBD的法向量为,由⇒,即,取y=1,得x=2,z=则.所以.因为平面EBD与平面ABCD所成锐二面角,所以cosθ∈,即.由得:由得:或.所以a的取值范围是.20.已知函数f(x)=ax2+x﹣xlnx(a>0).(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围.【分析】(1)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x转化为≥b.构造函数g(x)=,只需b≤g(x)min即可.因此又需求g(x)min.(2)函数f(x)在定义域上是单调函数,需f′(x)在定义域上恒非负或恒非正.考查f′(x)的取值情况,进行解答.解:(1)∵f(1)=2,∴a=1,f(x)=x2+x﹣xlnx.由f(x)≥bx2+2x⇔≥b.令g(x)=,可得g(x)在(0,1]上单调递减,在[1,+∞)上单调递增,所以g(x)min=g(1)=0,即b≤0.(2)f′(x)=2ax﹣lnx(x>0).令f′(x)>0,得2a≥,令h(x)=,当x=e时,h(x)max=∴当时,f′(x)>0(x>0)恒成立,此时.函数f(x)在定义域上单调递增.若,g(x)=2ax﹣lnx,(x>0),g′(x)=2a﹣由g′(x)=0,得出x=,,g′(x)<0,,g′(x)>0,∴x=时,g(x)取得极小值也是最小值.而当时,g()=1﹣ln<0,f′(x)=0必有根.f(x)必有极值,在定义域上不单调.综上所述,.21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.【分析】(I)设圆心P的坐标为(x,y),半径为R,由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C 的方程.(II)设直线OQ:x=my,则直线MN:x=my+3,由,能求出|OQ|2,由,能求出|MN|,由此能求出|MN|和|OQ|2的比值为常数.(III)由△QF2M的面积=△OF2M的面积,能求出S=S1+S2的最大值.【解答】(本小题满分13分)解:(I)设圆心P的坐标为(x,y),半径为R由于动圆P与圆相切,且与圆相内切,所以动圆P与圆只能内切∴,∴|PF1|+|PF2|=8>|F1F2|=6…∴圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=8,2c=6,∴a=4,c=3,b2=a2﹣c2=7故圆心P的轨迹C:.…(II)设M(x1,y1),N(x2,y2),Q(x3,y3),直线OQ:x=my,则直线MN:x=my+3由,得:,∴,∴…由,得:(7m2+16)y2+42my﹣49=0,∴,∴===…∴,∴|MN|和|OQ|2的比值为一个常数,这个常数为…(III)∵MN∥OQ,∴△QF2M的面积=△OF2M的面积,∴S=S1+S2=S△OMN∵O到直线MN:x=my+3的距离,∴…令,则m2=t2﹣1(t≥1),∵(当且仅当,即,亦即时取等号)∴当时,S取最大值…[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.【分析】(Ⅰ)求出圆心坐标,和圆的标准方程,即可求圆C的极坐标方程;(Ⅱ)分别求出直线的标准方程,利用直线和圆的位置关系即可求直线l被圆C所截得的弦长.解:(Ⅰ)∵圆C的圆心是,∴x=ρcosθ==1,y=ρsinθ==1,即圆心坐标为(1,1),则圆的标准方程为(x﹣1)2+(y﹣1)2=2,x2﹣2x+y2﹣2y=0圆C的极坐标方程为:;(Ⅱ)∵直线l的极坐标方程为,∴ρsinθ+ρcosθ=1+,即,圆心到直线距离为,圆半径为.故弦长为.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.【分析】(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;(2)构造函数g(x)=f(x)﹣3,关于x的不等式a+3<f(x)恒成立⇔a<f(x)﹣3恒成立⇔a<g(x)min,先求得f(x)min,再求g(x)min即可.解:(1)∵f(x)=|2x+1|﹣|x﹣3|=,∵f(x)>0,∴①当x<﹣时,﹣x﹣4>0,∴x<﹣4;②当﹣≤x≤3时,3x﹣2>0,∴<x≤3;③当x>3时,x+4>0,∴x>3.综上所述,不等式f(x)>0的解集为:(﹣∞,﹣4)∪(,+∞)…(2)由(1)知,f(x)=,∴当x≤﹣时,﹣x﹣4≥﹣;当﹣<x<3时,﹣<3x﹣2<7;当x≥3时,x+4≥7,综上所述,f(x)≥﹣.∵关于x的不等式a+3<f(x)恒成立,∴a<f(x)﹣3恒成立,令g(x)=f(x)﹣3,则g(x)≥﹣.∴g(x)min=﹣.∴a<g(x)min=﹣。
2020年黑龙江省哈尔滨三中高考数学模拟试卷(理科)(一)(有解析)
2020年黑龙江省哈尔滨三中高考数学模拟试卷(理科)(一)一、单项选择题(本大题共12小题,共60.0分)1.已知i为虚数单位,在复平面内复数2i对应点的坐标为()1+iA. (1,1)B. (−1,1)C. (2,2)D. (−2,2)2.已知集合M={x|x2+x−6≤0},N={x|x>0},则M∩N=()A. (0,2]B. [−3,2]C. (0,3]D. [−3,+∞)3.某饮用水器具的三视图如图所示,则该几何体的表面积为()A. 6πB. 8πC. 7πD. 11π4.下列说法正确的是()A. f(x)=ax2+bx+c(a,b,c∈R),则f(x)≥0的充分条件是b2−4ac≤0B. 若m,k,n∈R,则mk2>nk2的充要条件是m>nC. 对任意x∈R,x2≥0的否定是存在x0∈R,x02≥0D. m是一条直线,α,β是两个不同的平面,若m⊥α,m⊥β,则α//β5.欧拉公式e ix=cos x+isin x(e是自然对数的底数,i是虚数单位)是数学里令人着迷的公式之一,根据欧拉公式可知,2ie− π 6i=()A. √3−iB. 1−√3iC. √3+iD. 1+√3i6.某大学党支部中有2名女教师和4名男教师,现从中任选3名教师去参加精准扶贫工作,至少有1名女教师要参加这项工作的选择方法种数为()A. 10B. 12C. 16D. 207.阅读下面的程序框图,若输入a,b,c的值分别是2,1,7,则输出的值是()A. 3B. 6C. 8D. 98. 若0<α<π2,cos(π3+α)=13,则cosα=( )A. 2√2+√36B. 2√6−16C. 2√6+16D. 2√2−√369. 已知数列{a n }是公差为12的等差数列,S n 为数列{a n }的前n 项和.若a 2,a 6,a 14成等比数列,则S 5=( )A. 252B. 35C. 352D. 2510. 若函数f(x)=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)内恒有f(x)>0,则f(x)的单调递增区间为( )A. (0,+∞)B. (2,+∞)C. (1,+∞)D. (12,+∞)11. 点S ,A ,B ,C 是球O 的球面上的四个点,S ,O 在平面ABC 的同侧,∠ABC =120°,AB =BC =2,平面SAC ⊥平面ABC ,若三棱锥S −ABC 的体积为√3,则该球的表面积为( )A. 18πB. 16πC. 20πD. 25π12. 设f(x)=e x +b x +c ,若方程f(x)=x 无实根,则( )A. b >1,c <1B. b >1,c >−1C. b ≤1,c <1D. b ≤1,c >−1二、填空题(本大题共4小题,共20.0分)13. 已知|a ⃗ |=9,|b ⃗ |=4,夹角为120°,a ⃗ ⋅b⃗ = ______ . 14. 已知实数x ,y 满足约束条件{y ≤xx +y ≥2x ≤2,则2x −y 的最大值为______.15. 设A 是抛物线C 1:y 2=2px(p >0)与双曲线C 2:x 2a2−y 2b 2=1(a >0,b >0)的一条渐近线的交点.若点A 到抛物线C 1的准线距离等于32p ,则双曲线C 2的离心率等于______.16. 有三家分别位于△ABC 顶点处的工厂,已知AB =AC =5,BC =6,为了处理污水,现要在△ABC的三条边上选择一点P 建造一个污水处理厂,并铺设三条排污管道则AP ,BP ,CP ,则AP +BP +CP 的最小值为______ .三、解答题(本大题共7小题,共70.0分)17.已知在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,a=1,b=√2,∠B=∠A+π.2(1)求sin A的值;(2)求△ABC的面积.18.如图,在直三棱柱ABC−A1B1C1(侧棱垂直于底面)中,BC⊥AB,且AA1=AB=2.(1)求证:AB1⊥平面A1BC.(2)当BC=2时,求直线AC与平面A1BC所成的角.19.槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解A,B两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a≥b的概率;(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到B班同学人数的分布列和数学期望.20.椭圆C: x2a2+y2b2=1的右焦点为F(1,0),离心率为12.(1)求椭圆C的方程;(2)过F且斜率为1的直线交椭圆于M,N两点,P是直线x=4上任意一点.求证:直线PM,PF,PN的斜率成等差数列.21. 求证:1+122+132…+1n 2<2−1n (n ∈N ∗,n ≥2)22. 已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的参数方程为{x =3cosφy =3+3sinφ(φ为参数).点A ,B 是曲线C 上两点,点A ,B 的极坐标分别为(ρ1,π6),(ρ2,23π). (1)写出曲线C 的普通方程和极坐标方程; (2)求|AB|的值.23. 已知函数f(x)=|x −1|.(Ⅰ)解不等式:f(x)+f(x −1)≤2;(Ⅱ)当a >0时,不等式2a −3≥f(ax)−af(x)恒成立,求实数a 的取值范围.【答案与解析】1.答案:A解析:根据复数的几何意义,即可得到结论.本题主要考查复数的几何意义,比较基础.解:2i1+i =2i(1−i)(1+i)(1−i)=2i−2i22=1+i,则对应的点的坐标为(1,1),故选:A.2.答案:A解析:本题考查了一元二次不等式的解法和集合的交集运算.先解不等式,再求交集.解:因为M={x|x2+x−6≤0}={x|−3≤x≤2},N={x|x>0},所以M∩N=(0,2],故选A.3.答案:C解析:解根据三视图可知几何体是:底面半径为1、高为4的圆柱的上半部分被截去一部分后得到的几何体,∴该几何体的表面积S=2π×1×2+12×2π×1×2+π×12=7π,故选:C.由三视图知该几何体底面半径为1、高为4的圆柱的上半部分被截去一部分后得到的几何体,由条件和圆柱的表面积公式求出该几何体的表面积.本题考查由三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.4.答案:D解析:解:对于A,当a<0时,由b2−4ac≤0不能得到f(x)≥0,则“ax2+bx+c≥0”的充分条件是“b2−4ac≤0”错误.对于B,若m,k,n∈R,由mk2>nk2的一定能推出m>n,但是,当k=0时,由m>n不能推出mk2>nk2,故B错误,对于C,命题“对任意x∈R,有x2≥0”的否定是“存在x0∈R,有x02<0”,故C错误,对于D,因为垂直于同一直线的两个平面互相平行,故D正确,故选:D由充分必要条件的判定方法判断A,B,直接写出全程命题的否定判断C,根据垂直于同一直线的两个平面互相平行,可以判断D本题考查命题的真假判断与应用,考查了全程命题的否定、命题的逆否命题的真假判断,考查充分必要条件的判定方法,空间直线与平面位置关系的判断,属于中档题.5.答案:D解析:本题主要考查了复数的四则运算,属于基础题.结合复数的四则运算和欧拉公式即可求解.解:2ie− π 6i=2i(√32−12i)=1+√3i,故选D.6.答案:C解析:本题考查排列、组合的应用,注意用间接法分析,属于基础题.根据题意,用间接法分析:先计算从2名女教师和4名男教师中任选3人的选法数目,再分析其中没有女生,即全部为男生的选法数目,分析可得答案.解析:解:根据题意,从2名女教师和4名男教师中任选3人,有C63=20种选法,其中没有女生,即全部为男生的选法有C43=4种,则少有1名女教师要参加这项工作的选法有20−4=16种;故选C.7.答案:C解析:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.根据模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得a=2,b=1,c=7,不满足a<b,所以执行m=b+c=8;故选C.8.答案:C解析:本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于一般题.由已知角的范围可求π3+α的范围,利用同角三角函数基本关系式可求sin(π3+α)的值,由于α=(π3+α)−π3,利用两角差的余弦函数公式即可计算求值得解.解:∵0<α<π2,∴π3<π3+α<5π6,∴sin(π3+α)=√1−cos2(π3+α)=2√23,∴cosα=cos[(π+α)−π]=cos(π+α)cosπ+sin(π+α)sinπ=13×12+2√23×√32=1+2√66.故选C.9.答案:A解析:本题主要考查了等差数列的求和与等比数列的性质,属于基础题.根据等比数列的性质求得等差数列的首项,然后求解其前n项和即可.解:∵a 2,a 6,a 14成等比数列,∴a 62=a 2a 14,即(a 1+5×12)2=(a 1+12)(a 1+13×12), 解得a 1=32, ∴S 5=5a 1+5×42d =152+5=252,故选A .10.答案:A解析:本题考查了复合函数的单调性问题,考查对数函数的性质,是一道基础题. 解:x ∈(12,+∞)时,x 2+32x =(x +34)2−916>1,函数f (x )=log a (x 2+3x2)(a >0且a ≠1)在区间(12,+∞)内恒有f(x)>0, 所以a >1,∴函数f(x)的定义域为x 2+32x >0, 解得x <−32或x >0,由复合函数的单调性可知f(x)的单调递增区间(0,+∞), 故选A .11.答案:D解析:解:三棱锥O −ABC ,A 、B 、C 三点均在球心O 的表面上,且AB =BC =2,∠ABC =120°, ∴BC =2√3,∴∴△ABC 外接圆半径2r =2√3sin120°=4,即r =2∴S △ABC =12×2×2×sin120°=√3, ∵三棱锥S −ABC 的体积为√3,∴S到底面ABC的距离ℎ=3,由平面SAC⊥平面ABC,可将已知中的三棱锥S−ABC补成一个同底等高的棱柱,则圆心O到平面ABC的距离d=32.球的半径为:R2=d2+r2=254球的表面积:4πR2=25π.故选:D求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的表面积.本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.12.答案:D解析: f(x)>x恒成立是解题关键,本题考查函数零点与方程的根的关系,属基础题.解:由题意,若方程f(x)=x无实根,可得 f(x)>x恒成立,e x>(1−b)x−c对任意x恒成立.∴1−b>0, −c<1 或b=1,−c≤0,故选D.13.答案:−18)=−18.解析:解:a⃗⋅b⃗ =|a⃗||b⃗ |cos120°=9×4×cos120°=9×4×(−12故答案为:−18.利用数量积定义即可得出.本题考查了数量积定义,考查了推理能力与计算能力,属于基础题.14.答案:4解析:解:先根据约束条件{y ≤xx +y ≥2x ≤2画出可行域,由{x =2x +y =2得A(2,0), 当直线z =2x −y 过点A(2,0)时, z 最大是4, 故答案为:4.先根据约束条件画出可行域,再利用几何意义求最值,z =2x −y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最大值即可.本题考查线性规划问题,考查数形结合思想,解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.15.答案:√3解析:解:不妨设A(x 0,y 0),y 0>0,由题意可得x 0+p2=32p ,∴x 0=p , 又A 在抛物线C 1:y 2=2px(p >0)上,所以y 0=√2p ,从而,ba =√2, 可得c 2−a 2a 2=2,所以e =ca =√3.故答案为:√3.设出A 的坐标,再利用点A 到抛物线的准线的距离为32p ,得到A 的横坐标,利用A 在抛物线上,求出a ,b 关系,然后求解离心率即可.熟练掌握抛物线及双曲线的标准方程及其性质、渐近线方程和离心率计算公式是解题的关键.16.答案:495解析:解:由题意,AB =AC =5,BC =6,所以BC 上的高为4,AB ,AC 上的高都为245, ∵4+6>5+245,∴AP +BP +CP 的最小值为495. 故答案为:495.由题意,AB =AC =5,BC =6,所以BC 上的高为4,AB ,AC 上的高都为245,即可求出AP +BP +CP 的最小值.本题考查AP +BP +CP 的最小值,考查学生的计算能力,比较基础.17.答案:解:(1)∵a =1,b =√2,B =A +π2.∴A 为锐角,∴由正弦定理可得:sinA =asinB b=1×sin(A+π2)√2=√2,两边平方整理可得:sin 2A =1−sin 2A2,解得:sinA 2=13,有sinA =√33.(2)∵C =π−A −B =π2−2A ,∴由正弦定理可得:c =asinC sinA=1×sin(π2−2A)sinA =cos2A sinA=2cos 2A−1sinA=1−2sin 2A sinA=1−2×(√33)2√33=√33, ∴S △ABC =12bcsinA =12×√2×√33×√33=√26.解析:(1)由已知可得A 为锐角,由正弦定理可得sinA =asinB b=cosA √2,两边平方整理可解得sin A 的值.(2)利用三角形内角和定理可求C ,由正弦定理可得c ,根据三角形面积公式即可得解. 本题主要考查了正弦定理,三角形内角和定理,三角形面积公式的综合应用,属于基础题. 18.答案:解:(1)证明:∵在直三棱柱ABC −A 1B 1C 1(侧棱垂直于底面)中,BC ⊥AB ,且AA 1=AB =2 ∴A 1A ⊥面ABC ,BC ⊂面ABC∴A 1A ⊥BC又∵BC ⊥AB ,AB ∩AA 1=A∴BC ⊥平面AA 1B 1 B ,平面AB 1⊂平面ABB 1A ∴BC ⊥AB 1∵四边形A 1ABB 1是正方形∴A 1B ⊥AB 1又∵BC ∩A 1B =B∴AB 1⊥平面A 1BC(2)解法一:设AB 1∩A 1B =O ,连结CO ∵BC ⊥平面A 1ABB 1∴∠ACO 就是直线AC 与平面A 1BC 所成的角θ∵BC =2∵AO =12AB 1=√2,sin∠ACO =sinθ=AOAC∴AC═2√2,AO =√2在Rt △AOC 中,sinθ=12∴θ=π6∴BC 的长为2时,直线AC 与平面A 1BC 所成的角为π6 解法二:由(1)知以B 为原点建立如图所示坐标系B −xyz , 则B(0,0,0),A(0,2,0),C(2,0,0)A 1(0,2,2) 由(1)知AB 1⊥平面A 1BC B 1(0,0,2),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,−2,2) ∵直线AC 与平面A 1BC 所成的角为θ∴sinθ=|cos <AC ⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >|=|AC ⋅⃗⃗⃗⃗⃗⃗⃗⃗ AB 1⃗⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗⃗ ||AB 1⃗⃗⃗⃗⃗⃗⃗ |=12即BC 的长为2时,直线AC 与平面A 1BC 所成的角为π6解析:(1)证明BC ⊥AB 1,A 1B ⊥AB 1,利用直线与平面垂直的判定定理证明AB 1⊥平面A 1BC . (2)解法一:设AB 1∩A 1B =O ,连结CO ,说明∠ACO 就是直线AC 与平面A 1BC 所成的角θ,在Rt △AOC 中,求解直线AC 与平面A 1BC 所成的角.解法二:由(1)知以B 为原点建立如图所示坐标系B −xyz ,求出B ,A ,C ,A 1,求出AC ⃗⃗⃗⃗⃗ =(2,−2,0),AB 1⃗⃗⃗⃗⃗⃗⃗ ,直线AC 与平面A 1BC 所成的角为θ,利用向量的数量积求解即可.本题考查直线与平面垂直的判定定理的应用,直线与平面所成角的求法,考查计算能力以及逻辑推理能力.19.答案:(1)A 班的样本数据中不超过19的数据a 有3个,B 班的样本数据中不超过21的数据b 也有3个,从A 班和B 班的样本数据中各随机抽取一个共有3×3=9种不同情况. 其中a ≥b 的情况由(11,11),(14,11),(14,12)三种,故a ≥b 的概率P =39=13.(2)因为所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中,A 班有2人,B 班有3人,共有5人,设抽到B 班同学的人数为X , ∴X 的可能取值为1,2,3. P(X =1)=C 31C 22C 53=310,P(X =2)=C 32C 21C 53=35,P(X =3)=C 33C 20C 53=110.∴X 的分布列为:数学期望为E(X)=1×310+2×35+3×110=95.解析:本题考查茎叶图和古典概型及离散型随机变量分布列和期望问题,属于一般题. (1)根据茎叶图解决概率问题;(2)离散型随机变量的分布列和数学期望问题.20.答案:解:(1)由题意可得c =1,e =c a =12,解得a =2,b =√a 2−c 2=√3, 则椭圆C 的方程为x 24+y 23=1;(2)证明:设M(x 1,y 1),N(x 2,y 2),P(4,y 0), 由题意可得直线MN 的方程为y =x −1, 代入椭圆方程x 24+y 23=1,可得7x 2−8x −8=0, x 1+x 2=87,x 1x 2=−87,k PM +k PN =y 0−y 14−x 1+y 0−y 24−x 2=(y 0−x 1+1)(4−x 2)+(y 0−x 2+1)(4−x 1)(4−x 1)(4−x 2)=8y 0+8+2x 1x 2−(y 0+5)(x 1+x 2)16+x 1x 2−4(x 1+x 2)=8y 0+8−167−87(y 0+5)16−87−327=2y 03,又k PF =y 03,则k PM +k PN =2k PF ,则直线PM ,PF ,PN 的斜率成等差数列.解析:本题考查椭圆方程的求法,注意运用椭圆的性质:离心率,考查直线的斜率成等差数列,注意运用联立直线方程和椭圆方程,运用韦达定理和点满足直线方程,考查化简整理的运算能力,属于中档题.(1)由焦点坐标可得c =1,运用椭圆的离心率公式,可得a =2,再由a ,b ,c 的关系求得b ,进而得到所求椭圆方程;(2)设M(x 1,y 1),N(x 2,y 2),P(4,y 0),求得直线MN 的方程,代入椭圆方程,消去y ,可得x 的方程,运用韦达定理和直线的斜率公式,化简整理,结合等差数列的中项的性质,即可得证.21.答案:证明:∵1n 2<1n(n−1)=1n−1−1n (n ∈N ∗,n ≥2),∴1+122+132+⋯+1n 2<1+1−12+12−13+⋯+1n−1−1n =2−1n .解析:利用1n 2<1n(n−1)=1n−1−1n (n ∈N ∗,n ≥2),即可证明结论. 本题考查不等式的证明,考查放缩法,正确放缩是关键.22.答案:解:(1)∵曲线C 的参数方程为{x =3cosφy =3+3sinφ,(φ为参数),消去参数φ,化为普通方程是x 2+(y −3)2=9; 由{x =ρcosθy =ρsinθ,(θ为参数). ∴曲线C 的普通方程可化为极坐标ρ=6sinθ,(θ为参数). (2)方法1:由A(ρ1,π6),B(ρ2,23π)是圆C 上的两点, 且知,∴ |AB|为直径,∴|AB |=6.方法2:由两点A(ρ1,π6),B(ρ2,23π)化为直角坐标中点的坐标是A(3√32,32),B(−3√32,92), ∴ A 、B 两点间的距离为|AB |=6.解析:本题考查了参数方程与极坐标的应用问题,解题时应熟练地应用参数方程、极坐标与普通方程的互化公式,是基础题.(1)消去参数φ,把曲线C 的参数方程化为普通方程;由公式{x =ρcosθy =ρsinθ,把曲线C 的普通方程化为极坐标方程;2)方法1:由A 、B 两点的极坐标,得出,判定AB 为直径,求出|AB|;方法2:把A 、B 化为直角坐标的点的坐标,求出A 、B 两点间距离|AB|.23.答案:解:(Ⅰ)原不等式等价于:当x ≤1时,−2x +3≤2,即12≤x ≤1.当1<x ≤2时,1≤2,即1<x ≤2. 当x >2时,2x −3≤2,即2<x ≤52. 综上所述,原不等式的解集为{x|12≤x ≤52}.(Ⅱ)当a >0时,f(ax)−af(x)=|ax −1|−|ax −a|=|ax −1|−|a −ax|≤|ax −1+a −ax|=|a −1|,所以,2a −3≥|a −1|,解得a ≥2.解析:(Ⅰ)分当x ≤1时、当1<x ≤2时、当x >2时三种情况,分别求得原不等式的解集,再取并集,即得所求.(Ⅱ)当a >0时,利用绝对值三角不等式可得f(ax)−af(x)≤|a −1|,结合题意可得2a −3≥|a −1|,由此解得a 的范围.本题主要考查绝对值不等式的解法,体现了等价转化以及分类讨论的数学思想,属于中档题.。
黑龙江省哈三中2020届高三数学第五次模拟考试试题理【含答案】
式 (x 1) f (x) 0 的解集为
.
三、解答题:共 70 分.解答应写出必要的文字说明,证明过程或演算步骤.第 17~21 题为
必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)
ABC 的内角 A, B,C 的对边分别
形.现将 ADE 沿 AD 折起,连接 EB , EC 得如图②的几何体.
D C
E
M
E
D
C
B A
图①
B A
图②
(1)若点 M 是 ED 的中点,求证: CM //平面 ABE ; (2)若 EC 3 ,在棱 EB 上是否存在点 F ,使得二面角 E AD F 的余弦值为
22
EF
?若存在,求 的值;若不存在,请说明理由.
则 2sin( A B) sin A 2sin B cos A ,则
2sin Acos B sin A ,在 ABC 中, sin A 0 ,所以 cos B 1 ,…………………………4 分 2
则 B ……………………………………………………………………………..………6 分 3
(2)由余弦定理得 b2 a2 c2 2ac cos B ,
坐标方程;
(2) 若 ,设直线 l 与曲线 C 交于不同的两点 A, B ,点 P(1,1) ,求 1 1 的
3
PA PB
值.
23.[选修 4-5:不等式选讲] (本小题满分 10 分)
已知函数 f (x) x a x b,(a 0,b 0) . (1) 当 a 1,b 3 时,求不等式 f (x) 6 的解集; (2) 若 f (x) 的最小值为 2 ,求证: 1 1 1.
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)
高考数学一模试卷(理科)题号 一一三总分得分、选择题(本大题共 12小题,共60.0分)2.若复数 z=::,则 |z|=()A. 8B. 2C. 23.某三棱锥的三视图如图所示,则该三棱锥的体积为( )2A.4B. C. 28D.4.41已知a 项,b=4亏,1c=2S§,则( )A. b v av cB. av b v cC. bv cv aD. cv av b 5.已知数列{an }的前 n 项和 Sn= 2+ ?3n , 且 a 〔 = 1,则 S5=()A. 2753B .31C.D. 316.设随机变量 —B (2, p ),广B (4, p),若P(fA)二;,则P .A)2的值为( )32116516A. :iB. ■-C.D.1. 已知全集U=R,集合A={-2 , -1, 示的集合为()0,21, 2} , B={xX>4}则如图中阴影部分所表A. {-2 , -1 , 0, 1} C. {-1 , 0}B. {0} D. {-1 , 0, 1},, , X1 / ,, —,尸八、L 工rm7.已知双曲线C: 丁亍=1 (a>0, b>0)的右焦点F2到渐近线的距离为4,且在双曲线C上到F2的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点F I的距离为( )函数rw=¥,方程[f (X) ]2- (m+1) f(x ) +1-m=0有4个不相等实根,贝U m的取8. 9. 10. 11. A. 2B. 4 甲、乙等5人排一排照相,要求甲、 有()A. 36 种B. 24 种C. 6D. 8乙 2人相邻但不排在两端,那么不同的排法共C. 18 种 阅读如图所示的程序框图,若运行相应的程序输出的结果为不可能是(B. rK 2015nV 2016 D. 12 种0,则判断框中的条件A. n< 2014若’'•- ‘七A. 36兀 C. D. n< 2018)的展开式中含有常数项,817TB. _C. 且n 的最小值为a,则-、祯'-技四25nTD. 25兀 已知x 2+y 2= 4,在这两个实数x, y 之间插入三个实数,使这五个数构成等差数列, 那么这个等差数列后三项和的最大值为( B. A. J"C. 111D.值范围是( e + 1 C. . ■ .:■e + e e —eD. -二、填空题(本大题共 4小题,共20.0分)已知向量;=(-3戳,则向量:与日夹角的余弦值为13. 14. + 2y —6 < 0设x, y 满足约束条件];言?,则z = 7 的最大值是15. 学校艺术节对同一类的 A, B, C, D 四项参赛作品,只评一项一等奖,在评奖揭晓 前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“ A 作品获得一等奖”;乙说:“ C 作品获得一等奖”丙说:“ B, D 两项12.(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记 ¥为该居民用户116.17. 18. 作品未获得一等奖”;丁说:“是 A 或D 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 .在四面体 ABCD 中,AB=AD=2, ZBAD=60 °, ZBCD=90 °,二面角 A-BD-C 的大小为150。
【精品解析】2020年黑龙江省哈尔滨市第三中学高三第五次模拟考试数学试题
2020年黑龙江省哈尔滨市第三中学高三第五次模拟考试数学试题一、单选题1.设集合P ={(x ,y)|x +y<4,x ,y ∈N *},则集合P 的非空子集个数是( )A .2B .3C .7D .82.设复数z 1=1−3i ,z 2=3−2i ,则在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )A .B .C .D .4.若将函数y=2sin2x 的图像向左平移12个单位长度,则平移后图像的对称轴为A .x=26k ππ-(k ∈Z ) B .x=26k ππ+(k ∈Z ) C .x=212k ππ-(k ∈Z ) D .x=212k ππ+(k ∈Z ) 5.已知()1,3a =-,()2,1b =-,且()()2//a b ka b +-,则实数k =( )A .2-B .2C .12D .12- 6.已知0.4 1.90.41.9,1 1.9,0.4a b og c ===,则( ) A .a b c >> B .b c a >> C .a c b >> D .c a b >>7.下列说法正确的是 ( )A .命题“若x =y ,则sinx =siny ”的否命题为真命题B .“直线与直线互相垂直”的充分条件是“”C .命题“∃x ∈R,x 2+x +1<0”的否定是“∀x ∈R,x 2+x +1>0”D .命题:若,则或的逆否命题为:若或,则x 2≠18.下列说法正确的是( )A .若()sin f x θ=,则()'cos f x θ=B .合情推理得到的结论不一定是正确的C .双曲线上的点到两焦点的距离之差等于2aD .若原命题为真命题,则否命题一定为假命题9.下列四个数中,数值最小的是( )A .()1025B .()454C .()210110D .()21011110.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形.其中正确的结论是( ) A .(1)(3) B .(2)(4) C .(2)(3)(4) D .(1)(2)(3)(4)11.已知等比数列{}n a 中,51a =,916a =,则7a =A .4B .-4C .4±D .1612.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题(),M x y 与点(),N a b 的距离.结合上述观点,可得()f x =( )A .B .CD .3二、填空题 13.双曲线22149x y -=的渐近线方程是__________. 14.5个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为__________.15.已知数列{}n a 的前n 项和为n S ,123n n a a n ++=+,12a =,则11S =_____.16.某同学在研究函数2()()||1x f x x R x =∈+时,给出下列结论:①()()0f x f x -+=对任意x ∈R 成立;②函数()f x 的值域是()2,2-;③若12x x ≠,则一定有()()12f x f x ≠;④函数()()2g x f x x =-在R 上有三个零点.则正确结论的序号是_______.三、解答题17.为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为25. (1)请将上面的列联表补充完整;(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.附: 2.072 22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 18.设离心率为3,实轴长为1的双曲线2222:1x y E a b-=(0a b >>)的左焦点为F ,顶点在原点的抛物线C 的准线经过点F ,且抛物线C 的焦点在x 轴上.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 交于不同的两点,M N ,且满足OM ON ⊥,求MN 的最小值. 19.如图,DA ⊥平面ABC ,//DA PC ,E 为PB 的中点,2PC =,AC BC ⊥,ACB ∆和DAC △是等腰三角形,AB =.(1)求证://DE 平面ABC ;(2)求三棱锥E BCD -体积.20.已知函数()||f x x a =-(1)当1a =-时,求不等式()|21|1f x x ≤+-的解集;(2)若函数()()|3|g x f x x =-+的值域为A ,且[2,1]A -⊆,求a 的取值范围.21.已知函数21()(1)2x f x ax x e =--(a R ∈).(1)讨论函数()f x 的单调性;(2)若[1,]a e ∈,对任意的12,[0,1]x x ∈,证明:12|()()|1f x f x -<.22.在平面直角坐标系xOy 中,以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知直线l的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为22cos sin θρθ=. (1)求直线l 的普通方程和线C 的直角坐标方程;(2)已知定点1,02P ⎛⎫ ⎪⎝⎭,设直线l 与曲线C 相交于A B ,两点,求PA PB +的值. 23.如图,在平面四边形ABCD 中,,1,AB AD AB ⊥=2,33AC ABC ACD ππ=∠=∠= (1)求sin BAC ∠;(2)求DC 的长.【答案与解析】1.C当x =1时,y<3,又y ∈N *,因此y =1或y =2;当x =2时,y<2,又y ∈N *,因此y =1;当x =3时,y<1,又y ∈N *,因此这样的y 不存在.综上所述,集合P 中的元素有(1,1)、(1,2)、(2,1),集合P 的非空子集的个数是23-1=7 2.D试题解析:z 1z 2=1−3i 3−2i =(1−3i)(3+2i)(3−2i)(3+2i)=3+2i−9i+613=9−7i 13=913−713i z 1z 2在复平面内对应的点(913,−713),故在第四象限 考点:本题考查复数几何意义点评:解决本题的关键是理解复数的几何意义3.D对四个选项中几何体的正视图、侧视图、俯视图是否符合要求进行判断,可得出合适的选项. 选项A 的正视图、俯视图不符合要求,选项B 的正视图、侧视图不符合要求,选项C 俯视图不符合要求,故选:D.本题考查三视图还原为实物图,考查空间想象能力,属于基础题.4.B试题分析:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数()sin()f x A wx ϕ=+的图象与性质,着重考查了三角函数的图象变换及三角函数的对称轴方程的求解,通过将函数2sin 2y x =的图象向左平移12π个单位长度,得到函数的解析式2sin(2)6y x π=+,即可求解三角函数的性质,同时考查了学生分析问题和解答问题的能力以及推理与运算能力.。
黑龙江省哈尔滨市2020届高三数学5月模拟复课联考试题理(PDF)
题的是
........................ 优质文档..........................
A. pz A pz
B.仏 V (「pz)
C. p-\ A p3
D.久 A (「)
10,把方程+
- 1 表示的曲线作为函数>=/(x)的图象,则下列结论正确的是
R ① 八了)在 上单调递减
Ze
e
o
12.已知双曲线 C:弓- * = l(a>0,6>0)的左、右焦点分别为 Fi ,码,过 F,的直线 I 与双曲线 a o
C 的左支交于 A、B 两点.若|AB| = |AFz I,匕 BAF'2 = 12O°,则双曲线 C 的渐近线方程为 A ・ y= 士寻 1
1
B ・ y=±^j?
C.y=±(V3-V2)x
超过 1 小时
不超过 1 小时
男
20
8
女
12
m
(1) 求 ms; (2) 能否有 95%的把握认为该校学生一周参加社区服务时间是否超过 1 小时与性别有关? (3) 从该校学生中随机调查 60 名学生,一周参加社区服务时间超过 1 小时的人数记为 X,以
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)
2020 年黑龙江省哈尔滨三中高考数学一模试卷(理科)一、选择题:本大题共 12 小题,每题 5 分,共 60 分 .在每小题给出的四个选项中,只有 项是符合题目要求的 .1.(5 分)已知i为虚数单位,则 1i(i)A .0B . 1C . 1 iD .12.(5 分)设 A {1,2,3}, B{ x | x 2 x 1 0} ,则 A I B ()A .{1,2} B .{1, 2, 3} C .{2 ,3}D .{1}3.( 5分)某校为了研究 a ,b 两个班的化学成绩, 各选了 10人的成绩,绘制了如右茎叶图, 则根据茎叶图可知, a 班 10人化学成绩的中位数和化学成绩更稳定的班级分别是 ( )A . 83 , aB . 82.5, bC . 82.5, aD . 82,b4.( 5 分)已知向量 a r(1, 3) , b r (x,1)且a r 与 b r 的夹角为60 ,则 | b r | () A . 2 3B .1C . 3D . 233335.(5分)2019年10月1日 1上午,庆祝中华人民共和国成立 70周年阅兵仪式在天安门场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月 异.今年的阅兵方阵有一个很抢眼, 他们就是院校科研方阵. 他们是由军事科学院、国防大 学、国防科技大学联合组建.若己知甲、乙、丙三人来自上述三所学校,学历分别有学士、 硕士、博士学位.现知道: ①甲不是军事科学院的; ② 来自军事科学院的不是博士; ③乙不 是军事科学院的; ④ 乙不是博士学位; ⑤ 国防科技大学的是研究生. 则丙是来自哪个院校的, 学位是什么 ( )A .国防大学,研究生B .国防大学,博士C .军事科学院,学士D .国防科技大学,研究生xx6.( 5分)函数 f (x ) e 2e ,在 [ 3, 3]的图象大致为 ( )ln ( x 1)A .3 2 3 2分)为计算 S 1 23 32 43 527.(5 1)2C . i, 99 和 N N (i 2 8.(5 分)已知数列 { a n } 满足 a n 22a n a n 1ga n D .992B . D . a n 1则 S 6 ( ) A . 12B .126B 3 1003设计了如图所示的程序框图,则在2 99 和 N N (i 1)23 101 和 N N (i 1)3a n 1 ,S n 为其前 n 项和,若 a 1 1 ,a 23,124D .1209.( 5分)现有 5 名学生,甲、乙、丙、丁、戊排成一队照相,则甲与乙相邻,且甲与丁不 相邻的站法种数为 ( )数 m 的取值范围是 ( )A .(5 6, 1)B .(5 6,3 2 2)C .( 1 ,3 2 2)D .( 1 , 1)2 6 2 20 20 612.( 5 分 ) 已 知 等 差 数 列 {a n } 的 公 差 为 2020, 若 函 数 f(x) x cosx , 且 f(a 1) f (a 2) f (a 2020 ) 1010 ,记 S n 为{a n } 的前 n 项和,则 S 2020的值为 ( )2021 4041A . 1010B .C . 2020D .22二、填空题:本大题共 4 小题,每题 5 分,共 20分.x y 1, 013.(5 分)已知 x 、 y 满足约束条件 x y, 0 ,则 z x 2y 的最大值为 .x ⋯02214.( 5分)已知双曲线 C: x 2 y2 1(a 0,b 0)的左、右焦点分别为 F 1, F 2,过 F 2作一条 ab 直线 l 与其两条渐近线交于 A ,B 两点.若 AOB 为等腰直角三角形,记双曲线的离心率为 e ,则 e 2.15.(5 分)己知函数 f(x) 2sin( x )( 0,| | )过点 (0,1) ,若 f(x)在[0,1]上恰2好有两个最值且在 [ 1, 1] 上单调递增,则 .4416.(5 分)如图,棱长为 2 的正方体 ABCD 一 A 1B 1C 1D 1 中,点 M 、 N 、 E 分别为棱 AA 1、AB 、AD 的中点,以 A 为圆心, 1为半径,分别在面 ABB 1 A 1和面 ABCD 内作弧 MN 和 NE ,B 两点(点 A 在 x 轴上方),点 P(1,2),连接 AP 交y 轴于 M ,过M 作MD //PF 交 AB 于D , 若 FA 5DA ,则 AB 斜率为 ()4 .31A .BC .D .23.42(x 1)2 1 x211.( 5分)已知函数 f (x)1,若函数 Ff (x) mx 有 4 个零点, 则实f ( x 2) x ⋯24x ,F 为其焦点, 过 F 的直线与抛物线 C 交于 A 、2A . 36B .24C .22D .202 10.(5 分)已知抛物线 C 的方程为 y 2并将两弧各五等分,分点依次为M 、P1、P2、P3、P4、N以及N、Q1、Q2、Q3 、Q4、E.只蚂蚁欲从点P1出发,沿正方体的表面爬行至Q4 ,则其爬行的最短距离为.参考数据:cos9 0.9877 ;cos18 0.9511 ;cos27 0.8910)三、解答题:共70 分.解答应写出文字说明、证明过程或演算步骤每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12 分)在平面四边形ABCD 中,E为AB上一点,连接CE,DE,已知AE 4BE,2 AE 4,CE 7,若 A B CED .3(1)求BCE 的面积;(2)求CD 的长.18.(12分)如图,在三棱柱ABC A1B1C1 中,CA CB,侧面ABB1 A1是边长为 2 的正方形,点E 、F 分别是线段AA1 ,A1 B1的中点,且CE EF .(1)证明:平面ABB1 A1 平面ABC ;(2)若CE CB ,求直线AC1 与平面CEF 所成角的正弦值..第17~21 题为必考题,3 3 x 2y219.(12分)设直线AC:y 3x与直线BD:y 3 x分别与椭圆E: x y1(m 0)交6 6 4m m于点A,B,C,D,且四边形ABCD 的面积为 2 3.(1)求椭圆 E 的方程;(2)设过点P(0,2)的动直线1与椭圆E相交于M ,N 两点,是否存在经过原点,且以MN 为直径的圆?若有,请求出圆的方程,若没有,请说明理由.20.(12分)材料一:2018年,全国逾半省份将从秋季入学的高一年级开始实行新的学业水平考试和高考制度.所有省级行政区域均突破文理界限,由学生跨文理选科,均设置“ 3 3” 的考试科目.前一个“ 3”为必考科目,为统一高考科目语文、数学、外语.除个别省级行政区域仍执行教育部委托的分省命题任务外,绝大部分省级行政区域均由教育部考试中心统一命题;后一个“ 3”为高中学业水平考试(简称“学考”)选考科目,由各省级行政区域自主命题.材料二:2019 年 4 月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8 省市发布高考综合改革实施方案,方案决定从2018 年秋季入学的高中一年级学生开始实施高考综合改革.考生总成绩由全国统一高考的语文、数学、外语3个科日成绩和考生选择的 3 科普通高中学业水平选择性考试科目成绩组成,满分为750 分.即通常所说的“ 3 1 2 ”模式,所谓“3 1 2”,即“3”是三门主科,分别是语文、数学、外语,这三门科目是必选的.“1” 指的是要在物理、历史里选一门,按原始分计入成绩.“ 2”指考生要在生物、化学、思想政治、地理 4 门中选择 2 门.但是这几门科目不以原始分计入成绩,而是等级赋分.等级赋分指的是把考生的原始成绩根据人数的比例分为A、B、C、 D 、E五个等级,五个等级分别对应着相应的分数区间,然后再用公式换算,转换得出分数.(1)若按照“ 3 1 2 ”模式选科,求选出的六科中含有“语文,数学,外语,物理,化学” 的概率.(2)某教育部门为了调查学生语数外三科成绩与选科之间的关系,现从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,满分450 分,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450 分:①考生甲得知他的成绩为270 分,考试后不久了解到如下情况:“此次测试平均成绩为171 分,351 分以上共有57人”,问甲能否获得荣誉证书,请说明理由;②考生内得知他的实际成绩为430分,而考生乙告诉考生丙:“这次测试平均成绩为201 分,351分以上共有57 人”,请结合统计学知识帮助内同学辨别乙同学信息的真伪.附:P(,X) 0.6828 ;P(2,X2)0.9544 ;P(3X3)0.9974.21.( 12 分) 已知函数xf ( x ) 2e x ax(a 0)(1)讨论函数 f (x) 的零点个数:(2)若a e m e n( m ,n为给定的常数,且m n,记f (x)在区间(m, n)上的最小值为g(m,n) ,求证:g(m,n) (1 m ln 2)e m (1 n ln2) e n.二、选考题:共10分.请考生在第22、23 题中任选一题作答.如果多做,则按所做的第一题计分.[选修 4 一4:极坐标与参数方程]x 2 cos22.(10 分)在平面直角坐标系xOy 中,已知圆C1 的参数方程为( 为参数),y 2sin以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为4sin ,设圆C1与圆C2的公共弦所在直线为1.(1)求直线l 的极坐标方程;(2)若以坐标原点为中心,直线l 顺时针方向旋转后与圆C1 、圆C2 分别在第一象限交于6A、B两点,求|AB|.[选修 4 一5:不等式选讲]1123.已知函数f(x) |x | ,且对任意的x,f(x) f( x )⋯m.(1)求m 的取值范围;( 2)若m N ,证明: f (sin 2 ) f (cos2 a 1), m .所以 a 班化学成绩更稳定些. 故选: C .4.( 5分)已知向量 a r (1, 3) ,b (x,1)且a r 与 b 的夹角为 602020 年黑龙江省哈尔滨三中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共 12 小题,每题 5 分,共 60 分 .在每小题给出的四个选项中,只有 项是符合题目要求的 .1.(5 分)已知 i 1i为虚数单位,则 1 i i()A .0B . 1C . 1iD .1【解答】 解: 1ii (1 i )i 2i(i 1) 1 i .故选: C .2.(5 分)设A{1,2, 3}, B {x | x 2x1 0},则 A I B ()A .{1, 2}B . {1,2, 3}C . {2 , 3}D .{1}解答】 解:QA {1,2,3}, B {x| 1 5 x 1 5} ,22A IB {1} .故选: D .3.( 5分)某校为了研究 a ,b 两个班的化学成绩, 各选了 10 人的成绩,绘制了如右茎叶图,则根据茎叶图可知, a 班 10人化学成绩的中位数和化学成绩更稳定的班级分别是()C . 82.5, aD . 82, b 解答】 解:根据茎叶图可知, a 班 10 人化学成绩的中位数是1 (82 83) 82.5 ;2a 班成绩分布在 71~ 93 之间, 集中在 80~ 88内;b 班成绩分布在 62 ~ 95 之间,更分散些; B .82.5, b A . 83 , aa rgb x 3 2 x211,解得x3,235.(5分)2019年10月1日1上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若己知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;② 来自军事科学院的不是博士;③乙不是军事科学院的;④ 乙不是博士学位;⑤ 国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )A .国防大学,研究生B.国防大学,博士C.军事科学院,学士D.国防科技大学,研究生【解答】解:由① 甲不是军事科学院的,得到甲来自于国防大学或国防科技大学;由③乙不是军事科学院的,得到乙来自于国防大学、国防科技大学;由①③ 得到丙来来自于军事科学院;由② 来自军事科学院的不是博士和④乙不是博士学位,得到甲是博士;由⑤国防科技大学的是研究生,得到乙来自于国防科技大学,且乙是研究生,由此得到甲来自于国防大学,且甲是博士,从而得到丙是来自军事科学院,学位是学士.故选: C .6.( 5分)函数 f (x) xxee ln( x21) ,在[ 3,3] 的图象大致为(B.13C. 33D.(x,1) ,且a r与b r的夹角为603A. 2 3rr解:根据题意,解答】 f (x)xeeln(x21)x)xxee2ln( x2 1)f(x ) ,即函数当x 1时,f(1)ln21 elne当x 3时,f(3)31 e3eln10e313 e lne3故选:C.7.( 5 分)为计算S 1 23D.f ( x)为奇函数,11 2 ,排除,e2 3 23453],排除 B 、D,1313(e3113 ) 5 ,排除A , e239921003设计了如图所示的程序框图,则在两个空白框中分别可以填入(为 101 ,判断框处应为 i 101 ,又知偶数列加的是立方和, 所以应填 N N (i 1)3 , 故选: D .28.(5分)已知数列 {a n } 满足 a n 2 2a n a n 1ga n 1 a n 1 a n 1 ,S n 为其前 n 项和,若 a 1 1,a 2 则 S 6 ( ) A .128B .126C . 124D . 120【解答】 解:Q a n 2 2a n a n 1ga n 1 a n 1 a n 1, a 1 1, a 2 3 ,2 a22a 2 a 1ga 3 a 1 a 3 ,即 9 62a 3 1 ,解得: a 37;同理, 由 2a 3 2a 3 a 2 ga 4 a 2 a 4 ,即 49 14 4a 4 3 ,解得: a 415;同理解得: a 5 31; a 6 63,S 6 1 3 7 15 31 63 120 ,故选: D .9.( 5分)现有 5 名学生,甲、乙、丙、丁、戊排成一队照相,则甲与乙相邻,且甲与丁不 相邻的站法种数为 ( )1)2B .99 和 N N 2(i 1)2C . i, 99 和 N N(iD .101 和 N N(i 1)3解答】 解:程序框图为计算 S 1 23 32435223992 1003 , 则终止程序运行的i 值3,A .36 B.24 C.22 D.2011【解答】解:根据题意,按甲的站法分 2 种情况讨论:①、若甲站在两端,甲有 2 种情况,乙必须与甲相邻,也有 1 种情况,剩余 3 人全排列,安排的剩余的 3 个位置,有A33 6 种情况,则此时有 2 1 6 12 种站法;②、若甲不站在两端,甲可以站在中间的3个位置,有 3 种情况,乙必须与甲相邻,也有2种情况,甲与丁不能相邻,丁有 2 个位置可选,有 2 种情况,剩余 2 人全排列,安排的剩余的 2 个位置,有A22 2 种站法,则此时有 3 2 2 2 24 种站法;则一共有24 12 36 种站法;故选: A .210.(5分)已知抛物线 C 的方程为y2 4x,F 为其焦点,过F 的直线与抛物线 C 交于A、B两点(点A在x轴上方),点P( 1,2),连接AP交y轴于M,过M 作MD //PF交AB于D,若FA 5DA,则AB 斜率为( )4 3 1A .B.C.D. 23 4 2【解答】解:由抛物线的方程可得:焦点 F (1,0),准线方程为x 1,作AA 垂直于准线交于 A ,因为MD / / PF ,所以AF AP AA,即xA 15 ,AD AM x A x A解得x A1,41,即A(14,1),所以yA4所以k AB k AF( x 1)2 1 x 21 ,若函数 F ( x) f (x) mx 有 4 个零点, 则实 f ( x 2) x ⋯22数 m 的取值范围是 (取得最大值时对应的点为 A(3, 1 ) ;2取得最大值时对应的点为 B(5, 1) ;4作函数图象如下:11.( 5分)已知函数 f (x) 51A .(2 6,6)解答】 解:依题当 x [2 , 4) 时, x 1 16)1(20,2 2) C . ( 1 ,3 2 2) D .20(52 6 ,函数 y f (x) 的图象与直线 y mx 有 4 个交点,B . 2 [0 , 2) ,2) (x3)2 1,故此时 f (x)1 12(x3)1,2当 x [4 ,6) 时,x 2 [2 ,4) ,则f ( x 2)112(x5)2112,故此时 f (x)114(x5)21,411由图象可知,满足条件的实数 m 的取值范围为 (5 6, 3 2 2) .2故选: B .解答】 解:设 { a n } 的公差为 d , 由 f ( x) x cosx ,且 f ( a 1 ) f (a 2 )点,且 1 20;又过点 (0,0)作函数在 [2, 4)上的切线切于点 C ,作函数在 [4 , 6) 上的切线切于点 D ,则12 .( 5 分 ) 已知等差数列{a n } 的公差为 2020, 若函数 f(x) x cosx ,f (a 1 ) f (a 2 ) f (a 2020 ) 1010 ,记S n 为{a n }的前n 项和,则 S 2020的值为 ( )A . 1010B . 2021C . 2020D .4041 2f ( a 2020 ) 1010 ,6f ( x) 有两个交k OB即1010( a 1 a 2020 ) (cos a 1 cosa 2 cosa 2020 ) 1010 , ①又对1剟i 1010. i Z可得 (a 1 a 2a 2020 ) (cos a 1 cosa 2cosa 2020 ) 1010cos a i cos a 2021 i2a i (2021 2i )d cos[2(2021 22i)d ]2a i (2021 2i) d cos[ 2(2021 22i)d ]2cos 2a i (2021 2i)d cos (2021 2i)d2cos cos222cosa ia 2021 i cos (2021 2i)d 222cos a 1 a 2020 cos(2021 2i)d22所以 g(x)在 R 上递增,且 g( ) 02故选: A .由 z x 2y 得: y 1 x z,221平移直线 y1x ,结合图象直线过 A(0,1)时, 2z 最大, z 的最大值是 2,故答案为: 2.a 1a 2020m22020m [(cos a 1 cos a 2020 ) (cos a 2 cos a 2019 )(cos a 1010 即 2020m 2cosmg[cos 2019d cos2019d设g(x) 2020x 2cos xg[cos2019d 可得g (x ) 2020 2sin xg[cos2 d cos 2]dcos ] 2①即为cosa 1011 )] 1010 ,②,1010 ,由 d 2020 , 2020 2020 0 ,又由 ②可得 g(m) 0 ,所以 m ,2a 1 a 20202所以 S2020 2020(a 1 a 020 )1010二、填空题:本大题共 4 小题,每题 5 分,共 20 分 .x y 1, 013.(5分)已知 x 、 y 满足约束条件 x y, 0 ,则 z xx ⋯02y 的最大值为 21010 cos2 2017d cos22 x14.(5 分)已知双曲线 C: 2a2 y21(a 0,b 0)的左、右焦点分别为 F 1, F 2,过 F 2作一条 b直线 l 与其两条渐近线交于 A , B 两点.若 AOB 为等腰直角三角形,记双曲线的离心率为 e ,则 e e 22 或 4 2 2 解答】 解:因为 AOB 为等腰直角三角形, i) 当 AOB 90 ,由渐近线的对称性可得 AOF 2 b 2 c 245 ,即 b 1 ,所以离心率 e 2 2 a a 2a 2a2b 2 2, a ii)当 OAB 或 OBA 90 时,离心率是相等的, 因为直线 OA 的方程为bx ,直线 OB 的 a方程为: b x ,a 当 OAB 90 时,所以过 F 2 的直线 AB 的方程为: ay b (x c) ,联立方程 bx a ab(x 可得 c) x A 2 a , y Ac ab 2即A( a , cab ); c 联立方程 bx a ab(x 可得 c) x B a 2c b 2 y B abc2b 2B(a 2c,a 2b 2 ,abc) , 2 2 ) ,a 2b 2因为 AOB 为等腰直角三角形,所以 OB 2OA , 所以 ( 2a 22 a c )2 b 2)( abc ) 2 ( 2 2 )ab2 2[( a )2 c(ab )2],b 2 c 2a ,整理可得: 4 2 28a 48a 2c 20 ,即 e428e28 0 ,解得 e综上所述: 2或 4 2 2 ,)( 2e 0,| | 2)过点(0,1) ,若 f(x)在[0,1]上恰4 324 337 6 2 则:5 3624 346 46216.(5 分)如图,棱长为 2 的正方体 ABCD 一 A 1B 1C 1D 1 中,点 M 、 N 、 E 分别为棱 AA 1、只蚂蚁欲从点 P 1出发,沿正方体的表面爬行至 Q 4 ,则其爬行的最短距离为 1.782 .参考 数据: cos9 0.9877 ; cos18 0.9511 ; cos27 0.8910)好有两个最值且在 [ 1, 1] 上单调递增,则44解答】 解:函数 f(x) 2sin( x )( 0, | | 2)过点 (0,1),所以6故答案为: 43AB 、AD 的中点,以 A 为圆心, 1为半径,分别在面 ABB 1 A 1和面 ABCD 内作弧 MN 和 NE ,并将两弧各五等分,分点依次为 M 、P 1、P 2、P 3、P 4、N 以及 N 、Q 1、Q 2、Q 3 、Q 4、E .由于函数 f (x) 在[0 , 1]上恰好有两个最值且在 [ 1, 1]上单调递增, 44又由在 [0 , 1]上恰有两个最值,所以所以,解得 0整理得 4390由余弦定理可得解答】 解:将平面 ABCD 绕 AB 旋转至与平面 ABB 1 A 1 共面,则 P 1AQ 4| P 1Q 4 | 2sin 72 .ABB 1 A 1分别绕 AD 、 AA 1旋转至与平面 ADD 1 A 1共面,| P 1Q 4 | 2sin 63 .最短距离为 2sin63 2 0.8910 1.782 .故答案为: 1.782 .三、解答题:共 70 分 .解答应写出文字说明、证明过程或演算步骤 .第 17~ 21 题为必考题, 每个试题考生都必须作答 .第 22、 23 题为选考题,考生根据要求作答 .(一)必考题:共 60 分.分)在平面四边形 ABCD 中, E 为 AB 上一点,连接 CE , DE ,已知 AE 4BE ,2)求 CD 的长.则 P 1AQ 4902590 126 .解答】 解(1) BCE 中,由余弦定理可得, 所以 7 2 BC 2 1 BC ,解可得 BCS BCE1BC gBEgsin B 21 2, 332 2)因为 BCE CEB AEDCEB1,3所以 BCE AED , 又因为 B A ,所以 DE AE4 2CEBC2 所以DE 2CE2 7 , 在CDE中所以 BCE∽ADE,8 144将平面 ABCD 、平面 又由 sin63 sin72 17.(12 AE 4 , CE 7 ,若 A B CED1)求 BCE 的面积;CD 2 DE 2 CE 2 2 DE gCE gcos120 28 7 2 2 7 7 ( 1) 49 .2所以 CD 718.(12分)如图,在三棱柱 ABC A 1B 1C 1 中,CA CB ,侧面 ABB 1 A 1是边长为 2 的正方形,AC 1 与平面 CEF 所成角的正弦值.Q CACB , OC AB ,分别为 AB ,AA 1, A 1B 1 的中点, 在正方体 ABB 1 A 1中,QO , E ,F EF OE ,又 EF CE,且 OE I CE E , EF平面 OCE ,Q OC平面OCE , EF OC ,Q EF , AB 相交, OC 平面 ABB 1 A 1 ,Q OC 平面 ABC , 平面 A BB 1 A 1 平面 ABC .(2) 解: Q AA 1 AB ,平面 ABC平面 ABB 1 A 1 AB ,平面 ABC 平面 ABB 1 A 1AA 1 平面 ABC , AA 1BC ,Q BC CE , CE IAA 1 E , BC平面 AA 1C 1C , BC AC , OC 1,Q AA 1 平面 ABC ,AA 1 / / OF ,OF 平面 ABC ,OF OC , OF OA , OC OAAB 的中点 O ,连结 解答】 解:( 1)证明:取 OE , OC ,以 O 为坐标原点,OA 为 y 轴, OF 为 z 轴,建立空间直角坐标系,OC 为 x 轴, 点 E 、 F 分别是线段 AA 1 , A 1 B 1的中点,且 CE EF .1)证明:平面 ABB 1 A 1平面 ABC ;2)若 CE CB ,求直线则O (0 ,0, 0) , C (1,0,0) , A (0 ,1, 0), E(0 ,1,1), F (0 ,0, 2) , C 1(1,0, 2),uuur uuurCE ( 1,1,1), CFuuuur(1,0,2),AC 1 (1 , 1, 2) ,设平面 CEF 的法向量 n r (x , y , z) ,r uuur则ngCE x y z 0 , 则r uuur ,取 x 2 ,得 n r(2, 1,1),n gCF x 2 z 0设直线 AC 1与平面 CEF 所成角为 , 则直线 AC 1与平面 CEF 所成角的正弦值为:uuuur r | AC 1gn | 3 1sin uuuur r .| AC 1 |g| n r | 6g 6 2于点 A ,B ,C ,D ,且四边形 ABCD 的面积为 2 3.(1)求椭圆 E 的方程;(2)设过点 P (0,2) 的动直线 1与椭圆 E 相交于 M ,N 两点,是否存在经过原点, 且以MN为直径的圆?若有,请求出圆的方程,若没有,请说明理由. 【解答】 解:(1)由题可知直线 AC 与直线 BD 关于坐标轴对称, 所以四边形 ABCD 为矩形,3y6 x 22 xy 4m m ,解得 | x A | 3m , | y A | m , 12所以S 四边形 ABCD 4 x A y A 2 3m 2 3 ,2所以 m 1,椭圆 E 的方程为: xy 2 1.42)设点 M(x 1, y 1),N(x 2, y 2)3 3x 与直线 BD : y 6 3x 分别与椭圆 E : x 6 4m2y1(m 0) 交 m19.( 12分)设直线 AC: y显然直线 MN 的斜率存在,不妨设直线 MN 的方程为 y kx 2 ,221,可得 (4k 2 1)x 2 16kx 12 0 ,20.(12分)材料一: 2018年,全国逾半省份将从秋季入学的高一年级开始实行新的学业水平考试和高考制度. 所有省级行政区域均突破文理界限, 由学生跨文理选科, 均设置“ 3 3 的考试科目.前一个“ 3”为必考科目,为统一高考科目语文、数学、外语.除个别省级行 政区域仍执行教育部委托的分省命题任务外, 绝大部分省级行政区域均由教育部考试中心统 一命题;后一个“ 3”为高中学业水平考试(简称“学考” ) 选考科目,由各省级行政区域自主命题.材料二: 2019 年 4 月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等 8 省市发布 高考综合改革实施方案,方案决定从 2018 年秋季入学的高中一年级学生开始实施高考综合 改革.考生总成绩由全国统一高考的语文、 数学、外语 3个科日成绩和考生选择的 3 科普通 高中学业水平选择性考试科目成绩组成,满分为 750 分.即通常所说的“ 3 1 2 ”模式, 所谓“3 1 2”,即“3”是三门主科, 分别是语文、 数学、外语,这三门科目是必选的. “1” 指的是要在物理、历史里选一门,按原始分计入成绩. “ 2”指考生要在生物、化学、思想政 治、地理 4 门中选择 2 门.但是这几门科目不以原始分计入成绩, 而是等级赋分. 等级赋分 指的是把考生的原始成绩根据人数的比例分为 A 、 B 、C 、 D 、 E 五个等级,五个等级分 别对应着相应的分数区间,然后再用公式换算,转换得出分数.(1)若按照“ 3 1 2 ”模式选科, 求选出的六科中含有 “语文,数学,外语,物理,化学” 的概率.2 代入x42 y 2x 1 x 216k 所以4k 2 1, 12,x 1x 24k 2 1uuuur uuur则 OM gON x 1x 2 y 1 y 2 x 1x 2 (kx 1 2)(kx 2 2) (k 2 1)x 1x 22k(x 1 x 2) 4 ,2 12(k 2 1) 2 32k 24k 2 12 4 0 ,解得 k 4k 2 1 2 ,经验证△ 0, 设线段 MN 的中点为 G (x 0 , y 0), 则 x0 x1 x28k16 24k2117y 0y 1 y 22k(x 1 x 2 ) 4 22 24k 2 1 17所以 OG 2 x 02 y 02 260289 所以存在满足条件的圆,其方程为:16 2 (x 1167)2 (y 2 )2 17260 289(2)某教育部门为了调查学生语数外三科成绩与选科之间的关系,现从当地不同层次的学 校中抽取高一学生 2500名参加语数外的网络测试,满分 450 分,并给前 400名颁发荣誉证 书,假设该次网络测试成绩服从正态分布,且满分为 450 分:①考生甲得知他的成绩为 270 分,考试后不久了解到如下情况: “此次测试平均成绩为 171 分,351 分以上共有 57人”,问甲能否获得荣誉证书,请说明理由;②考生内得知他的实际成绩为 430分,而考生乙告诉考生丙: “这次测试平均成绩为 201 分, 分以上共有 57 人”,请结合统计学知识帮助内同学辨别乙同学信息的真伪.而 270 261 , 甲同学能获得荣誉证书.21.(12 分)已知函数 f (x ) 2e x ax (a 0) .(1)讨论函数 f (x ) 的零点个数:351 附: P( , X ) 0.6828 ; P( 2,X ) 0.9544 ; P(3,X) 0.9974 .解答】 解: 1)选出的六科中含有“语文,数学, 外语,物理,化学”为事件A ,则 P (A )e 3 1痧21g 42 42)设该次网络测试成绩记为 X ,则 X ~ N ( , 22) . ① 由 171, Q5725000.0228 .且1 P(2 剟X2)0.954420.0228 .351 171 902 4000.16 2500P( X ⋯ ) 1 P(剟X 20.6828 20.1587 0.16 .前 400 名的成绩的最低分低于261分.②假设乙同学说的为真.则201.P( X ⋯ 2 )1 P(2 剟X221 0.95440.02285725000.0228 ,351 20175 ,从而 3 201 75 426 430 .而P( X⋯ 31 P( 3 剟X321 0.99740.0013 20.005 .事件“ X ⋯ 3 ”为小概率事件,即“丙同学的成绩为 430 分”是小概率事件,可以认为不可能发生, 却发生了.乙同学说的为假.2)若 a e m e n( m ,n为给定的常数,且m n,记f (x)在区间(m, n)上的最小值为g(m,n) ,求证:g( m ,n) (1 mln 2)e m(1 nln2)e n.解答】(1)解: f (x) 2e x a,由f (x) 0得,x ln a2;由f (x) 0得,ln a2,af(x)在( ,ln a2)上单调递减,a(ln2,) 上单调递增,f ( x) min f (ln a2)lna2e2aa aln a(1 ln ) ,22由于当x时,f(x),当x 时, f (x)①当ln a21 ,即0a 2e时,f (x)无零点,②当ln a21 ,即a2e时,f ( x) 有一个零点,③当ln a 1 ,即a2e时,f ( x) 有两个零点;2(2)证明:Q a e mn e,m lne m ln a ln mn eelne n n22由( 1) 可知, f (x) 在(m,n)上的最小值g(m ,n) f (ln a)2 a(1 ln 2a) (e m e n)(1mneeln e e ),2原不等式(e m e n)(1 lnmne m2e n) (1 m ln2)e m(1 nln2)e( m ln 2mn e emln )e m( n2 ln2mneeln2)0m4e mme m gln m n ee 4nln e e n m1n n ee glnmn eenm m eglnen m10,令t e n m,则t 1,于是原不等式4 ln t ttlnt10,4 令h(t) ln t41tln t t1(t 1),则h (t) 11t ln t 1t11tln t t1 ln1 0,h(t)在(1, ) 上单调递减,h(t) h(1) ln2 ln 1 0,2原不等式成立得证.、选考题:共10分.请考生在第22、23 题中任选一题作答.如果多做,则按所做的第一计分. [选修 4 一 4:极坐标与参数方程 ]x 2 cos22.(10 分)在平面直角坐标系 xOy 中,已知圆 C 1 的参数方程为( 为参数),y 2sin以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系, 圆C 2 的极坐标方程为 4sin ,设圆 C 1与圆 C 2的公共弦所在直线为 1.1)求直线 l 的极坐标方程;(2)若以坐标原点为中心,直线 l 顺时针方向旋转 后与圆 C 1、圆 C 2分别在第一象限交于6A 、B 两点,求 |AB|.x 2 cos【解答】 解:( 1)已知圆 C 1的参数方程为( 为参数),整理为直角坐标方程为y 2sin22(x 2)2 y 2 4 .圆 C 2 的极坐标方程为 4sin ,转换为直角坐标方程为 x 2 ( y 2) 2 4 .两圆相减得: x y 0 . 转换为极坐标方程为 .4(2)直线 l 顺时针方向旋转 后得到: ,6 4 6 12由于圆 C 1 的极坐标方程为4cos ,所以:设A ( 1, )B ( 2, ) ,由于与圆 C 1、圆 C 2分别在第一象限交于 A 、 B 两点,所以| AB | | 1 2 | | 4cos 4sin | 4 2 cos2 2 .1 212 12 3[选修 4 一 5:不等式选讲 ] 1123.已知函数 f(x) |x| ,且对任意的 x , f(x) f( x )⋯m . 22(1)求 m 的取值范围;22f (sin 2 ) f (cos 2 a 1), m .1 1 1 f ( x )| x || x |⋯ |x222解答】 解:(1) f(x )( x)| 12 , 2)若 m N ,证明:当且仅当 ( x 1)x, 0时等号成立,21m 的取值范围为 ( , 1 ] .2当 1剟sin221时,2f (sin 2) f (cos21) 2sin 2, 0 ;当 0, sin 21,2f (sin 2)f (cos 21) 1,2综上, f(sin22)2f (cos1), 0 , 原命题成立.2 2 2CE 2BC 2 BE 2 2BCgBEgcos120 ,Q f ( x) 对任意的 x , f ( x) f ( x12)⋯m ,m,1,22)由( 1)知, m, 1 ,又 m2要证 f (sin 2 ) f (cos2Q f (sin 2 )f (cos 21) N , m即证 f (sin 212| | cos2f (cos 1), 0 , 12|21 2 | sin 2 | cos 222sin 21,0,sin 212, 1剟sin 2 2 1 21), m , )|sin 2。
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)(含答案解析)
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,那么集合A. B.C. D.2.i为虚数单位,满足的复数z的虚部是A. 1B. iC.D.3.的展开式中的常数项为A. B. C. D. 94.我国南北朝时期的数学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”意思是如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.现有同高的圆锥和棱锥满足祖咂原理的条件,若棱锥的体积为,圆锥的侧面展开图是半圆,则圆锥的母线长为A. B. 1 C. D.5.某商场每天的食品销售额万元与该商场的总销售额万元具有相关关系,且回归方程为已知该商场平均每天的食品销售额为8万元,估计该商场平均每天的食品销售额与平均每天的总销售额的比值为A. B. C. D.6.已知为等比数列的前n项和,且是与的等差中项,则数列的公比为A. B. C. D. 或17.某地区有10000名高三学生参加了网上模拟考试,其中数学分数服从正态分布,成绩在之外的人数估计有附:若X服从,则,A. 1814人B. 3173人C. 5228人D. 5907人8.以为焦点的椭圆与直线有公共点,则满足条件的椭圆中长轴最短的为A. B. C. D.9.已知某同学每次射箭射中的概率为p,且每次射箭是否射中相互独立,该同学射箭3次射中多于1次的概率为,则A. B. C. D.10.已知函数和函数的图象分别为曲线,,直线与,分别交于M,N两点,P为曲线上的点.如果为正三角形,则实数k的值为A. B. C. D.11.将一枚骰子抛掷3次,则最大点数与最小点数之差为3的概率是A. B. C. D.12.已知函数,若方程有7个不同的实数解,则的取值范围A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知函数在上有两个不同的零点,则实数m的取值范围是______.14.已知点P为圆上任一点,,分别为椭圆的两个焦点,求的取值范围______.15.若直线是曲线的切线,也是曲线的切线,则______.16.已知双曲线的焦距为2c,,是实轴顶点,以为直径的圆与直线在第一象限有两个不同公共点,则双曲线离心率e的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.在中,角A,B,C的对边分别为a,b,c,且.若,求C的大小;若AC边上的中线BM的长为,求面积的最大值.18.如图,在四棱锥中,平面ABCD,,,,点M是AC与BD的交点.求二面角的余弦值;若点N在线段PB上且平面PDC,求直线MN与平面PAC所成角的正弦值.19.哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是“优质产品”和“非优质产品”的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有0,1,2盒非优质产品粉笔的概率为,和为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.设“买下所查看的一箱粉笔”为事件A,“箱中有i件非优质产品”为事件1,.求,,;随机查看该品牌粉笔某一箱中的四盒,设X为非优质产品的盒数,求X的分布列及期望;若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.20.已知函数.讨论在定义域内的极值点的个数;若对,恒成立,求实数m的取值范围;证明:若,不等式成立.21.过x轴正半轴上一点做直线与抛物线E:交于,,两点,且满足,过定点与点A做直线AC与抛物线交于另一点C,过点与点B做直线BD与抛物线交于另一点设三角形AMN的面积为,三角形DMN的面积为.求正实数m的取值范围;连接C,D两点,设直线CD的斜率为;当时,直线AB在y轴的纵截距范围为,则求的取值范围;当实数m在取到的范围内取值时,求的取值范围.22.在平面直角坐标系中,曲线C的参数方程为为参数,以原点为极点,x轴的正半轴为极轴,建立极坐标系,直线l的参数方程为,为参数.写出曲线C的极坐标方程以及直线l的普通方程;f若点,直线l与曲线C交于P,Q两点,弦P,Q的中点为M,求的值.23.设函数.求的解集;若,使恒成立的m的最大值为正数a,b满足,求的最小值.-------- 答案与解析 --------1.答案:B解析:解:因为集合或,,则,那么集合,故选:B.首先解不等式求出集合A,B,由补集的运算求出,再由交集的运算求出.本题考查了解不等式和集合交、补集的混合运算,属于基础题.2.答案:C解析:解:由,得,复数z的虚部是.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:C解析:解:的展开式中的通项公式为,令,求得,可得常数项为,故选:C.先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.4.答案:D解析:解:现有同高的圆锥和棱锥满足祖咂原理的条件,棱锥的体积为,圆锥的体积为,圆锥的侧面展开图是半圆,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则得到,,圆锥的高,圆锥的体积.解得,则圆锥的母线长为.故选:D.推导出圆锥的体积为,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则,圆锥的高,由此能求出圆锥的母线长.本题考查圆锥的母线长的求法、考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.答案:A解析:解:商场每天的食品销售额万元与该商场的总销售额万元的线性回归方程为,当商场平均每天的食品销售额为8万元时,该商场平均每天的总销售额为,该商场平均每天的食品销售额与平均每天的总销售额的比值为:,故选:A.根据线性回归方程得到该商场平均每天的总销售额,从而求出该商场平均每天的食品销售额与平均每天的总销售额的比值.本题主要考查了函数的实际应用,以及线性回归方程的应用,是基础题.6.答案:A解析:解:是与的等差中项,即为,若公比,则,即有,即,显然不成立,故,则,化为,即,解得或舍去,故选:A.由等差数列的中项性质和等比数列的求和公式,解方程可得所求公比,注意公比为1的情况.本题考查等比数列的求和公式和等差数列的中项性质,考查方程思想和化简运算能力,属于基础题.7.答案:A解析:解:由数学分数服从正态分布,得,.则.则成绩在之内的人数估计有8183,成绩在之外的人数估计有1817,与1814最接近.故选:A.由已知可得,,则,求出概率,乘以10000可得成绩在之内人数的近似值,再由10000减去该近似值得答案.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.8.答案:C解析:解:以为焦点的椭圆,设椭圆方程为,由得,由题意,a有解,,,或舍,,此时椭圆方程是:.故选:C.先设椭圆方程,然后与直线方程联立方程组,再根据该方程组有解即可求出a的最小值,则问题解决.本题主要考查由代数方法解决直线与椭圆交点问题,是中档题.9.答案:C解析:解:某同学每次射箭射中的概率为p,且每次射箭是否射中相互独立,该同学射箭3次射中多于1次的概率为,则,解得.故选:C.利用n次独立重复试验中事件A恰好发生一次的概率计算公式能求出结果.本题考查概率的求法,考查n次独立重复试验中事件A恰好发生一次的概率计算公式等基础知识,考查运算求解能力,是基础题.10.答案:B解析:解:由已知可设,,则P点横坐标为,又因为点P在函数的图象上,所以,因为为正三角形,则,故直线PM的斜率等于,,即,,即,,故选:B.由已知条件设出M,N,P的坐标,利用直线PM的倾角是,即斜率为,利用斜率的坐标公式列出关于K的方程,解指对数方程即可本题主要考查对数函数的图象和性质应用,体现了数形结合和转化的数学思想,属于中档题.11.答案:D解析:解:将一枚骰子抛掷3次,基本事件总数,最大点数与最小点数之差为3包含三种情况:取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为,取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为,取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为,则最大点数与最小点数之差为3的概率是:.故选:D.将一枚骰子抛掷3次,基本事件总数,最大点数与最小点数之差为3包含三种情况:取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为,取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为,取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为,由此能求出最大点数与最小点数之差为3的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12.答案:C解析:解:当时,,令,解得,故在上单调递增,在上单调递减,且,时,,作出函数的图象如下图所示,令,则有两个不同的实数根,,要使方程有7个不同的实数解,则,,,即,作出上述不等式组表示的可行域如下图所示,由可行域可知,当取点时,最小,且最小值为2;当取点时,最大,且最大值为12.故的取值范围为.故选:C.利用导数研究函数的性质,可作出的草图,观察图象,结合题设条件可得方程有两个不同的实数根,,且,,利用二次函数根的分布,可以得到m,n满足的约束条件,由此作出可行域,再根据的几何意义,求得取值范围.本题考查分段函数的综合运用,涉及了利用导数研究函数的性质,“套套”函数,二次函数根的分布,简单的线性规划等知识点,考查换元思想,数形结合思想,函数与方程思想等数学思想,考查逻辑推理能力,运算求解能力,直观想象等数学能力,属于较难题目.13.答案:解析:解:依题意,函数,上的图象与直线有两个不同的交点,,又,,,函数的图象如下,由图可知,.故答案为:.依题意,函数,上的图象与直线有两个不同的交点,化简,作出函数在上的图象,观察图象即可得到m的取值范围.本题主要考查函数零点与方程根的关系,考查三角恒等变换以及三角函数的图象及性质,考查数形结合思想及化简求解能力,属于中档题.14.答案:解析:解:如图,椭圆的焦点,,设,则,,则,的取值范围是.故答案为:.由椭圆方程求出焦点坐标,设,得到与的坐标,写出数量积,再由三角函数求最值可得的取值范围.本题考查圆与椭圆综合,考查平面向量的数量积运算,训练了利用三角函数求最值,是中档题.15.答案:1或解析:解:设与和的切点分别为、;由导数的几何意义可得,曲线在处的切线方程为,即,曲线在点处的切线方程为,即,则,,解得,或.当时,切线方程为,即,当时,切线方程为,即,或.故答案为:1或.分别设出直线与两曲线的切点坐标,求出导数值,得到两切线方程,由两切线重合得答斜率和截距相等,从而求得切线方程得答案.本题考查利用导数研究过曲线上某点处的切线方程,考查计算能力,是中档题.16.答案:解析:解:由题意如图,要使以为直径的圆与直线在第一象限有两个不同公共点,可得直线在x,y轴的交点分别为:,,则O到直线的距离小于半径,且,即,,整理可得:,即,解得,故答案为:由题意可得O到直线的距离小于半径,且,可得a,c的关系,进而求出离心率的范围.本题考查双曲线的性质及点到直线的距离公式,属于中档题.17.答案:解:.由正弦定理可得,,由,可得,由,可得,由题意,,,,,,,由可得,由向量的中点表示可得,两边平方可得:,可得:,可得:,,解得,当且仅当时取等号,的面积,当且仅当时取等号,即面积的最大值是.解析:由正弦定理,两角和的正弦函数公式可得,结合,可得,结合范围,可得,进而利用二倍角公式,两角差的余弦函数公式化简已知等式可得,结合范围C,,可得,即可得解.由已知运用向量的中点表示可得,利用向量的模的平方即为向量的平方以及基本不等式即可得到ac的最大值,进而根据三角形的面积公式即可求解.本题主要考查了正弦定理,两角和的正弦函数公式,二倍角公式,两角差的余弦函数公式,基本不等式,三角形的面积公式以及平面向量的运算,考查了转化思想,属于中档题.18.答案:解:在中,,,则.在中,,则,在中,,则,,,平面ABCD,分别以直线AB,AD,AP为x,y,z轴建立空间直角坐标系,0,,,0,,0,,0,,,0,,,,,设平面ACP的法向量y,,则,取,则,设平面BCP的法向量b,,则,取,得,则,二面角的余弦值为.设平面PCD的法向量n,,,1,,则,取,得,设y,,且,,满足,则0,,,点N在线段PB上且平面PDC,,解得.,平面ACP的法向量,.直线MN与平面PAC所成角的正弦值为.解析:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,求出平面APC的法向量、平面PCD的法向量,利用向量法能求出二面角的正切值.先根据条件求出点N的具体位置,再利用向量法能求出直线MN与平面PAC所成角的正弦值.本题考查线面角的正弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.答案:解:由已知,,.的可能取值为0,1,2,,,,随机变量X的分布列为:X 0 1 2P.由知,按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为:,,该方案无效.解析:利用古典概型概率计算公式能求出,,的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.由,得到按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为,由,得到该方案无效.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查方案是否有效的判断与求法,考查古典概型、条件概率等基础知识,考查运算求解能力,是中档题.20.答案:解:,对于方程,,当时,,,此时没有极值点;当时,方程的两根为,,不妨设,则,当或时,,当时,,此时,是函数的两个极值点;当时,方程的两根为,,且,故,,当时,,故没有极值点;综上,当时,函数有两个极值点;当时,函数没有极值点;,即,则,设,当时,,单调递减,当时,,单调递增,则,故;证明:由知当时,恒成立,即,欲证,只需证,设,当时,,单调递减,当,,单调递增,,故,对,不等式成立.解析:函数的定义域为,求导后研究方程,分类讨论得出函数的单调性情况,进而得出极值点情况;问题等价于,设,利用导数求函数的最小值即可;由知,恒成立,则问题转化为证明,设,利用导数证明恒成立即可.本题考查利用导数研究函数的极值,以及不等式的恒成立问题,考查分类讨论思想以及推理论证能力,属于较难题目.21.答案:解:设直线AB方程为,联立直线AB与抛物线方程得,解得,则且,又,,解得,正实数m的取值范围为;设,设过点的直线为,过点的直线为,由,联立解得,由,联立解得,,,直线AB在y轴上的纵截距取值范围为,,,即;,由和可知,,.解析:设直线AB方程为,与抛物线方程联立,由韦达定理可得,再结合已知条件,即可求得正实数m的取值范围;设,设过点的直线为,过点的直线为,与抛物线方程联立后,可得,进而求得,由题意可知,,进而得到;易知,结合中m的范围即得解.本题主要考查直线与抛物线的位置关系,考查逻辑推理能力及运算求解能力,对计算能力要求较高,属于中档题.22.答案:解:曲线C的参数方程为为参数,转换为直角坐标方程为.直线l的参数方程为,为参数转换为直角坐标方程为.把直线的参数方程,为参数,代入,得到,所以,,所以,即,,所以.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用一元二次方程根和系数关系式的应用和二次函数性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:等价为或或,解得或或,则原不等式的解集为;若,使恒成立,即为,由,当时,取得等号,则的最小值为4,可得,则,即,由,,可得,当且仅当,即时取得等号,则的最小值为1.解析:由零点分区间法,结合绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;由题意可得,运用绝对值的性质可得其最小值,进而得到m的最大值,再由乘1法和基本不等式,可得所求最小值,注意运用的变形.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和绝对值不等式的性质,考查基本不等式的运用:求最值,化简整理的运算能力,属于中档题.。
2020年黑龙江省哈尔滨三中高考数学三模试卷(理科) (含解析)
2020年黑龙江省哈尔滨三中高考数学三模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 设集合 A ={x|x 2−3x +2≥0},B ={x|2x <4},则 A ∪B =( )A. ⌀B. {x|x ∈R}C. {x|x ≤1}D. {x|x >2}2. 复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列函数中是偶函数且在(0,+∞)上单调递增的是( )A. y =2−xB. y =lnxC. y =x −2D. y =|x|−14. 数列{2an+1}是等差数列,且a 1=1,a 3=−13,那么a 2020=( ) A. 10091010B. −10091010C. 20192020D. −201920205. 有一散点图如图所示,在5个(x,y)数据中去掉D(3,10)后,下列说法正确的是( )A. 残差平方和变小B. 相关系数r 变小C. 相关指数R 2变小D. 解释变量x 与预报变量y 的相关性变弱6. 函数f(x)=e x +x 2+x +cosx ,则f(x)在点(0,f(0))处的切线方程为( )A. 2x −y +2=0B. 2x +y +2=0C. x +2y +2=0D. x −2y +2=07. “卡拉兹猜想”又称“3n +1猜想”,是德国数学家洛萨·卡拉兹在1950年世界数学家大会上公布的一个猜想:任给一个正整数n ,如果n 为偶数,就将它减半;如果n 为奇数,就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数m 经过6次运算后得到1,则m 的值为 ( )A. 10B. 64C. 10或64D. 328. 欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径3cm ,中间有边长为1cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是( )A. 14πB. 12πC. 1πD. 2π9. 阅读如图所示的程序框图,若输入a =0.45,则输出的k 值是( )A. 3B. 4C. 5D. 610. F 1,F 2分别是双曲线C :x 29−y 27=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=8,则△PF 1F 2的周长为( )A. 15B. 16C. 17D. 1811. 数列{a n }的通项公式为a n =1(n+1)(n+2),则{a n }的前10项之和为( )A. 14B. 512C. 34D. 71212. 在△ABC 中,点D 在BC 边上,且BD ⃗⃗⃗⃗⃗⃗ =3DC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,则( ) A. x =13,y =23B. x =14,y =34C. x =23,y =13D. x =34,y =14二、填空题(本大题共4小题,共20.0分) 13. ∫(1−1√1−x 2−1)dx = ______ .14. 过抛物线C:y 2=4x 的焦点F ,且斜率为√3的直线交C 于点M(M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为____.15.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,且每过滤一,则要使产品达到市场要求,至少应过滤________次.(取lg2=0.3010,次可使杂质含量减少13lg3=0.4771)16.在三棱锥S−ABC中,ΔABC是边长为3的等边三角形,SA=√3,SB=2√3,二面角S−AB−C的大小为120°,则此三棱锥的外接球的表面积为________.三、解答题(本大题共7小题,共82.0分)17.函数f(x)=Asin(ωx+φ)的部分图象如图所示,其中A>0,ω>0,|φ|<π,则2(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)的单调区间。
2020届高三数学第五次模拟考试试题理(含解析)
2020届高三数学第五次模拟考试试题理(含解析)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第3Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则=()A. B. C. D.【答案】D【分析】先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数与其共轭复数满足,则()A. B. C. 2 D.【答案】A【解析】【分析】设,则,求得,再求模,得到答案.【详解】设,则,故,,,.故选:A.【点睛】本题考查了共轭复数的概念,两复数相等的条件,复数的模,还考查了学生的计算能力,属于容易题.3.若夹角为的向量与满足,则()A. 1B. 2C.D. 4【解析】【分析】根据向量数量积的应用,把两边平方,转化成模平方和数量积,利用已知即可得到结论.【详解】解:∵,∴,即,则,或(舍),故选:B.【点睛】本题考查了数量积运算性质、向量与模的转化,考查了计算能力,属于基础题.4.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.5.已知直线和平面,则下列四个命题中正确的是( )A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】对于A,若,,则m有可能平行,故A错误;对于B,若,,显然是正确的;对于C,若,,则n有可能在内,故C错误;对于D,若,,则平面有可能相交,故D错误.故正确答案为B.6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a为松长、b为竹长,则菱形框与矩形框处应依次填()A. a<b?;a=aB. a<b?;a=a+2aC. a≥b?;a=aD. a≥b?;a=a+2a【答案】C【解析】【分析】由程序框图模拟程序的运行,结合题意即可得解.【详解】竹逾松长,意为竹子比松高,即a<b,但这是一个含当型循环结构的程序框图,当不满足条件时,退出循环,故菱形框中条件应为a≥b?,松日自半,则表示松每日增加一半,即矩形框应填a=a.故选:C【点睛】本题考查数学文化和补全程序框图相结合综合问题,重点考查理解题意,并能正确模拟程序运行,属于基础题型.7.已知函数在一个周期内的图象如图所示,则()A. B. C. D.【答案】C【解析】【详解】由图象可知,,所以,由,得,解得,因为,所以,所以.故选C.8.已知函数,,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到,,,即可得解;【详解】解:因为,定义域为,故函数是奇函数,又在定义域上单调递增,在定义域上单调递减,所以在定义域上单调递增,由,,所以即故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.9.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.【答案】C【解析】【分析】设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为 .故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.10.,是双曲线的左、右焦点,过的直线与的左、右两支分别交于,两点.若为等边三角形,则双曲线的离心率为()A. B. C. 2 D.【答案】A【解析】【分析】本题可先通过构造几何图形,先设为,再利用双曲线的定义,列出与的关系式,与的关系式,利用几何关系,在中,利用余弦定理即可求得答案.【详解】如图所示:设,由于为等边三角形,所以,所以,即,又,所以,在中,,,,,所以根据余弦定理有:,整理得:,即,所以离心率.故选:A.【点睛】本题考查了双曲线的定义,余弦定理解三角形,寻找双曲线中的关系是解决求离心率问题的关键,属于中档题.11.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A 85 B. 84 C. 57 D. 56【答案】A【解析】【分析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式二项式系数及展开式中有理项系数的确定,基础题.12.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.【答案】B【解析】【分析】由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答,第22题~第23题为选考题,考生根据要求作答.二、填空题13.已知实数满足,则的最大值为_______.【答案】22【解析】分析】,作出可行域,利用直线的截距与b的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由可得,观察可知,当直线过点时,取得最大值,由,解得,即,所以.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.14.已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有,,三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,,,三人都恰好猜对了一半,则第一名是__________.【答案】丙【解析】【分析】根据假设分析,现假设A中的说法中“甲是第一名是错误的,乙是第二名是正确的”,进而确定B的说法,即可得到答案.【详解】由题意,假设A说法中“甲第一名”正确,则B的说法中“丙第一名”和C说法中“乙第一名”是错误,这与B中“甲第二名”和C中“甲第三名”是矛盾的,所以是错误的;所以A中,“甲是第一名是错误的,乙是第二名是正确的”;又由B中,假设“丙是第一名是错误的,甲是第二名是正确的”,这与A中,“甲是第一名是错误的,乙是第二名”是矛盾的,所以B中,假设“丙是第一名是正确的,甲是第二名是错误的”,故第一名为丙.【点睛】本题主要考查了推理与证明的应用,其中解答中通过假设分析,找到预测说法中的矛盾是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.等差数列的前n项和为,,则_____.【答案】【解析】【分析】计算得到,再利用裂项相消法计算得到答案.【详解】,,故,故,.故答案为:.【点睛】本题考查了等差数列的前n项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用.16.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图).当这个正六棱柱容器的底面边长为时,其容积最大.【答案】【解析】【详解】如图,设底面六边形的边长为x,高为d,则d=(1-x);又底面六边形的面积为:S=6••x2•sin60°=x2;所以,这个正六棱柱容器的容积为:V=Sd=x2•(1-x)=(x2-x3),则对V求导,则V′=(2x-3x2),令V′=0,得x=0或x=,当0<x<时,V′>0,V是增函数;当x>时,V′<0,V是减函数;∴x=时,V有最大值.故答案为.三、解答题:解答应在答卷的相应各题中写出文字说明,说明过程或演算步骤.17.在中,角,,所对的边分别是,,,已知,.(1)若,求的值;(2)的面积为,求的值.【答案】(1);(2)【解析】【分析】(1)由,可得,由正弦定理可得,求得,利用诱导公式及两角和的正弦公式可得结果;(2)由,可得,再利用余弦定理,配方后化简可得.【详解】(1)由,则,且,由正弦定理,因为,所以,所以,(2),∴,,∴,,∴.【点睛】本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18.美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:(Ⅰ)求百度外卖公司的“骑手”一日工资(单位:元)与送餐单数的函数关系;(Ⅱ)若将频率视为概率,回答下列问题:①记百度外卖的“骑手”日工资为(单位:元),求的分布列和数学期望;②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.【答案】(I);(II)详见解析.【解析】试题分析:试题解析:解:(I)(II)1000.2(元)‚美团外卖“骑手”日平均送餐单数为:所以美团外卖“骑手”日平均工资为:(元)由知,百度外卖“骑手”日平均工资为112元. 故推荐小明去美团外卖应聘.19.如图,在四棱锥中,平面,,底面是梯形,,,,为棱上一点.(1)若点为的中点,证明:平面.(2) ,试确定的值使得二面角的大小为.【答案】(1)证明见解析;(2).【解析】【分析】(1)取的中点,连接,,根据线面平行的判定定理,即可证明结论成立;(2)先由题意得到,,两两垂直,以为原点,,,所在直线为轴,轴,轴,建立空间直角坐标系,设,根据,求出,分别求出平面与平面的一个法向量,根据向量夹角公式,以及二面角的大小,即可求出结果.【详解】(1)如图,取的中点,连接,.∵点为的中点,∴,.又,,∴,,∴四边形是平行四边形.∴.又平面,平面,∴平面.(2)由平面,,可得,,两两垂直,以为原点,,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,则,,,,.设,则,.∵,∴∴.又易证平面,∴是平面的一个法向量.设平面的法向量为,则即,解得令,则.∵二面角的大小为,∴|,解得:.∵点在棱上,∴,∴【点睛】本题主要考查证明线面平行,以及由二面角的大小求其它量,熟记线面平行的判定定理,以及空间向量的方法求二面角即可,属于常考题型.20.在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.(1)求动圆圆心的轨迹的方程;(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.【答案】(1) (2)6【解析】试题分析:(1)由椭圆定义得到动圆圆心的轨迹的方程;(2)设的方程为,联立可得,通过根与系数的关系表示弦长进而得到四边形面积的表达式,利用换元法及均值不等式求最值即可.试题解析:(1)设动圆的半径为,由题意知从而有,故轨迹为以为焦点,长轴长为4的椭圆,并去除点,从而轨迹的方程为.(2)设的方程为,联立,消去得,设点,有则,点到直线的距离为,点到直线的距离为,从而四边形的面积令,有,函数在上单调递增,有,故,即四边形面积的最大值为.21.已知函数,在其定义域内有两个不同的极值点.(1)求的取值范围;(2)记两个极值点为,且,证明:.【答案】(1) (2)证明见解析【解析】【分析】(1)由导数与极值的关系知题目可转化为方程在有两个不同根,转化为函数与函数的图象在上有两个不同交点,从而讨论求解;(2) 问题等价于,令,则,所以,设,,根据函数的单调性即可证明结论.【详解】解:(1)由题意知,函数的定义域为,方程在有两个不同根;即方程在有两个不同根;转化为函数与函数的图象在上有两个不同交点,如图.可见,若令过原点且切于函数图象的直线斜率为,只须.令切点,故,又故,解得,,故,故的取值范围为(2)由(1)可知分别是方程的两个根,即,,作差得,即对于,取对数得,即又因为,所以,得令,则,,即设,,,所以函数在上单调递增,所以,即不等式成立,故所证不等式成立.【点睛】本题重点考查了导数在研究函数极值问题中的应用以及导数与函数的单调性,问题(2)中运用了分析法的思想,属于难题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数).(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求.【答案】(1),;(2)【解析】试题分析:(1)根据极直互化的公式得到直线方程,根据参普互化的公式得到曲线C的普通方程;(2)联立直线的参数方程和曲线得到关于t的二次,.解析:(Ⅰ),化为,即的普通方程为,消去,得的普通方程为.(Ⅱ)在中令得,∵,∴倾斜角,∴的参数方程可设为即,代入得,,∴方程有两解,,,∴,同号,.[选修4-5:不等式选讲]23.函数,其最小值为.(1)求的值;(2)正实数满足,求证:.【答案】(1)3;(2)【解析】【详解】【分析】试题分析:(1)由题意,利用绝对值三角不等式求得的最小值,即可求解的值;(2)根据柯西不等式,即可作出证明.试题解析:(1),当且仅当取等,所以的最小值(2)根据柯西不等式,.当且仅当时,等号成立2020届高三数学第五次模拟考试试题理(含解析)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第3Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则=()A. B. C. D.【答案】D【解析】【分析】先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数与其共轭复数满足,则()A. B. C. 2 D.【答案】A【解析】【分析】设,则,求得,再求模,得到答案.【详解】设,则,故,,,.故选:A.【点睛】本题考查了共轭复数的概念,两复数相等的条件,复数的模,还考查了学生的计算能力,属于容易题.3.若夹角为的向量与满足,则()A. 1B. 2C.D. 4【答案】B【解析】【分析】根据向量数量积的应用,把两边平方,转化成模平方和数量积,利用已知即可得到结论.【详解】解:∵,∴,即,则,或(舍),故选:B.【点睛】本题考查了数量积运算性质、向量与模的转化,考查了计算能力,属于基础题.4.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.5.已知直线和平面,则下列四个命题中正确的是( )A. 若,,则B. 若,,则C. 若,,则D. 若,,则【解析】对于A,若,,则m有可能平行,故A错误;对于B,若,,显然是正确的;对于C,若,,则n有可能在内,故C错误;对于D,若,,则平面有可能相交,故D错误.故正确答案为B.6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a为松长、b为竹长,则菱形框与矩形框处应依次填()A. a<b?;a=aB. a<b?;a=a+2aC. a≥b?;a=aD. a≥b?;a=a+2a【答案】C【解析】【分析】由程序框图模拟程序的运行,结合题意即可得解.【详解】竹逾松长,意为竹子比松高,即a<b,但这是一个含当型循环结构的程序框图,当不满足条件时,退出循环,故菱形框中条件应为松日自半,则表示松每日增加一半,即矩形框应填a=a.故选:C【点睛】本题考查数学文化和补全程序框图相结合综合问题,重点考查理解题意,并能正确模拟程序运行,属于基础题型.7.已知函数在一个周期内的图象如图所示,则()A. B. C. D.【答案】C【解析】【详解】由图象可知,,所以,由,得,解得,因为,所以,所以.故选C.8.已知函数,,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到,,,即可得解;【详解】解:因为,定义域为,故函数是奇函数,又在定义域上单调递增,在定义域上单调递减,所以在定义域上单调递增,由,,所以即故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.9.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.【答案】C【解析】【分析】设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为 .故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.10.,是双曲线的左、右焦点,过的直线与的左、右两支分别交于,两点.若为等边三角形,则双曲线的离心率为()A. B. C. 2 D.【答案】A【解析】【分析】本题可先通过构造几何图形,先设为,再利用双曲线的定义,列出与的关系式,与的关系式,利用几何关系,在中,利用余弦定理即可求得答案.【详解】如图所示:设,由于为等边三角形,所以,所以,即,又,所以,在中,,,,,所以根据余弦定理有:,整理得:,即,所以离心率.故选:A.【点睛】本题考查了双曲线的定义,余弦定理解三角形,寻找双曲线中的关系是解决求离心率问题的关键,属于中档题.11.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A 85 B. 84 C. 57 D. 56【答案】A【解析】【分析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式二项式系数及展开式中有理项系数的确定,基础题.12.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.【答案】B【解析】【分析】由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答,第22题~第23题为选考题,考生根据要求作答.二、填空题13.已知实数满足,则的最大值为_______.【答案】22【解析】分析】,作出可行域,利用直线的截距与b的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由可得,观察可知,当直线过点时,取得最大值,由,解得,即,所以.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.14.已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有,,三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,,,三人都恰好猜对了一半,则第一名是__________.【答案】丙【解析】【分析】根据假设分析,现假设A中的说法中“甲是第一名是错误的,乙是第二名是正确的”,进而确定B的说法,即可得到答案.【详解】由题意,假设A说法中“甲第一名”正确,则B的说法中“丙第一名”和C说法中“乙第一名”是错误,这与B中“甲第二名”和C中“甲第三名”是矛盾的,所以是错误的;所以A中,“甲是第一名是错误的,乙是第二名是正确的”;又由B中,假设“丙是第一名是错误的,甲是第二名是正确的”,这与A中,“甲是第一名是错误的,乙是第二名”是矛盾的,所以B中,假设“丙是第一名是正确的,甲是第二名是错误的”,故第一名为丙.【点睛】本题主要考查了推理与证明的应用,其中解答中通过假设分析,找到预测说法中的矛盾是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.等差数列的前n项和为,,则_____.【答案】【解析】。
高三年级第五次模拟考试数学(理)试题
高三年级第五次模拟考试数学(理)试题数学(理)试题第Ⅰ卷(选择题,共60分)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,试卷满分150分,答题时刻为120分钟.注意事项:1.答题前,考生必须将自己的姓名、准考号填写清晰,将条形码准确粘贴在条形码区 域内.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦洁净后,再选涂其他答案标号,在试题卷上作答无效.3.非选择题必须使用0.5毫米黑色字迹的签字笔书写,字迹工整,笔迹清晰,请按照题号顺序在各个题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 参考公式 假如事件A、B互斥,那么)()()(B P A P B A P +=+ 假如事件A、B相互独立,那么)()()(B P A P B A P ⋅=⋅假如事件A在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k kn k n n P k C P P -=-第Ⅰ卷(选择题,共60分)一、选择题(本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.i ii(11-+为虚数单位)等于( )A .– 1B .1C .iD .i - 2.=+---→)2144(lim 22xx x( )A .41B .41-C .21D .21-球的表面积公式24S R π=其中R表示球的半径球的体积公式343V R π=其中R表示球的半径DACBM3.以抛物线x y 82=上的任意一点为圆心作圆与直线02=+x 相切,这些圆必过一定点, 则这一定点的坐标是( )A .)2,0(B .(2,0)C .(4,0)D . )4,0(4.在ABC ∆中,“60>A ”是“23sin >A ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5. 函数)2()1ln(>-=x x y 的反函数是( )A .)0(1>+=x e y xB .)0(1>-=x e y xC .)(1R x e y x ∈+=D .)(1R x e y x∈-=6.已知四面体ABCD ,⊥AD 平面BDC ,M 是棱AB 的中点,2==CM AD ,则异面 直线AD 与CM 所成的角等于 ( ) A .30B . 45C . 60D . 907.公差不为零的等差数列}{n a 中,02211273=+-a a a ,数列}{n b 是等比数列,且 ==8677,b b a b 则 ( )A .2B .4C .8D .168.设函数)()0(1)6sin()(x f x x f '>-+=的导函数ωπω的最大值为3,则f (x )的图象的一条对称轴的方程是( )A .2π=xB .3π=xC .6π=xD .9π=x9.用数字0,1,2,3,4组成五位数中,中间三位数字各不相同,但首末两位数字相同的共有 ( ) A .480个 B .240个 C .96个 D .48个 10.已知正整数b a ,满足304=+b a ,使得ba 11+取最小值时,则实数对(),b a 是( )A .5,10)B .(6,6)C .(10,5)D .(7,2)11.函数,2)()1(001)sin()(12=+⎪⎩⎪⎨⎧≥<<-=-a f f x e x x x f x 若,,;,π则a 的所有可能值为( ) A .1B .22-C .1,22-D .1,22 12.已知直线l 是椭圆)0(12222>>=+b a by a x 的右准线,假如在直线l 上存在一点M ,使得线段OM (O 为坐标原点)的垂直平分线过右焦点,则椭圆的离心率的取值范畴是( )A .)1,23[B . )1,22[ C .)1,22( D . )1,21[第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在答题卡的横线上) 13.已知一个球与一个二面角的两个半平面都相切,若球心到二面角的棱的距离是5,切点到二面角棱的距离是1,则球的体积是 .14.点)3,(a P 到直线0134=+-y x 的距离等于4,且在不等式032>-+y x 表示的平面区域内,则点P 的坐标是 .15.已知)1()1(6-+ax x 的展开式中,3x 的系数为10,则实数a 的值为16.一个总体中的100个个体的号码分别为0,1,2,…,99,依次将其均分为10个小组.要用系统抽样方法抽取一个容量为10的样本,规定:假如在第1组(号码为0~9)中随机抽取的号码为m ,那么依次错位地得到后面各组的号码,即第k 组中抽取的号码的个位数为m +k -1或m +k -11(假如m +k ≥11).若第6组中抽取的号码为52, 则m = . 三、解答题(本大题共6小题,共74分,解承诺写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知向量m ),cos ,(sin A A = n )sin ,(cos B B =, m . n C B A C ,,,且2sin =分别为△ABC 的三边a ,b ,c 所对的角. (Ⅰ)求角C 的大小;(Ⅱ)若sin A , sin C , sin B 成等比数列, 且18)(=-⋅, 求c 的值.18.(本小题满分12分)“ 五·一”黄金周某旅行公司为3个旅行团提供4条旅行线路,每个旅行团任选其中一条旅行线路.(Ⅰ)求3个旅行团选择3条不同的线路的概率; (Ⅱ)求恰有2条线路被选择的概率; (Ⅲ)求选择甲线路的旅行团个数的期望. 19.(本小题满分12分)如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,P A=AD=CD.BC=2AD ,BC//AD ,AD ⊥DC.(Ⅰ)证明:AC ⊥PB ;(Ⅱ)求二面角C —PB —A 的大小. 20.(本小题满分12分)已知各项均为正数的数列{n a }满足221120n n n n a a a a ++--=(*∈N n ),且23+a 是42,a a 的等差中项.(Ⅰ)求数列{n a }的通项公式n a ;(Ⅱ)若n b =n a n n n b b b S a +⋅⋅⋅++=2121,log ,求使S 12+⋅+n n n >50成立的正整数n的最小值.21.(本小题满分14分)如图,F 为双曲线)0,0(1:2222>>=-b a by a x C 的右焦点,P 为双曲线C 在第一象限内的一点,M 为左准线上一点,O 为坐标原点,,OFMP == (Ⅰ)推导双曲线C 的离心率e 与λ的关系式; (Ⅱ)当1=λ时, 通过点)0,1(且斜率为a -的直线交双曲线于B A ,两点, 交y 轴于点D , =DB )23(-,求双曲线的方程.22.(本小题满分12分)已知函数)0(1)1ln()(≥-+-=x x e x f x, (Ⅰ)求函数)(x f 的最小值; (Ⅱ)若x y <≤0,求证:)1ln()1ln(1+-+>--y x e yx .东北师大附中2007年高三年级第五次模拟考试数学(理)试题参考答案一、选择题:1.C 2.A 3.B 4.B 5.A 6.C 7.D 8.D 9.B 10.A 11.C 12.B 二、填空题 13.π33214.(7,3) 15.2 16.7 17.解:(1) ∵ m ),cos ,(sin A A = n )sin ,(cos B B =, m . n C 2sin =, ∴sin A cos B +cos A sin B =sin2C 1分 即 sin C =sin2C 3分∴ cos C =214分 又C 为三角形的内角, ∴ 3π=C 6分(Ⅱ) ∵sin A ,sin C ,sin B 成等比数列,∴ sin 2C =sin A sin B 7分 ∴ c 2=ab 8分又18)(=-⋅,即 18=⋅, 9分 ∴ abcosC =18 10分 ∴ ab =36 故 c 2=36 ∴ c =6 12分18.解:(Ⅰ)3个旅行团选择3条不同线路的概率为P 1=834334=A …………3分(Ⅱ)恰有两条线路被选择的概率为P 2=16943222324=⋅⋅A C C ……6分 (Ⅲ)设选择甲线路旅行团数为ξ,则ξ=0,1,2,3P (ξ=0)=64274333= P (ξ=1)=6427433213=⋅CP (ξ=2)= 64943313=⋅C P (ξ=3)= 6414333=C ……………………8分 ∴ξ的分布列为:∴期望E ξ=0×6427+1×6427+2×649+3×641=43……………………………12分19.方法一)6( )4( 90 245452)2( //22,0)(222分由三垂线定理,知内的射影,在面是斜线分由余弦定理中在中在分且证明:设Ⅰ PB AC AB AC ABCD PB AB BAC BC AC AB a AB ACB ABC ACD a AC ADC Rt CD BC AD BC aBC AD BC CD AD a CD AD PA ⊥∴⊥︒=∠∴=+∴=︒=∠∆︒=∠=∆⊥=∴==⊥===)12( 303tan ,323,)9(,,)(分中在中在分的平面角即为二面角由三垂线定理知连结于作过点面面Ⅱ παπααα=∴≤≤==∆=⋅=∴=∆--∠⊥⊥∴=⊥⊥∴⊥AEACAEC Rt a PBABPA AE a PB PAB Rt A PB C AEC CE E PB AE A PABCA AAB PA AB CA CA PA ABCD PA )1,0,1()0,1,0()0,1,2()0,0,1()2( 2//,2,1,:)1(:P C B A CD BC BC AD BC AD BC DC AD CD AD PA xyz D 则分且设系如图建立空间直角坐标证明方法二 ⊥=∴=⊥===-分)(即6 0)1,1,1()0,1,1( PB AC ⊥⊥∴=⋅-=-=∴(2))1,1,1()1,1,1(-=-=PB CP)12( .321,cos )10(011()8( 11000000 ),,(分为二面角分),,的一个法向量为同理可取平面分),,(取的一个法向量为设平面 πA PBC nm m PAB n zy x z y x z y x BP n CP n BP n CP n z y x n PBC --∴=>=<-=--=⎩⎨⎧==⇒⎩⎨⎧=-+=+-∴=⋅=⋅∴⊥⊥=20.解:(Ⅰ)∵221120n n n n a a a a ++--=,∴11()(2)0n n n n a a a a +++-=, ∵数列{n a }的各项均为正数, ∴10n n a a ++>, ∴120n n a a +-=,即12n n a a +=(*∈N n ),因此数列{n a }是以2为公比的等比数列.………………3分∵23+a 是42,a a 的等差中项, ∴24324a a a +=+,∴1112884a a a +=+,∴12a =,∴数列{n a }的通项公式2nn a =.……………………………………………………6分(Ⅱ)由(Ⅰ)及n b =12log n n a a 得,2nn b n =-⋅, ……………………………8分∵12n n S b b b =++⋅⋅⋅+,∴23422232422nn S n =--⋅-⋅-⋅-⋅⋅⋅-⋅ ○1 ∴2345122223242(1)22n n n S n n +=--⋅-⋅-⋅-⋅⋅⋅--⋅-⋅ ②②-○1得,234512222222n n n S n +=+++++⋅⋅⋅+-⋅ =112(12)2(1)2212n n n n n ++--⋅=-⋅--……………………………10分 要使S 12+⋅+n n n >50成立,只需2n+1-2>50成立,即2n+1>52,n ≥5∴使S 12+⋅+n n n >50成立的正整数n 的最小值为5. ……………………………12分21.解:(Ⅰ) ,OF MP =OFPM ∴为平行四边形.设l 是双曲线的右准线,且与PM 交于N点====e ==∴即.02).2(22=--∴-=⋅e e ca c e c λλ………………6分 (Ⅱ)当1=λ时,得.3,2,2ab ac e ==∴=因此可设双曲线的方程是132222=-ay a x ,…8分 设直线AB 的方程是),1(--=x a y 与双曲线方程联立得:.042)3(2222=-+-a x a x a由0)3(164224>-+=∆a a a 得20<<a ..34,32),,(),,(222122212211-=-=+a a x x a a x x y x B y x A 则设①由已知,),0(a D ,因为=)23(-, 因此可得.)23(21x x -=②…………10分由①②得34)23(,32)13(2222222-=--=-a a x a a x , 消去2x 得,22=a 符合0>∆,因此双曲线的方程是16222=-y x ………………14分 22.解:(Ⅰ))(x f '=11+-x e x,………………2分 当0≥x 时,111,1≤+≥x e x,因此当0≥x 时,)(x f '0≥, 则函数)(x f 在[)∞+,0上单调递增,因此函数)(x f 的最小值为0)0(=f ;………………………………5分 (Ⅱ)由(Ⅰ)知,当0>x 时,0)(>x f ,∵y x >, ∴01)1ln()(>-+--=--y x e y x f yx ,∴)1ln(1+->--y x eyx ①……………………7分∵011)(ln)]1ln()1[ln()1ln(≥+++-=+-+-+-x x y x y y x y x ,∴)1ln()1ln()1ln(+-+≥+-y x y x ②…………………………10分 由①②得 )1ln()1ln(1+-+>--y x e yx …………………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届黑龙江省哈三中高三第五次模拟考试理科数学试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数i i z i a z (2,321+=-=为虚数单位),若21z z 是纯虚数,则实数=aA .23-B .23C .3-D .3 2. 已知集合2{|230,}A x x x x Z =--≤∈,集合{|0}B x x =>,则集合A B I 的子集个数为A .2B .4C .6D .8 3. 已知向量(2,3)=-a ,b (3,)x =,若a //b ,则实数=xA .2-B .2C .29-D .294. 设2log 3a =,13log 2b =,20.4c =,则,,a b c 的大小关系是A .a b c >>B .b a c >>C .a c b >>D .c a b >> 5. 将函数x y 2sin =的图象向左平移6π个单位长度后得到曲线1C ,再将1C 上所有点的横坐标伸长到原来的2倍得到曲线2C ,则2C 的解析式为 A .)3sin(π+=x y B .)6sin(π+=x y C .)3sin(π-=x y D .)34sin(π+=x y6. 远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,就是现在我们熟悉的“进位制”,右图所示的是一位母 亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天 数是A .27B .42C .55D .210 7. 设公比为3的等比数列}{n a 前n 项和为n S ,且313S =,则567a a a ++= A .3 B .9 C .27 D .81 8. 某几何体的三视图如图所示,其中正视图和侧视图都是上底为1,下底为2,高为1的直角梯形,俯视图为四 分之一个圆,则该几何体的体积为A .3π B .23πC .πD .43π9.已知函数())4f x x π=+,1()'()f x f x =,21()'()f x f x =,32()'()f x f x =,…,依此类推,2020()4f π=AB. C .0 D.10.正方体1111ABCD A B C D -的棱长为2,E 是棱11B C 的中点,则平面1AD E 截该正方体所得的截面面积为A. B. C .4 D .9211.给出下列命题,其中真命题为① 用数学归纳法证明不等式111112...(2,)23422n n n n N --++++>≥∈时,当1(2,)n k k k N =+≥∈时,不等式左边应在(2,)n k k k N =≥∈的基础上加上12k ;② 若命题p :2000,220x R x x ∃∈-+<,则2:,220p x R x x ⌝∀∈-+≥;③ 若0,0,4a b a b >>+=,则112ab ≥; ④ 随机变量2~(,)X N μσ,若(2)(0)P X P X >=<,则1μ=. A .①②④ B .①④ C .②④ D .②③12.已知R b a ∈,,则222)21()(b a b a --+-的最小值为正视图 侧视图A .42B .81C .22D .41第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知双曲线2222:1(0,0)x y E a b a b-=>>的离心率为2,则双曲线的渐近线方程为 .14.已知数列}{n a 的前n 项和为n S ,2,3211=+=++a n a a n n ,则11S = .15.2020年初,我国突发新冠肺炎疫情.面对突发灾难,举国上下一心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学生志愿者团队开展“爱心辅导”活动,为抗疫前线工作者子女在线辅导功课.现安排甲、乙、丙三名志愿者为某学生辅导数学、物理、化学、生物四门学科,每名志愿者至少辅导一门学科,每门学科由一名志愿者辅导,共有 种辅导方案.16.设'()f x 是奇函数()()f x x R ∈的导数,当0x >时,()'()ln 0f x f x x x +⋅<,则不等式(1)()0x f x ->的解集为 .三、解答题:共70分.解答应写出必要的文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)ABC ∆的内角C B A ,,的对边分别为c b a ,,.满足A b a c cos 22+=.(1)求B ;(2)若3,5==+b c a ,求ABC ∆的面积.18.(本小题满分12分)为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市拟定出台“房产限购的年龄政策”.为了解人们对“房岁的人群产限购年龄政策”的态度,在年龄为2060:中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如图所示:(1)由以上统计数据填22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异?(2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会,现从这8人中随机抽2人.记抽到44岁以上的人数为X ,求随机变量X 的分布列及数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++.19.(本小题满分12分)如图①,在平面五边形ABCDE 中,ABCD 是梯形,AD //BC ,AD =BC 2=22,3=AB ,90∠=︒ABC ,ADE ∆是等边三角形.现将ADE ∆沿AD 折起,连接EB ,EC 得如图②的几何体.(1)若点M 是ED 的中点,求证:CM //平面ABE ;(2)若3=EC ,在棱EB 上是否存在点F ,使得二面角F AD E --的余弦值为322?若存在,求EBEF的值;若不存在,请说明理由.20.(本小题满分12分)已知抛物线:C 22(0)y px p =>的焦点F 是椭圆13422=+y x 的一个焦点. (1) 求抛物线C 的方程;(2) 设,,P M N 为抛物线C 上的不同三点,点(1,2)P ,且PM PN ⊥.求证:直线MN 过定点.21.(本小题满分12分)已知函数()2ln f x x ax =-()a R ∈.(1) 当1a =时,求证:当1x ≥时,()1f x ≤-; (2) 若函数()f x 有两个零点,求a 的值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程] (本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 1cos 1t y t x (t 为参数,0απ≤<),以O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θθρcos 8)2cos 1(=-.(1) 求曲线C 的直角坐标方程及直线l 在x 轴正半轴及y 轴正半轴截距相等时的直角坐标方程; (2) 若3πα=,设直线l 与曲线C 交于不同的两点B A ,,点)1,1(P ,求PB PA 11-的值.23.[选修4-5:不等式选讲] (本小题满分10分)已知函数)0,0()(>>++-=b a b x a x x f ,. (1) 当3,1==b a 时,求不等式6)(<x f 的解集; (2) 若)(x f 的最小值为2,求证:11111≥+++b a .数学试卷(理工类)答案及评分标准一、选择题:二、填空题:13.y = 14.77 15.36 16.(0,1)三、解答题:17. (1)由题知A B A C cos sin 2sin sin 2+=,………………………………….……2分 则A B A B A cos sin 2sin )sin(2+=+,则A B A sin cos sin 2=,在ABC ∆中,0sin ≠A ,所以21cos =B ,…………………………4分则3π=B ……………………………………………………………………………..………6分(2)由余弦定理得B ac c a b cos 2222-+=,从而得ac c a ac c a 3)(9222-+=-+=,…………………………….…………………9分又5=+c a ,所以316=ac ,所以ABC ∆的面积为334.……………….……………12分18.(1)由统计数据填22⨯列联表如下:计算观测值20100(3554515)256.25 3.841505080204k ⨯⨯-⨯===>⨯⨯⨯,..................................4分所以在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异; ..............................................................................................5分(2)由题意可知抽取的这8人中,44岁以下的有6人,44岁以上的有2人,..........6分 根据题意,X 的可能取值是0,1,2,..................................................................................7分计算()262815028C P X C ===,()116228317C C P X C ⋅===,()22281228C P X C ===,.....................................................................................................10分可得随机变量X 的分布列为:故数学期望为012287282EX =⨯+⨯+⨯=().......................................................12分19.(1)取EA 中点N ,连接MN ,BN ,则MN 是EAD ∆的中位线,1//,.21//,,//.2,,//.MN AD MN AD BC AD BC AD BCMN CM BN CM ABE BN ABE CM ABE ∴==∴∴⊄⊂∴Q 且且四边形是平行四边形,又平面平面平面.................................................................................................................................................5分 (2)取AD 中点O ,连接OE OC ,,易得AD OE ⊥,AD OC ⊥. 在COE ∆中,由已知62223,3,3=⨯====OE AB OC CE . .,222OE OC CE OE OC ⊥∴=+Θ以O 为原点,分别以射线OE OA OC ,,为z y x ,,轴正半轴建立如图所示空间直角坐标系, 则).6,0,0(),0,2,0(),0,2,3(),0,2,0(E D B A -...................................................7分 则).0,22,0(),6,2,0(),6,2,3(-=-=-= 假设在棱EB 上存在点F 满足题意,设)10(≤≤=λλ,则EF λ=u u u r,)66,2,2,3(λλλ--=+=. 设平面ADF 的一个法向量为(,,)m x y z =u r,则0,0,m AF m AD ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r 即⎩⎨⎧=-=-+-+,022,0)66()22(3λλλλz y x 令1=z ,得平面ADF 的一个法向量).1,0,)1(2(λλ--=m .......................................9分又平面EAD 的一个法向量)0,0,1(=n ,.........................................................................10分由已知322,cos =n m ,3221)1(2)1(22=+⎥⎦⎤⎢⎣⎡----∴λλλλ, 整理得01232=-+λλ,解得)1(31舍去-==λλ, ∴在棱EB 上存在点F ,使得二面角F AD E --的余弦值为322,且31=EB EF ...12分 20.(1)依题意,2,12==p p,所以x y C 4:2=………………………..……………4分 (2)设直线MN 的方程为n my x +=,与抛物线联立得0442=--n my y , 设),(),,(2211y x N y x M ,由PN PM ⊥得0)2,1()2,1(2211=--⋅--y x y x ………6分 化简得0584622=+---m m n n ,………………………………………….…………8分解得52+=m n 或12+-=m n (舍)…………………………………….……………10分 所以直线MN 过定点)2,5(-………………………………………………..……………12分 21.(1)当1a =时,()()2ln 2ln 1h x x x x f x x x x-'=-==………..………….…….1分 则()221x h x x x-+'=-=,由于2y x =-+在()1,+∞上单调递减,存在唯一零点2x = 知()h x :..................................................................................................................................................3分 知()1,x ∈+∞时,()()()22ln 210h x h ≤=-<,即()0f x '<恒成立知()f x 为()1,+∞上的减函数,即()()11f x f ≤=-,证毕;....................................5分(2)等价于2ln x a x =有两个零点,设函数()2ln xg x x =..............................................6分 ()()22ln ln 0x x g x x-'=≥,解得()ln 2ln 0x x -≤,即0ln 2x ≤≤知()g x :..................................................................................................................................................9分 当0x →时,()g x →+∞;极小值为()10g =;极大值为()224g ee=;()g x 在()2,e +∞上单调递减,由于()0g x >,当x →+∞时,()0g x →,故()g x 在()2,e +∞上的值域为240,e ⎛⎫⎪⎝⎭综上,()g x a =有两个零点,有24a e =,即当24a e=时,()f x 有两个零点…….12分 22.(1)由θθρcos 8)2cos 1(=-得θθρcos 4sin 2=,所以θρθρcos 4sin 22=,由y x ==θρθρsin ,cos ,得曲线C 的直角坐标方程为x y 42=…………….…….3分当直线l 在x 轴正半轴及y 轴正半轴截距相等时,1tan -=α,由,sin 1cos 1⎩⎨⎧+=+=ααt y t x 得1tan 11-==--αx y ,所以2x y +=, 即此时直线l 的直角坐标方程为02=-+y x …………………………………..………5分(2)当3πα=时,直线l的参数方程为112,12x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数) 将直线l 的参数方程带入x y 42=,得211412t ⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,232)304t t +-=,12124(243t t t t +=-=-,………..……………...…….8分故12121211112||||3t t PA PB t t t t +--=-==…………………………………...…..10分 23.(1)依题意631<++-x x ,解集为)2,4(-……………………………...………5分 (2)b a b a b x a x b x a x x f +=--=+--≥++-=)()()(,所以2=+b a …7分1)11112(41)1111)(11(411111≥++++++=++++++=+++b a a b b a b a b a ……….……10分。