生化遗传学PPT课件
合集下载
第十章生化遗传病精品PPT课件
A.重型β地中海贫血
患者不能合成β链 α链过剩而沉降到红细胞膜上,引起膜的性能改变,发
生严重的溶血反应,引起肝脾增大。 组织缺氧,促进红细胞生成素分泌,刺激骨髓增生,骨
质受损变得疏松,可出现鼻塌眼肿、上颔前突、头大额 隆等特殊的“地中海贫血面容”。
B.中间型β地中海贫血
•
一般是β+地中海贫血基因的纯合子,患者的基因
2.3 地中海贫血的分子机制
α地中海贫血的分子机制
基因缺失:主要,缺失型α地中海贫血 基因突变:非缺失型α地中海贫血
地中海贫血的分子机制
基因缺失 基因突变: 主要
编码序列突变; 转录调控序列突变(TATA box); RNA加工和修饰信号序列突变(GT-AG接头)
小结
1. 血红蛋白的分子结构及其发育演变过程 2. 镰形红细胞贫血症的特点。 3. 地中海贫血的类型与特点。
生化遗传病
DNA
RNA
Protein
基因的突变可引起蛋白质的相应改变
基因突变
蛋白质改变
轻微的突变引起多态性, 严重的突变表现为生化遗传病
按照缺陷蛋白对机体产生影响的差异, 生化遗传病可以分为分子病和酶蛋白病
生化 遗传病
分子病
由于基因突变造 成蛋白质分子结 构或合成量的异 常,从而引起机 体功能障碍的一 类疾病。
b.无义突变
Hb Mckees-Rock
β 145 TAT 酪氨酸
TAA 终止
c. 终止密码突变
碱基序列 139 140 141 142 143 144 145 146
正常血 红蛋白
AAA UAC CGU UAA GGU GGA GCC UCC
丝 赖 酪 精 (终止)
第10章 生化遗传学.ppt
HbA(α2β2) HbA2(α2δ2)
胚胎血红蛋白 成人红细胞中血红蛋白
2.血红蛋白的发育血红蛋白先后出现, 并且有规律地相互更替, 其合成呈现严格的 消长过程。
(二)珠蛋白基因 人体中珠蛋白是由珠蛋白基因家族编码的,
珠蛋白基因家族包括两个珠蛋白基因簇,即: α 珠蛋白基因簇 β 珠蛋白基因簇
类型: 按照合成速率降低的珠蛋白链类型,可以 把地中海贫血区分为多种不同的类型: α地中海贫血:α珠蛋白链合成减少 β地中海贫血:β链合成减少 γ地中海贫血:γ链合成减少 δβ地中海贫血:δ和β链合成减少 以此类推
(一)α地中海贫血(α- thalassemia) 按照α珠蛋白链合成速率降低的程度,α
(一)镰形细胞贫血症(sickle cell anemia)
遗传方式:常染色体隐性(AR)遗传。
分子机制:患者β 珠蛋白基因的第6位密码 子由正常的GAG变成了GTG(A→T),使其编码的 β 珠蛋白N端第6位氨基酸由正常的谷氨酸变成了 缬氨酸,形成HbS。
分子表面电荷改变→疏水区域,导致溶解 度下降→HbS聚合形成凝胶化的棒状结构→红 细胞变成镰刀状→血粘性增加→栓塞→痛性危 象。同时,变形能力降低→挤压时易破裂→溶 血性贫血(图8-4)。
第十章 生化遗传学
(biochemical genetics)
生 化 遗 传 学 ( biochemical genetics): 是用生物化学的原理和方法研究生物的遗 传物质与遗传性状之间的代谢关系,从而阐明 基因的基本功能及其表达过程的一个遗传学分 支学科。 生化遗传学可为某些先天性代谢缺陷和分 子病的治疗提供理论基础。
地中海贫血又可以区分为不同的类型:
名称
基因型
胎儿水肿综合征 α0/ α0
胚胎血红蛋白 成人红细胞中血红蛋白
2.血红蛋白的发育血红蛋白先后出现, 并且有规律地相互更替, 其合成呈现严格的 消长过程。
(二)珠蛋白基因 人体中珠蛋白是由珠蛋白基因家族编码的,
珠蛋白基因家族包括两个珠蛋白基因簇,即: α 珠蛋白基因簇 β 珠蛋白基因簇
类型: 按照合成速率降低的珠蛋白链类型,可以 把地中海贫血区分为多种不同的类型: α地中海贫血:α珠蛋白链合成减少 β地中海贫血:β链合成减少 γ地中海贫血:γ链合成减少 δβ地中海贫血:δ和β链合成减少 以此类推
(一)α地中海贫血(α- thalassemia) 按照α珠蛋白链合成速率降低的程度,α
(一)镰形细胞贫血症(sickle cell anemia)
遗传方式:常染色体隐性(AR)遗传。
分子机制:患者β 珠蛋白基因的第6位密码 子由正常的GAG变成了GTG(A→T),使其编码的 β 珠蛋白N端第6位氨基酸由正常的谷氨酸变成了 缬氨酸,形成HbS。
分子表面电荷改变→疏水区域,导致溶解 度下降→HbS聚合形成凝胶化的棒状结构→红 细胞变成镰刀状→血粘性增加→栓塞→痛性危 象。同时,变形能力降低→挤压时易破裂→溶 血性贫血(图8-4)。
第十章 生化遗传学
(biochemical genetics)
生 化 遗 传 学 ( biochemical genetics): 是用生物化学的原理和方法研究生物的遗 传物质与遗传性状之间的代谢关系,从而阐明 基因的基本功能及其表达过程的一个遗传学分 支学科。 生化遗传学可为某些先天性代谢缺陷和分 子病的治疗提供理论基础。
地中海贫血又可以区分为不同的类型:
名称
基因型
胎儿水肿综合征 α0/ α0
医学遗传学课件:第8章 生化遗传学
•α2起始密码子ATG→ACG
无功能mRNA
•Hb Quong Sze (α125亮→脯) 二聚体形成受阻
•α2多聚A信号AATAAA→AATAAG
RNA切割和多聚腺 苷化突变体
•Hb Constant Spring (α终止→谷胺) mRNA不稳定
2.移码突变
•α1密码子14TGG-T
α-LCR区 无功能mRNA
(地2)
– /–
– /
临床类型
Gene缺失程度不同,临床症状表现不同,临床分为四类
Gene型 类 型
产物
临床症状
1 - -/- - α地1纯合子 无α链,γ4 HbBarts胎儿水肿
(严重缺氧、贫血、心衰)
2 - -/- α α1α2杂合子 α链↓,β4 HbH 溶血性贫血
3 - -/αα α1αA 杂合子 α链↓,轻型, 轻或无症状
– α基因的缺失
• 非缺失(微缺失)
串联重复基因:易在减数分裂 时发生非同源配对而发生不等 交换
– 碱基取代、缺失、插入、移码等
• 5’转录控制信号、外显子密码、终止密码 • 内含子拼接信号、共有序列 • 外显子和内含子潜在的拼接部位 • 3’多聚腺苷化信号
α珠蛋白生成障碍性贫血
突变类型
分子缺陷
1.核苷酸取代
血红蛋白
血红蛋白的分子结构
珠蛋白 血红素
2×α链 2×非α链
α Alfa β beta γ gama δ delta ε epsilon ζ zita Ψ pusai θ theta
血红素
血红蛋白
血红蛋白的结构
• 一、二级结构:
– 氨基酸排列顺序及 多肽链螺旋
• 类α链:(α、ζ) 141个氨基酸
生化遗传病ppt课件
一.
重型地中海贫血患儿
一.
父母均为-地贫 基因携带者。 姐15岁,妹11岁 ,均为重型-地 中海贫血者
二.
重 型 地 中 海 贫 血
父亲
母亲
子1
子2
子3
子4
β地中海贫血遗传规律示意图
β-地贫临床表现
轻型: 无症状,轻度贫血,肝脾不肿大; 中间型: 幼童期后逐渐出现肝脾肿大,轻度黄疸,贫 血面容。 重型: 贫血面容,重度贫血,黄疸,必须输血维持 生命,如不治疗多于5岁前死亡。
生化遗传病
朱劲华
概念
一.
生化遗传病又称分子病和遗传 性酶病,是由基因的缺陷引起 的,由于基因的缺陷造成蛋白 质的异常,使得人正常的生理 生化功能被扰乱,从而表现出 来的各种病症。
血红蛋白病
一.
血红蛋白病是指珠蛋白分子结 构异常或合成量异常引起的疾 病。分为两类,一类是珠蛋白 结构异常引起异常血红蛋白病 ,一类是珠蛋白数目异常造成 的地中海贫血。
镰型红细胞
镰型红细胞
一.
二.
HbS杂合体(HbAHbS)个体既含正常 的血红蛋白HbA(α2β2),也含镰 形细胞血红蛋白HbS(α2β2S), 一般无临床症状,但在严重缺氧时 (例如在高海拔地区),红细胞就 会部分镰变呈现镰状细胞特征。 HbS纯合子(HbSHbS)个体不能合成 正常的β链,血红蛋白组成只有 α2β2S,表现为镰状细胞贫血症。
镰形细胞贫血症
由于患者红细胞中的血红蛋白的β珠蛋白 链第6位的谷氨酸被缬氨酸替代(错义突 变),形成HbS(α2β26谷→缬)所致 。在氧分压低的毛细血管,溶解度低的 HbS易聚合成凝胶化的棒状结构,使红细 胞发生镰变,导致其变形能力降低,当 它们通过狭窄的毛细血管时,易挤压破 裂,引起溶血性贫血。另外,镰变细胞 使血液粘度增加,阻塞微循环,致使组 织局部缺血缺氧,甚至坏死,产生剧痛 。
生化遗传学PPT课件 (2)
一有δβ融合基因,无δ、β基因 另一有βδ融合基因,δ、β基因
10.1.3 地中海贫血
地中海贫血(thalassemia)是最常见的人类单基 因遗传病,突变造成血红蛋白合成障碍或稳定 性下降,又称珠蛋白生成障碍性贫血。
α地中海贫血 (α- thalassemia)
β地中海贫血 (β- thalassemia)
10.1.2.3 造成地中海贫血表现的血红蛋白结构变异型
大多数此类突变主要影响mRNA 或蛋白质的合成速率
HbE
Hb Lepore和Hb anti-Lepore
β26谷→赖,β珠蛋白 的合成速率下降,引 起轻度地中海贫血样 表现。最常见的结构 异常的血红蛋白
减数分裂时δ和β基因间发生错 配和不等交换,产生两种不同 染色体
反复自发性或在轻微损伤后出血不止,体 表、体内任何部分均可出血。
10.2.2 血友病A
成分
凝血Ⅷ因子即抗血友病球蛋白(AHG)遗传性缺乏 Ⅷc具有Ⅷ因子凝血活性 ⅧAg是Ⅷ因子凝血活性的载体蛋白
遗传
发病及 治疗
X连锁隐性遗传。基因位于Xq28的近侧,长 186kb,26个外显子,编码2332个氨基酸 。 基因突变涉及核苷酸取代、缺失、插入和移码
分子机制 突变、缺失
类型
重型地中海贫血 β地中海贫血性状
10.1.3.2 β地中海贫血
β0 地中海贫血
单倍体的突变β基因完全不能合成β链
β+ 地中海贫血
突变β基因造成β链合成量降低,但仍能合 成部分β链
β珠蛋白基因的突变类型
突变类型
1.核苷酸取代
(1) β-28核苷酸A→C (2) βIVS-1第1核苷酸G→A (3) βIVS-1第5核苷酸G→C (4) βIVS-2第654核苷酸C→T (5) β第17密码子A→T (6)Hb Knossos(β27丙→丝)
10.1.3 地中海贫血
地中海贫血(thalassemia)是最常见的人类单基 因遗传病,突变造成血红蛋白合成障碍或稳定 性下降,又称珠蛋白生成障碍性贫血。
α地中海贫血 (α- thalassemia)
β地中海贫血 (β- thalassemia)
10.1.2.3 造成地中海贫血表现的血红蛋白结构变异型
大多数此类突变主要影响mRNA 或蛋白质的合成速率
HbE
Hb Lepore和Hb anti-Lepore
β26谷→赖,β珠蛋白 的合成速率下降,引 起轻度地中海贫血样 表现。最常见的结构 异常的血红蛋白
减数分裂时δ和β基因间发生错 配和不等交换,产生两种不同 染色体
反复自发性或在轻微损伤后出血不止,体 表、体内任何部分均可出血。
10.2.2 血友病A
成分
凝血Ⅷ因子即抗血友病球蛋白(AHG)遗传性缺乏 Ⅷc具有Ⅷ因子凝血活性 ⅧAg是Ⅷ因子凝血活性的载体蛋白
遗传
发病及 治疗
X连锁隐性遗传。基因位于Xq28的近侧,长 186kb,26个外显子,编码2332个氨基酸 。 基因突变涉及核苷酸取代、缺失、插入和移码
分子机制 突变、缺失
类型
重型地中海贫血 β地中海贫血性状
10.1.3.2 β地中海贫血
β0 地中海贫血
单倍体的突变β基因完全不能合成β链
β+ 地中海贫血
突变β基因造成β链合成量降低,但仍能合 成部分β链
β珠蛋白基因的突变类型
突变类型
1.核苷酸取代
(1) β-28核苷酸A→C (2) βIVS-1第1核苷酸G→A (3) βIVS-1第5核苷酸G→C (4) βIVS-2第654核苷酸C→T (5) β第17密码子A→T (6)Hb Knossos(β27丙→丝)
《人类生化遗传病》课件
遗传咨询:了解家族病史,进行遗传咨询 基因检测:进行基因检测,了解遗传风险 生活方式:保持健康的生活方式,如合理饮食、适量运动等 定期体检:定期进行体检,及时发现并治疗疾病
基因治疗:通过基因编辑技术,修复或替换致病基因 细胞治疗:通过干细胞移植,修复或替换受损细胞 药物治疗:通过药物干预,抑制或消除致病基因的表达 免疫治疗:通过免疫调节,增强机体对疾病的抵抗力 辅助治疗:通过饮食、运动、心理等辅助手段,改善患者的生活质量
生物信息学:生物信息学的发展,为遗 传病研究提供了新的工具和方法
精准医疗:精准医疗的发展,为遗传病 治疗提供了新的可能
伦理和法律问题:随着遗传病研究的深 入,伦理和法律问题越来越受到关注
基因编辑 技术: CRISPR等 基因编辑 技术的应 用和发展
单细胞测 序技术: 单细胞测 序技术的 应用和发 展
遗传性神经肌肉病:如肌营 养不良、脊髓性肌萎缩症等
遗传性血液病:如血友病、 地中海贫血等
遗传性代谢病:如苯丙酮尿 症、半乳糖血症等
遗传性免疫缺陷病:如重症联 合免疫缺陷病、慢性肉芽肿病
等
遗传性肿瘤:如视网膜母细 胞瘤、神经纤维瘤病等
遗传性内分泌疾病:如甲状 腺功能减退症、糖尿病等
PART THREE
生物信息 学:生物 信息学的 应用和发 展
基因治疗: 基因治疗 的应用和 发展
遗传病诊 断和治疗: 遗传病诊 断和治疗 的应用和 发展
基因伦理 和法律: 基因伦理 和法律的 应用和发 展
基因编辑技术:精准治疗,但存在伦理和法律问题 基因治疗:提高治疗效果,但存在安全性和成本问题 生物信息学:大数据分析,但存在数据安全和隐私问题 基因诊断:早期发现,但存在技术难度和成本问题 基因药物:新药研发,但存在研发周期和成本问题 基因治疗与基因编辑的结合:提高治疗效果,但存在伦理和法
生化遗传1
生化遗传学
Biochemical Genetics
概 念:生化遗传学
利用生物化学的方法研究人类正常及变 异性状的物质基础,即论述由于基因突变 导致蛋白质突变产生的生物化学变化或蛋 白分子质和量的异常从而引起机体功能障 碍的生化背景、 遗传规律及分子机制。
背景知识
先天代谢差错之父 Archibald Garrod 1908年“先天性代谢缺陷”报告
•治疗:终身低苯丙氨酸饮食,恶性者四氢生 物蝶呤配合左旋多巴、5-羟色氨等治疗
•生育:未控制女患者不能怀孕
白化病(albinism)
患者全身皮肤、头发、眼 缺乏黑色素,所以皮肤白皙, 头发呈淡黄色,眼呈灰蓝色, 羞明,视物模糊,可有眼球 震颤。日晒皮肤易灼伤,暴 露的皮肤易患皮肤癌。本病 为常染色体隐性遗传,发病 率为1/10000~1/20000。
•出生至3~4个月时开始出现智能发育不 全,可以发展到白痴水平 •步伐小,姿似猿猴,肌张力增高,共济 失调,震颤,易激动,甚至惊厥 •可有严重呕吐,可误诊为幽门梗阻 •90%以上毛发发黄,肤白,虹膜呈黄色 •患儿尿和汗有一种特殊的腐臭
氧化 肾上腺素
•实验室检查:绿色环反应、血苯丙氨酸含量 (正常0.01-0.03g/L)、PCR/ASO基因诊断和 产前诊断生物蝶呤占总蝶呤百分比
常见代谢性遗传疾病
糖代谢病:半乳糖血症、糖原累计症、粘多糖累计症 氨基酸代谢病:苯丙酮尿症、尿黑酸尿症、白化病 脂类代谢病: 神经鞘脂累积症、粘脂累积症 嘌呤代谢病: Lesch-Nyhan 综合症(LNS) 卟啉代谢病:急性间歇性卟啉症 尿素循环代谢病:精氨酸血症
苯丙酮尿症(phenylketonuria, PKU)
AD,多为杂合子,由于胆固 醇沉积而出现黄瘤,较早出现 角膜弓(老人环),过早出现冠 心病,纯合子患者病情更为严 重,可在儿童期发生冠心病, 5~30岁即可出现心绞痛和心 肌梗塞,甚至可能发生猝死。 杂合子血浆总胆固醇 300~400mg/dl。纯合子血 浆总胆固醇高达600~ 1200mg/dl。
Biochemical Genetics
概 念:生化遗传学
利用生物化学的方法研究人类正常及变 异性状的物质基础,即论述由于基因突变 导致蛋白质突变产生的生物化学变化或蛋 白分子质和量的异常从而引起机体功能障 碍的生化背景、 遗传规律及分子机制。
背景知识
先天代谢差错之父 Archibald Garrod 1908年“先天性代谢缺陷”报告
•治疗:终身低苯丙氨酸饮食,恶性者四氢生 物蝶呤配合左旋多巴、5-羟色氨等治疗
•生育:未控制女患者不能怀孕
白化病(albinism)
患者全身皮肤、头发、眼 缺乏黑色素,所以皮肤白皙, 头发呈淡黄色,眼呈灰蓝色, 羞明,视物模糊,可有眼球 震颤。日晒皮肤易灼伤,暴 露的皮肤易患皮肤癌。本病 为常染色体隐性遗传,发病 率为1/10000~1/20000。
•出生至3~4个月时开始出现智能发育不 全,可以发展到白痴水平 •步伐小,姿似猿猴,肌张力增高,共济 失调,震颤,易激动,甚至惊厥 •可有严重呕吐,可误诊为幽门梗阻 •90%以上毛发发黄,肤白,虹膜呈黄色 •患儿尿和汗有一种特殊的腐臭
氧化 肾上腺素
•实验室检查:绿色环反应、血苯丙氨酸含量 (正常0.01-0.03g/L)、PCR/ASO基因诊断和 产前诊断生物蝶呤占总蝶呤百分比
常见代谢性遗传疾病
糖代谢病:半乳糖血症、糖原累计症、粘多糖累计症 氨基酸代谢病:苯丙酮尿症、尿黑酸尿症、白化病 脂类代谢病: 神经鞘脂累积症、粘脂累积症 嘌呤代谢病: Lesch-Nyhan 综合症(LNS) 卟啉代谢病:急性间歇性卟啉症 尿素循环代谢病:精氨酸血症
苯丙酮尿症(phenylketonuria, PKU)
AD,多为杂合子,由于胆固 醇沉积而出现黄瘤,较早出现 角膜弓(老人环),过早出现冠 心病,纯合子患者病情更为严 重,可在儿童期发生冠心病, 5~30岁即可出现心绞痛和心 肌梗塞,甚至可能发生猝死。 杂合子血浆总胆固醇 300~400mg/dl。纯合子血 浆总胆固醇高达600~ 1200mg/dl。
生化遗传病PPT课件
• 基因突变类型:单个碱基置换 密码子缺失或插入 移码突变 基因缺失和融合基因
2019/11/14
44/102
(1) 单个碱基置换
碱基置换:指血红蛋白基因的某个碱基发生 转换或颠换。 单个碱基置换的结果: ①肽链中单个氨基酸被另一氨基酸取代。 ②使终止密码(UAA、UAG或UGA) 成为可读 密码,肽链延长。
遗传方式 ?
2019/11/14
AD
杂合子有症状
34/102
遗传类型 β0
(-/-)
β+
(-/+)
β+表达量低
(+/+)
2019/11/14
临床类型
重型β地中海贫血 轻型β地中海贫血 中间型β地中海贫血
35/102
1.重型 地中海贫血
• 重型β珠蛋白生成障碍性贫血, Cooley贫血 • 发生原因:β珠蛋白基因突变或缺失。 • 基因型:0纯合子(-/-)
2019/11/14
36/102
细胞学特征
患者β珠蛋白肽链缺乏, 肽链过剩沉降到红细 胞膜上→细胞膜变脆→ 严重溶血反应;细胞体 积变小。 Hb水平<5g/dl,RBC着色变浅— 低色素性小细胞性溶血性贫血。
2019/11/14
37/102
临床症状:患婴出生正 常,半周岁时发生严重小 细胞性溶血性贫血。
根据每条16号染色体α基因缺失数目分为:
α 地1(α -thal1):16号染色体上的2个α 基因均缺失或丧 失功能。
α 地2(α -thal2):16号染色体上的2个α 基因中有1个缺 失或丧失功能。
2019/11/14
26/102
基因缺失 正常基因
2019/11/14
27/102
临床分型
2019/11/14
44/102
(1) 单个碱基置换
碱基置换:指血红蛋白基因的某个碱基发生 转换或颠换。 单个碱基置换的结果: ①肽链中单个氨基酸被另一氨基酸取代。 ②使终止密码(UAA、UAG或UGA) 成为可读 密码,肽链延长。
遗传方式 ?
2019/11/14
AD
杂合子有症状
34/102
遗传类型 β0
(-/-)
β+
(-/+)
β+表达量低
(+/+)
2019/11/14
临床类型
重型β地中海贫血 轻型β地中海贫血 中间型β地中海贫血
35/102
1.重型 地中海贫血
• 重型β珠蛋白生成障碍性贫血, Cooley贫血 • 发生原因:β珠蛋白基因突变或缺失。 • 基因型:0纯合子(-/-)
2019/11/14
36/102
细胞学特征
患者β珠蛋白肽链缺乏, 肽链过剩沉降到红细 胞膜上→细胞膜变脆→ 严重溶血反应;细胞体 积变小。 Hb水平<5g/dl,RBC着色变浅— 低色素性小细胞性溶血性贫血。
2019/11/14
37/102
临床症状:患婴出生正 常,半周岁时发生严重小 细胞性溶血性贫血。
根据每条16号染色体α基因缺失数目分为:
α 地1(α -thal1):16号染色体上的2个α 基因均缺失或丧 失功能。
α 地2(α -thal2):16号染色体上的2个α 基因中有1个缺 失或丧失功能。
2019/11/14
26/102
基因缺失 正常基因
2019/11/14
27/102
临床分型
第八章-生化遗传病PPT课件
.
Hemoglobin Composition
2 2 2 2 2G 2 2A 2 2G 2 2A 2 22 22
17
异常血红蛋白病的分子基础
(1)单个碱基置换 错义突变:如镰形细胞贫血、不稳定血红蛋白病 无义突变:突变为终止密码使肽链合成提前终止 终止密码突变:肽链合成延长 (2)密码子缺失或插入 (3)移码突变:插入或缺失的碱基数不是3的倍数 (4)融合基因:可能在减数分裂时同源染色体之
.
26
Sickle Cell Disease
.
27
Sickle Cell Disease
.
28
纯合子症状严重,由于
镰变引起血粘度增高,产生 血管阻塞危象,可引起如腹 部疼痛、脑血栓等,另有严 重溶血性贫血及脾肿大等症 状。杂合子不表现临床症状 ,可以引起红细胞镰变,称 为镰形红细胞性状(sickle cell trait)。
种分子病》论文
1956年,Ingram测定出了镰形血红蛋白的氨基酸取 代。
全世界异常血红蛋白携带者有1亿多人
.
9
What is Hemoglobin?
血红蛋白是位于红细胞内 的一种由珠蛋白(globin)和 色素辅基血红素(heme)所组 成的一种复合蛋白,在体内担 负着携带氧重任。
.
10
A hemoglobin molecule consists of four polypeptide chains: two α globin chains (shown in green and blue) and two β globin chains (shown in yellow and orange). Each globin chain contains a heme (shown in red).
Hemoglobin Composition
2 2 2 2 2G 2 2A 2 2G 2 2A 2 22 22
17
异常血红蛋白病的分子基础
(1)单个碱基置换 错义突变:如镰形细胞贫血、不稳定血红蛋白病 无义突变:突变为终止密码使肽链合成提前终止 终止密码突变:肽链合成延长 (2)密码子缺失或插入 (3)移码突变:插入或缺失的碱基数不是3的倍数 (4)融合基因:可能在减数分裂时同源染色体之
.
26
Sickle Cell Disease
.
27
Sickle Cell Disease
.
28
纯合子症状严重,由于
镰变引起血粘度增高,产生 血管阻塞危象,可引起如腹 部疼痛、脑血栓等,另有严 重溶血性贫血及脾肿大等症 状。杂合子不表现临床症状 ,可以引起红细胞镰变,称 为镰形红细胞性状(sickle cell trait)。
种分子病》论文
1956年,Ingram测定出了镰形血红蛋白的氨基酸取 代。
全世界异常血红蛋白携带者有1亿多人
.
9
What is Hemoglobin?
血红蛋白是位于红细胞内 的一种由珠蛋白(globin)和 色素辅基血红素(heme)所组 成的一种复合蛋白,在体内担 负着携带氧重任。
.
10
A hemoglobin molecule consists of four polypeptide chains: two α globin chains (shown in green and blue) and two β globin chains (shown in yellow and orange). Each globin chain contains a heme (shown in red).
《生化遗传病》课件
《生化遗传病》PPT课件
生化遗传病是一类由于遗传和环境因素引起的疾病。本课件将介绍生化遗传 病的定义、原因、诊断、治疗、预防和研究现状。
什么是生化遗传病?
定义
生化遗传病指由于基因突变或酶缺陷导致的代谢紊乱的遗传病。
常见类型
生化遗传病包括酶缺陷病、溶血病、脂代谢紊乱等多种类型。
生化遗传病的原因
1 遗传因素
生化遗传病多由于遗传的突变或缺陷导致,常为常染色体隐性或显性遗传。
2 环境因素
环境因素如饮食、毒物暴露等也可能对生化代谢产生影响,导致生化遗传病的发生。
生化遗传病的诊断
生化检查
分子遗传学诊断
通过血液、尿液等检查生物体体液的化学成分, 通过对患者遗传物质的分析和检测,确定突变
以判断是否存在代谢异常。
结语
生化遗传病对个人和社会的影响巨大。未来的研究将继续推动生化遗传病的预防、诊断和治疗, 为患者带来新的希望与机遇。
2 婚前医学检查
进行婚前医学检查,筛查携带生化遗传病基因的人群,引导合理婚配。
3 婚配禁忌
对于携带生化遗传病基因的人群,禁止其与其他携带相同基因的人结婚,以减少疾病遗 传风险。
生化遗传病的研究现状
重要性
生化遗传病的研究对于预防、诊断和治疗这类 疾病具有重要意义。
目前研究进展
科学家们正在探索基因编辑、基因治疗等新技 术在生化遗传病中的应用。
基因,确诊生化遗传病。
生化遗传病的治疗
药物治疗
通过药物干预调节代谢, 减轻症状,改善生活质 量。
骨髓ቤተ መጻሕፍቲ ባይዱ植
对于一些严重的生化遗 传病,骨髓移植可以替 换病变细胞,治愈或改 善病情。
基因治疗
利用基因工程技术,修 复或替换患者的异常基 因,治疗生化遗传病。
生化遗传病是一类由于遗传和环境因素引起的疾病。本课件将介绍生化遗传 病的定义、原因、诊断、治疗、预防和研究现状。
什么是生化遗传病?
定义
生化遗传病指由于基因突变或酶缺陷导致的代谢紊乱的遗传病。
常见类型
生化遗传病包括酶缺陷病、溶血病、脂代谢紊乱等多种类型。
生化遗传病的原因
1 遗传因素
生化遗传病多由于遗传的突变或缺陷导致,常为常染色体隐性或显性遗传。
2 环境因素
环境因素如饮食、毒物暴露等也可能对生化代谢产生影响,导致生化遗传病的发生。
生化遗传病的诊断
生化检查
分子遗传学诊断
通过血液、尿液等检查生物体体液的化学成分, 通过对患者遗传物质的分析和检测,确定突变
以判断是否存在代谢异常。
结语
生化遗传病对个人和社会的影响巨大。未来的研究将继续推动生化遗传病的预防、诊断和治疗, 为患者带来新的希望与机遇。
2 婚前医学检查
进行婚前医学检查,筛查携带生化遗传病基因的人群,引导合理婚配。
3 婚配禁忌
对于携带生化遗传病基因的人群,禁止其与其他携带相同基因的人结婚,以减少疾病遗 传风险。
生化遗传病的研究现状
重要性
生化遗传病的研究对于预防、诊断和治疗这类 疾病具有重要意义。
目前研究进展
科学家们正在探索基因编辑、基因治疗等新技 术在生化遗传病中的应用。
基因,确诊生化遗传病。
生化遗传病的治疗
药物治疗
通过药物干预调节代谢, 减轻症状,改善生活质 量。
骨髓ቤተ መጻሕፍቲ ባይዱ植
对于一些严重的生化遗 传病,骨髓移植可以替 换病变细胞,治愈或改 善病情。
基因治疗
利用基因工程技术,修 复或替换患者的异常基 因,治疗生化遗传病。
生化遗传学课件
靶点发现
通过生化遗传学方法,发 现药物作用的靶点,为新 药研发提供基础。
药物筛选
利用高通量筛选技术,快 速筛选出具有潜在活性的 药物候选分子。
药物优化
对筛选出的药物分子进行 结构优化和改造,提高其 活性和选择性,降低毒副 作用。
06
生化遗传学研究前沿与展望
表观遗传学研究
表观遗传学是研究基因表达的调控机制,通过非基因序列改变的方式影响基因的表 达。
生化遗传学的发展历程
总结词
生化遗传学经历了从孟德尔遗传学到分 子遗传学的发展历程。
VS
详细描述
自19世纪末孟德尔发现遗传规律以来, 生化遗传学不断发展。20世纪初, Mendelian遗传学的研究深入到细胞水平 ,发现了染色体是遗传物质的载体。随着 DNA双螺旋结构的发现和分子生物学的 发展,人们开始揭示基因的分子结构和功 能,以及基因表达的调控机制。如今,随 着新一代测序技术的发展,人类基因组计 划已经完成,对基因组结构和功能的认识 更加深入。
基因突变与遗传性疾病
基因突变
由于DNA序列的改变导致基因功能异常,进而引发遗传性疾 病。
遗传性疾病
由基因突变引起的疾病,如唐氏综合征、囊性纤维化等。
03
蛋白质合成与代谢
蛋白质的结构与功能
蛋白质的结构
蛋白质是由氨基酸组成的大分子化合物,其结构包括一级、二级、三级和四级结 构。一级结构是指蛋白质中氨基酸的排列顺序,决定了蛋白质的生物活性和功能 。
总结词:米氏方程、双倒数作图和Km值
• 详细描述:米氏方程是描述酶促反应速度与底物浓度关系的方 程,其形式为V=Vmax[S]/(Km+[S]),其中V是反应速度, Vmax是最大反应速度,[S]是底物浓度,Km是米氏常数。双倒 数作图是将米氏方程两边取倒数后得到的图,可以用来求Km值。 Km值是米氏常数,表示底物浓度达到多少时反应速度达到最大 速度的一半。
生化遗传3PPT幻灯片
Hb–Constant Spring:α基因的142位的TAA (终止密码子)→CAA(谷氨酰胺)。
(二)移码突变
基因中缺失或者插入一个或多个碱基,致使后面的 碱基移位,重新编码,导致珠蛋白肽链的结构异常 或合成速率改变。 Hb Wayne:α基因的138位的TCC缺失一个C。
(三)密码子缺失或插入
16pter-p13.3
5‘
1 2 1
3’
1 31 32 99 100 141
β珠蛋白基因簇
定位于11p15.5(OMIM#141900) 总长度为60kb 按5′→3′方向排列顺序为:5′-ε-Gγ-Aγ-δ-β-3′ 一条11号染色体有1个β基因(用βA表示),正常2n细胞有2个β 基因
11p15.4-pter
εGLeabharlann A ψ1 δ β5’3’
1 30 31 104 105 146
❖ 每个珠蛋白gene=3个外显子+2个内含子
α基因
β基因
1 31 32 99 100 141
1 30 31 104 105 146
❖ 珠蛋白基因的表达:按照特定的质量、数量和时空
有规律地依次进行表达。
(发育过程中α类珠蛋白基因和β类珠蛋白基因的表达顺序与 其排列先后顺序相一致 ,即发育早期是5′端ζ基因和ε、γ 基因表达;成人期主要为3′端的α2、α1基因和β基因表达)
两个非同源基因部分片断拼接而成的基因。 RD时,同源染色体的错误联会导致不等交换形成。 Hb Lepore:β链→δβ链。 Hb anti–Lepore:β链→βδ链。
四、血红蛋白病的分类
❖ 异常血红蛋白病 ❖ 地中海贫血(珠蛋白生成障碍性贫血)
(一)异常血红蛋白病
1、定义:
(二)移码突变
基因中缺失或者插入一个或多个碱基,致使后面的 碱基移位,重新编码,导致珠蛋白肽链的结构异常 或合成速率改变。 Hb Wayne:α基因的138位的TCC缺失一个C。
(三)密码子缺失或插入
16pter-p13.3
5‘
1 2 1
3’
1 31 32 99 100 141
β珠蛋白基因簇
定位于11p15.5(OMIM#141900) 总长度为60kb 按5′→3′方向排列顺序为:5′-ε-Gγ-Aγ-δ-β-3′ 一条11号染色体有1个β基因(用βA表示),正常2n细胞有2个β 基因
11p15.4-pter
εGLeabharlann A ψ1 δ β5’3’
1 30 31 104 105 146
❖ 每个珠蛋白gene=3个外显子+2个内含子
α基因
β基因
1 31 32 99 100 141
1 30 31 104 105 146
❖ 珠蛋白基因的表达:按照特定的质量、数量和时空
有规律地依次进行表达。
(发育过程中α类珠蛋白基因和β类珠蛋白基因的表达顺序与 其排列先后顺序相一致 ,即发育早期是5′端ζ基因和ε、γ 基因表达;成人期主要为3′端的α2、α1基因和β基因表达)
两个非同源基因部分片断拼接而成的基因。 RD时,同源染色体的错误联会导致不等交换形成。 Hb Lepore:β链→δβ链。 Hb anti–Lepore:β链→βδ链。
四、血红蛋白病的分类
❖ 异常血红蛋白病 ❖ 地中海贫血(珠蛋白生成障碍性贫血)
(一)异常血红蛋白病
1、定义:
生化遗传病PPT课件
20
(一)单个碱基的替代(90%) 1、错义突变:
是由于单个核苷酸的改变导致由特定3碱 基密码子编码的氨基酸的改变。
例: HbS(镰形细胞贫血症)
6 GAA → GUA
谷氨酸 缬氨酸
21
缬氨酸替代谷氨酸---缺氧---异常Hb聚合-- 红 细胞镰变-- C膜脆性增加-- 微循环阻塞---RBC 裂解---贫血
Hb 22
22 22 22 22 22
GowerⅠGowerⅡ Portland F A2 A
Hb类型
胚胎Hb
胎儿Hb 成人Hb 15
H b 类型:
成人Hb : Hb A 22 97~98% Hb A2 22 2~3% Hb F 22 <1%
胎儿Hb: Hb F 22 胚胎Hb: Hb GowerⅠ 22 (妊娠12周内)Hb Gower Ⅱ 22
临床症状:
骨严重受损; 内脏器官损伤:心脏、肺脏、肾脏损伤; 脑血管意外; 严重的慢性溶血性贫血等
患者多在成年期死亡
SA
诊断:① 血涂片“镰变试验”阳性 ② 电泳:有一“S”区带
22
正常RBC
镰状RBC
23
24
改变---HbS • 地中海贫血:基因突变导致珠蛋白肽链
合成缺乏或合成量异常-α 、β 地贫
19
一)基因突变致珠蛋白异常----质变 异常血红蛋白病的分子基础
特定的基因座突变→蛋白结构、分子功能 特性改变→提供了认识遗传病分子基础的 途径。 1949 ,Pauling-------分子病的概念。 随后’ Ingram--------证实氨基酸替换。
1949年,Pauling等通过对镰状细胞贫血的研究, 提出分子病(molecular disease)的概念.
(一)单个碱基的替代(90%) 1、错义突变:
是由于单个核苷酸的改变导致由特定3碱 基密码子编码的氨基酸的改变。
例: HbS(镰形细胞贫血症)
6 GAA → GUA
谷氨酸 缬氨酸
21
缬氨酸替代谷氨酸---缺氧---异常Hb聚合-- 红 细胞镰变-- C膜脆性增加-- 微循环阻塞---RBC 裂解---贫血
Hb 22
22 22 22 22 22
GowerⅠGowerⅡ Portland F A2 A
Hb类型
胚胎Hb
胎儿Hb 成人Hb 15
H b 类型:
成人Hb : Hb A 22 97~98% Hb A2 22 2~3% Hb F 22 <1%
胎儿Hb: Hb F 22 胚胎Hb: Hb GowerⅠ 22 (妊娠12周内)Hb Gower Ⅱ 22
临床症状:
骨严重受损; 内脏器官损伤:心脏、肺脏、肾脏损伤; 脑血管意外; 严重的慢性溶血性贫血等
患者多在成年期死亡
SA
诊断:① 血涂片“镰变试验”阳性 ② 电泳:有一“S”区带
22
正常RBC
镰状RBC
23
24
改变---HbS • 地中海贫血:基因突变导致珠蛋白肽链
合成缺乏或合成量异常-α 、β 地贫
19
一)基因突变致珠蛋白异常----质变 异常血红蛋白病的分子基础
特定的基因座突变→蛋白结构、分子功能 特性改变→提供了认识遗传病分子基础的 途径。 1949 ,Pauling-------分子病的概念。 随后’ Ingram--------证实氨基酸替换。
1949年,Pauling等通过对镰状细胞贫血的研究, 提出分子病(molecular disease)的概念.
人类生化遗传病PPT课件
血 红 蛋 白 病 ( hemoglobinopathy ) 是 由 于 血红蛋白分子结构或合成量异常而引起的疾病。
(一)、人类正常血红蛋白分子的结构与发育变化
2条类α链 : ζ 、α链,141个aa组成
珠蛋白
血红蛋白
2条类β链 : ε、Gγ、Aγ、δ、β
HB
血红素
链 ,146个aa组成。
不同珠蛋白肽链组成不同类型血红蛋白
僵硬的镰状红细胞变形能力低,通过狭窄的毛细血管时,不 易变形通过,挤压时易破裂,导致溶血性贫血。
血红蛋白M 病 HBA→HBM 遗传方式:AD
产生原因:珠蛋白链上的一些位置与血红素中铁原子 结合的氨基酸发生突变(α58His→Tyr), 使血红素固定在高铁状态,影响携氧能力,使组织细 胞供氧不足,患者的血呈深棕色,自幼有发绀症状。
β–珠蛋白生成障碍性贫血 (β地中海贫血) β链生成减少或完全不能合成者
生化遗传病
α0地贫 :α链完全不能合成(――)
α地中海贫血
1条16号染色体上缺失2个α基因
α+地贫 :α链有部分能合成 (α-)
1条16号染色体上缺失1个α基因
αA :1条16号染色体有2个α基因(正常)
α地贫的临床分类及发病机制
生化遗传病
镰状细胞贫血
HbA O2
HbS
镰状细胞贫血
机制:
β6 GAG→GTG 谷氨酸→缬氨酸, HBA→ HBS, 血红蛋白的溶解度下降
在氧张力低的毛细血管区,HbS形成管状
凝胶结构(如棒状结构)
红细胞扭曲
成镰刀状(即镰变)
这种僵硬的镰状红细胞不能通过毛细血管,加上HbS的凝胶化 使血液的黏滞度增大,阻塞毛细血管,引起局部组织器官缺血 缺氧,产生脾肿大、肌肉骨骼痛、胸腹疼痛等痛性危象。
(一)、人类正常血红蛋白分子的结构与发育变化
2条类α链 : ζ 、α链,141个aa组成
珠蛋白
血红蛋白
2条类β链 : ε、Gγ、Aγ、δ、β
HB
血红素
链 ,146个aa组成。
不同珠蛋白肽链组成不同类型血红蛋白
僵硬的镰状红细胞变形能力低,通过狭窄的毛细血管时,不 易变形通过,挤压时易破裂,导致溶血性贫血。
血红蛋白M 病 HBA→HBM 遗传方式:AD
产生原因:珠蛋白链上的一些位置与血红素中铁原子 结合的氨基酸发生突变(α58His→Tyr), 使血红素固定在高铁状态,影响携氧能力,使组织细 胞供氧不足,患者的血呈深棕色,自幼有发绀症状。
β–珠蛋白生成障碍性贫血 (β地中海贫血) β链生成减少或完全不能合成者
生化遗传病
α0地贫 :α链完全不能合成(――)
α地中海贫血
1条16号染色体上缺失2个α基因
α+地贫 :α链有部分能合成 (α-)
1条16号染色体上缺失1个α基因
αA :1条16号染色体有2个α基因(正常)
α地贫的临床分类及发病机制
生化遗传病
镰状细胞贫血
HbA O2
HbS
镰状细胞贫血
机制:
β6 GAG→GTG 谷氨酸→缬氨酸, HBA→ HBS, 血红蛋白的溶解度下降
在氧张力低的毛细血管区,HbS形成管状
凝胶结构(如棒状结构)
红细胞扭曲
成镰刀状(即镰变)
这种僵硬的镰状红细胞不能通过毛细血管,加上HbS的凝胶化 使血液的黏滞度增大,阻塞毛细血管,引起局部组织器官缺血 缺氧,产生脾肿大、肌肉骨骼痛、胸腹疼痛等痛性危象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1.3 地中海贫血
地中海贫血(thalassemia)是最常见的人类单基 因遗传病,突变造成血红蛋白合成障碍或稳定 性下降,又称珠蛋白生成障碍性贫血。
α地中海贫血 (α- thalassemia)
β地中海贫血 (β- thalassemia)
正常合成的链与合成受抑制的链相比会相对增多, 在细胞中产生沉淀破坏红细胞膜,使红细胞成熟前 就被破坏。
治 疗 一般输入Ⅸ因子
10.3 酶蛋白病
由于基因突变导致酶蛋白分子结构或数量异常,产生 先天性代谢缺陷所引起的疾病,又称先天性代谢病。
氨基酸代谢病 糖 代谢病 脂类代谢病 核酸代谢病
药物代谢病 维生素代谢病 内分泌代谢病 溶酶体沉积病
能合成一定量的α链,临床症状较轻或无症状
4)静止型α地中海贫血
缺失一个α基因
α+杂合子α+/ αA
基因型(- α /αα)
血红蛋白H病(α0/α+)
3个α缺失→β4
高氧亲和力→组织缺氧 H包涵体→溶血→贫血
10.1.3.1 α地中海贫血
α地中海贫血基因型与临床表现型
10.1.3.1 α地中海贫血
10.1.2.1 引起溶血性贫血的血红蛋白结构变异型
β链第6位密码子单个碱基突变造成,使谷氨 酸被赖氨酸取代(谷→赖)
HbC
βC的频率在西非很高 AR遗传疾病,纯合子罹患HbC病。
溶解度降低,结晶析出,降低了细胞的变形功 能,不能通过毛细血管,引起中等程度溶血。
10.1.2.1 引起溶血性贫血的血红蛋白结构变异型
β地贫
概念
β基因突变造成β链合成减少 或不能合成
分子机制 突变、缺失
类型
重型地中海贫血 β地中海贫血性状
10.1.3.2 β地中海贫血
β0 地中海贫血
单倍体的突变β基因完全不能合成β链
β+ 地中海贫血
突变β基因造成β链合成量降低,但仍能合 成部分β链
β珠蛋白基因的突变类型
突变类型
1.核苷酸取代
(1) β-28核苷酸A→C (2) βIVS-1第1核苷酸G→A (3) βIVS-1第5核苷酸G→C (4) βIVS-2第654核苷酸C→T (5) β第17密码子A→T (6)Hb Knossos(β27丙→丝)
β+
RNA切割和多聚A化信号突变,β+
美国黑人
β珠蛋白基因的突变类型
突变类型
2. 核苷酸插入
β密码子71-72间插入 1个核苷酸
分子缺陷
来源
移码突变导致无功能mRNA,β0 中国人
3. 核苷酸缺失
β密码子41/42(-4)缺 移码突变导致无功能mRNA, ,
失4bp
β0
中国人
4. 不等交换 Hb Lepore
• α0 地贫( α地贫1 ) ห้องสมุดไป่ตู้ 一条16号染色体上缺失
两个α基因 表示为 - -
• α+地贫( α地贫2 ) : 一条16号染色体上缺失
一个α基因 表示为 - α
α地贫1
α地贫2
可以组合成各种不同的综合症
1)血红蛋白Bart’s胎儿水肿综合症 4个α基因全部缺失 α0地贫纯合子( α0 / α0 ) 基因型为(- -/- -) γ链形成Hb Bart’s(γ4)→对氧亲和力高→组织缺氧→ 胎儿水肿
α珠蛋白肽链
α链长141个氨基酸
β珠蛋白肽链
β链长146个氨基酸
和铁相结合的位置 高度保守 β链42位苯丙氨酸和β链92位组氨酸
珠蛋白基因及表达特点
类α珠蛋白基因簇: 16pter~p13.3 每条16号染色体有2个α基因
类α基因定位
珠蛋白基因及表达特点
类β珠蛋白基因簇: 11p15.5 每条11号染色体有1个β基因
累及1/5 000~1/10 000的男性。治疗主要 是输入人血浆中提炼或通过重组技术合成 的Ⅷ因子
10.2.2 血友病B
凝血Ⅸ因子,即血浆凝血活酶成分(PTC)
成 分 遗传性缺乏。其主要临床症状与血友病A相同
遗传
X连锁隐性遗传。基因位于Xq27.1-q27.2,长 34kb,有8个外显子,编码415个氨基酸。突 变涉及核苷酸取代、缺失、插入和移码,其中 大部分为核苷酸取代 。
10.1.3.1 α地中海贫血
非缺失
终止密码、5’转录控制信号、外显子密 码、内含子拼接信号、外显子和内含子 潜在的拼接部位、3’多聚腺苷化信号等 处的碱基取代、缺失、插入和移码突变 等
• α0 地贫( α地贫1 ):突变致使单倍体不能生
成α珠蛋白肽链
• α+地贫( α地贫2 ):单倍体能生成部分 α链
α1密码子14TGG→T
3. 核苷酸缺失
α2IVS-1共有顺序 缺失5个核苷酸
分子缺陷
来源
无功能mRNA
α-β二聚体形成受阻
RNA切割和多聚腺苷化突变体
终止密码突变,肽链延长,但 mRNA极不稳定
地中海地区人 中国人 沙特阿拉伯人
东南亚人
无功能mRNA
沙特阿拉伯人
RNA拼接缺陷
地中海地区人
10.1.3.2 β地中海贫血
生严重的溶血反应;
3.组织缺氧,促进红细胞生成素分泌,刺激骨髓增生, 骨质受损变得疏松,可出现鼻塌眼肿、上颔前突、头 大额隆等特殊的“地中海贫血面容”。
10.1.3.2 β地中海贫血
轻
受累者为杂合子
型
β
地
中
海 贫
通常仅有轻度小细胞低色素性贫血
血
,但无明显临床症状。
10.2 血浆蛋白病
血友病:凝血因子遗传性缺乏引起的遗传性出血性疾病 血友病A 血友病B 血友病C
大多数此类突变主要影响mRNA 或蛋白质的合成速率
HbE
Hb Lepore和Hb anti-Lepore
β26谷→赖,β珠蛋白 的合成速率下降,引 起轻度地中海贫血样 表现。最常见的结构 异常的血红蛋白
减数分裂时δ和β基因间发生错 配和不等交换,产生两种不同 染色体
一有δβ融合基因,无δ、β基因 另一有βδ融合基因,δ、β基因
10.1.2.2 影响氧转运的血红蛋白结构变异型
Hb Hyde park 92位高度保守的组氨酸被酪氨酸取代,产生高铁 血红蛋白。
Hb Kempsey和Hb Kansas
Hb Kempsey(β99天冬氨酸→天冬酰胺),血红蛋白 处疏松状态,氧亲和力很高,导致红细胞增多症。 Hb Kansas (β99天冬酰胺→苏氨酸),血红蛋白不 能变为疏松状态,氧亲和力很低。携带者有青紫。
10.1.1 正常人体血红蛋白的结构和遗传控制
α和β珠蛋白基因簇中5’-3’基因的排列顺序与它们 在个体发育中的表达顺序相同。
10.1.1 正常人体血红蛋白的结构和遗传控制
珠蛋白基因结构
α珠蛋白基因簇 ζ基因 α基因
β珠蛋白基因簇
ε 基因
γ 基因
δ 基因
β 基因
10.1.2 血红蛋白结构变异型的遗传效应
α地中海贫血基因型与临床表现型
两个携带者婚配
α珠蛋白基因的突变类型
突变类型
1.核苷酸取代
(1)α2起始密码子 ATG→ACG (2)Hb Quong Sze (α125亮→脯) (3) α2多聚A信号 AATAAA→AATAAG (4)Hb Constant Spring (α终止→谷胺)
2. 移码突变
Hb Gun Hill
β基因有15 bp的缺失,β珠蛋白基因开放读码框 不变,但缺失了91~95位5个氨基酸残基。
突变后β链可形成空间结构,但血红蛋白很不稳 定,容易导致溶血。
10.1.2.2 影响氧转运的血红蛋白结构变异型
不能携氧的 高铁血红蛋白 (methemoglobin)
增高或降低血红 蛋白的氧亲和力 (oxygen affinity)
类β基因定位
10.1.1 正常人体血红蛋白的结构和遗传控制 血红蛋白类型
Hb Gower1 Hb Gower2 Hb Portland
Hb F Hb A Hb A2
ζ2ε2 α2ε2 ζ2Gγ2 ζ2Rγ2 α2Gγ2 α2Rγ2 α2β2
α2δ2
胚胎早期 胚胎早期 胚胎早期
胎儿期 成人期 成人期
反复自发性或在轻微损伤后出血不止,体 表、体内任何部分均可出血。
10.2.2 血友病A
成分
凝血Ⅷ因子即抗血友病球蛋白(AHG)遗传性缺乏 Ⅷc具有Ⅷ因子凝血活性 ⅧAg是Ⅷ因子凝血活性的载体蛋白
遗传
发病及 治疗
X连锁隐性遗传。基因位于Xq28的近侧,长 186kb,26个外显子,编码2332个氨基酸 。 基因突变涉及核苷酸取代、缺失、插入和移码
血红蛋白结构变异型 血红蛋白基因突变后改变珠蛋白的结构
血红蛋白病
1000多个血红蛋白结构变异型,近半数可致病
血红蛋白结构变异型类型
引起溶血性贫血的血红蛋白结构变异型 影响氧转运的血红蛋白结构变异型 造成地中海贫血样表现的血红蛋白结构变异型
10.1.2.1 引起溶血性贫血的血红蛋白结构变异型
H
β链第6位谷氨酸被缬氨酸取代
Hb Hammersmith β链第42位苯丙氨酸被丝氨酸取代
取代后,血红素易脱离,造成不稳定,Hb Hammersmith 的氧亲和力也降低,会引起青 紫(cyanosis)。
四聚体不可溶解,沉淀形成包涵体,即Heinz 小体(Heinz body),破坏红细胞膜引起溶血。
10.1.2.1 引起溶血性贫血的血红蛋白结构变异型
10.1.3.1 α地中海贫血
α
是由于α珠蛋白基因的缺失或缺陷,
导致α珠蛋白链合成障碍或稳定性下
地
降,体内β珠蛋白链过剩而致病。
中